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THE STRUCTURED DISTANCE TO NEARLY NORMAL MATRICES
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Dedicated to Richard S. Varga on the occasion of his 80th birthday

Abstract. In this note we examine the algebraic variety ��� of complex tridiagonal ����� matrices 	 , such that	�
�	�
�	�	�
���� , where � is a fixed real diagonal matrix. If ����� then � � is ��� , the set of tridiagonal normal
matrices. For ������ , we identify the structure of the matrices in � � and analyze the suitability for eigenvalue
estimation using normal matrices for elements of � � . We also compute the Frobenius norm of elements of � � ,
describe the algebraic subvariety � � consisting of elements of � � with minimal Frobenius norm, and calculate the
distance from a given complex tridiagonal matrix to ��� .
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1. Introduction. In this note, we establish a generalization of the matrix nearness prob-
lem which was solved by S. Noschese, L. Pasquini, and L. Reichel in [5]. The structure for
the type of generalization of nearness to normality which is considered in this note was first
suggested to me by Roger Horn, in connection with [2]. The homework set in [3, page 128]
also discusses this type of generalization of normality.

Let �� denote the set of all real !#"�! irreducible tridiagonal matrices and let $% denote
the algebraic variety of real normal irreducible tridiagonal !&"'! matrices. The paper [5]
presents the following, for any fixed (*)��+ :

(i) a formula for Frobenius distance ,.-�/0(�12$3 54 and an easily calculated upper
bound on this distance;

(ii) a formula for a real normal tridiagonal matrix 6( , such that 78(:9;6(<7 - is
equal to , - /0(�12$= 54 ;

(iii) simplified versions of (i) and (ii) for Toeplitz matrices.
In order to generalize the above problem, we must fix some notation. Let >=?A@B? denote

the set of complex !C"�! matrices and let DE)F>3?A@�? . Define the adjoint of D , D �HGJID*K ,
to be the conjugate transpose of D . Recall that D is defined to be self adjoint if D G D �
and normal if the commutant of D and its adjoint, L D*1MD �ONQPRG DSD � 9TD � D , equals U in>�?A@�? . Throughout this note, fix a real diagonal matrix:

(1.1) V GXWHY[Z]\ /2^�_`4a1 such that VSbG Uc1�^ed�fg^AhifXj5jkjBfg^ ? 1 and
?l m n d ^ m Gporq

Let � denote the set of tridiagonal complex matrices. The purpose of this paper is to
investigate the set $es GSt Du)v� P DSD � 9TD � D G V�wx1
and to describe the distance from normality for the elements of $cs . More precisely,
 Received March 13, 2009. Accepted for publication August 9, 2009. Published online on January 20, 2010.
Recommended by L. Reichel.�

Department of Mathematical Sciences, Kent State University, Kent, OH 44242
(smithies@math.kent.edu).

99



ETNA
Kent State University 

http://etna.math.kent.edu

100 LAURA SMITHIES

(i) we provide simple formulas, in terms of V , for the elements of $ s ;
(ii) for (*)�� , we give a formula for the Frobenius distance , h- /y(�1z$es�4 , and an

easily calculated upper bound for this distance;
(iii) we provide formulas for the elements of the subvariety {;s of $es whose

Frobenius norm is minimal, and for the unique element D|s})�{~s with
only nonnegative entries;

(iv) we combine the above results with those of [2] to describe for any DE)+$�s
the distance to normality both in the Frobenius norm and in the sense
of the suitability of D for eigenvalue estimation through normal matrices.

This paper is organized as follows. Section 2 recalls some elementary results and intro-
duces notation which will be used throughout the paper; Section 3 presents a characterization
of the elements of $�s . In Section 4, we give a formula for the distance , h- /0(�12$es�4 from(�)|� to $es , and we describe the algebraic variety {;s of the elements of $�s of minimal
Frobenius norm. In Section 5, we describe the distance from normality for the elements of$ s , in part, by applying results from [2]. The final section discusses some conclusions and
possible extensions.

2. Background and notation. This section defines notation used in the sequel and re-
calls some elementary results. Table 2.1 collects our most important notation.

TABLE 2.1
Sets used in this paper.

� G the tridiagonal matrices in > ?�@�?� G
the normal matrices in >�?A@B? ��� G ��� �� G

self adjoint ( � ��G � ) in >�?�@�? � � G � � �� G
anti-self adjoint ( � ��G 9�� ) in >�?A@�? � � G � � �$  G real, irreducible matrices in

�v�
V GgW�Y�Z�\ /z^ _ 4 , ^ d f:^ h f�j5jkjBf&^ ? , ^ d�� o , � ?m n d ^ m Ggo .$es GSt D�)�� P L D*1MD �8NeG V�w$e� s G�t Du)v� P L D*1MD �8NeGg� V�w� s G*t /0��1M��4�) � �}� � � P L ��1�� N�G 9H�]VHw
Let ( G�����Y /0�e1M��1��r4 denote the element ( of � with lower and upper bands � and � in> ?.� d and diagonal �<)�> ? . That is,

(2.1) ( G
 ¡¡¡¡¡¡¢
�`d �`d 0�ed �5h . . .

. . . . . . � ?.� d
0 � ?.� d � ?

£¥¤¤¤¤¤¤¦ q
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Note that we use the terminology anti-self adjoint to refer to the constraint � ��G 9��
on ��)�>�?A@B? . When ��)*§�?A@�? this simplifies to �HK G 9�� , and the terminology anti-
symmetric and skew-symmetric are also used. We use a superscript, as in

�  , when our
matrices are constrained to be real.

We remark that, in contrast to the sets $  defined in [5], the matrices in our sets $ s
and

� s are allowed to be reducible. However, the choice to arrange the entries of V in non-
increasing order, plays the role of irreducibility. More precisely, cf., [8, page 11], let ¨ be
a permutation of

tª© 1kjkj5je1�!�w and let « denote the corresponding permutation matrix, i.e.,«�_M¬ ­ Gp® _M¬ ¯ª°�­8± . We say that a matrix ��)v>�?�@�? is reducible if there exists a rearrangement of
coordinates with respect to which � is block diagonal. That is, if there exists a permutation«²)v§�?A@�? , such that «i�H« � G´³ ��d8¬ dµ��d8¬ ho �Hhk¬ h#¶ q

It is easy to check that « W�Y�Z�\ /z^�_`4�« �}G·W�Y�Z�\ /z^ ¯ª°R_�± 4 and that L D*1MD �ON�G V if and
only if L «�D�« � 15/2«�D�« � 4 � N�G�WHY[Z]\ /2^ ¯ª°R_�± 4 . Our conditions on V imply that V cannot equalWHY[Z]\ /2^ ¯ª°R_�± 4 for all permutations ¨ , and consequently, we do not limit our solution sets

� s
and $ s to irreducible matrices.

Let ��1��¸)v>�?A@B? . Recall that the Frobenius inner product and induced norm are defined
as /0�<1��+4¹- Gp��� /2� � ��4a1 and 7a��7k- GSº /0��1M��4�- q
For » G /0»�_`4�?_ n d and ¼ G /y¼`_½4�?_ n d in >�? , their Euclidean inner product is¾ »�1�¼ � G ?l_ n d »�_ I¼`_ q
The corresponding vector norm is 78»�75h GÀ¿ ¾ »c1�» � and the induced operator norm is7a�+7ah GpÁ�ÂBÃ�t�ÄÅÄ ��» ÄÅÄ h P 7a»Q7kh GS© w .

Let Æ�Ç and Æ�È denote the projections of >�?A@�? onto
�

and
�

, respectively. That is, forD�)v>�?A@�? and É G ¿ 9 © , letÆ È /2DS4 G DËÊÌD �� GXÍÏÎ /zDS4 and Æ Ç /2DS4 G DÐ9TD �� G ÉÒÑÔÓ�/zDS4
be its self adjoint and anti-self adjoint parts. It is easy to check that> ?�@�? G � � � 1
where

�
denotes the direct sum. More precisely, if ÕÖ) � � � then Õ ��G Õ and Õ �HG 9HÕ .

So, Õ G*o . This, combined with the fact that both the set of self adjoint matrices and the set
of anti-self adjoint matrices are closed under subtraction, implies that the decomposition of
any D )&>�?A@�? into a sum of a self adjoint and an anti-self adjoint matrix is unique. The
natural structure on

� �<� � �
, from the point-of-view of functional analysis, is that of a Kreı̌n

space, as we discuss in Section 5.
The sets

�  and
�  are orthogonal with respect to the Frobenius inner product. However,

this is not true of
�

and
�

. For example, if × G�WHY[Z]\ /0�a_½4�)}§�?A@B? , then /2×�1�ÉÔ×Ø4H) � � �
and /0×�1�ÉÒ×�4¹- GÙ�c� /¹9ÏÉÔ× h 4 G 9ÏÉ87k�B7 hh . In general, if �Ú) � and �·) � then /2��1��+4�- is
a pure imaginary number. Indeed, /2��1M��4�- G 9 /0��1M��4�- because

��� /2� � ��4 G �c� /0� � �+4 G�c� /¹9���� � 4 G 9 ��� /0� � ��4 q On the other hand, the properties of the trace function imply that
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102 LAURA SMITHIES7a�|9���7 h- G 7a��7 h- 9�� ÍÏÎ /�/0�<1���4 - 4eÊÌ7k��7 h- q Thus, sums and differences of matrices from�
and

�
also satisfy the Pythagorean constraints:

(2.2) 7a�|Û|��7 h- G 7k��7 h- Ê�7a��7 h- 1�Ü�/0�<1���4%) � � � q
Notice that D is tridiagonal if and only if D � is, and this happens if and only if the

self adjoint and anti-self adjoint parts of D are tridiagonal. Moreover, a routine calculation
shows that for any D�)�>�?�@�? ,

(2.3) L D*1MD � NeG 9H�BL Æ�È�/2DS4a1�Æ�Ç�/zDS4 NÒq
Finally, we measure the (squared Frobenius) distance from a matrix D )*>=?�@�? to a

subset Ý of >�?A@�? as, h- /2D*1MÝØ4 GgY�Þ�ß5t 78àØ7 h- P DáÊ|àâ)vÝ�w GpY�Þ�ßkt 7aDÐ9CàØ7 h- P àâ)�Ý�w q
Equivalently, for any /0��1M��4�) � � � and ÝÚã � � � define

(2.4) , h- /�/0�<1���4a1MÝ�4 GgY�Þ�ß5t 78�&9CàØ7 h- Ê�78�S9Cä|7 h- P /0à�1�ä}4�)�Ý�w q
Note that equation (2.2) implies that the equivalence of >�?�@�? G � � � which is given byDæåE/0ÆHÇ�/2DS4a1�ÆHÈ3/2DS4�4 and /0��1M��4�åÐ�pÊ&� is an isometry with the natural choices of
topology.

3. Structure of $ s . Recall that we have fixed the non-zero, real diagonal matrix V
with entries which satisfy the conditions (1.1). In this section we will study the structure
of tridiagonal complex matrices D )S� , such that L D*1MD �ON�G V . We shall see that the
computations involved simplify with the following equivalences:

LEMMA 3.1. Define the sets $ s , $e� s , and
� s as in Table 2.1. Then(�)ç$ s if and only if ��(*)ç$e� s 1

and DE)ç$e� s if and only if /2ÆHÈ3/2DS4a1�ÆHÇ�/2DS4�4%) � s q
Moreover, for every äè)�>�?A@�? ,� , h- /0äF12$ s 4 G , h- /z�]ä�1z$e� s 4 G , h- /�/0ÆHÈ3/2�]ä#481�Æ�Ç�/z�]ä}4�481 � s 4 q

Proof. The map (²åé�]( obviously defines a bijection between $ s and $e� s . Equation
(2.3) yields the equivalence between $�� s and

� s . Now, let ä�)v> ?A@B? . Then,, h- /2�]äF12$e� s 4 G Y�Þ�ßhMê�ë`ì�íÒî 7k�]äï9T��(�7 h- G&�²YÅÞ�ßê�ë`ì]î 7aäÚ9'(�7 h- G&� , h- /0äF12$ s 481
and the Pythagorean property (2.2), implies that, h- /2��ä�12$e� s 4 G , h- /�/2Æ�È3/z�]ä}4a1�ÆHÇ�/2��ä}4�4a1 � s 4 q

DEFINITION 3.1. Let V GXWHY[Z]\ /2^B_½4 be as in (1.1). For each ð G�© 1kjkj5j�1�! , defineñ _ G _l m n d ^ m q
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REMARK 3.1. We remark that for any D )�>�?A@B? , L D*1MD �8N is self adjoint and has
trace zero. Thus, our fixed right hand side in the equation L D*1MD �MN3G V is, up to choice of
ordering for the real numbers ^B_ , the general non-zero, diagonal right hand side.

The motivations for choosing a diagonal matrix for the right hand side V will be discussed
in the final section. The essential point is that we are interested in describing the extent to
which a matrix D fails to be normal in terms of the rank of the commutant L D*1MD �MN . Our
motivation for assuming that the ^B_ are in non-increasing order is indicated by the following
lemma.

LEMMA 3.2. Let V GXW�Y�Z�\ /2^ m 4 satisfy condition (1.1) and let
ñ _ denote the ð -th partial

sum. Then ñ _i� o 1 for all ð G�© 1kj5jkj�1�!v9 ©�q
Proof. Since VïbG U , we must have ^ dØ� o . Now let ð be minimal, such that

ñ _ ¾ o .
Then ^ _ ¾ o . Since the ^ m are non-increasing, this means ^ m ¾ o for all ò G ðª1kj5jkj�1�! .
Therefore,

ñ m ¾ ñ _ ¾ o for all ò � ð . However, by assumption
ñ ? GXo .

We can now simplify our study of the structure of the matrices in $ s . Let
� �

(respec-
tively

� �
) denote the self adjoint (respectively anti-self adjoint) matrices in � , the complex

tridiagonal matrices. Recall that we have defined� s G*t /2��1M��4�) � �}� � � P L �<1�� N�G 9H��V�w q
Because of Lemma 3.1, each /2��1M��4�) � s corresponds to a unique ( Gôó�õ�öh in $ s . Thus,
the following lemma yields a characterization of the elements of $ s .

LEMMA 3.3. Let V G�W�Y[Z]\ /2^ m 4 satisfy condition (1.1). Let /0�<1���4�) � � � � � and
denote the entries by � GX�c�MY / I÷ _ 1�ø _ 1 ÷ _ 4 and � GX�c�MY /¹9 Iù _ 1�É¹ú _ 1 ù _ 4 q
Then /0�<1��+4�) � s if and only if the entries satisfy

(3.1)

/0É¹4 ÍÏÎ / ÷ _ Iù _`4 G ñ _�1 ÜBð GS© 1kj5jkj�1�!�9 ©�û/0ÉÒÉÔ4 ÷ _ ù _ õ d G ù _ ÷ _ õ d]1 ÜBð GS© 1kj5jkj�1�!�9T� û/0ÉÒÉzÉ¹4 ø�_ G ø�_ õ d�1 ÜBð GS© 1kj5jkj�1�!�9 ©�û/0ÉÒü.4 ú�_ G úM_ õ d`1 ÜBð GS© 1kj5jkj�1�!�9 ©�q
Proof. Note that since � G � � , its diagonal /0ø _ 4 is real and since � G 9�� � , the diagonal

of � is imaginary. Let Õ G L ��1M� N . Since � and � are tridiagonal, Õ is pentadiagonal.
Moreover, Õ G Õ � . A routine calculation showsÕ�_M¬ _ G 9H�BL ÍÏÎ / ÷ _ Iù _`4Q9 ÍÏÎ / ÷ _ � d Iù _ � d½4 N 1Õ�_M¬ _ õ d G /0ø�_�9'ø�_ õ d54 ù _%ÊýÉO/zú�_ õ d%9Tú�_½4 ÷ _]1Õ�_M¬ _ õ h G ÷ _ ù _ õ d�9 ù _ ÷ _ õ d q
Equating Õ to 9H�]V , it is easy to see that conditions (i) and (ii) of (3.1) hold. Recall that V
is assumed to be non-zero and hence

ÍÏÎ / ÷ _ Iù _`4 G ñ _�bG²o , for all ð G¸© 1kj5jkj�1�!}9 © . Thus,÷ _+bGpo and ù _þbGgo for all ð . The remaining equations say/0ø�_ õ dÏ9'ø�_½4 G ÉO/zú�_ õ d%9Tú�_54 ÷ _ù _ G ÉO/zú�_ õ d%9Tú�_54 ÷ _ ù _Ä ù _ Ä h q
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The left hand side is real, the right hand side has non-zero imaginary part, unless ú _ is con-
stant. Therefore, ø _ and ú _ are constant.

Conversely, let /0��1M��4�) � ��� � � satisfy conditions (3.1), and let Õ G L ��1�� N . Clearly,Õ3_�¬ _ õ d G /2ø]_B9iø�_ õ da4 ù _.ÊØ/zú�_ õ dx9�ú�_54 ÷ _ GXo and Õ3_M¬ _ õ h G ÷ _ ù _ õ dB9 ù _ ÷ _ õ d Gpo . Moreover,Õ _M¬ _ G 9H�BL ÍÏÎ / ÷ _ Iù _ 4�9 ÍÏÎ / ÷ _ � d Iù _ � d 4 N�G 9H�BL ñ _ 9 ñ _ � d N�G 9H�ª^ _ q
Thus, /2��1��+4%) � s .

In view of the previous lemma, we denote the entries of an element /0�<1���4 of
� s by/0�<1��+4 G /ÒÿvÊ�ø ® 1��èÊvÉ¹ú ® 4 , where ø�1Mú�)v§ , ÿ Gg����Y / I÷ _ 1 o 1 ÷ _ 4 and � Gg����Y /¹9 Iù _ 1 o 1 ù _ 4 .

Note that L ��1M� N�G LRÿýÊÌø ® 1��ËÊýÉÔú ®]N�G L ÿ�1�� NÒq
With this in mind, we can now describe the elements of

� s for V²bG U . Let � G L o 1M���c4��	�
denote the torus, and let § õ denote the positive real numbers. We will use the both of the
notations 
 and �
��� to identify elements of � .

THEOREM 3.4. Let V G´W�Y[Z]\ /2^ m 4 satisfy condition (1.1), and let
ñ _ to be the ð -th

partial sum of the ^ m . The ordered pairs from
� � � � �

which lie in
� s are parametrized

bijectively by §��ç"Ø§ õ "��=?.� d . Specifically, each /y!+Ê��x4 -tuple /0ø�1Mú�1���1 Ä ù d Ä 1�
�d`1kj5jkj�1�
 ?.� dk4
defines the complex, tridiagonal matrices � G ÿýÊ|ø ® and � G � ÊýÉ¹ú ® , where the entries
of ÿ and � satisfy

(3.2)
/yÉ¹4 ù _ G Ä ù _ Ä � ����� 1 where

Ä ù _ Ä h G�� ��� �����  ! � 1
and /yÉÒÉ¹4 ÷ _ G#" ù _ 1 where

"�G ! � õ ��$� � � �  1
for all ð GÖ© 15jkj5j�1�!�9 © .

Proof. First, let /0ø�1Mú`1���1 Ä ù d Ä 1%
 d 15jkjkj�1�
 ?.� d 4 , be a fixed element in §��i"ç§ õ "&�3?.� d , and
let /ÒÿÌÊÌø ® 1��ÐÊ|ÉÔú ® 4 be defined by plugging this /y!�Ê'�ª4 -tuple into the given formulas. It
is easy to check that ÷ d Iù d G ^ed=ÊÌÉ�� , and that conditions (i)-(iv) of Lemma 3.3 hold. Thus,/0�<1��+4�) � s .

Now, let /2��1M��4�) � s . By the previous lemma /2��1��+4 G /zÿÌÊ:ø ® 1��ÐÊýÉ¹ú ® 4 for someø�1Mú�)&§ , and for all ð Gô© 1kj5jkj�1�!#9 © , ÍÏÎ / ÷ _ Iù _½4 G ñ _ and
ñ _CbG�o , by Lemma 3.2. So,ù _ýbGÚo for all ð G·© 15jkj5j�1�!'9 © . Define 
5_ G)(H��\ / ù _`4 and let � denote ÑÔÓ�/ ÷ d Iù d54 . We

will show that /zÿ�1��S4 is given by plugging the /0!çÊ © 4 -tuple /*��1 Ä ù d Ä 1�
]d�1kj5jkj�1%
 ?.� dk4 into the
above formulas. Since /ÒÿÏ1��S4�) � s ,ÍÏÎ / ÷ _ Iù _½4 G ñ _�1 and

÷ _ù _ G ÷ _ õ dù _ õ d q
Now,ÍÏÎ / ÷ _ù _ 4 G ÍÏÎ / ÷ _ Iù _½4Ä ù _ Ä h G ñ _Ä ù _ Ä h 1 and

Í�Î / ÷ _ù _ 4 GgÍÏÎ / ÷ dù d 4 G ÍÏÎ / ÷ d Iù d54Ä ù d Ä h G ^�dÄ ù d Ä h q
Thus, Ä ù _ Ä h G ñ _ Ä ù d Ä h^ed q
Similarly, ÑÔÓv/ ÷ _ù _ 4 G ÑÔÓF/ ÷ dù d 4 G ÑÔÓF/ ÷ d Iù da4Ä ù d Ä h G �Ä ù d Ä h q
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Combined with our second formula for
ÍÏÎ /,+ �� � 4 , this tells us that÷ _ G ^ed3ÊýÉ��Ä ù d Ä h ù _ for all ð GÖ© 15jkjkje1�!�9 ©�q

Finally, suppose /0ø�1Mú�1���1 Ä ù d Ä 15/*
k_�4 ?.� d_ n d 4 and / 6ø�1 6ú½1 6��1 Ä 6ù d Ä 15/ 6
k_½4 ?.� d_ n d 4 in §-��"F§ õ ".�3?.� d
define /0�<1��+4 and /36�<1%6��4 in

� � � � �
which are equal. Then, ø G 6ø , ú G 6ú , ÷ _ G 6÷ _

and ù _ G 6ù _ for all ð G © 15jkj5j�1�!|9 ©�q Thus, 
½_ G/(H��\ / ù _`4 G/(��M\ / 6ù _`4 G 6
5_ , and� G ÑÔÓ�/ ÷ d ù dk4 G ÑÔÓF/ 6÷ d 6ù d54 G 6� q
COROLLARY 3.5. Let V G*WHY[Z]\ /2^ m 4 satisfy condition (1.1). Each Dµ)Ø$�s is uniquely

determined by an /0!�Ê0�ª4 -tuple/2ø�1Mú`1���1 Ä ù d Ä 1%
�d`15jkjkj�1�
 ?.� d54%)�§ � "�§ õ "1� ?.� d q
Specifically, each such /y!ØÊ0�ª4 -tuple defines the complex, tridiagonal matrix of the formD G ©� ����Y /�/ I" 9 © 4 2�1Mø�ÊýÉ¹ú`15/ " Ê © 4�2 481
where

"�G ! � õ �3$� � � �  , and 2 G / ¿ � � � � � � 4�536 �7 ! � 4%)v> ?.� d .
Proof. By the previous theorem, we know how § � "F§ õ "8� ?.� d parametrizes

� s and
we know from Lemma 3.1 that each D )#$ s is uniquely defined by D G ó�õcöh for some/0�<1���4Ï) � s .

4. Distance formulas. In this section we establish a formula for the elements D �s in $es
of minimal Frobenius norm. Specifically, we show the minimal elements form an algebraic
subvariety { s which is isomorphic to �=?.� d . We also define D s the unique matrix in { s
with nonnegative entries. Equivalently, 9HD s is the unique ÿ -matrix, cf., [8], in { s . We
also give a formula for the distance from a fixed (�)v� to $ s , and an easily computed upper
bound on this distance.

First we need some preliminary calculations on the behavior of the Frobenius norm on
tridiagonal matrices. Let (�)v� and write( Gp���MY /0�e1M��1��r4a1F× GpW�Y�Z�\ /2� _ 481 and D GX�c�MY /2�e1 o 1��r4 q
Then

(4.1) 78(�7 h- G 7a×#7 h- Ê�7kD¸7 h- G 7a�B7 hh ÊX7k�37 hh Ê�78�c7 hh q
In particular,

(4.2) if � Gp�c�MY /ÒÛ I��1���1M��481 then 7k��7 h- G 7k�B7 hh Ê|�A7a�37 hh q
Formula (4.1) follows from the straightforward calculations that

�c� /0× � DS4 G o , 7k×}7 h- G7a�B7 hh , and�c� /2D � DS4 G ?l_ n d D �_M¬ _ � d D'_ � d8¬ _ ÊÌD �_M¬ _ õ d D#_ õ dO¬ _ G ?l_ n h �._ � d8�8_ � d3Ê ?.� dl_ n d ��_5�._ q
Now we are ready to find the minimal elements of $ s . Let D )'$ s and let /0�<1��+4 G/0ÆHÈ3/2��DS4a1�Æ�ÇH/2�ªDS4�4 denote the corresponding element in

� s . Write � Gp����Y / I÷ _�1MøA1 ÷ _½4 and
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106 LAURA SMITHIES� GX�c�MY /�9 Iù _ 1�É¹ú`1 ù _ 4 , where the entries are defined as in condition (3.2). Then by equations
(2.2) and (4.2),

(4.3) 75D¸7 h- G 7k��7 h- Ê�7a��7 h- G ø h !�Ê|�A7�9A7 hh ÊÌú h !�Ê|�A7�2�7 hh q
Clearly the norm of D is minimized by the choice of zero for the diagonals of � and � .
Moreover, the relations (3.2) imply that ÷ _ G ! � õ �3$� �����  ù _ and

Ä ù _ Ä h G�� �! � Ä ù d Ä h . Define

:|G ?.� dl_ n d ñ _ G ?.� dl_ n d _l m n d ^ m q
To minimize 7kD¸7 h- , we need to minimize

(4.4) ×<;x/ Ä ù d Ä h 4 G �BL ?.� dl_ n d / ^ h d Ê0� hÄ ù d Ä � 4 ñ _^ d Ä ù d Ä h Ê ñ _^ d Ä ù d Ä h N�G � :^ d / ^ h d Ê0� hÄ ù d Ä h Ê Ä ù d Ä h 4 q
This is minimized at

Ä ù d Ä h G º ^ h d Ê=� h , and the minimal value is×	;x/%> ^ h d Ê=� h 4 G �?: º ^ h d Ê=� h^ d q
To summarize, let D ):$ s be defined by evaluating the formulas in Corollary 3.5 atø GXo , ú GXo , ��)v§ ,

Ä ù d Ä h G º ^ h d Ê=� h , and /@
 d 15jkjkj�1�
 ?.� d 4%)A�=?.� d . Then75D¸7 h- G : º ^ h d Ê=� h^ d q
This is, of course, minimized when � G²o . The choice � GÖo and, hence,

Ä ù d Ä h G ^ d imply
that the factor

"'G ! � õ �3$� � � �  equals
©
. Combined with Corollary 3.5, the above observations

establish the following theorem.
THEOREM 4.1. Let V GXWHY[Z]\ /2^ m 4 satisfy condition (1.1), and define

ñ _ G � _ m n d ^ m and:�G � ?.� d_ n d ñ _ . The minimal Frobenius norm of the elements of $cs is
:

. The subvariety of>�?A@�? consisting of elements of $ s which have norm
:

is{~s G*t D �s GX�c�MY / o 1 o 1�� ����� º ñ _ 4 P /@
 d 1kjkj5j�1%
 ?.� d 4%).� ?.� d w q
In particular, DCs Gp�c�MY / o 1 o 1 º ñ _ 4
is the unique element of $ s with 7kD s 7 h- GB: , and nonnegative entries.

Recall that we measure the (squared Frobenius) distance from a matrix D to a subset Ý
of >�?A@�? by , h- /zD*1MÝ�4 GgY�Þ�ßkt 7aDé9'àØ7 h- P à )�Ý�w q
Given any fixed (ï)Ì� , we want to find the distance from ( to $cs . Equivalently, (up to a
factor of 4) we want to find the distance from an element /0«�1�C�4 G /2Æ�È�/2��(�481�Æ�ÇH/z��(�4�4 in� �}� � �

to the set
� s . Write« Gp���MY / ID 1 ÍÏÎ /0�]481 D 4 and C Gp�c�MY /�9 IE 1�ÉÒÑÔÓ�/0�]4a1 E 4 q
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Let /0�<1���4Ï) � s with � Gg����Y / I9r1�ø�1�9�4 and � Gg����Y /¹9 I2Ï1�É¹ú`1%2 4 q
The distance between /0«�1�C�4 and /2��1��+4 is7 ����Y / D 9�9r1 Í�Î /0�]4�9'ø�1 D 9F9�4k7 h- ÊX7 ���MY /¹9�/ E 9G2 4a1�ÑÔÓ�/0�]4�9Cú`1 E 9G2 457 h- 1
which, by equations (4.1) and (4.2), is7 ÍÏÎ /0�]4�9Cø�7 hh ÊÌ�r7 D 9�9A7 hh Ê�78ÑÔÓ�/2�]4�9Cú�7 hh Ê:�r7 E 9H2�7 hh q
The first and third term are minimized by the choices of constant ! -tuples ø GJI<K�MLN�PORQ °TS � ±?
and ú GUI K�MLN�PV3W °3S � ±? , cf., [5]. Thus, finding a closest element in

� s to /2«�1�C�4 reduces to
minimizing

(4.5) �A7 D 9�9A7 hh Ê|�A7 E 9G2�7 hh 1 where 9�1X2&)v> ?.� d satisfy (3.2).

Let 9�1%2&)v>�?.� d satisfy (3.2) and let � G ÑÔÓ�/ ÷ d Iù d 4 and
"iG ! � õ ��$� � � �  . Recall that 9 G#" 2 .

Thus equation (4.5) is�A7 D 7 hh 9 �ªÍ�Î / ¾ D 1 " 2 � 4�Ê|� Ä "BÄ h 7Y2�7 hh ÊÌ�r7 E 7 hh 9 �ªÍÏÎ / ¾ E 1X2 � 4cÊ|�A7�2�7 hh q
Now, 7Y2�7 hh G � ?.� d_ n d � �! � Ä ù d Ä h G�Z � �[�Y�  ! � , and

Ä "BÄ h G !  � õ $  � ����� í . Therefore, equation (4.5) is

(4.6) �r7 D 7 hh ÊÌ�r7 E 7 hh ÊX/ © Ê Ä "�Ä h 4 � :�Ä ù d Ä h^ d 9 �ªÍÏÎ / ¾ I" D Ê E 1%2 � 4 q
Let \ G I" D Ê E G /M\ _ 4 and recall that 2 has the form / ù _ 4 G / � �[��� ¿ � �7 ! � � ����� 481 where we can
choose 
5_ GB(��M\ /M\�_½4 . That is, we fix 
5_ so that

ÍÏÎ /*\�_]�ª� ����� 4 is maximal. Thus,Í�Î / ¾ \½1X2 � 4 G ?.� dl_ n d Ä \¹_ Ä Ä ù d Ä º ñ _¿ ^�d G Ä ù d Ä¿ ^ed ?.� dl_ n d Ä I" D _=Ê E _ Ä º ñ _ q
The above calculations lead us to define the function ×}/*��1 Ä ù d Ä 4 from §X"v§ õ to § õ by

(4.7) ×F/M��1 Ä ù d Ä 4 G � : / Ä ù d Ä � Ê|^ h d Ê0� h 4^�d Ä ù d Ä h Ê 9 �Ä ù d Ä ¿ ^ed ?.� dl_ n d º ñ _ Ä /z^ d 9'É��k4 D _ Ê Ä ù d Ä h E _ Ä q
As the following lemma indicates, finding the distance between a given pair /2«�1�C�4 in� � � � �

and
� s is equivalent to minimizing the above function.

LEMMA 4.2. Let V GâW�Y�Z�\ /z^ m 4 satisfy condition (1.1), and define
ñ _ G � _ m n d ^ m and:ýG � ?.� d_ n d ñ _ . Let /2«�1�C�4�) � � � � � with« Gp�c�MY / ID 1�^ 1 D 4 and C Gp���MY /¹9 IE 1�É`_31 E 4 q

Define ×F/*�]1 Ä ù d Ä 4 as in (4.7) and let× GgY�Þ�ß5t ×F/M��1 Ä ù d Ä 4 P /*�]1 Ä ù d Ä 4%)v§�"v§ õ w q
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Let 6ø and 6ú be the constant ! -tuples with entries � ?_ n dba �? , and � ?_ n ddc �? , respectively. Then,
the distance from /0«�1�C�4 to

� s is

(4.8) , h- /�/0«�1�C�481 � s 4 G 7�^�9 6ø�7 hh Ê*7Y_v9 6ú�7 hh ÊÌ�r7 D 7 hh ÊÌ�r7 E 7 hh ÊÌ× q
Moreover, this distance is bounded above by

, h- /�/0«�1�C�481 � sc4deS7�^�9 6ø�7 hh Ê�7Y_�9 6ú�7 hh ÊÌ�r7 D 7 hh ÊÌ�r7 E 7 hh Ê � / : 9 ?.� dl_ n d º ñ _ Ä D _ Ê E _ Ä 4 q
Proof. Fix /M��1 Ä ù d Ä 4 and define the variables

"�G ! � õ ��$� � � �  , \�_ G I" D _]Ê E _ , and 
½_ GB(��M\ /M\¹_½4 ,
for all ð GS© 1kjkj5j�1�!�9 © . Let /2��1M��4�) � s be given by the /y!ØÊ0�ª4 -tuple /0ø�1Mú�1���1 Ä ù d Ä 1½/@
 _ 4�4 .
We saw in the discussion above, these choices of ø�ú , and /@
 _ 4 are optimal for this /*�]1 Ä ù d Ä 4 ,
and , h- /�/2«�1�C�4a15/0�<1��+4�4 is given by (4.8). The upper bound is given by noting that the last
term, × GâY�Þ�ß5t ×F/M��1 Ä ù d Ä 4 P /*��1 Ä ù d Ä 4�)Ì§²"#§ õ w , in the distance formula is less than or
equal to

×F/ o 1 º ^edk4 Gp�?: 9 � ?.� dl_ n d º ñ _ Ä D _%Ê E _ Ä q
The difficulty of minimizing ×}/*��1 Ä ù d Ä 4 over §&"ç§ õ depends, of course, on the specific

matrices /0«�1�C�4 . For example, if /0«�1�C<4 G /zU�1OUA4 ,×F/M��1 Ä ù d Ä 4 G ×	;x/ Ä ù d Ä 4 G � : / Ä ù d Ä � ÊÌ^ h d Ê=� h 4^ d Ä ù d Ä h q
We have seen that this is minimized at � GXo , Ä ù d Ä h G ^ed and the minimum is

�?:
.

The above results translate directly into distance formulas for � .
COROLLARY 4.3. Let V G²W�Y�Z�\ /2^ m 4 satisfy condition (1.1), and define

ñ _ G � _ m n d ^ m
and

: G � ?.� d_ n d ñ _ . Let ( GÚ�c�MY / ��1Xf�1��r4 . Define 6f to be the constant ! -tuple with entryI K�MLN�Pg �? GihPj °�êA±? , and define

��/M��1 Ä ù d Ä 4 G : / Ä ù d Ä � Ê|^ h d Ê0� h 4��^ed Ä ù d Ä h 9 ?.� dl_ n d Ä /2^ed%9 Ä ù d Ä h 9'É��k4¹��_=ÊX/2^ed=Ê Ä ù d Ä h 9#É��k4¹�O_ Ä º ñ _Ä ù d Ä ¿ ^ed q
Let k GpY�Þ�ßkt ��/�/*�]1 Ä ù d Ä 4�4 P /M��1 Ä ù d Ä 4%)�§X"v§ õ w q
Then , h- /y(H12$ s 4 G 7�f�9 6f�7 hh ÊX7k�37 hh Ê�78�c7 hh Ê k q
In particular, for any (*)�� its distance from $ s is bounded by

, h- /y(�1z$ s 4de:��/�/ o 1 º ^ed54�4 G 7�fØ9 6f�7 hh ÊX7k�37 hh Ê�78�c7 hh Ê : 9 ?.� dl_ n d � Ä �O_ Ä º ñ _ q
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Proof. /0Æ È /2�](�481MÆ Ç /z��(�4�4 G / �c�MY / ��ÊT��1O� ÍÏÎ /lf�481���ÊF�r481 �c�MY / ��9#��1O��ÉÒÑÔÓv/lf�481���9v��4�4 .
If /0«�1�C�4 G /0Æ È /z��(�4a1�Æ Ç /2�](�4�4 in the previous lemma, then equation (4.8) is7k�
f�9T� 6f�7 hh ÊÌ�r7k�çÊý�c7 hh Ê|�A78�+9'�37 hh Êý× Gp� 7�f�9 6f37 hh Ê � 7a�37 hh Ê � 7a�37 hh Ê|×�1
and the function ×F/M��1 Ä ù d Ä 4 reduces to

� ��/*�]1 Ä ù d Ä 4 for D G �}Êp� and E G �}9&� . This,
combined with the fact that , h- /y(�1z$es�4 G d� , h- /�/0Æ È /2�](�481MÆ Ç /z��(�4�481 � s�4�4 , establishes the
corollary.

Let ( )#� . Define ( ; G (g9 hPj °Åê�±? ®
. Then ( ; is the translation of ( , by a multiple of

the identity matrix, which has minimal Frobenius norm among all such translations, cf., [5].
The above bound for the squared Frobenius distance from ( to $ s is less than or equal to
(with equality holding if and only if � GXo ) the sum of the squared Frobenius distances from(�; to U and from U to $ s . We will see the importance of the translate, ([; , in the next section.

5. Applications. In this section, we bound the Frobenius distance from normality for
the elements of $es . We also apply results from [2] to indicate how well the set of eigenvalues
of an element of $�s can be approximated by using normal matrices and Geršgorin-type sets.

First, let us consider what the above results tell us about the Frobenius distance from
normality for the elements of $ s . Let (Ö)'>�?A@�? . The direct sum structure >�?A@B? G � � �
and the Pythagorean relationship (2.2) imply that, h- /0(�1 � 4meÌÓ YÅÞct , h- /y(�1 � 481M, h- /0(�1 � 48wneÌÓ Y�Þ�t 7kÆHÇ�/y(�457 h- 1½7kÆ�È�/y(�457 h- w q
Recall that we defined (�; G (:9 ��� /y(�4! ®Aq
Because the matrix

hPj °�êA±? ®
is scalar, , h- /y(H1 � 4 G , h- /y(�;ª1 � 4 , cf., [5, Theorem 3.2]. There-

fore, Ü�(*)�> ?A@B? , h- /0(�1 � 4de:Ó YÅÞ�t 7aÆ�ÇH/0(o;`4k7 h- 1½7aÆHÈ�/y(�;½457 h- w q
Now let D�)ç$ s . By Corollary 3.5,D G ©� �c�MY /�/ I" 9 © 4 2Ï1�øiÊýÉÔú�15/ " Ê © 4`2 4a1 and D ; G ©� ����Y /�/ I" 9 © 4 2�1 o 1½/ " Ê © 4`2 481
where

"�G ! � õ ��$� � � �  and ù _ G ¿ � � � � � � 4�5T6 �7 ! � . Then ÆHÈ�/2D�;`4 G dh ����Y / I" I2�1 o 1 " 2 4 and ÆHÇ�/2D�;`4 Gdh ����Y /¹9 I2�1 o 1X2 4 . By equation (4.2), 7aÆ È /zD ; 457 h- G �A7  �ph 7 hh G ° !  � õ $  ± Zh ! � � � � �  , and 7aÆ Ç /zD ; 457 h- G�r7 p h 7 hh G Z � �[�Y�  h ! � q Thus, for DE)+$ s defined by the /0!<ÊG�x4 -tuple, /2ø�1Mú`1���1 Ä ù d Ä 15/*
k_½4 ?.� d_ n d 4 , the
distance from D to

�
satisfies, h- /zD*1 � 4me:Ó YÅÞ�t /2^ h d Ê0� h 4 :�ª^�d Ä ù d Ä h 1 :�Ä ù d Ä h��^ed w q

Graphically, this bound can be described as follows. Let DE)+$cs be given by /0ø�1Mú`1���1 Ä ù d Ä 1/@
 _ 4 ?�� d_ n d 4 . The Frobenius distance from D to the set of normal matrices is determined by
where the ordered pair /*��1 Ä ù d Ä � 4 lies in relation to the parabola ¼ G » h Ê:^ h d . Specifically,

, h- /2D*1 � 4me
qrrrrrrs rrrrrrt

° !  � õ $  ± Zh ! ��� �����  YÅßÙÄ ù d Ä � � � h ÊÌ^ h d û
� � � �  Zh ! � G ° !  � õ $  ± Zh ! � � � � �  YÅßÙÄ ù d Ä � G � h ÊÌ^ h d û

� � � �  Zh ! � YÅßÙÄ ù d Ä � ¾ � h ÊÌ^ h d q
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Note that {~s , the set of elements from $�s with minimal Frobenius norm, corresponds
to the vertex of ¼ G » h Êý^ h d . For every D �s )�{~s , the above bound says , h- /2D �s 1 � 4de : .
This is, of course, consistent with Theorem 4.1 which tells us that the normal matrix U has
distance

:
from D �s .

We now use the results of [2] to describe the distance from normality, in the sense of the
numerical stability of eigenvalue estimation through normal matrices, for the elements of $ s .
Recall that a singular value decomposition (SVD), of a non-zero complex !}"þ! matrix � , is
an expression of � as a product

(5.1) � Gvu	w � � G  ¢ Ä jkj5j Ä¨�d jkj5j�¨ ?Ä jkj5j Ä £¦  ¡¢ � d o oo . . . oo o � ?
£¥¤¦  ¡¢ 9 Ix êd 9

...
...

...9 Ix ê? 9
£¥¤¦ 1

where
u

and � are unitary matrices in >�?A@B? , and
w

is a nonnegative diagonal matrix. The
entries of

w
, �edFf¸�rh#fÚj5jkj%f¸� ? , are the eigenvalues of

Ä � Ä arranged in non-increasing
order. They are called the singular values of � .

Fix any non-zero �·)|> ?�@�? and a SVD, � Gyu	w � � , as in (5.1). In [2], we defined
the SV-normally estimated Geršgorin set, z|{�}�~�/ u	w � � 4 . Like the Geršgorin set for � , the
set z�{[}Y~�/ u<w � � 4 is a union of closed discs and it contains the eigenvalues of � . We also
defined the SV-normal estimator \����o��� corresponding to this SVD of � . Specifically, define
for each ò GS© 1kjkj5je1�! ,\ m GSº © 9 Ä ¾ ¨ m 1 x m � Ä h and let \����o��� G Ó Z��d�� m � ? t \ m w q
The parameter \�������� lies between

o
and

©
, inclusively. It is used as a type of condition

number which indicates how well the set z|{�}�~�/ u	w � � 4 estimates the eigenvalues of � .
When \�������� is zero, z�{[}Y~�/ u	w � � 4 is exactly the set of eigenvalues of � ; when \]�������
is small, the centers of the discs which comprise z�{[}�~Ï/ u	w � � 4 provides a good estimate of
the spectrum of � . This is because the radii of the discs which comprise z-{�}�~�/ u	w � � 4 are
all � G º � � m � hm \ hm . Roughly speaking, up to a scaling factor of � d , this common radius
will be small when \ ���o� � is.

Finally, we cite the following lemma which bounds the SV-normal estimators from be-
low. Notice that this lower bound on \ ���o� � is independent of the choice of SVD for � .

LEMMA 5.1. (See [2]) Let ��)}>-��@�� and let \����o��� denote the SV-normal estimator
corresponding to a SVD, � G�u	w � � . Then,7k� � �S9'��� � 7 h e´7a��7 h- \ ���o� � q

The above lemma allows us to describe how well the spectrum of an element of $cs can
be approximated with the SV-normally estimated Geršgorin set, z|{[}Y~�/ u<w � � 4 .

THEOREM 5.2. Let D�)ç$ s be defined by the /0!�Ê��ª4 -tuple /0ø�1Oú`1���1 Ä ù d Ä 1½/@
5_½4 ?�� d_ n d 4 , and
recall that

:|G � ?.� d_ n d � _ m n d ^ m . Defineä G !3/2ø h ÊÌú h 4� Ê :��^ed / ^ h d Ê0� hÄ ù d Ä h Ê Ä ù d Ä h 4 q
Let D G�u<w � � be a SVD of D and denote the corresponding SV-normal estimator by\ ������� . Then 7aV�7 hä e�\Y���o� � q
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In particular, if D�)v{ôs then 7aV�7 h: e'\����o��� q
Proof. Let D G ©� ����Y /�/ I" 9 © 4 2�1Mø�ÊýÉ¹ú`15/ " Ê © 4�2 481

be defined by /2øA1Oú`1��]1 Ä ù d Ä 1½/@
5_½4 ?.� d_ n d 4 . Since D )Ì$ s , D � D�9pDSD �vG V and we have7kD � DÐ9TDSD � 7kh G 7kV�7kh . We showed in Section 4 that75D¸7 h- G !3/2ø h ÊÌú h 4� ÊX7 / I" 9 © 4 I2� 7 hh Ê�7 / " Ê © 4�2� 7 hh q
Thus,7kD¸7 h- G !3/0ø h ÊÌú h 4� ÊX/ Ä I" 9 ©.Ä h Ê Ä " Ê ©xÄ h� 4k7Y2�7 hh G !3/0ø h ÊÌú h 4� Ê / Ä "BÄ h Ê © 4� 7�2�7 hh q
Since

Ä "BÄ h Ê ©HG !  � õ $  � � � � í Ê © and 7�2�7 hh GiZ � �[���  ! � ,75D¸7 h- G !3/2ø h Ê:ú h 4� Ê :�ª^�d / ^ h d Ê0� hÄ ù d Ä h Ê Ä ù d Ä h 4 G ä q
Finally, if Du)�{ s , by Theorem 4.1, 7kD¸7 h- Gv: . Thus,7kD � DÐ9TDSD � 7kh7kD¸7 h- G 7kV�7kh: e�\ ����� �ª1
in this case.

The previous theorem has an interesting interpretation. The elements of {·s have mini-
mal Frobenius norm. However, the square of the reciprocal of this Frobenius norm is a factor
of our lower bound for \ ���o� � . Consequently, the condition number of the SV-normally
estimated Geršgorin sets for elements of {;s is maximally bounded above

o
. This seems

to suggest the counter-intuitive idea that, regardless of which SVD is used, the radii of
the set z�{�}�~�/ u	w � � 4 should tend to be largest for smallest elements of $ s . However,
this suggestion fails to consider how weighting factors � h_ of the radius � increase with7kD¸7 h- G � ?_ n d � h_ .

6. Conclusions and extensions. We conclude this note with a few remarks and some
indications of further lines of inquiry for the sets $�s . As we mentioned in Section 3, the right
hand side of the matrix equation D � D 9ýDSD ��G V has to be self adjoint with trace zero,
since the left hand side is. The choice to make V diagonal arose from a desire to simplify the
calculations for

� s and $ s and to make the rank of V easy to identify, since this rank is a type
of measure of the extent to which the matrix D fails to be normal. It would be interesting to
consider how the above development changes for the general right hand side, V .

The intermediate set
� s was used to simplify the calculations for $ s and to help clarify

how the upper and lower bands of the elements of $ s are related to each other. However, the
set
� s has an interesting intrinsic functional analytic structure. Specifically, the decomposi-

tion >�?A@�? G � � � expresses >�?A@B? as a Kreı̌n space. This is an indefinite inner product



ETNA
Kent State University 

http://etna.math.kent.edu

112 LAURA SMITHIES

space which has the structure of the direct sum of a Hilbert space and a negative Hilbert space.
The structure of the operators on such spaces have been studied in detail, cf., [1, 4], and an
interesting line of inquiry would be to examine the properties of the elements of

� s as Kreı̌n
space operators.

Finally, other SVD-based Geršgorin-type sets were developed in [6] and [7]. The diffi-
culty in applying such methods generally arises from the nonuniqueness of SVDs. We see
from the above development that elements of the algebraic varieties { s and $ s have suffi-
ciently strong structure constraints to overcome the difficulties created by the nonuniqueness
of the SVD for normally estimated Geršgorin sets of [2]. An interesting question is whether
this happens with other SVD Geršgorin-type sets.
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(2005), pp. 370–380.
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