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Dedicated to Richard S. Varga, on the occasion of his 80th birthday.

Abstract. We examine the asymptotic behavior of the zeros of sections of the binomial expansion, that is, we
consider the distribution of zeros ofBr,n(z) =

Pr
k=0

`n
k

´

zk, where1 ≤ r ≤ n.
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1. Preliminaries. A problem of great interest in the classical complex function theory
is the following: given a functionf(z) =

∑∞
k=0 akzk, analytic atz = 0, determine the

asymptotic distribution of the zeros of thepartial sumssn(z) =
∑n

k=0 akzk.
Some contributors to this area include Jentzsch [6], who explored the problem for a

finite radius of convergence; Szegő [13], who explored the exponential functionez; Rosen-
bloom [12], who discussed the angular distribution of zeros using potential theory, and ap-
plied his work to the sub-class of confluent hypergeometric functions; Erd̋os and Tuŕan [4],
who used minimization techniques to discuss angular distributions of zeros; Newman and
Rivlin [7, 8], who related the work of Szegő to the Central Limit Theorem; Edrei, Saff and
Varga [3], who gave a thorough analysis for the family of Mittag-Leffler functions; Carpenter,
Varga and Waldvogel [2], who refined the work of Szegő; Norfolk [9, 10], who refined the
work of Rosenbloom on the confluent hypergeometric functions and a related set of integral
transforms.

In this paper, we will analyze the behavior of the zeros of sections of the binomial ex-
pansion, that is

Br,n(z) =

r
∑

k=0

(

n

k

)

zk, 1 ≤ r ≤ n.

This investigation not only fits into the general theme of theworks cited, but also arises
from matroid theory. Specifically (cf. [14]), the univariate reliability polynomialfor the
uniform matroidUr,n is given by

Relr,n(q) = (1 − q)nBr,n

(

q

1 − q

)

=

r
∑

k=0

(

n

k

)

qk(1 − q)n−k,

which can be written asRelr,n(q) = (1 − q)n−rHr,n(q), where

(1.1) Hr,n(q) =
r

∑

k=0

(

n

k

)

qk(1 − q)r−k = (1 − q)rBr,n

(

q

1 − q

)

.

Some special cases are easy to analyze, and may thus be dispensed with. In particular,

∗Received March 12, 2009. Accepted August 8, 2009. Publishedonline December 16, 2009. Recommended by
Volodymyr Andriyevskyy.

†Department of Mathematics, Uppsala University, Sweden (svante@math.uu.se).
‡Department of Theoretical and Applied Mathematics, The University of Akron, U.S.A.,

(norfolk@uakron.edu).

27



ETNA
Kent State University 

http://etna.math.kent.edu

28 S. JANSON AND T. S. NORFOLK

1. B1,n(z) = 1 + nz, which has its only zero atz = − 1
n .

2. Bn,n(z) = (1 + z)n, which clearly has a zero of multiplicityn atz = −1.
3. Bn−1,n(z) = (1+z)n−zn. Noting that this polynomial cannot have positive zeros,

we obtain the zerosz = ωk

1−ωk , for 1 ≤ k ≤ n − 1, whereω = exp
(

2πi
n

)

is the
principaln-th root of unity, all of which lie on the vertical lineRe z = − 1

2 .
In what follows, we will therefore focus on the cases1 ≤ r < n − 1, and give two

collections of results. The first are concerned with bounding regions for the zeros ofBr,n(z),
the rest with convergence results.

We note that this problem was investigated independently byOstrovskii [11], who ob-
tained many of the results that we present here. The methods used there involved using a
bilinear transformation to convert the problem to an integral formulation. This choice of
formulation makes the proofs more involved and requires some additional constraints. By
contrast, we claim that our methods descend directly from the structure of the problem, and
yield additional results, in terms of additional bounds on the zeros, and limiting cases. The
paper [11] also gives a result on the spacing of the zeros on the limit curve, using classical
potential-theoretic methods. We do not duplicate that result here, but give formulations in
terms of specific points on the curve.

Our methods generate a set of constants and two related limitcurves for0 < α < 1,
defined by

(1.2)
1

2
≤ Kα = αα(1 − α)1−α < 1,

(1.3) Cα =

{

z :
|z|α

|1 + z| = Kα, |z| ≤ α

1 − α

}

,

and

(1.4) C ′
α =

{

z :
|z|α

|1 + z| = Kα,
α

1 − α
≤ |z|

}

.

The properties of these curves are outlined in Lemma3.1. Section3 also presents bounds
which are used to simplify the proofs of some of the results presented here.

2. Main Results. As discussed above, we begin with a theorem on bounds of the zeros
of Br,n(z), and follow with results on convergence of those zeros.

THEOREM 2.1. Let r, n be positive integers, with1 ≤ r < n − 1, and letz∗ be any
zero ofBr,n(z) =

∑r
k=0

(

n
k

)

zk. Then,z∗ lies in a region defined by the intersection of two
circles, a plane closed curve, and the half plane on the rightof a vertical line. Specifically,

|z∗| ≤ r

n + 1 − r
,

∣

∣

∣

∣

z∗ − γ2

1 − γ2

∣

∣

∣

∣

≤ γ

(1 − γ2)
, whereγ =

r

n − 1
,

Re z∗ > −1

2
,

andz∗ lies exterior to the curveCr/n, defined in(1.2)–(1.3).
Proof. We begin by considering the ratio of coefficients

(

n
k

)

(

n
k−1

) =
n − k + 1

k
,
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which is decreasing ink.

Hence, writingBr,n

(

r
n−r+1z

)

=
∑r

k=0 akzk, we have that

ak

ak−1
=

n − k + 1

k
· r

n − r + 1
≥ 1.

That is,{ak}r
k=0 is non-decreasing, so by the Eneström-Kakeya Theorem ([5], p. 462), the

zeros of this polynomial satisfy|z| ≤ 1. Hence, the zeros ofBr,n(z) satisfy|z| ≤ r
n−r+1 .

For the second bounding circle, we refer to Wagner [14], where it is shown, again using
the Enestr̈om-Kakeya Theorem, that the zeros ofHr,n(q), defined in (1.1), lie in the annulus

1

n − r
≤ |q| ≤ r

n − 1
.

Sincez = −1 is clearly not a zero ofBr,n(z) for r < n, we may make the substitution
z = q

1−q (or equivalentlyq = z
1+z ) in (1.1), which shows immediately that

Hr,n(q) = (1 + z)−rBr,n(z),

from which one obtains

(2.1)

∣

∣

∣

∣

z

1 + z

∣

∣

∣

∣

≤ r

n − 1
=: γ.

Writing this last inequality in terms of the real and imaginary parts ofz yields the claimed

result. Noting that (2.1) implies that
∣

∣

∣

z
1+z

∣

∣

∣
< 1, yields the half-planeRe z > − 1

2 , as claimed.

For the final bound, we mimic the analysis of Buckholtz [1] on the partial sums ofez,
and write

(2.2) (1 + z)−nBr,n(z) = 1 − zr

(1 + z)n
Rr,n(z),

where

(2.3) Rr,n(z) =

n
∑

k=r+1

(

n

k

)

zk−r = zn−rBn−r−1,n

(

1

z

)

.

For clarity, we setβ = r/n. Inside and on the curveCβ (1.3), we have|z| < β
1−β and

∣

∣

∣

zr

(1+z)n

∣

∣

∣
≤ Kn

β , whereKβ is defined in (1.2). This, with the upper bound of Lemma3.3

yields

(2.4)
∣

∣(1 + z)−nBr,n(z)
∣

∣ ≥ 1 −
∣

∣

∣

∣

zr

(1 + z)n

∣

∣

∣

∣

· |Rr,n(z)| > 1 − Kn
β · K−n

β = 0,

which is the desired result.
Note that the second bounding circle occurring in this result, namely

∣

∣

∣

∣

z − α2

1 − α2

∣

∣

∣

∣

=
α

1 − α2
,

intersects the negative real axis atz = − α
1+α . This circle is contained in the first one, namely

|z| = α
1−α , and both meet at the common pointz = α

1−α .
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FIGURE 2.1. The bounding curves and zeros forr = 10, n = 30.

The limiting case|z| = α
1−α , corresponding to the first bounding circle, and the bounding

half-planeRe z > − 1
2 both appear in [11], with proofs that require a significantly more

detailed derivation. The bounding curves and associated zeros for the caser = 10 and
n = 30 are illustrated in Figure2.1.

We now use these results, and the bounds from the proof, to discuss some convergence
results.

THEOREM 2.2. Suppose that1 ≤ rj < nj − 1 for all j, that limj→∞ nj = ∞, and that

lim
j→∞

rj

nj
= α, 0 < α < 1.

Then
1. the zeros of{Brj ,nj

(z)} converge uniformly to points of the curveCα, i.e.,

sup
z:Brj,nj

(z)=0

d(z, Cα) −→ 0,

whered(z, Cα) = infζ∈Cα
|z − ζ| is the distance fromz to Cα;

2. each point ofCα is a limit point of zeros of
{

Brj ,nj
(z)

}∞
j=1

.

Proof. Setβj = rj/nj , so thatlimj→∞ βj = α. Using (2.2), the zeros ofBrj ,nj
(z) then

satisfy

(2.5)
zrj

(1 + z)nj
· Rrj ,nj

(z) = 1.

Using Theorem2.1, Lemma3.1, and Lemma3.3, these zeros lie outside the curveCβj
, and

thus satisfyνβj < Xβj
≤ |z| ≤ βj

1−βj
, where−Xβj

is the intersection of the curveCβj
with

the negative real axis, andν is the unique positive solution toxe1+x = 1.
Hence,

(2.6)
νrj

nj(rj + 1)
≤

K
nj

βj

∣

∣Rrj ,nj
(z)

∣

∣

∑nj

k=rj+1

(

nj

k

)

βj
k(1 − βj)nj−k

≤ 1,
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for this region. Note that the sum in the denominator above converges to1/2 by the Central
Limit Theorem.

Consequently,limj→∞
∣

∣R
1/nj
rj ,nj (z)

∣

∣ = K−1
α , uniformly on the set in question. Taking

moduli andnj-th roots in (2.5), we observe that the zeros ofBrj ,nj
(z) must satisfy

(2.7)
|z|βj

|1 + z|
∣

∣Rrj ,nj
(z)

∣

∣

1/nj
= 1.

Sinceβj → α, this establishes that every limit point of a sequence of zeros of Brj ,nj
(z)

lies onCα. Since, by Theorem2.1, the zeros lie in a compact set, it follows that the zeros
converge uniformly to points ofCα.

For the second claim, fix anyζ ∈ Cα with ζ 6= zα = α/(1 − α). Then|ζ| < zα, so we
may take a small neighborhoodD of ζ such that0 < |z| < zα for z ∈ D. Consequently, for
j sufficiently large,|z| < zβj

for all z ∈ D, and it follows from Lemma3.3and the Central
Limit Theorem, that

∣

∣Rrj ,nj
(z)

∣

∣

1/nj −→ K−1
α ,

uniformly onD.
In particular, for largej, Rrj ,nj

(z) 6= 0 on D, so we may fix an analytic branch of

R
1/nj
rj ,nj (z) in D. Lettingθj = arg(R

1/nj
rj ,nj (z)) (with arguments in the range(0, 2π)), we then

have

e−iθj Rrj ,nj
(z) −→ K−1

α ,

uniformly on compact subsets ofD.
By shrinkingD, we may assume that the latter limit holds uniformly onD. Furthermore,

we may assume that0 < arg(z) < 2π for z ∈ D, and thus the powerszβj andzα are well-
defined inD. Hence,

(2.8)
zβj

1 + z
R1/nj

rj ,nj
(z) − zα

1 + z
K−1

α eiθj −→ 0,

uniformly onD.
Since the mappingw = zα

1+z K−1
α mapsCα onto an arc of the unit circle, it maps

D ∩ Cα onto a subarc. Thus, forj sufficiently large, there exists an integerpj such that
zα

1+z K−1
α eiθj = e2πipj/nj for somez = ζj ∈ D ∩ Cα. We may further assume thatζj → ζ.

It now follows from Hurwitz’ Theorem and (2.8) that, forj sufficiently large,

zβj

1 + z
R1/nj

rj ,nj
(z) − e2πipj/nj

has a zerozj ∈ D. Each such zerozj satisfies (2.5), and so by (2.2) is a zero ofBrj ,nj
(z).

This proves that every point onCα is a limit point of zeros of
{

Brj ,nj
(z)

}

.
We note that, thanks to (2.3), the non-trivial zeros ofRrj ,nj

(z) converge uniformly to all
points which lie on the curveC ′

α, as defined in (1.4).
This result also appears in [11], using more elaborate asymptotics. The analysis pre-

sented requires a deletion of a neighborhood of the singularpoint zα = α
1−α . The results of

Lemma3.3show that this is not necessary with our methods.
The remaining results presented here do not appear in the literature.
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The asymptotic expansions in the proof of Theorem2.2 immediately give the following
result on the rate of convergence. We note that, as shown in [2] in the case of the exponential
function, this rate is the best possible.

THEOREM 2.3. Fix 0 < δ < 1. Then, there exists a constantc, depending only onδ,
such that, ifr, n are large and0 < δ < r

n < 1 − δ, for any zeroz∗ of Br,n(z) we have

min
ζ∈Cr/n

|z∗ − ζ| ≤ c

|z∗ − r
n−r |

· lnn

n
.

Additionally, the proximity to the singular pointzr/n = r
n−r is of orderO

(

1√
n

)

.

Proof. Setβ = r/n. From (2.6), we obtain the approximation

(2.9)
∣

∣

∣
R1/n

r,n (z)
∣

∣

∣
· Kβ = 1 + Gr,n(z) · lnn

n
,

whereGr,n(z) is uniformly bounded in a region containing the zeros.
Let z∗ be a zero ofBr,n(z), and letζ be the point onCβ closest toz∗. Note that|ζ−z∗| =

o(1), as a consequence of Theorem2.2, applied to sequences for whichβ converges. Note that
the curveCβ is asymptotically a pair of straight lines at angleπ/4 to the real axis, close to the
point zβ = β/(1 − β). Hence, ifz∗ is close tozβ , by Theorem2.1, it must lie in the wedges
between these lines and the vertical lineRe z = zβ , from which|z∗ − zβ | = O(|ζ − zβ |).

Note thatz∗ satisfies (2.7), without the subscriptj, and thus, by (2.9), we have

|z∗|
|1 + z∗| · K

−1
β =

(

1 + Gr,n(z) · lnn

n

)−1

.

ExpandingF (z) = ln(K−1
β |z|β/|1+z|) = Re ln(K−1

β zβ/(1+z)) as a Taylor series centered
at ζ (noting thatF (ζ) = 0), we find that

|z∗ − ζ| = O

(∣

∣

∣

∣

ζ(1 + ζ)

β − (1 − β)ζ
· Gr,n(z) · lnn

n

∣

∣

∣

∣

)

= O

(

1

|zβ − ζ| ·
lnn

n

)

.

This not only gives the desired result, but shows that, as expected, the rate of convergence is
worst for those points closest to the singular pointzβ = β

1−β .
To discuss the convergence at the singular point, we take an approach similar to that

used for the exponential function in [7, 8] and for the Mittag-Leffler functions in [3]. For
convenience, we setµ = nβ = r, andσ2 = nβ(1 − β). Then,

fr,n(w) = (1 − β)nBr,n

(

βew/σ

1 − β

)

=

r
∑

k=0

(

n

k

)

βk(1 − β)n−kekw/σ,

which is a truncated moment generating function for a binomial distribution with meanµ and
varianceσ. Using the Central Limit Theorem,

fr,n(w) ≈ 1√
2πσ

∫ µ

−∞
e−

1
2 (

t−µ
σ )+ tw

σ dt.

Making the substitutions = t−µ−σw√
2σ

yields

e−µw/σ−w2/2fr,n(w) ≈ 1√
π

∫ −w/
√

2

−∞
e−s2

ds =
1

2
erfc

(

w√
2

)

,
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the complementary error function. Thus, given the zeroχ of erfc(z) which is closest to the
origin, there must exist a zeroz∗ of Br,n(z) for which

z∗ ≈ βe
√

2χ/σ

1 − β
≈ β

1 − β
+

√

2β

(1 − β)3
· χ√

n
,

the desired result.
Figures2.1and2.2show the zeros, bounding curve, and bounding circles, for the cases

r = 10, n = 30 andr = 30, n = 90, respectively. Since the ratior/n is the same in both
cases, they serve to illustrate both the rate of convergenceof the zeros to the limit curve,
and the rate of convergence of the bounding circles. Figure2.3 shows the zeros for the case
r = 40, n = 80, as well as the curveC1/2 and the approximating points on the curve.

-0.5 0 0.5
-0.5

0

0.5

FIGURE 2.2. The bounding curves and zeros forr = 30, n = 90.

It should be noted at this point that, due to the structure of the coefficients of these
polynomials, direct computation of the zeros for significantly higher degrees suffers due to
numerical instability.

We conclude by considering the limiting casesα = 0 andα = 1. The trivial result for
α = 0, given the radius r

n+1−r of the bounding circle, is that all zeros converge uniformlyto
0 in this case. However, a slight modification gives a much moreinteresting result.

THEOREM 2.4. Suppose thatlimj→∞ rj = ∞ and thatlimj→∞
rj

nj
= 0.

Then, the limit points of the zeros of{Brj ,nj
(

rjz
nj−rj

)}∞j=1 are precisely the points of the Szegő

curve|ze1−z| = 1, |z| ≤ 1.
Proof. With the given normalization, the results of Theorem2.1 yield that the zeros of

the normalized polynomial above satisfy

(2.10) 1 =

(

rj

nj − rj

)rj

K
−nj

rj/nj

zrj

(

1 +
rjz

nj−rj

)nj
h(z) and |z| ≤ 1,

where
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0
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FIGURE 2.3. The curveC1/2, the points{ζp,80} and the zeros forr = 40, n = 80.

h(z) =

nj
∑

k=rj+1

(

nj

k

) (

rj

nj

)k (

1 − rj

nj

)nj−kj

zk−rj .

Noting that
(

rj

nj − rj

)rj

K
−nj

rj/nj
=

(

1 − rj

nj

)−nj

,

we may use standard expansions to convert (2.10) to the form

1 = (ze1−z+g(z))rj h(z),

where|g(z)| ≤ 3r
n , uniformly in the unit disk. Considering points inside and on the curve

|ze1−z| = e−3rj/nj , and noting that|h(z)| ≤ h(1) < 1 on the unit disk, we may repeat
the analysis of (2.4) to deduce that the zeros are uniformly bounded away from zero by
|z| ≥ η > 0. This implies that we may repeat the bounding process of Lemma 3.3 to deduce
thath1/rj (z) → 1 uniformly in η ≤ |z| ≤ 1, defining the roots by a cut along the positive
real axis. This establishes the desired result.

Finally, we consider the other limiting case.
THEOREM 2.5. Suppose thatlimj→∞ rj = ∞ and limj→∞

rj

nj
= 1. Then, the limit

points of the zeros of the polynomials
{

Brj ,nj
(z)

}∞
j=1

are precisely the points of the line

Re z = − 1
2 .

Proof. As in the previous proofs, we write the equation for the zeros as

1 =
zrj

(1 + z)nj
Rrj ,nj

(z).

We again use the bounds of Lemma3.3 and obtain the desired result, using the fact that
limα→1− Kα = 1.
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3. Technical Results.Here we give the properties and inequalities necessary for the
main results, beginning with the properties of the boundingcurves.

LEMMA 3.1. Fix 0 < α < 1, and let

Kα = αα(1 − α)1−α

and

Cα =

{

z :
|z|α

|1 + z| = Kα, |z| ≤ α

1 − α

}

.

Then
1. 1

2 ≤ Kα < 1, limα→0+ Kα = 1, andlimα→1− Kα = 1;
2. Cα is a simple, smooth closed curve, symmetric with respect to the real axis, starlike

with respect toz = 0, which passes throughzα = α
1−α ;

3. the intersection ofCα with the negative real axis occurs atz = −Xα, whereνα <
Xα < 1

2 andν ≃ 0.278 is the unique positive root ofxe1+x = 1;
4. Xα ≤ |z| and |z| ≤ zα for any z ∈ Cα, with the latter equality holding only at

z = zα.
Proof.

1. A simple calculation gives the limits. Taking derivatives yields

dKα

dα
= Kα ln

(

α

1 − α

)

,

which shows thatKα is decreasing on
(

0, 1
2

)

and increasing on
(

1
2 , 1

)

. Calculating
K1/2 directly gives the equality.

2. Clearly, the definition shows thatCα is closed and symmetric, and direct calculation
shows that it passes through the pointzα = α/(1 − α). We writez = reiθ, and set

cθ(r) =
|z|α

|1 + z| =
rα

√
1 + 2r cos θ + r2

.

Clearly,cθ(0) = 0 andlimr→∞ cθ(r) = 0. Forθ = 0, we have

c′0(r) =
rα−1

(1 + r)2
[α − (1 − α)r],

which shows that the given point is the only positive real value satisfying the equa-
tion. For0 < θ < π, we have

c′θ(r) = rα−1(1 + 2r cos θ + r2)−3/2[(α − 1)r2 + (2α − 1)r cos θ + α].

Sinceα − 1 < 0, this derivative has exactly one positive root, which is a maximum
of the function. Further, a simple calculation shows that

cθ

(

α

1 − α

)

> Kα,

from which each such ray yields exactly one point on the curve, inside the bound-
ing circle |z| = α

1−α . Considering the defining function, this value ofr is clearly
decreasing in0 ≤ θ < π. Hence, the curve is simple and starlike with respect to 0.
Finally, for θ = π, we have that

c′π(r) =
rα−1

(1 − r)2
[α + (1 − α)r] > 0
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for 0 < r < 1, andlimr→1− cπ(r) = ∞, which gives exactly one solution in this
range. That these points are the only solutions within the bounding circle can be
deduced from the fact thatz ∈ Cα if and only if 1

z ∈ C ′
1−α.

Examining the functionw = K−1
α

zα

1+z , using arguments in the range(0, 2π), shows
thatCα maps onto the appropriate arc of the unit circle in thew-plane. This mapping
is also one-to-one along the arc0 < arg w < 2πα, sincew′ 6= 0 on the cut plane.
This fact is implicitly used in the calculation of the rate ofconvergence.

3. The solution on the negative real axis is−t = −Xα, and satisfies

tα

1 − t
= Kα,

which we write as

f(t) = tα + αα(1 − α)1−α(t − 1) = 0.

Now, f(t) is increasing, withf(0) < 0, f(Xα) = 0, and

f

(

1

2

)

=

(

1

2

)α

− 1

2
Kα >

1

2
(1 − Kα) > 0,

from whichXα < 1
2 follows immediately.

To show thatνα < Xα, we consider

(3.1) f(να) = αα(να − (1 − να)(1 − α)1−α),

and set

g(α) = ln((1 − να)(1 − α)1−α),

which satisfiesg(0) = 0, g′(0) = −ν − 1 and

g′′(α) =
(να)2 + (ν − 2)(να) + 1 − ν2

(1 − α)(1 − να)2
> 0.

The last inequality follows since the numerator has discriminantν3(5ν − 4) < 0,
from Lemma3.1, and so has no real zeros. Hence,

eg(α) > e−(ν+1)α = eα ln ν = να,

and thus, by (3.1), f(να) < 0 for 0 < α < 1, as desired.

We continue with a lemma required for one of the bounds.
LEMMA 3.2. Letf(z) =

∑∞
k=0 bkzk satisfy

b0 > b1 ≥ 0, bk ≥ 0, b1bk−1 − b0bk ≥ 0, for k ≥ 1.

Then,

|f(z)| ≥ b0 − b1

b0 + b1
f(1), for |z| ≤ 1.

Proof. The conditions given imply that{bk} is strictly decreasing, unlessbk = 0 for
k ≥ K. Let r = b1

b0
< 1. Then, the conditions given show thatbk ≤ rbk−1 for k ≥ 1.

Hence,f(z) is analytic for|z| < 1
r , and, in particular, in the closed unit disk. Applying the
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Enestr̈om-Kakaya Theorem to the partial sumspn(z) =
∑n

k=0 bkzk shows that all have their
zeros in the region|z| > 1, hence, by Hurwitz’ Theorem,f(z) cannot have any zeros inside
the unit disk. Thus, applying the Minimum Modulus Theorem, the minimum value of|f(z)|
for |z| ≤ 1 must occur on the boundary.

For |z| = 1, we have

|(b0 − b1z)f(z)| =

∣

∣

∣

∣

b2
0 +

∞
∑

k=1

(b0bk − b1bk−1)z
k

∣

∣

∣

∣

≥ b2
0 −

∞
∑

k=1

|b1bk−1 − b0bk|

= b2
0 −

∞
∑

k=1

b1bk−1 +

∞
∑

k=1

b0bk = b2
0 − b1f(1) + b0(f(1) − b0)

= (b0 − b1)f(1).

Hence, we have

|f(z)| ≥ (b0 − b1)f(1)

|b0 − b1z|
≥ (b0 − b1)f(1)

b0 + b1
,

the desired result.

Finally, we have the estimates of the remainder term.
LEMMA 3.3. Given integers1 ≤ r < n, we setβ = r

n , and consider the remainder term

Rr,n(z) =

n
∑

k=r+1

(

n

k

)

zk−r.

Then, for|z| ≤ β
1−β , we have

|Rr,n(z)| ≤ K−n
β

n
∑

k=r+1

(

n

k

)

βk(1 − β)n−k ≤ K−n
β

and

|Rr,n(z)| ≥ |z|
r + 1

K−n
β

n
∑

k=r+1

(

n

k

)

βk(1 − β)n−k.

Proof. Given that all coefficients are positive, we use the value ofKβ from (1.2) and the
bound on|z| to deduce that

|Rr,n(z)| ≤ Rr,n

(

β

1 − β

)

= K−n
β

n
∑

k=r+1

(

n

k

)

βk(1 − β)n−k.

The latter sum is clearly bounded by 1, using the binomial expansion. In fact, using the
Central Limit Theorem, it is asymptotically1/2 for bothr andn − r large.

For the lower bound, we consider

g(z) =

(

1 − β

βz

)

Rr,n

(

βz

1 − β

)

=
n−r−1
∑

k=0

bkzk,

where

bk =

(

n

k + r + 1

) (

β

1 − β

)k

.



ETNA
Kent State University 

http://etna.math.kent.edu

38 S. JANSON AND T. S. NORFOLK

It is simple to show thatg(z) satisfies the conditions of Lemma3.2, that

b0 − b1

b0 + b1
=

2n − r

2r(n − r) + (2n − 3r)
≥ 1

r + 1
,

and finally that

g(1) =

(

1 − β

β

)

K−n
β

n
∑

k=r+1

(

n

k

)

βk(1 − β)n−k.

RewritingRr,n(z) in terms ofg(z) yields the result.
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