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THE STRUCTURED DISTANCE TO NEARLY NORMAL MATRICES*

LAURA SMITHIES?

Dedicated to Richard S. Varga on the occasion of his 80th birthday

Abstract. In this note we examine the algebraic variety Z5 of complex tridiagonal n X n matrices 7", such that
T*T — TT* = A, where A is a fixed real diagonal matrix. If A = 0 then Zp is N'r, the set of tridiagonal normal
matrices. For A # 0, we identify the structure of the matrices in Z and analyze the suitability for eigenvalue
estimation using normal matrices for elements of Z5. We also compute the Frobenius norm of elements of Zy,
describe the algebraic subvariety M A consisting of elements of Z with minimal Frobenius norm, and calculate the
distance from a given complex tridiagonal matrix to Zp .

Key words. nearness to normality, tridiagonal matrix, Krein spaces, eigenvalue estimation, GerSgorin type sets

AMS subject classifications. 65F30, 65F35, 15A57, 15A18, 47A25

1. Introduction. In this note, we establish a generalization of the matrix nearness prob-
lem which was solved by S. Noschese, L. Pasquini, and L. Reichel in [5]. The structure for
the type of generalization of nearness to normality which is considered in this note was first
suggested to me by Roger Horn, in connection with [2]. The homework set in [3, page 128]
also discusses this type of generalization of normality.

Let 7" denote the set of all real n x n irreducible tridiagonal matrices and let Z" denote
the algebraic variety of real normal irreducible tridiagonal n x n matrices. The paper [5]
presents the following, for any fixed T' € T:

(i)  aformula for Frobenius distance dp (T, Z") and an easily calculated upper
bound on this distance;

(i)  aformula for a real normal tridiagonal matrix T, such that |7 — T“F is
equal to dp(T,Z");

(iii)  simplified versions of (i) and (ii) for Toeplitz matrices.

In order to generalize the above problem, we must fix some notation. Let C**™ denote
the set of complex n x n matrices and let M € C**". Define the adjoint of M, M* = M?,
to be the conjugate transpose of M. Recall that M is defined to be self adjoint it M = M*
and normal if the commutant of M and its adjoint, [M, M*] := M M* — M*M, equals O in
C™*™. Throughout this note, fix a real diagonal matrix:

(1.1) A = Diag(\;), suchthat A #0, Ay > Ao >--- > Ay, and Z)\l =0.
=1

Let 7 denote the set of tridiagonal complex matrices. The purpose of this paper is to
investigate the set

Ipn={MeT : MM*— M*M = A},
and to describe the distance from normality for the elements of 7. More precisely,
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@) we provide simple formulas, in terms of A, for the elements of Zy ;

(ii)) forT € T, we give a formula for the Frobenius distance d% (T, Z»), and an
easily calculated upper bound for this distance;

(iii)  we provide formulas for the elements of the subvariety M of Zy whose
Frobenius norm is minimal, and for the unique element M € M, with
only nonnegative entries;

(iv) we combine the above results with those of [2] to describe for any M € 7
the distance to normality both in the Frobenius norm and in the sense
of the suitability of M for eigenvalue estimation through normal matrices.

This paper is organized as follows. Section 2 recalls some elementary results and intro-
duces notation which will be used throughout the paper; Section 3 presents a characterization
of the elements of Z5. In Section 4, we give a formula for the distance d%(7T,Z4) from
T € T to Zp, and we describe the algebraic variety M of the elements of 7 of minimal
Frobenius norm. In Section 5, we describe the distance from normality for the elements of
I, in part, by applying results from [2]. The final section discusses some conclusions and
possible extensions.

2. Background and notation. This section defines notation used in the sequel and re-
calls some elementary results. Table 2.1 collects our most important notation.

TABLE 2.1
Sets used in this paper.

T = the tridiagonal matrices in C"**"

N = the normal matrices in C**" Ne=NNT
S = self adjoint (A* = A) in C"*" St=8SnNnT
A = anti-self adjoint (A* = —A) in C**" Ar=ANT

7" = real, irreducible matrices in N

A =Diag(Aj), M >X>-->X A >0, YL, N =0.
Ian={M¢eT : [M,M*]=A}

Iin ={M €T : [M,M*] =4A}

Pa = {(A,B) eESTd At : [A,B] = —2A}

Let T = Tri(o,d, ) denote the element T" of T with lower and upper bands ¢ and 7 in
C"~! and diagonal § € C™. That s,

61 T1 O

@2.1) r=| 0 %
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Note that we use the terminology anti-self adjoint to refer to the constraint A* = —A
on A € C"™™, When A € R™ " this simplifies to A® = —A, and the terminology anti-

symmetric and skew-symmetric are also used. We use a superscript, as in A", when our
matrices are constrained to be real.

We remark that, in contrast to the sets Z” defined in [5], the matrices in our sets Zx
and P, are allowed to be reducible. However, the choice to arrange the entries of A in non-
increasing order, plays the role of irreducibility. More precisely, cf., [8, page 11], let ¢ be
a permutation of {1,---,n} and let P denote the corresponding permutation matrix, i.e.,
Pjx = I ¢(r)- We say that a matrix A € C"*™ is reducible if there exists a rearrangement of
coordinates with respect to which A is block diagonal. That is, if there exists a permutation
P € R™*™ such that

«_ | A1n Arp
pap = | A Ao,

It is easy to check that P Diag(\;) P* = Diag(Ag(;)) and that [M, M*] = A if and
only if [PM P*,(PM P*)*] = Diag(Ag(;)). Our conditions on A imply that A cannot equal
Diag(Ag(;)) for all permutations ¢, and consequently, we do not limit our solution sets Py
and 7, to irreducible matrices.

Let A, B € C*"*™. Recall that the Frobenius inner product and induced norm are defined
as

(A,B)r = Tr(B*A), and ||A|lr = V(4,A)F.

Forz = (z;)7_; andy = (y;)7_; in C", their Euclidean inner product is

n
<zy>=) z;7;.

Jj=1

The corresponding vector norm is ||z||2 = /< z,z > and the induced operator norm is
|All2 = sup{[|Az||> : [|lz[l2 =1}

Let IT 4 and IIs denote the projections of C**™ onto S and A, respectively. That is, for
M e C"™ and i = /-1, let

M4+ M M — M*

IIs(M) 2 Re(M) and I4(M) = 3 = {Im(M)

be its self adjoint and anti-self adjoint parts. It is easy to check that
C" =S A,

where @ denotes the direct sum. More precisely, if C € SN Athen C* = C and C* = —C.
So, C' = 0. This, combined with the fact that both the set of self adjoint matrices and the set
of anti-self adjoint matrices are closed under subtraction, implies that the decomposition of
any M € C™*™ into a sum of a self adjoint and an anti-self adjoint matrix is unique. The
natural structure on St @ A, from the point-of-view of functional analysis, is that of a Krein
space, as we discuss in Section 5.

The sets S™ and A" are orthogonal with respect to the Frobenius inner product. However,
this is not true of S and A. For example, if D = Diag(d;) € R**™, then (D,iD) € S® A
and (D,iD)r = Tr(—iD?) = —i||6||2. In general, if A € S and B € A then (A, B)F is
a pure imaginary number. Indeed, (A, B)r = —(A, B)r because Tr(B*A) = Tr(A*B) =
Tr(—AB*) = —Tr(B*A). On the other hand, the properties of the trace function imply that
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|4 - Bl|% = ||Al|% — 2Re((A4, B) r) + || B||%. Thus, sums and differences of matrices from
S and A also satisty the Pythagorean constraints:

2.2) |4 £ Bl[7 = | AllF + [|BIl%, V(4,B) e S® A

Notice that M is tridiagonal if and only if M * is, and this happens if and only if the
self adjoint and anti-self adjoint parts of M are tridiagonal. Moreover, a routine calculation
shows that for any M € C**",

Finally, we measure the (squared Frobenius) distance from a matrix M € C"*" to a
subset X' of C"*" as

d%(M,X) = inf{||E|[5: M + E € X} =inf{||M — E||3 : E € X}.
Equivalently, for any (4,B) € S® Aand X C S @ A define
(2.4) d3((A,B), X) = inf{||A - E||5. + |B - H|[} : (B, H) € X}.

Note that equation (2.2) implies that the equivalence of C**" = S & A which is given by
M — (T4(M),IIs(M)) and (A, B) — A + B is an isometry with the natural choices of
topology.

3. Structure of 7). Recall that we have fixed the non-zero, real diagonal matrix A
with entries which satisfy the conditions (1.1). In this section we will study the structure
of tridiagonal complex matrices M € T, such that [M, M*] = A. We shall see that the
computations involved simplify with the following equivalences:

LEMMA 3.1. Define the sets I, Zap, and Pp as in Table 2.1. Then

T €I) ifandonly if 2T € Typ,
and
M € Iyp ifandonly if (ILs(M),II4(M)) € Pa.
Moreover, for every H € C**",
4d%(H,Ip) = dy(2H, T1a) = dip((ILs(2H), T4 (2H)), Pa).-
Proof. The map T' — 2T obviously defines a bijection between Zx and Z45. Equation
(2.3) yields the equivalence between ZyA and Pa. Now, let H € C**™. Then,

d%(2H,T4) :;

2, [ =4 inf || & = 4d%(H, Ty),

and the Pythagorean property (2.2), implies that
dp(2H, Lin) = dp((Us(2H),Ta(2H)), Pa). O

DEFINITION 3.1. Let A = Diag(\;) be asin (1.1). For each j = 1,--- ,n, define

J
Si=> A
=1
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REMARK 3.1. We remark that for any M € C**™, [M,M*] is self adjoint and has
trace zero. Thus, our fixed right hand side in the equation [M, M*] = A is, up to choice of
ordering for the real numbers \j, the general non-zero, diagonal right hand side.

The motivations for choosing a diagonal matrix for the right hand side A will be discussed
in the final section. The essential point is that we are interested in describing the extent to
which a matrix M fails to be normal in terms of the rank of the commutant [M, M *]. Our
motivation for assuming that the A; are in non-increasing order is indicated by the following
lemma.

LEMMA 3.2. Let A = Diag(\;) satisfy condition (1.1) and let Sj denote the j-th partial
sum. Then

S; >0, forall j=1,---,n—1.

Proof. Since A # 0, we must have Ay > 0. Now let j be minimal, such that S; < 0.
Then A; < 0. Since the \; are non-increasing, this means A; < O foralll = j7,--- ,n.
Therefore, S; < S; < 0 forall I > j. However, by assumption S, = 0. d

We can now simplify our study of the structure of the matrices in Zp. Let St (respec-
tively Ar) denote the self adjoint (respectively anti-self adjoint) matrices in 7, the complex
tridiagonal matrices. Recall that we have defined

P ={(4,B) € St ® Ar : [A,B] = —2A}.

Because of Lemma 3.1, each (A, B) € P, corresponds to a unique 7' = MTB in Z5. Thus,
the following lemma yields a characterization of the elements of 7, .

LEMMA 3.3. Let A = Diag()\;) satisfy condition (1.1). Let (A,B) € St & At and
denote the entries by

A = Tri(Z;,a;,2;) and B = Tri(—w;, ib;, w;).

Then (A, B) € Pa if and only if the entries satisfy

3.1) (i7) ZjWjp1 = WjZj41, Vi=1,---,n—2;
' (¢4) aj = 0ajt1, Vji=1,---,n—1;
(“}) b] :bj—‘,-la VJ:]-,,TL—]_

Proof. Note that since A = A*, its diagonal (a;) is real and since B = —B*, the diagonal
of B is imaginary. Let C = [A, B]. Since A and B are tridiagonal, C' is pentadiagonal.
Moreover, C = C*. A routine calculation shows

Cj, = —2[Re(z;w;) — Re(zj_1w;_1)],
Cij+1 = (aj —ajy1)wj +i(bjr1 — bj)zj,
Cij+2 = 2ZjWjt1 — WjZj41.

Equating C' to —2A, it is easy to see that conditions (i) and (ii) of (3.1) hold. Recall that A
is assumed to be non-zero and hence Re(z;w;) = S; # 0, forall j = 1,--- ,n — 1. Thus,
zj # 0 and w; # O for all j. The remaining equations say

2 = ibjgr — bj)

(aj1 —aj) = i(bjyr1 — bj) .
Jj+1 J j+1 J w; |UJj|2
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The left hand side is real, the right hand side has non-zero imaginary part, unless b; is con-
stant. Therefore, a; and b; are constant.

Conversely, let (A, B) € St ® A satisfy conditions (3.1), and let C' = [A, B]. Clearly,
Cj7j+1 = (aj —Clj+1)w]'+(bj+1—bj)2j ={0and Cj7j+2 = ZjWji41 —WjZj41 = 0. MOI‘COVCI‘,

Cji = —2[Re(z;w;) — Re(zj—1wj-1)] = =2[S; — Sj—1] = —2A;.

Thus, (A, B) € Pj. a

In view of the previous lemma, we denote the entries of an element (A, B) of Py by
(A,B) = (Z+al,W +4bl), where a,b € R, Z = Tri(2;,0, ;) and W = Tri(—w;, 0, w;).
Note that

[4,B] = [Z + al,W + ibI] = [Z,W].

With this in mind, we can now describe the elements of Py for A # 0. Let T = [0,27)/ ~
denote the torus, and let RT denote the positive real numbers. We will use the both of the
notations 6 and e to identify elements of T.

THEOREM 3.4. Let A = Diag(\;) satisfy condition (1.1), and let S; to be the j-th
partial sum of the A\;. The ordered pairs from St @ At which lie in Pp are parametrized
bijectively by R® x R* x T"~1. Specifically, each (n + 3)-tuple (a,b, c,|w1|,01, - ,0n_1)
defines the complex, tridiagonal matrices A = 7Z + al and B = W + ibl, where the entries
of Z and W satisfy

i e S, 2
(3.2) (i)  wj=|wjle?, where |w;|>= .—Jluill ,
and (ii) zj; =rwy, where 1 = ’l\;}h’f,

forallj=1,--- ,n—1

Proof. First, let (a, b, ¢, |w1],01, -+ ,0,_1), be a fixed element in R® x Rt x T"~!, and
let (Z + aI, W + ibI) be defined by plugging this (n + 3)-tuple into the given formulas. It
is easy to check that z1@1 = A1 + éc, and that conditions (i)-(iv) of Lemma 3.3 hold. Thus,
(A,B) € Pa.

Now, let (A, B) € Py. By the previous lemma (A, B) = (Z + al, W + ibI) for some
a,b € R andforall j = 1,---,n — 1, Re(z;w;) = S; and S; # 0, by Lemma 3.2. So,
w; #0forall j =1,---,n — 1. Define §; = Arg(w;) and let ¢ denote Im(2z,w;). We
will show that (Z, W) is given by plugging the (n + 1)-tuple (¢, |w1],61,-- - ,0,—1) into the
above formulas. Since (Z, W) € Pa,

Re(zju‘)j) = Sj and 2 = Zitt

wj Wi
Now,
z Re(z;w;) S 21 Re(z1w1) M
R(_J. = 723 = .]2’ and Re( ]_)_R(_): 2 = 2
wj |w; | |w; | wj wy |w; | |w |
Thus,
| |2 — Sj|w1|
J Al
Similarly,
Im(ﬁ) I — Im(znw) ¢
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Combined with our second formula for Re( ) this tells us that

)\1+

e wJ forallj=1,.---,n—1.

Finally, suppose (a, b, ¢, w1}, (6;)7=1 ) and (@, b, é, ||, (6 )7=1) in RS x RY x T"—!
define (A, B) and (/1,3) in St @ At which are equal. Then, a = @, b = b, Zj = Zj
and w; = w; forall j = 1,---,n — 1. Thus, §; = Arg(w;) = Arg(w;) = éj, and
¢ =Im(z;w7) = Im(%140,) = é O

COROLLARY 3.5. Let A = Diag()\;) satisfy condition (1.1). Each M € Ty is uniquely
determined by an (n + 3)-tuple

(a,b,c,|wi],61,--- ,0, 1) € R® x Rt x T"1,

Specifically, each such (n + 3)-tuple defines the complex, tridiagonal matrix of the form
1
M= 3 Tri((F — 1)@, a + b, (r + 1)w),

where r = )“;ﬂ“ and w =

- i0;
(Ll ¢ ot

Proof. By the previous theorem, we know how R® x Rt x T"! parametrizes P and
we know from Lemma 3.1 that each M € 7, is uniquely defined by M = AWQL—B for some
(A, B) € Pa. O

4. Distance formulas. In this section we establish a formula for the elements M ¢ in 7
of minimal Frobenius norm. Specifically, we show the minimal elements form an algebraic
subvariety M which is isomorphic to T"~!. We also define M} the unique matrix in Mz
with nonnegative entries. Equivalently, — M} is the unique Z-matrix, cf., [8], in M. We
also give a formula for the distance from a fixed I" € T to Z,, and an easily computed upper
bound on this distance.

First we need some preliminary calculations on the behavior of the Frobenius norm on
tridiagonal matrices. Let T' € T and write

T = Tri(o,6,7), D = Diag(d;), and M = Tri(c,0, 7).
Then
.1 TN = IDI + IM1% = 18115 + lloll3 + [I7115-
In particular,
4.2) if A = Tri(+5,4,0), then ||A]|% = ||9]]3 + 2[|o]|2.

Formula (4.1) follows from the straightforward calculations that Tr(D*M) = 0, ||D||% =
18113, and

Te(M*M) =) Mj; (Mj1j+ M My =Y Tiati1+ ) 5j0;.
=1 j j

Now we are ready to find the minimal elements of Zp. Let M € Zj and let (4, B) =
(IIs(2M), 11 4(2M)) denote the corresponding element in Py. Write A = Tri(Z;, a, z;) and
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B = Tri(—wj, b, w;), where the entries are defined as in condition (3.2). Then by equations
(2.2) and (4.2),

4.3) IMII% = 1AIE + 1Bl = a®n + 2[IC[13 + b*n + 2/lw]l3.
Clearly the norm of M is minimized by the choice of zero for the diagonals of A and B.
Moreover, the relations (3.2) imply that z; = >|‘11u+|’20 wj and |w;|? = f—i|w1|2. Define

n—1

n—1 7
L=> 8= > X\
j=1 j=1 I=1

To minimize ||M||%, we need to minimize

)\2 +c2. S S; 2L A2 42
4.4 =9 2 ’ J 2 4 Php 2 = 2 ALTE 2y
( ) |U]1| [ | 1|4 |UJ1| )\1 |U)1| ] )\1 ( |“71|2 |’U)1| )

This is minimized at |w1|?> = \/A? + ¢2, and the minimal value is

N AL/ X2 2
Do( Af+02)=71+c.

A1

To summarize, let M € 7, be defined by evaluating the formulas in Corollary 3.5 at
a=0,b=0,ceR, |w1|> =+/A +c2 and (01, -+ ,0, 1) € T"'. Then

s Ly/A+¢2
1Ml = ———-

AL

This is, of course, minimized when ¢ = 0. The choice ¢ = 0 and, hence, |w1|2 = A imply
that the factor r = )“;)Jlr"; equals 1. Combined with Corollary 3.5, the above observations
establish the following theorem. ‘

THEOREM 4.1. Let A = Diag(\;) satisfy condition (1.1), and define S; = 3]_; A and
L= E?;ll S;j. The minimal Frobenius norm of the elements of Ly is L. The subvariety of
C™ ™ consisting of elements of Ty which have norm L is

My = {M{ = Tri(0,0,e%/S;) : (61, - ,0n_1) € T"1}.

In particular,

MA = Tri(0,0, \/Sj)

is the unique element of T with || My||% = L, and nonnegative entries.
Recall that we measure the (squared Frobenius) distance from a matrix M to a subset X’
of C"*™ by

d3 (M, X) = inf{||M — E||3 : E € X}.

Given any fixed T' € T, we want to find the distance from T" to Z5. Equivalently, (up to a
factor of 4) we want to find the distance from an element (P, Q) = (IIs(2T),T 4(27)) in
St & A to the set Py. Write

P = Tri(z, Re(d), p) and Q = Tri(—w,ilm(d), v).
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Let (4, B) € Py with
A = Tri((,a,(¢) and B = Tri(—a, ib,w).
The distance between (P, Q) and (A4, B) is
[ Tri(k — ¢, Re(d) — a, = QlIF + [| Tri(= (v = w), Im(8) — b, v — w)|[f,
which, by equations (4.1) and (4.2), is
IRe(d) = all3 + 2[|p = ¢[I3 + [[Im(8) = bl3 + 2[lv - wll5.

271 Re(5;)

The first and third term are minimized by the choices of constant n-tuples a = —

and b = w, cf., [5]. Thus, finding a closest element in Py to (P, Q) reduces to
minimizing
(4.5) 2| = €3 4+ 2||v — w||3, where (,w € C*! satisfy (3.2).

Let {,w € C*! satisfy (3.2) and let ¢ = Im(zyw; ) and r = T‘;}T"; Recall that ¢ = rw.
Thus equation (4.5) is

20|ull3 — 4Re(< p,rw >) + 20rPllwll3 + 2[5 — 4Re(< v,w >) + 2/w]l3.

A24c?

Now, ||w||2 = Z;‘:—ll f—i|w1|2 = L‘K’—;‘Q, and |r|? = 7 - Therefore, equation (4.5) is
2L|wq|?
@o 22l + 0+ 2L are< )

lwil\/Si 0.
(Eapen)

choose ; = Arg(e;). That is, we fix 6; so that Re(e;e %) is maximal. Thus,

Let € = ru + v = (€;) and recall that w has the form (w;) = , where we can

n—1

w )
Re(< €,w >) Z|J|| 1|\/_ |w1|Z|NJ+VJ|\/_

The above calculations lead us to define the function D(c, |wy|) from R x R* to R by

2L(w14+)\2+02) S
@7 Dle,funl) = | )\|1|w1|21 |w1|\/—Z Sil g + v

As the following lemma indicates, finding the distance between a given pair (P, Q) in
St ® AT and P, is equivalent to minimizing the above function. '

LEMMA 4.2. Let A = Diag(\;) satisfy condition (1.1), and define S; = Y _7_, \i and
L=Y77]S; Let (P,Q) € Sy & Ar with

P =Tri(f, o, ) and @ = Tri(—w,i8,v).
Define D(c,|w|) as in (4.7) and let

=inf{D(c,|w1|) : (c,|wi1]) € R x R"}.
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Let & and b be the constant n-tuples with entries Z?Zl %, and Z?Zl %, respectively. Then,
the distance from (P, Q) to Py is

(4.8) 45 ((P,Q), Pa) = lla = all3 + 18 = bl[3 + 2[|ull3 + 2l||3 + D-

Moreover, this distance is bounded above by

n—1
d((P,Q), Pa) < lla—all3 + 118 = bll3 + 2llull3 + 23 + 4L = D v/Sjluj +vj)).
Jj=1
Proof. Fix (¢, |w1]|) and define the variables r = %, €; = Fu;+vj, and §; = Arg(e;),

forall j =1,--- ,n— 1. Let (A, B) € Py be given by the (n + 3)-tuple (a, b, ¢, |w1], (8;)).
We saw in the discussion above, these choices of @ b, and (6;) are optimal for this (c, |w1|),
and d%((P,Q), (A, B)) is given by (4.8). The upper bound is given by noting that the last
term, D = inf{D(c, |w1]) : (c,|wi]) € R x Rt} in the distance formula is less than or
equal to

n—1
DO,v/M) =4L =43 \/Siluj +vil. O
j=1

The difficulty of minimizing D(c, |wy|) over R x RT depends, of course, on the specific
matrices (P, Q). For example, if (P, Q) = (0, 0),

2L(Jwi|* + A% +¢%)

D(e, wn]) = Dol ) = =5

We have seen that this is minimized at ¢ = 0, |w; |2 = )1 and the minimum is 4L.
The above results translate directly into distance formulas for 7. '
COROLLARY 4.3. Let A = Diag(\;) satisfy condition (1.1), and define S; = Y 1_, N
and L = E?;ll Sj. Let T = Tri(@,~,T). Define 7 to be the constant n-tuple with entry

# = @ and define
5(c, [wn]) = L{wi* + X +¢*) [ = w2 —ic)oy + (M + |wn * = i)il\/Si-
2A1 [ws | = lwi|vAx
Let
A = inf{d((c,|w1])) : (c,|wi]) € R x Rt}
Then

dp(T,Zn) = Iy = Al3 + lloll3 + lI7]15 + A.

In particular, for any T € T its distance from Iy is bounded by

n—1
dp(T,Ix) < 6((0, VA1) = v = 4113 + llolls + lI7ll5 + L = Y 217511/
j=1
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Proof. NIs(2T), 11 4(2T)) = (Tri(o + 7, 2Re(y),0 + 1), Tri(c — 7, 2i{Im(7y), T — 0)).
If (P,Q) = (ILs(2T),II 4(2T")) in the previous lemma, then equation (4.8) is

12y = 29115 + 2llo + 7l5 + 2ll7 = oll3 + D = 4lly = 43 + 4llo]l3 + 4llll3 + D,

and the function D(c, |w1]|) reduces to 4d(c, |wn|) for 4 = o + 7 and v = 7 — ¢. This,
combined with the fact that d%.(T,Zx) = 3$d%((ILs(27T),I14(2T)), P4)). establishes the
corollary. d

LetT € 7. Define Ty =T — wl . Then Tj is the translation of T', by a multiple of
the identity matrix, which has minimal Frobenius norm among all such translations, cf., [5].
The above bound for the squared Frobenius distance from 7' to Z, is less than or equal to
(with equality holding if and only if 7 = 0) the sum of the squared Frobenius distances from
Ty to 0 and from 0 to 75 . We will see the importance of the translate, T, in the next section.

5. Applications. In this section, we bound the Frobenius distance from normality for
the elements of 7 . We also apply results from [2] to indicate how well the set of eigenvalues
of an element of 75 can be approximated by using normal matrices and GerS$gorin-type sets.

First, let us consider what the above results tell us about the Frobenius distance from
normality for the elements of Zp. Let T' € C**™. The direct sum structure C"*" = S ¢ A
and the Pythagorean relationship (2.2) imply that

d7(T,N) < min{dy(T,S),d%(T, A)} < min{[|IL(T)||F, s (T)||%}-
Recall that we defined

Ty=T—

Te(T) I

Because the matrix Trg‘r) I is scalar, d%(T,N') = d%(To, N), cf., [5, Theorem 3.2]. There-
fore,

VT € C"  dp(T,N) < min{|[TLa(To)lI%, s (To) |5 }-
Now let M € 7). By Corollary 3.5,

1 1
M= 3 Tri((r — 1)@, a +ib, (r + 1)w), and My = 3 Tri((F — 1) @, 0, (r + 1)w),

) - 0
where 7 = 2 and w; = VSilwle™ oy IIs(Mo) = L Tri(r@, 0, rw) and I 4 (Mo) =

[w1]? VAL Y
L Tri(—, 0,w). By equation (4.2), [Ts(Mo) 3 = 21|13 = $EIL. and |TLs(Mo) |13 =
2
2||413 = L|21§11| . Thus, for M € T defined by the (n + 3)-tuple, (a, b, ¢, |w1], (Gj)?:_ll), the

distance from M to N satisfies
()\% +C2)L L|w1|2}
2)\1 |’UJ1 |2 ’ 2)\1 )

di(M,N) < min{

Graphically, this bound can be described as follows. Let M € T be given by (a, b, ¢, |wi |,
(0j)?:_11). The Frobenius distance from M to the set of normal matrices is determined by
where the ordered pair (c, |wy |*) lies in relation to the parabola y = 22 + A2. Specifically,

(A3+A)L . 49 .2 2
ArTwil® i "> e+ Ay

2 ’L AN+AL .
dp(M,N) < Lall = Qateln g Ju 4 =2 4+ 23

2
wi|“L .
| ;)L if |wi]* <+ A3
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Note that My, the set of elements from 7, with minimal Frobenius norm, corresponds
to the vertex of y = 2 + A2, For every M{ € M, the above bound says d%.(M§,N) < L.
This is, of course, consistent with Theorem 4.1 which tells us that the normal matrix 0 has
distance L from M§.

We now use the results of [2] to describe the distance from normality, in the sense of the
numerical stability of eigenvalue estimation through normal matrices, for the elements of 74 .
Recall that a singular value decomposition (SVD), of a non-zero complex n x n matrix B, is
an expression of B as a product

| or 0 0 - of -
(5.1) B=VEIW*=| ¢ - ¢n 0o . 0 R
[ 0 0 o, - I -

where V' and W are unitary matrices in C**”, and X is a nonnegative diagonal matrix. The
entries of ¥, 01 > g2 > --+ > o,, are the eigenvalues of | B| arranged in non-increasing
order. They are called the singular values of B.

Fix any non-zero B € C"*™ and a SVD, B = VW™, as in (5.1). In [2], we defined
the SV-normally estimated Gersgorin set, TNV (VEIW*). Like the Gerigorin set for B, the
set TNSV(V'ZW*) is a union of closed discs and it contains the eigenvalues of B. We also
defined the SV-normal estimator ey sy« corresponding to this SVD of B. Specifically, define
foreachl =1,--- n,

g=+v1—|< ¢, >|? andlet eysw. = max {¢}.
1<i<n

The parameter ey xnyy+ lies between 0 and 1, inclusively. It is used as a type of condition
number which indicates how well the set TNSV(VEW*) estimates the eigenvalues of B.
When eysyy- is zero, TNV (VEW*) is exactly the set of eigenvalues of B; when eysyy-
is small, the centers of the discs which comprise TSV (VW *) provides a good estimate of
the spectrum of B. This is because the radii of the discs which comprise TNSV(VZW*) are
all R = /2, 0}€?. Roughly speaking, up to a scaling factor of o, this common radius
will be small when eyypy+ is.

Finally, we cite the following lemma which bounds the SV-normal estimators from be-
low. Notice that this lower bound on ey s+ is independent of the choice of SVD for B.

LEMMA 5.1. (See [2]) Let B € CN*N and let eysyy~ denote the SV-normal estimator
corresponding to a SVD, B = VXW*. Then,

|B*B — BB*||> < ||B|[¥ evsw--

The above lemma allows us to describe how well the spectrum of an element of 75 can
be approximated with the SV-normally estimated Gergorin set, TNSV (VSW*).
THEOREM 5.2. Let M € T, be defined by the (n + 3)-tuple (a, b, ¢, |w1], (01);‘:_11) and
recall that L = Z;l:_ll {:1 Ai. Define
- n(a? + b?) +i()\%+02
4 2)\
Let M = VW™ be a SVD of M and denote the corresponding SV-normal estimator by
evsw=. Then
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In particular, if M € M then

A
—” L”2 < eyswe.

Proof. Let
1 _ :
M= 3 Tri((F — 1) @, a + @b, (r + )w),

be defined by (a, b, ¢, |wi|, (0,);”;11) Since M € Ty, M*M — MM* = A and we have
[|M*M — MM*||2 = ||A||2. We showed in Section 4 that

n@®+bv)  (F-1a,. (r+ 1w
IM||% = R 112 + ] - I2.
Thus,
n(@+t?) | Jr-1P i+ 1P n(@®+v)  (r2+1)
e, = MDDy [P 2y gy - met B) It D
4 4 1 2
2 2 2
Since [r|? +1 = J£H + 1 and ||w]|3 = £3al,
n(a@®+b°) L AN+
M 2 s - 1 2 :H
” ”F 4 + 2/\1 (7|’U]1|2 + |w1| )

Finally, if M € M, by Theorem 4.1, |M||% = L. Thus,

M*M — MM* A
|| o _ IAlL _,

> CvEw
1M1 L ’

in this case. |

The previous theorem has an interesting interpretation. The elements of M 4 have mini-
mal Frobenius norm. However, the square of the reciprocal of this Frobenius norm is a factor
of our lower bound for eysyw+. Consequently, the condition number of the SV-normally
estimated GerSgorin sets for elements of M, is maximally bounded above 0. This seems
to suggest the counter-intuitive idea that, regardless of which SVD is used, the radii of
the set TNSV(VEW*) should tend to be largest for smallest elements of Zy. However,
this suggestion fails to consider how weighting factors 012- of the radius R increase with
M7 =35 05

6. Conclusions and extensions. We conclude this note with a few remarks and some
indications of further lines of inquiry for the sets Z5. As we mentioned in Section 3, the right
hand side of the matrix equation M*M — M M™* = A has to be self adjoint with trace zero,
since the left hand side is. The choice to make A diagonal arose from a desire to simplify the
calculations for P and Z, and to make the rank of A easy to identify, since this rank is a type
of measure of the extent to which the matrix M fails to be normal. It would be interesting to
consider how the above development changes for the general right hand side, A.

The intermediate set P was used to simplify the calculations for 7, and to help clarify
how the upper and lower bands of the elements of 7, are related to each other. However, the
set Pa has an interesting intrinsic functional analytic structure. Specifically, the decomposi-
tion C"*™ = S @ A expresses C**™ as a Krein space. This is an indefinite inner product
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space which has the structure of the direct sum of a Hilbert space and a negative Hilbert space.
The structure of the operators on such spaces have been studied in detail, cf., [1, 4], and an
interesting line of inquiry would be to examine the properties of the elements of P, as Krein
space operators.

Finally, other SVD-based Gersgorin-type sets were developed in [6] and [7]. The diffi-
culty in applying such methods generally arises from the nonuniqueness of SVDs. We see
from the above development that elements of the algebraic varieties M and 7, have suffi-
ciently strong structure constraints to overcome the difficulties created by the nonuniqueness
of the SVD for normally estimated Gersgorin sets of [2]. An interesting question is whether
this happens with other SVD Gersgorin-type sets.
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