

THE STRUCTURED DISTANCE TO NEARLY NORMAL MATRICES*

LAURA SMITHIES[†]

Dedicated to Richard S. Varga on the occasion of his 80th birthday

Abstract. In this note we examine the algebraic variety \mathcal{I}_{Λ} of complex tridiagonal $n \times n$ matrices T, such that $T^*T - TT^* = \Lambda$, where Λ is a fixed real diagonal matrix. If $\Lambda = \mathbf{0}$ then \mathcal{I}_{Λ} is $\mathcal{N}_{\mathbf{T}}$, the set of tridiagonal normal matrices. For $\Lambda \neq \mathbf{0}$, we identify the structure of the matrices in \mathcal{I}_{Λ} and analyze the suitability for eigenvalue estimation using normal matrices for elements of \mathcal{I}_{Λ} . We also compute the Frobenius norm of elements of \mathcal{I}_{Λ} , describe the algebraic subvariety \mathcal{M}_{Λ} consisting of elements of \mathcal{I}_{Λ} with minimal Frobenius norm, and calculate the distance from a given complex tridiagonal matrix to \mathcal{I}_{Λ} .

Key words. nearness to normality, tridiagonal matrix, Krein spaces, eigenvalue estimation, Gersgorin type sets

AMS subject classifications. 65F30, 65F35, 15A57, 15A18, 47A25

1. Introduction. In this note, we establish a generalization of the matrix nearness problem which was solved by S. Noschese, L. Pasquini, and L. Reichel in [5]. The structure for the type of generalization of nearness to normality which is considered in this note was first suggested to me by Roger Horn, in connection with [2]. The homework set in [3, page 128] also discusses this type of generalization of normality.

Let \mathcal{T}^r denote the set of all *real* $n \times n$ irreducible tridiagonal matrices and let \mathcal{I}^r denote the algebraic variety of real normal irreducible tridiagonal $n \times n$ matrices. The paper [5] presents the following, for any fixed $T \in \mathcal{T}^r$:

- (i) a formula for Frobenius distance $d_F(T, \mathcal{I}^r)$ and an easily calculated upper bound on this distance;
- (ii) a formula for a real normal tridiagonal matrix \hat{T} , such that $||T \hat{T}||_F$ is equal to $d_F(T, \mathcal{I}^r)$;
- (iii) simplified versions of (i) and (ii) for Toeplitz matrices.

In order to generalize the above problem, we must fix some notation. Let $\mathbb{C}^{n \times n}$ denote the set of complex $n \times n$ matrices and let $M \in \mathbb{C}^{n \times n}$. Define the *adjoint* of M, $M^* = \overline{M}^t$, to be the conjugate transpose of M. Recall that M is defined to be *self adjoint* if $M = M^*$ and *normal* if the *commutant* of M and its adjoint, $[M, M^*] := MM^* - M^*M$, equals **0** in $\mathbb{C}^{n \times n}$. Throughout this note, fix a real diagonal matrix:

(1.1)
$$\Lambda = \text{Diag}(\lambda_j)$$
, such that $\Lambda \neq \mathbf{0}$, $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$, and $\sum_{l=1}^n \lambda_l = 0$.

Let \mathcal{T} denote the set of tridiagonal complex matrices. The purpose of this paper is to investigate the set

$$\mathcal{I}_{\Lambda} = \{ M \in \mathcal{T} : MM^* - M^*M = \Lambda \},\$$

and to describe the distance from normality for the elements of \mathcal{I}_{Λ} . More precisely,

^{*}Received March 13, 2009. Accepted for publication August 9, 2009. Published online on January 20, 2010. Recommended by L. Reichel.

[†]Department of Mathematical Sciences, Kent State University, Kent, OH 44242

⁽smithies@math.kent.edu).

- (i) we provide simple formulas, in terms of Λ , for the elements of \mathcal{I}_{Λ} ;
- (ii) for $T \in \mathcal{T}$, we give a formula for the Frobenius distance $d_F^2(T, \mathcal{I}_\Lambda)$, and an easily calculated upper bound for this distance;
- (iii) we provide formulas for the elements of the subvariety \mathcal{M}_{Λ} of \mathcal{I}_{Λ} whose Frobenius norm is minimal, and for the unique element $M_{\Lambda} \in \mathcal{M}_{\Lambda}$ with only nonnegative entries;
- (iv) we combine the above results with those of [2] to describe for any $M \in \mathcal{I}_{\Lambda}$ the distance to normality both in the Frobenius norm and in the sense of the suitability of M for eigenvalue estimation through normal matrices.

This paper is organized as follows. Section 2 recalls some elementary results and introduces notation which will be used throughout the paper; Section 3 presents a characterization of the elements of \mathcal{I}_{Λ} . In Section 4, we give a formula for the distance $d_F^2(T, \mathcal{I}_{\Lambda})$ from $T \in \mathcal{T}$ to \mathcal{I}_{Λ} , and we describe the algebraic variety \mathcal{M}_{Λ} of the elements of \mathcal{I}_{Λ} of minimal Frobenius norm. In Section 5, we describe the distance from normality for the elements of \mathcal{I}_{Λ} , in part, by applying results from [2]. The final section discusses some conclusions and possible extensions.

2. Background and notation. This section defines notation used in the sequel and recalls some elementary results. Table **2.1** collects our most important notation.

TABLE 2.1		
Sets used in this pape	r.	

\mathcal{T} = the tridiagonal matrices in $\mathbb{C}^{n \times n}$	
\mathcal{N} = the normal matrices in $\mathbb{C}^{n \times n}$	$\mathcal{N}_{\mathbf{T}} = \mathcal{N} \cap \mathcal{T}$
$\mathcal{S} = \text{self adjoint} (A^* = A) \text{ in } \mathbb{C}^{n \times n}$	${\mathcal S}_{\mathbf T} = {\mathcal S} \cap {\mathcal T}$
$\mathcal{A} = $ anti-self adjoint ($A^* = -A$) in $\mathbb{C}^{n \times n}$	$\mathcal{A}_{\mathbf{T}} = \mathcal{A} \cap \mathcal{T}$
\mathcal{I}^r = real, irreducible matrices in $\mathcal{N}_{\mathbf{T}}$	
$\Lambda = \text{Diag}(\lambda_j), \ \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n, \ \lambda_1 > 0, \ \sum_{l=1}^n \lambda_l = 0.$	
$\mathcal{I}_{\Lambda} = \{ M \in \mathcal{T} : [M, M^*] = \Lambda \}$	
$\mathcal{I}_{4\Lambda} = \{ M \in \mathcal{T} : [M, M^*] = 4\Lambda \}$	
$\mathcal{P}_{\Lambda} = \{(A, B) \in \mathcal{S}_{\mathbf{T}} \oplus \mathcal{A}_{\mathbf{T}} : [A, B] = -2\Lambda\}$	

Let $T = \text{Tri}(\sigma, \delta, \tau)$ denote the element T of \mathcal{T} with lower and upper bands σ and τ in \mathbb{C}^{n-1} and diagonal $\delta \in \mathbb{C}^n$. That is,

(2.1)
$$T = \begin{bmatrix} \delta_1 & \tau_1 & \mathbf{0} \\ \sigma_1 & \delta_2 & \ddots & \\ & \ddots & \ddots & \tau_{n-1} \\ \mathbf{0} & \sigma_{n-1} & \delta_n \end{bmatrix}$$

ETNA Kent State University http://etna.math.kent.edu

THE STRUCTURED DISTANCE TO NEARLY NORMAL MATRICES.

Note that we use the terminology *anti-self adjoint* to refer to the constraint $A^* = -A$ on $A \in \mathbb{C}^{n \times n}$. When $A \in \mathbb{R}^{n \times n}$ this simplifies to $A^t = -A$, and the terminology anti-symmetric and skew-symmetric are also used. We use a superscript, as in \mathcal{A}^r , when our matrices are constrained to be real.

We remark that, in contrast to the sets \mathcal{I}^r defined in [5], the matrices in our sets \mathcal{I}_Λ and \mathcal{P}_Λ are allowed to be reducible. However, the choice to arrange the entries of Λ in nonincreasing order, plays the role of irreducibility. More precisely, cf., [8, page 11], let ϕ be a permutation of $\{1, \dots, n\}$ and let P denote the corresponding permutation matrix, i.e., $P_{j,k} = I_{j,\phi(k)}$. We say that a matrix $A \in \mathbb{C}^{n \times n}$ is *reducible* if there exists a rearrangement of coordinates with respect to which A is block diagonal. That is, if there exists a permutation $P \in \mathbb{R}^{n \times n}$, such that

$$PAP^* = \begin{bmatrix} A_{1,1} & A_{1,2} \\ 0 & A_{2,2} \end{bmatrix}.$$

It is easy to check that $P \operatorname{Diag}(\lambda_j) P^* = \operatorname{Diag}(\lambda_{\phi(j)})$ and that $[M, M^*] = \Lambda$ if and only if $[PMP^*, (PMP^*)^*] = \operatorname{Diag}(\lambda_{\phi(j)})$. Our conditions on Λ imply that Λ cannot equal $\operatorname{Diag}(\lambda_{\phi(j)})$ for all permutations ϕ , and consequently, we do not limit our solution sets \mathcal{P}_{Λ} and \mathcal{I}_{Λ} to irreducible matrices.

Let $A, B \in \mathbb{C}^{n \times n}$. Recall that the Frobenius inner product and induced norm are defined as

$$(A, B)_F = \text{Tr}(B^*A), \text{ and } ||A||_F = \sqrt{(A, A)_F}$$

For $x = (x_j)_{j=1}^n$ and $y = (y_j)_{j=1}^n$ in \mathbb{C}^n , their Euclidean inner product is

$$\langle x, y \rangle = \sum_{j=1}^n x_j \bar{y}_j.$$

The corresponding vector norm is $||x||_2 = \sqrt{\langle x, x \rangle}$ and the induced operator norm is $||A||_2 = \sup\{||Ax||_2 : ||x||_2 = 1\}.$

Let $\Pi_{\mathcal{A}}$ and $\Pi_{\mathcal{S}}$ denote the projections of $\mathbb{C}^{n \times n}$ onto \mathcal{S} and \mathcal{A} , respectively. That is, for $M \in \mathbb{C}^{n \times n}$ and $i = \sqrt{-1}$, let

$$\Pi_{\mathcal{S}}(M) = \frac{M + M^*}{2} = \operatorname{Re}(M) \text{ and } \Pi_{\mathcal{A}}(M) = \frac{M - M^*}{2} = i \operatorname{Im}(M)$$

be its self adjoint and anti-self adjoint parts. It is easy to check that

$$\mathbb{C}^{n \times n} = \mathcal{S} \oplus \mathcal{A},$$

where \oplus denotes the direct sum. More precisely, if $C \in S \cap A$ then $C^* = C$ and $C^* = -C$. So, C = 0. This, combined with the fact that both the set of self adjoint matrices and the set of anti-self adjoint matrices are closed under subtraction, implies that the decomposition of any $M \in \mathbb{C}^{n \times n}$ into a sum of a self adjoint and an anti-self adjoint matrix is unique. The natural structure on $S_T \oplus A_T$, from the point-of-view of functional analysis, is that of a Kreĭn space, as we discuss in Section 5.

The sets S^r and A^r are orthogonal with respect to the Frobenius inner product. However, this is not true of S and A. For example, if $D = \text{Diag}(\delta_j) \in \mathbb{R}^{n \times n}$, then $(D, iD) \in S \oplus A$ and $(D, iD)_F = \text{Tr}(-iD^2) = -i ||\delta||_2^2$. In general, if $A \in S$ and $B \in A$ then $(A, B)_F$ is a pure imaginary number. Indeed, $(A, B)_F = -(A, B)_F$ because $\text{Tr}(B^*A) = \text{Tr}(A^*B) =$ $\text{Tr}(-AB^*) = -\text{Tr}(B^*A)$. On the other hand, the properties of the trace function imply that

 $||A - B||_F^2 = ||A||_F^2 - 2\text{Re}((A, B)_F) + ||B||_F^2$. Thus, sums and differences of matrices from S and A also satisfy the Pythagorean constraints:

(2.2)
$$\|A \pm B\|_F^2 = \|A\|_F^2 + \|B\|_F^2, \ \forall (A,B) \in \mathcal{S} \oplus \mathcal{A}.$$

Notice that M is tridiagonal if and only if M^* is, and this happens if and only if the self adjoint and anti-self adjoint parts of M are tridiagonal. Moreover, a routine calculation shows that for any $M \in \mathbb{C}^{n \times n}$,

(2.3)
$$[M, M^*] = -2[\Pi_{\mathcal{S}}(M), \Pi_{\mathcal{A}}(M)].$$

Finally, we measure the (squared Frobenius) distance from a matrix $M \in \mathbb{C}^{n \times n}$ to a subset \mathcal{X} of $\mathbb{C}^{n \times n}$ as

$$d_F^2(M, \mathcal{X}) = \inf\{ \|E\|_F^2 : M + E \in \mathcal{X} \} = \inf\{ \|M - E\|_F^2 : E \in \mathcal{X} \}.$$

Equivalently, for any $(A, B) \in S \oplus A$ and $\mathcal{X} \subseteq S \oplus A$ define

(2.4)
$$d_F^2((A,B),\mathcal{X}) = \inf\{\|A - E\|_F^2 + \|B - H\|_F^2 : (E,H) \in \mathcal{X}\}.$$

Note that equation (2.2) implies that the equivalence of $\mathbb{C}^{n \times n} = S \oplus A$ which is given by $M \to (\Pi_{\mathcal{A}}(M), \Pi_{\mathcal{S}}(M))$ and $(A, B) \to A + B$ is an isometry with the natural choices of topology.

3. Structure of \mathcal{I}_{Λ} . Recall that we have fixed the non-zero, real diagonal matrix Λ with entries which satisfy the conditions (1.1). In this section we will study the structure of tridiagonal complex matrices $M \in \mathcal{T}$, such that $[M, M^*] = \Lambda$. We shall see that the computations involved simplify with the following equivalences:

LEMMA 3.1. Define the sets \mathcal{I}_{Λ} , $\mathcal{I}_{4\Lambda}$, and \mathcal{P}_{Λ} as in Table 2.1. Then

$$T \in \mathcal{I}_{\Lambda}$$
 if and only if $2T \in \mathcal{I}_{4\Lambda}$,

and

$$M \in \mathcal{I}_{4\Lambda}$$
 if and only if $(\Pi_{\mathcal{S}}(M), \Pi_{\mathcal{A}}(M)) \in \mathcal{P}_{\Lambda}$.

Moreover, for every $H \in \mathbb{C}^{n \times n}$ *,*

$$4d_F^2(H,\mathcal{I}_{\Lambda}) = d_F^2(2H,\mathcal{I}_{4\Lambda}) = d_F^2((\Pi_{\mathcal{S}}(2H),\Pi_{\mathcal{A}}(2H)),\mathcal{P}_{\Lambda}).$$

Proof. The map $T \to 2T$ obviously defines a bijection between \mathcal{I}_{Λ} and $\mathcal{I}_{4\Lambda}$. Equation (2.3) yields the equivalence between $\mathcal{I}_{4\Lambda}$ and \mathcal{P}_{Λ} . Now, let $H \in \mathbb{C}^{n \times n}$. Then,

$$d_F^2(2H, \mathcal{I}_{4\Lambda}) = \inf_{2T \in \mathcal{I}_{4\Lambda}} \|2H - 2T\|_F^2 = 4 \inf_{T \in \mathcal{I}_{\Lambda}} \|H - T\|_F^2 = 4d_F^2(H, \mathcal{I}_{\Lambda}),$$

and the Pythagorean property (2.2), implies that

$$d_F^2(2H, \mathcal{I}_{4\Lambda}) = d_F^2((\Pi_{\mathcal{S}}(2H), \Pi_{\mathcal{A}}(2H)), \mathcal{P}_{\Lambda}).$$

DEFINITION 3.1. Let $\Lambda = \text{Diag}(\lambda_j)$ be as in (1.1). For each $j = 1, \dots, n$, define

$$S_j = \sum_{l=1}^j \lambda_l$$

REMARK 3.1. We remark that for any $M \in \mathbb{C}^{n \times n}$, $[M, M^*]$ is self adjoint and has trace zero. Thus, our fixed right hand side in the equation $[M, M^*] = \Lambda$ is, up to choice of ordering for the real numbers λ_i , the general non-zero, diagonal right hand side.

The motivations for choosing a diagonal matrix for the right hand side Λ will be discussed in the final section. The essential point is that we are interested in describing the extent to which a matrix M fails to be normal in terms of the rank of the commutant $[M, M^*]$. Our motivation for assuming that the λ_j are in non-increasing order is indicated by the following lemma.

LEMMA 3.2. Let $\Lambda = \text{Diag}(\lambda_l)$ satisfy condition (1.1) and let S_j denote the *j*-th partial sum. Then

$$S_j > 0$$
, for all $j = 1, \dots, n-1$

Proof. Since $\Lambda \neq 0$, we must have $\lambda_1 > 0$. Now let j be minimal, such that $S_j < 0$. Then $\lambda_j < 0$. Since the λ_l are non-increasing, this means $\lambda_l < 0$ for all $l = j, \dots, n$. Therefore, $S_l < S_j < 0$ for all l > j. However, by assumption $S_n = 0$. \Box

We can now simplify our study of the structure of the matrices in \mathcal{I}_{Λ} . Let \mathcal{S}_{T} (respectively \mathcal{A}_{T}) denote the self adjoint (respectively anti-self adjoint) matrices in \mathcal{T} , the complex tridiagonal matrices. Recall that we have defined

$$\mathcal{P}_{\Lambda} = \{ (A, B) \in \mathcal{S}_{\mathbf{T}} \oplus \mathcal{A}_{\mathbf{T}} : [A, B] = -2\Lambda \}.$$

Because of Lemma 3.1, each $(A, B) \in \mathcal{P}_{\Lambda}$ corresponds to a unique $T = \frac{A+B}{2}$ in \mathcal{I}_{Λ} . Thus, the following lemma yields a characterization of the elements of \mathcal{I}_{Λ} .

LEMMA 3.3. Let $\Lambda = \text{Diag}(\lambda_l)$ satisfy condition (1.1). Let $(A, B) \in S_T \oplus A_T$ and denote the entries by

$$A = \operatorname{Tri}(\bar{z}_i, a_i, z_i)$$
 and $B = \operatorname{Tri}(-\bar{w}_i, ib_i, w_i)$.

Then $(A, B) \in \mathcal{P}_{\Lambda}$ if and only if the entries satisfy

(3.1)
$$\begin{array}{cccc} (i) & \operatorname{Re}(z_{j}\bar{w}_{j}) &= S_{j}, & \forall j = 1, \cdots, n-1; \\ (ii) & z_{j}w_{j+1} &= w_{j}z_{j+1}, & \forall j = 1, \cdots, n-2; \\ (iii) & a_{j} &= a_{j+1}, & \forall j = 1, \cdots, n-1; \\ (iv) & b_{j} &= b_{j+1}, & \forall j = 1, \cdots, n-1. \end{array}$$

Proof. Note that since $A = A^*$, its diagonal (a_j) is real and since $B = -B^*$, the diagonal of B is imaginary. Let C = [A, B]. Since A and B are tridiagonal, C is pentadiagonal. Moreover, $C = C^*$. A routine calculation shows

$$\begin{array}{rcl} C_{j,j} &=& -2[\operatorname{Re}(z_j\bar{w}_j) - \operatorname{Re}(z_{j-1}\bar{w}_{j-1})], \\ C_{j,j+1} &=& (a_j - a_{j+1})w_j + i(b_{j+1} - b_j)z_j, \\ C_{j,j+2} &=& z_jw_{j+1} - w_jz_{j+1}. \end{array}$$

Equating C to -2Λ , it is easy to see that conditions (i) and (ii) of (3.1) hold. Recall that Λ is assumed to be non-zero and hence $\operatorname{Re}(z_j \bar{w}_j) = S_j \neq 0$, for all $j = 1, \dots, n-1$. Thus, $z_j \neq 0$ and $w_j \neq 0$ for all j. The remaining equations say

$$(a_{j+1} - a_j) = i(b_{j+1} - b_j)\frac{z_j}{w_j} = i(b_{j+1} - b_j)\frac{z_j\overline{w_j}}{|w_j|^2}.$$

The left hand side is real, the right hand side has non-zero imaginary part, unless b_j is constant. Therefore, a_j and b_j are constant.

Conversely, let $(A, B) \in S_T \oplus A_T$ satisfy conditions (3.1), and let C = [A, B]. Clearly, $C_{j,j+1} = (a_j - a_{j+1})w_j + (b_{j+1} - b_j)z_j = 0$ and $C_{j,j+2} = z_j w_{j+1} - w_j z_{j+1} = 0$. Moreover,

$$C_{j,j} = -2[\operatorname{Re}(z_j \bar{w}_j) - \operatorname{Re}(z_{j-1} \bar{w}_{j-1})] = -2[S_j - S_{j-1}] = -2\lambda_j$$

Thus, $(A, B) \in \mathcal{P}_{\Lambda}$.

In view of the previous lemma, we denote the entries of an element (A, B) of \mathcal{P}_{Λ} by (A, B) = (Z + aI, W + ibI), where $a, b \in \mathbb{R}$, $Z = \text{Tri}(\bar{z}_j, 0, z_j)$ and $W = \text{Tri}(-\bar{w}_j, 0, w_j)$. Note that

$$[A, B] = [Z + aI, W + ibI] = [Z, W].$$

With this in mind, we can now describe the elements of \mathcal{P}_{Λ} for $\Lambda \neq \mathbf{0}$. Let $\mathbb{T} = [0, 2\pi)/\sim$ denote the torus, and let \mathbb{R}^+ denote the positive real numbers. We will use the both of the notations θ and $e^{i\theta}$ to identify elements of \mathbb{T} .

THEOREM 3.4. Let $\Lambda = \text{Diag}(\lambda_l)$ satisfy condition (1.1), and let S_j to be the *j*-th partial sum of the λ_l . The ordered pairs from $S_{\mathbf{T}} \oplus \mathcal{A}_{\mathbf{T}}$ which lie in \mathcal{P}_{Λ} are parametrized bijectively by $\mathbb{R}^3 \times \mathbb{R}^+ \times \mathbb{T}^{n-1}$. Specifically, each (n+3)-tuple $(a, b, c, |w_1|, \theta_1, \dots, \theta_{n-1})$ defines the complex, tridiagonal matrices A = Z + aI and B = W + ibI, where the entries of Z and W satisfy

(3.2)
(i)
$$w_j = |w_j|e^{i\theta_j}$$
, where $|w_j|^2 = \frac{S_j |w_1|^2}{\lambda_1}$,
and (ii) $z_j = rw_j$, where $r = \frac{\lambda_1 + ic}{|w_1|^2}$,

for all $j = 1, \dots, n - 1$.

Proof. First, let $(a, b, c, |w_1|, \theta_1, \dots, \theta_{n-1})$, be a fixed element in $\mathbb{R}^3 \times \mathbb{R}^+ \times \mathbb{T}^{n-1}$, and let (Z + aI, W + ibI) be defined by plugging this (n + 3)-tuple into the given formulas. It is easy to check that $z_1 \bar{w}_1 = \lambda_1 + ic$, and that conditions (i)-(iv) of Lemma 3.3 hold. Thus, $(A, B) \in \mathcal{P}_{\Lambda}$.

Now, let $(A, B) \in \mathcal{P}_{\Lambda}$. By the previous lemma (A, B) = (Z + aI, W + ibI) for some $a, b \in \mathbb{R}$, and for all $j = 1, \dots, n-1$, $\operatorname{Re}(z_j \bar{w}_j) = S_j$ and $S_j \neq 0$, by Lemma 3.2. So, $w_j \neq 0$ for all $j = 1, \dots, n-1$. Define $\theta_j = \operatorname{Arg}(w_j)$ and let c denote $\operatorname{Im}(z_1 \bar{w}_1)$. We will show that (Z, W) is given by plugging the (n + 1)-tuple $(c, |w_1|, \theta_1, \dots, \theta_{n-1})$ into the above formulas. Since $(Z, W) \in \mathcal{P}_{\Lambda}$,

$$\operatorname{Re}(z_j \bar{w}_j) = S_j$$
, and $\frac{z_j}{w_j} = \frac{z_{j+1}}{w_{j+1}}$.

Now,

$$\operatorname{Re}(\frac{z_j}{w_j}) = \frac{\operatorname{Re}(z_j \bar{w}_j)}{|w_j|^2} = \frac{S_j}{|w_j|^2}, \text{ and } \operatorname{Re}(\frac{z_j}{w_j}) = \operatorname{Re}(\frac{z_1}{w_1}) = \frac{\operatorname{Re}(z_1 \bar{w}_1)}{|w_1|^2} = \frac{\lambda_1}{|w_1|^2}.$$

Thus,

$$|w_j|^2 = \frac{S_j |w_1|^2}{\lambda_1}.$$

Similarly,

$$\operatorname{Im}(\frac{z_j}{w_j}) = \operatorname{Im}(\frac{z_1}{w_1}) = \frac{\operatorname{Im}(z_1\bar{w}_1)}{|w_1|^2} = \frac{c}{|w_1|^2}.$$

THE STRUCTURED DISTANCE TO NEARLY NORMAL MATRICES.

Combined with our second formula for $\operatorname{Re}(\frac{z_j}{w_i})$, this tells us that

$$z_j = \frac{\lambda_1 + ic}{|w_1|^2} w_j$$
 for all $j = 1, \cdots, n-1$.

Finally, suppose $(a, b, c, |w_1|, (\theta_j)_{j=1}^{n-1})$ and $(\hat{a}, \hat{b}, \hat{c}, |\hat{w}_1|, (\hat{\theta_j})_{j=1}^{n-1})$ in $\mathbb{R}^3 \times \mathbb{R}^+ \times \mathbb{T}^{n-1}$ define (A, B) and (\hat{A}, \hat{B}) in $\mathcal{S}_{\mathbf{T}} \oplus \mathcal{A}_{\mathbf{T}}$ which are equal. Then, $a = \hat{a}, b = \hat{b}, z_j = \hat{z}_j$ and $w_j = \hat{w}_j$ for all $j = 1, \dots, n-1$. Thus, $\theta_j = \operatorname{Arg}(w_j) = \operatorname{Arg}(\hat{w}_j) = \hat{\theta}_j$, and $c = \operatorname{Im}(z_1 \overline{w_1}) = \operatorname{Im}(\hat{z}_1 \overline{\hat{w}}_1) = \hat{c}.$

COROLLARY 3.5. Let $\Lambda = \text{Diag}(\lambda_l)$ satisfy condition (1.1). Each $M \in \mathcal{I}_{\Lambda}$ is uniquely determined by an (n+3)-tuple

$$(a, b, c, |w_1|, \theta_1, \cdots, \theta_{n-1}) \in \mathbb{R}^3 \times \mathbb{R}^+ \times \mathbb{T}^{n-1}.$$

Specifically, each such (n + 3)-tuple defines the complex, tridiagonal matrix of the form

$$M = \frac{1}{2} \operatorname{Tri}((\bar{r} - 1) \,\overline{\omega}, a + ib, (r + 1)\omega),$$

where $r = \frac{\lambda_1 + ic}{|w_1|^2}$, and $\omega = (\frac{\sqrt{S_j |w_1| e^{i\theta_j}}}{\sqrt{\lambda_1}}) \in \mathbb{C}^{n-1}$. *Proof.* By the previous theorem, we know how $\mathbb{R}^3 \times \mathbb{R}^+ \times \mathbb{T}^{n-1}$ parametrizes \mathcal{P}_{Λ} and we know from Lemma 3.1 that each $M \in \mathcal{I}_{\Lambda}$ is uniquely defined by $M = \frac{A+B}{2}$ for some $(A,B) \in \mathcal{P}_{\Lambda}.$

4. Distance formulas. In this section we establish a formula for the elements M_{Λ}^{θ} in \mathcal{I}_{Λ} of minimal Frobenius norm. Specifically, we show the minimal elements form an algebraic subvariety \mathcal{M}_{Λ} which is isomorphic to \mathbb{T}^{n-1} . We also define M_{Λ} the unique matrix in \mathcal{M}_{Λ} with *nonnegative* entries. Equivalently, $-M_{\Lambda}$ is the unique Z-matrix, cf., [8], in \mathcal{M}_{Λ} . We also give a formula for the distance from a fixed $T \in \mathcal{T}$ to \mathcal{I}_{Λ} , and an easily computed upper bound on this distance.

First we need some preliminary calculations on the behavior of the Frobenius norm on tridiagonal matrices. Let $T \in \mathcal{T}$ and write

$$T = \operatorname{Tri}(\sigma, \delta, \tau), \ D = \operatorname{Diag}(\delta_i), \ \text{and} \ M = \operatorname{Tri}(\sigma, 0, \tau).$$

Then

(4.1)
$$\|T\|_F^2 = \|D\|_F^2 + \|M\|_F^2 = \|\delta\|_2^2 + \|\sigma\|_2^2 + \|\tau\|_2^2.$$

In particular,

Formula (4.1) follows from the straightforward calculations that $Tr(D^*M) = 0$, $||D||_F^2 =$ $\|\delta\|_2^2$, and

$$\operatorname{Tr}(M^*M) = \sum_{j=1}^n M_{j,j-1}^* M_{j-1,j} + M_{j,j+1}^* M_{j+1,j} = \sum_{j=2}^n \overline{\tau}_{j-1} \tau_{j-1} + \sum_{j=1}^{n-1} \overline{\sigma}_j \sigma_j.$$

Now we are ready to find the minimal elements of \mathcal{I}_{Λ} . Let $M \in \mathcal{I}_{\Lambda}$ and let (A, B) = $(\Pi_{\mathcal{S}}(2M), \Pi_{\mathcal{A}}(2M))$ denote the corresponding element in \mathcal{P}_{Λ} . Write $A = \operatorname{Tri}(\bar{z}_j, a, z_j)$ and

ETNA Kent State University http://etna.math.kent.edu

LAURA SMITHIES

 $B = \text{Tri}(-\bar{w}_j, ib, w_j)$, where the entries are defined as in condition (3.2). Then by equations (2.2) and (4.2),

(4.3)
$$||M||_F^2 = ||A||_F^2 + ||B||_F^2 = a^2n + 2||\zeta||_2^2 + b^2n + 2||\omega||_2^2.$$

Clearly the norm of M is minimized by the choice of zero for the diagonals of A and B. Moreover, the relations (3.2) imply that $z_j = \frac{\lambda_1 + ic}{|w_1|^2} w_j$ and $|w_j|^2 = \frac{S_j}{\lambda_1} |w_1|^2$. Define

$$L = \sum_{j=1}^{n-1} S_j = \sum_{j=1}^{n-1} \sum_{l=1}^{j} \lambda_l.$$

To minimize $||M||_F^2$, we need to minimize

(4.4)
$$D_0(|w_1|^2) = 2\left[\sum_{j=1}^{n-1} \left(\frac{\lambda_1^2 + c^2}{|w_1|^4}\right) \frac{S_j}{\lambda_1} |w_1|^2 + \frac{S_j}{\lambda_1} |w_1|^2\right] = \frac{2L}{\lambda_1} \left(\frac{\lambda_1^2 + c^2}{|w_1|^2} + |w_1|^2\right).$$

This is minimized at $|w_1|^2 = \sqrt{\lambda_1^2 + c^2}$, and the minimal value is

$$D_0(\sqrt{\lambda_1^2 + c^2}) = \frac{4L\sqrt{\lambda_1^2 + c^2}}{\lambda_1}.$$

To summarize, let $M \in \mathcal{I}_{\Lambda}$ be defined by evaluating the formulas in Corollary 3.5 at $a = 0, b = 0, c \in \mathbb{R}, |w_1|^2 = \sqrt{\lambda_1^2 + c^2}$, and $(\theta_1, \dots, \theta_{n-1}) \in \mathbb{T}^{n-1}$. Then

$$||M||_F^2 = \frac{L\sqrt{\lambda_1^2 + c^2}}{\lambda_1}.$$

This is, of course, minimized when c = 0. The choice c = 0 and, hence, $|w_1|^2 = \lambda_1$ imply that the factor $r = \frac{\lambda_1 + ic}{|w_1|^2}$ equals 1. Combined with Corollary 3.5, the above observations establish the following theorem.

THEOREM 4.1. Let $\Lambda = \text{Diag}(\lambda_l)$ satisfy condition (1.1), and define $S_j = \sum_{l=1}^{j} \lambda_l$ and $L = \sum_{j=1}^{n-1} S_j$. The minimal Frobenius norm of the elements of \mathcal{I}_{Λ} is L. The subvariety of $\mathbb{C}^{n \times n}$ consisting of elements of \mathcal{I}_{Λ} which have norm L is

$$\mathcal{M}_{\Lambda} = \{ M_{\Lambda}^{\theta} = \operatorname{Tri}(0, 0, e^{i\theta_j}\sqrt{S_j}) : (\theta_1, \cdots, \theta_{n-1}) \in \mathbb{T}^{n-1} \}.$$

In particular,

$$M_{\Lambda} = \operatorname{Tri}(0, 0, \sqrt{S_j})$$

is the unique element of \mathcal{I}_{Λ} with $||M_{\Lambda}||_F^2 = L$, and nonnegative entries.

Recall that we measure the (squared Frobenius) distance from a matrix M to a subset \mathcal{X} of $\mathbb{C}^{n \times n}$ by

$$d_F^2(M, \mathcal{X}) = \inf\{ \|M - E\|_F^2 : E \in \mathcal{X} \}.$$

Given any fixed $T \in \mathcal{T}$, we want to find the distance from T to \mathcal{I}_{Λ} . Equivalently, (up to a factor of 4) we want to find the distance from an element $(P,Q) = (\Pi_{\mathcal{S}}(2T), \Pi_{\mathcal{A}}(2T))$ in $\mathcal{S}_{\mathbf{T}} \oplus \mathcal{A}_{\mathbf{T}}$ to the set \mathcal{P}_{Λ} . Write

$$P = \operatorname{Tri}(\bar{\mu}, \operatorname{Re}(\delta), \mu) \text{ and } Q = \operatorname{Tri}(-\bar{\nu}, i\operatorname{Im}(\delta), \nu).$$

Let $(A, B) \in \mathcal{P}_{\Lambda}$ with

$$A = \operatorname{Tri}(\zeta, a, \zeta) \text{ and } B = \operatorname{Tri}(-\bar{\omega}, ib, \omega).$$

The distance between (P, Q) and (A, B) is

$$\|\operatorname{Tri}(\overline{\mu-\zeta},\operatorname{Re}(\delta)-a,\mu-\zeta)\|_F^2+\|\operatorname{Tri}(-(\overline{\nu-\omega}),\operatorname{Im}(\delta)-b,\nu-\omega)\|_F^2,$$

which, by equations (4.1) and (4.2), is

$$\|\operatorname{Re}(\delta) - a\|_{2}^{2} + 2\|\mu - \zeta\|_{2}^{2} + \|\operatorname{Im}(\delta) - b\|_{2}^{2} + 2\|\nu - \omega\|_{2}^{2}.$$

The first and third term are minimized by the choices of constant *n*-tuples $a = \frac{\sum_{j=1}^{n} \operatorname{Re}(\delta_j)}{n}$ and $b = \frac{\sum_{j=1}^{n} \operatorname{Im}(\delta_j)}{n}$, cf., [5]. Thus, finding a closest element in \mathcal{P}_{Λ} to (P,Q) reduces to minimizing

(4.5)
$$2\|\mu - \zeta\|_2^2 + 2\|\nu - \omega\|_2^2$$
, where $\zeta, \omega \in \mathbb{C}^{n-1}$ satisfy (3.2).

Let $\zeta, \omega \in \mathbb{C}^{n-1}$ satisfy (3.2) and let $c = \text{Im}(z_1 \bar{w}_1)$ and $r = \frac{\lambda_1 + ic}{|w_1|^2}$. Recall that $\zeta = r\omega$. Thus equation (4.5) is

$$2\|\mu\|_{2}^{2} - 4\operatorname{Re}(\langle \mu, r\omega \rangle) + 2|r|^{2}\|\omega\|_{2}^{2} + 2\|\nu\|_{2}^{2} - 4\operatorname{Re}(\langle \nu, \omega \rangle) + 2\|\omega\|_{2}^{2}$$

Now, $\|\omega\|_2^2 = \sum_{j=1}^{n-1} \frac{S_j}{\lambda_1} |w_1|^2 = \frac{L|w_1|^2}{\lambda_1}$, and $|r|^2 = \frac{\lambda_1^2 + c^2}{|w_1|^4}$. Therefore, equation (4.5) is

(4.6)
$$2\|\mu\|_2^2 + 2\|\nu\|_2^2 + (1+|r|^2)\frac{2L|w_1|^2}{\lambda_1} - 4\operatorname{Re}(\langle \bar{r}\mu + \nu, \omega \rangle).$$

Let $\epsilon = \bar{r}\mu + \nu = (\epsilon_j)$ and recall that ω has the form $(w_j) = (\frac{|w_1|\sqrt{S_j}}{\sqrt{\lambda_1}}e^{i\theta_j})$, where we can choose $\theta_j = \operatorname{Arg}(\epsilon_j)$. That is, we fix θ_j so that $\operatorname{Re}(\epsilon_j e^{-i\theta_j})$ is maximal. Thus,

$$\operatorname{Re}(\langle \epsilon, \omega \rangle) = \sum_{j=1}^{n-1} |\epsilon_j| \frac{|w_1|\sqrt{S_j}}{\sqrt{\lambda_1}} = \frac{|w_1|}{\sqrt{\lambda_1}} \sum_{j=1}^{n-1} |\bar{r}\mu_j + \nu_j| \sqrt{S_j}.$$

The above calculations lead us to define the function $D(c, |w_1|)$ from $\mathbb{R} \times \mathbb{R}^+$ to \mathbb{R}^+ by

(4.7)
$$D(c,|w_1|) = \frac{2L(|w_1|^4 + \lambda_1^2 + c^2)}{\lambda_1 |w_1|^2} + \frac{-4}{|w_1|\sqrt{\lambda_1}} \sum_{j=1}^{n-1} \sqrt{S_j} |(\lambda_1 - ic)\mu_j| + |w_1|^2 \nu_j|.$$

As the following lemma indicates, finding the distance between a given pair (P, Q) in $S_T \oplus A_T$ and \mathcal{P}_{Λ} is equivalent to minimizing the above function.

LEMMA 4.2. Let $\Lambda = \text{Diag}(\lambda_l)$ satisfy condition (1.1), and define $S_j = \sum_{l=1}^j \lambda_l$ and $L = \sum_{j=1}^{n-1} S_j$. Let $(P, Q) \in S_T \oplus \mathcal{A}_T$ with

$$P = \operatorname{Tri}(\bar{\mu}, \alpha, \mu) \text{ and } Q = \operatorname{Tri}(-\bar{\nu}, i\beta, \nu).$$

Define $D(c, |w_1|)$ as in (4.7) and let

$$D = \inf \{ D(c, |w_1|) : (c, |w_1|) \in \mathbb{R} \times \mathbb{R}^+ \}.$$

Let \hat{a} and \hat{b} be the constant n-tuples with entries $\sum_{j=1}^{n} \frac{\alpha_j}{n}$, and $\sum_{j=1}^{n} \frac{\beta_j}{n}$, respectively. Then, the distance from (P,Q) to \mathcal{P}_{Λ} is

(4.8)
$$d_F^2((P,Q),\mathcal{P}_{\Lambda}) = \|\alpha - \hat{a}\|_2^2 + \|\beta - \hat{b}\|_2^2 + 2\|\mu\|_2^2 + 2\|\nu\|_2^2 + D.$$

Moreover, this distance is bounded above by

$$d_F^2((P,Q),\mathcal{P}_{\Lambda}) \le \|\alpha - \hat{a}\|_2^2 + \|\beta - \hat{b}\|_2^2 + 2\|\mu\|_2^2 + 2\|\nu\|_2^2 + 4(L - \sum_{j=1}^{n-1} \sqrt{S_j}|\mu_j + \nu_j|).$$

Proof. Fix $(c, |w_1|)$ and define the variables $r = \frac{\lambda_1 + ic}{|w_1|^2}$, $\epsilon_j = \bar{r}\mu_j + \nu_j$, and $\theta_j = \operatorname{Arg}(\epsilon_j)$, for all $j = 1, \dots, n-1$. Let $(A, B) \in \mathcal{P}_\Lambda$ be given by the (n+3)-tuple $(a, b, c, |w_1|, (\theta_j))$. We saw in the discussion above, these choices of a b, and (θ_j) are optimal for this $(c, |w_1|)$, and $d_F^2((P, Q), (A, B))$ is given by (4.8). The upper bound is given by noting that the last term, $D = \inf\{D(c, |w_1|) : (c, |w_1|) \in \mathbb{R} \times \mathbb{R}^+\}$, in the distance formula is less than or equal to

$$D(0, \sqrt{\lambda_1}) = 4L - 4\sum_{j=1}^{n-1} \sqrt{S_j} |\mu_j + \nu_j|.$$

The difficulty of minimizing $D(c, |w_1|)$ over $\mathbb{R} \times \mathbb{R}^+$ depends, of course, on the specific matrices (P, Q). For example, if $(P, Q) = (\mathbf{0}, \mathbf{0})$,

$$D(c, |w_1|) = D_0(|w_1|) = \frac{2L(|w_1|^4 + \lambda_1^2 + c^2)}{\lambda_1 |w_1|^2}$$

We have seen that this is minimized at c = 0, $|w_1|^2 = \lambda_1$ and the minimum is 4L.

The above results translate directly into distance formulas for \mathcal{T} .

COROLLARY 4.3. Let $\Lambda = \text{Diag}(\lambda_l)$ satisfy condition (1.1), and define $S_j = \sum_{l=1}^{j} \lambda_l$ and $L = \sum_{j=1}^{n-1} S_j$. Let $T = \text{Tri}(\overline{\sigma}, \gamma, \tau)$. Define $\hat{\gamma}$ to be the constant *n*-tuple with entry $\frac{\sum_{j=1}^{n} \gamma_j}{n} = \frac{\text{Tr}(T)}{n}$, and define

$$\delta(c,|w_1|) = \frac{L(|w_1|^4 + \lambda_1^2 + c^2)}{2\lambda_1|w_1|^2} - \sum_{j=1}^{n-1} \frac{|(\lambda_1 - |w_1|^2 - ic)\sigma_j + (\lambda_1 + |w_1|^2 - ic)\tau_j|\sqrt{S_j}}{|w_1|\sqrt{\lambda_1}}.$$

Let

$$\Delta = \inf \{ \delta((c, |w_1|)) : (c, |w_1|) \in \mathbb{R} \times \mathbb{R}^+ \}.$$

Then

$$d_F^2(T, \mathcal{I}_{\Lambda}) = \|\gamma - \hat{\gamma}\|_2^2 + \|\sigma\|_2^2 + \|\tau\|_2^2 + \Delta$$

In particular, for any $T \in \mathcal{T}$ its distance from \mathcal{I}_{Λ} is bounded by

$$d_F^2(T, \mathcal{I}_{\Lambda}) \le \delta((0, \sqrt{\lambda_1})) = \|\gamma - \hat{\gamma}\|_2^2 + \|\sigma\|_2^2 + \|\tau\|_2^2 + L - \sum_{j=1}^{n-1} 2|\tau_j|\sqrt{S_j}.$$

THE STRUCTURED DISTANCE TO NEARLY NORMAL MATRICES.

Proof. $(\Pi_{\mathcal{S}}(2T), \Pi_{\mathcal{A}}(2T)) = (\operatorname{Tri}(\overline{\sigma + \tau}, 2\operatorname{Re}(\gamma), \sigma + \tau), \operatorname{Tri}(\overline{\sigma - \tau}, 2i\operatorname{Im}(\gamma), \tau - \sigma)).$ If $(P, Q) = (\Pi_{\mathcal{S}}(2T), \Pi_{\mathcal{A}}(2T))$ in the previous lemma, then equation (4.8) is

$$||2\gamma - 2\hat{\gamma}||_{2}^{2} + 2||\sigma + \tau||_{2}^{2} + 2||\tau - \sigma||_{2}^{2} + D = 4||\gamma - \hat{\gamma}||_{2}^{2} + 4||\sigma||_{2}^{2} + 4||\sigma||_{2}^{2} + D,$$

and the function $D(c, |w_1|)$ reduces to $4\delta(c, |w_1|)$ for $\mu = \sigma + \tau$ and $\nu = \tau - \sigma$. This, combined with the fact that $d_F^2(T, \mathcal{I}_{\Lambda}) = \frac{1}{4} d_F^2((\Pi_{\mathcal{S}}(2T), \Pi_{\mathcal{A}}(2T)), \mathcal{P}_{\Lambda}))$, establishes the corollary.

Let $T \in \mathcal{T}$. Define $T_0 = T - \frac{\operatorname{Tr}(T)}{n}I$. Then T_0 is the translation of T, by a multiple of the identity matrix, which has minimal Frobenius norm among all such translations, cf., [5]. The above bound for the squared Frobenius distance from T to \mathcal{I}_{Λ} is less than or equal to (with equality holding if and only if $\tau = 0$) the sum of the squared Frobenius distances from T_0 to \mathcal{O} and from $\mathbf{0}$ to \mathcal{I}_{Λ} . We will see the importance of the translate, T_0 , in the next section.

5. Applications. In this section, we bound the Frobenius distance from normality for the elements of \mathcal{I}_{Λ} . We also apply results from [2] to indicate how well the set of eigenvalues of an element of \mathcal{I}_{Λ} can be approximated by using normal matrices and Geršgorin-type sets.

First, let us consider what the above results tell us about the Frobenius distance from normality for the elements of \mathcal{I}_{Λ} . Let $T \in \mathbb{C}^{n \times n}$. The direct sum structure $\mathbb{C}^{n \times n} = S \oplus \mathcal{A}$ and the Pythagorean relationship (2.2) imply that

$$d_F^2(T, \mathcal{N}) \le \min\{d_F^2(T, \mathcal{S}), d_F^2(T, \mathcal{A})\} \le \min\{\|\Pi_{\mathcal{A}}(T)\|_F^2, \|\Pi_{\mathcal{S}}(T)\|_F^2\}.$$

Recall that we defined

$$T_0 = T - \frac{\operatorname{Tr}(T)}{n}I.$$

Because the matrix $\frac{\text{Tr}(T)}{n}I$ is scalar, $d_F^2(T, \mathcal{N}) = d_F^2(T_0, \mathcal{N})$, cf., [5, Theorem 3.2]. Therefore,

$$\forall T \in \mathbb{C}^{n \times n} \quad d_F^2(T, \mathcal{N}) \le \min\{\|\Pi_{\mathcal{A}}(T_0)\|_F^2, \|\Pi_{\mathcal{S}}(T_0)\|_F^2\}.$$

Now let $M \in \mathcal{I}_{\Lambda}$. By Corollary 3.5,

$$M = \frac{1}{2}\operatorname{Tri}((\bar{r}-1)\overline{\omega}, a+ib, (r+1)\omega), \text{ and } M_0 = \frac{1}{2}\operatorname{Tri}((\bar{r}-1)\overline{\omega}, 0, (r+1)\omega),$$

where $r = \frac{\lambda_1 + ic}{|w_1|^2}$ and $w_j = \frac{\sqrt{S_j}|w_1|e^{i\theta_j}}{\sqrt{\lambda_1}}$. Then $\Pi_{\mathcal{S}}(M_0) = \frac{1}{2}\operatorname{Tri}(\bar{r}\bar{\omega}, 0, r\omega)$ and $\Pi_{\mathcal{A}}(M_0) = \frac{1}{2}\operatorname{Tri}(-\bar{\omega}, 0, \omega)$. By equation (4.2), $\|\Pi_{\mathcal{S}}(M_0)\|_F^2 = 2\|\frac{r\omega}{2}\|_2^2 = \frac{(\lambda_1^2 + c^2)L}{2\lambda_1|w_1|^2}$, and $\|\Pi_{\mathcal{A}}(M_0)\|_F^2 = 2\|\frac{\omega}{2}\|_2^2 = \frac{L|w_1|^2}{2\lambda_1}$. Thus, for $M \in \mathcal{I}_{\Lambda}$ defined by the (n+3)-tuple, $(a, b, c, |w_1|, (\theta_j)_{j=1}^{n-1})$, the distance from M to \mathcal{N} satisfies

$$d_F^2(M, \mathcal{N}) \le \min\{rac{(\lambda_1^2 + c^2)L}{2\lambda_1 |w_1|^2}, rac{L|w_1|^2}{2\lambda_1}\}.$$

Graphically, this bound can be described as follows. Let $M \in \mathcal{I}_{\Lambda}$ be given by $(a, b, c, |w_1|, (\theta_j)_{j=1}^{n-1})$. The Frobenius distance from M to the set of normal matrices is determined by where the ordered pair $(c, |w_1|^4)$ lies in relation to the parabola $y = x^2 + \lambda_1^2$. Specifically,

$$d_F^2(M, \mathcal{N}) \le \begin{cases} \frac{(\lambda_1^2 + c^2)L}{2\lambda_1 |w_1|^2} & \text{if } |w_1|^4 > c^2 + \lambda_1^2; \\\\ \frac{|w_1|^2 L}{2\lambda_1} = \frac{(\lambda_1^2 + c^2)L}{2\lambda_1 |w_1|^2} & \text{if } |w_1|^4 = c^2 + \lambda_1^2; \\\\ \frac{|w_1|^2 L}{2\lambda_1} & \text{if } |w_1|^4 < c^2 + \lambda_1^2. \end{cases}$$

Note that \mathcal{M}_{Λ} , the set of elements from \mathcal{I}_{Λ} with minimal Frobenius norm, corresponds to the vertex of $y = x^2 + \lambda_1^2$. For every $M_{\Lambda}^{\theta} \in \mathcal{M}_{\Lambda}$, the above bound says $d_F^2(M_{\Lambda}^{\theta}, \mathcal{N}) \leq L$. This is, of course, consistent with Theorem 4.1 which tells us that the normal matrix **0** has distance L from M_{Λ}^{θ} .

We now use the results of [2] to describe the distance from normality, in the sense of the numerical stability of eigenvalue estimation through normal matrices, for the elements of \mathcal{I}_{Λ} . Recall that a singular value decomposition (SVD), of a non-zero complex $n \times n$ matrix B, is an expression of B as a product

(5.1)
$$B = V\Sigma W^* = \begin{bmatrix} | & \cdots & | \\ \phi_1 & \cdots & \phi_n \\ | & \cdots & | \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma_n \end{bmatrix} \begin{bmatrix} - & \bar{\psi}_1^T & - \\ \vdots & \vdots & \vdots \\ - & \bar{\psi}_n^T & - \end{bmatrix},$$

where V and W are unitary matrices in $\mathbb{C}^{n \times n}$, and Σ is a nonnegative diagonal matrix. The entries of Σ , $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$, are the eigenvalues of |B| arranged in non-increasing order. They are called the *singular values* of B.

Fix any non-zero $B \in \mathbb{C}^{n \times n}$ and a SVD, $B = V\Sigma W^*$, as in (5.1). In [2], we defined the *SV*-normally estimated Geršgorin set, $\Gamma^{\text{NSV}}(V\Sigma W^*)$. Like the Geršgorin set for B, the set $\Gamma^{\text{NSV}}(V\Sigma W^*)$ is a union of closed discs and it contains the eigenvalues of B. We also defined the *SV*-normal estimator $\epsilon_{V\Sigma W^*}$ corresponding to this SVD of B. Specifically, define for each $l = 1, \dots, n$,

$$\epsilon_l = \sqrt{1 - |\langle \phi_l, \psi_l \rangle|^2}$$
 and let $\epsilon_{V\Sigma W^*} = \max_{1 \le l \le n} \{\epsilon_l\}.$

The parameter $\epsilon_{V\Sigma W^*}$ lies between 0 and 1, inclusively. It is used as a type of condition number which indicates how well the set $\Gamma^{\text{NSV}}(V\Sigma W^*)$ estimates the eigenvalues of B. When $\epsilon_{V\Sigma W^*}$ is zero, $\Gamma^{\text{NSV}}(V\Sigma W^*)$ is exactly the set of eigenvalues of B; when $\epsilon_{V\Sigma W^*}$ is small, the centers of the discs which comprise $\Gamma^{\text{NSV}}(V\Sigma W^*)$ provides a good estimate of the spectrum of B. This is because the radii of the discs which comprise $\Gamma^{\text{NSV}}(V\Sigma W^*)$ are all $R = \sqrt{2\sum_l \sigma_l^2 \epsilon_l^2}$. Roughly speaking, up to a scaling factor of σ_1 , this common radius will be small when $\epsilon_{V\Sigma W^*}$ is.

Finally, we cite the following lemma which bounds the SV-normal estimators from below. Notice that this lower bound on $\epsilon_{V\Sigma W^*}$ is *independent* of the choice of SVD for B.

LEMMA 5.1. (See [2]) Let $B \in \mathbb{C}^{N \times N}$ and let $\epsilon_{V \Sigma W^*}$ denote the SV-normal estimator corresponding to a SVD, $B = V \Sigma W^*$. Then,

$$||B^*B - BB^*||_2 \le ||B||_F^2 \epsilon_{V\Sigma W^*}.$$

The above lemma allows us to describe how well the spectrum of an element of \mathcal{I}_{Λ} can be approximated with the SV-normally estimated Geršgorin set, $\Gamma^{\text{NSV}}(V\Sigma W^*)$.

THEOREM 5.2. Let $M \in \mathcal{I}_{\Lambda}$ be defined by the (n+3)-tuple $(a, b, c, |w_1|, (\theta_j)_{j=1}^{n-1})$, and recall that $L = \sum_{j=1}^{n-1} \sum_{l=1}^{j} \lambda_l$. Define

$$H = \frac{n(a^2 + b^2)}{4} + \frac{L}{2\lambda_1} \left(\frac{\lambda_1^2 + c^2}{|w_1|^2} + |w_1|^2\right).$$

Let $M = V \Sigma W^*$ be a SVD of M and denote the corresponding SV-normal estimator by $\epsilon_{V \Sigma W^*}$. Then

$$\frac{\|\Lambda\|_2}{H} \le \epsilon_{V\Sigma W^*}.$$

In particular, if $M \in \mathcal{M}_{\Lambda}$ then

$$\frac{\|\Lambda\|_2}{L} \le \epsilon_{V\Sigma W^*}.$$

Proof. Let

$$M = \frac{1}{2} \operatorname{Tri}((\bar{r} - 1) \,\overline{\omega}, a + ib, (r + 1)\omega),$$

be defined by $(a, b, c, |w_1|, (\theta_j)_{j=1}^{n-1})$. Since $M \in \mathcal{I}_{\Lambda}$, $M^*M - MM^* = \Lambda$ and we have $||M^*M - MM^*||_2 = ||\Lambda||_2$. We showed in Section 4 that

$$\|M\|_F^2 = \frac{n(a^2 + b^2)}{4} + \|\frac{(\bar{r} - 1)\bar{\omega}}{2}\|_2^2 + \|\frac{(r+1)\omega}{2}\|_2^2.$$

Thus,

$$\|M\|_{F}^{2} = \frac{n(a^{2}+b^{2})}{4} + (\frac{|\bar{r}-1|^{2}+|r+1|^{2}}{4})\|\omega\|_{2}^{2} = \frac{n(a^{2}+b^{2})}{4} + \frac{(|r|^{2}+1)}{2}\|\omega\|_{2}^{2}$$

Since $|r|^2 + 1 = \frac{\lambda_1^2 + c^2}{|w_1|^4} + 1$ and $||\omega||_2^2 = \frac{L|w_1|^2}{\lambda_1}$,

$$||M||_F^2 = \frac{n(a^2 + b^2)}{4} + \frac{L}{2\lambda_1}(\frac{\lambda_1^2 + c^2}{|w_1|^2} + |w_1|^2) = H.$$

Finally, if $M \in \mathcal{M}_{\Lambda}$, by Theorem 4.1, $||M||_F^2 = L$. Thus,

$$\frac{\|M^*M - MM^*\|_2}{\|M\|_F^2} = \frac{\|\Lambda\|_2}{L} \le \epsilon_{V\Sigma W^*},$$

in this case.

The previous theorem has an interesting interpretation. The elements of \mathcal{M}_{Λ} have minimal Frobenius norm. However, the square of the reciprocal of this Frobenius norm is a factor of our lower bound for $\epsilon_{V\Sigma W^*}$. Consequently, the condition number of the SV-normally estimated Geršgorin sets for elements of \mathcal{M}_{Λ} is maximally bounded above 0. This seems to suggest the counter-intuitive idea that, regardless of which SVD is used, the radii of the set $\Gamma^{\text{NSV}}(V\Sigma W^*)$ should tend to be largest for smallest elements of \mathcal{I}_{Λ} . However, this suggestion fails to consider how weighting factors σ_j^2 of the radius R increase with $||\mathcal{M}||_F^2 = \sum_{j=1}^n \sigma_j^2$.

6. Conclusions and extensions. We conclude this note with a few remarks and some indications of further lines of inquiry for the sets \mathcal{I}_{Λ} . As we mentioned in Section 3, the right hand side of the matrix equation $M^*M - MM^* = \Lambda$ has to be self adjoint with trace zero, since the left hand side is. The choice to make Λ diagonal arose from a desire to simplify the calculations for \mathcal{P}_{Λ} and \mathcal{I}_{Λ} and to make the rank of Λ easy to identify, since this rank is a type of measure of the extent to which the matrix M fails to be normal. It would be interesting to consider how the above development changes for the general right hand side, Λ .

The intermediate set \mathcal{P}_{Λ} was used to simplify the calculations for \mathcal{I}_{Λ} and to help clarify how the upper and lower bands of the elements of \mathcal{I}_{Λ} are related to each other. However, the set \mathcal{P}_{Λ} has an interesting intrinsic functional analytic structure. Specifically, the decomposition $\mathbb{C}^{n \times n} = S \oplus \mathcal{A}$ expresses $\mathbb{C}^{n \times n}$ as a *Krein space*. This is an indefinite inner product

space which has the structure of the direct sum of a Hilbert space and a negative Hilbert space. The structure of the operators on such spaces have been studied in detail, cf., [1, 4], and an interesting line of inquiry would be to examine the properties of the elements of \mathcal{P}_{Λ} as Kreĭn space operators.

Finally, other SVD-based Geršgorin-type sets were developed in [6] and [7]. The difficulty in applying such methods generally arises from the nonuniqueness of SVDs. We see from the above development that elements of the algebraic varieties \mathcal{M}_{Λ} and \mathcal{I}_{Λ} have sufficiently strong structure constraints to overcome the difficulties created by the nonuniqueness of the SVD for normally estimated Geršgorin sets of [2]. An interesting question is whether this happens with other SVD Geršgorin-type sets.

REFERENCES

- [1] J. BOGNAR, Indefinite Inner Product Spaces, Springer, Berlin, 1974.
- [2] N. FONTES, J. KOVER, L. SMITHIES, AND R. S. VARGA, Singular value decomposition normally estimated Geršgorin sets, Electron. Trans. Numer. Anal., 26, (2007), pp. 320–329. http://etna.math.kent.edu/vol.26.2007/pp320-329.pdf
- [3] R. HORN AND C. JOHNSON, Topics in Matrix Analysis, 2nd ed., Cambridge University Press, Cambridge, England, 1994.
- [4] H. LANGER, Spectral functions of definitizable operators in Krein spaces, in Lecture Notes in Mathematics, vol. 948, Springer, Berlin, 1982, pp. 1–46.
- [5] S. NOSCHESE, L. PASQUINI, AND L. REICHEL, The structured distance to normality of an irreducible real tridiagonal matrix, Electron. Trans. Numer. Anal., 28 (2007-08), pp. 65–77. http://etna.math.kent.edu/vol.28.2007-2008/pp65-77.dir/pp65-77.pdf
- [6] L. SMITHIES, A note on polar decomposition based Geršgorin-type sets, Linear Algebra Appl., 429 (2008), pp. 2623–2627.
- [7] L. SMITHIES AND R. S. VARGA, Singular value decomposition Geršgorin sets, Linear Algebra Appl., 417 (2005), pp. 370–380.
- [8] R. S. VARGA, Geršgorin and His Circles, Springer, Heidelberg, 2004.