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To my teacher and friend Richard Varga on the occasion of his eightieth birthday.

Abstract. The main result of this paper is the parametrization of idealprojectors onto an arbitrary finite-
dimensional linear subspaceG ⊂ k[x]. This parametrization extends the previous ones by B. Mourrain and by
M. Kreuzer and L. Robbiano. We also give applications of the technique developed in this paper to a question of
similarity between a sequence of commuting matrices and itstranspose and to the existence of real solutions to a
system of polynomial equations.
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1. Introduction. Throughout the paperk will stand for the field of complex numbers
or the field of real numbers,k[x] := k [x1, . . . , xd] will denote the space (algebra, ring) of
polynomials ind indeterminants with coefficients in the fieldk.

DEFINITION 1.1 ([1]). A linear idempotent operatorP : k[x] → k[x] is called an ideal
projector ifkerP is an ideal ink[x].

Lagrange interpolation projectors, Taylor projectors and, in one variable, Hermite inter-
polation projectors are all examples of ideal projectors. For this reason the study of ideal
projectors holds a promise of an elegant extension of operators, traditionally used in nu-
merical analysis, to multivariate setting. The theory was initiated by G. Birkhoff [1], C. de
Boor [2], C. de Boor and A. Ron [4], H. M. Möller [9], and T. Sauer [14].

In this paper I will describe the family of ideal projectors onto a given a finite-dimensional
linear subspaceG ⊂ k[x]. The family of all such projectors is denoted byPG. Due to
Birkhoff’s restriction of the domain of a projector to the ring k[x], the study of ideal projec-
tors parallels the study of idealsJ ⊂ k[x], that complementG:

(1.1) J ⊕ G = k[x];

equivalently, those idealsJ ⊂ k[x] for which G spans the quotient algebrak[x]/J . Let JG

denotes the family of all ideals satisfying (1.1). In commutative algebra the characterization
of JG was previously considered by Mourrain [10] and by Kreuzer and Robbiano [7, Chap-
ter 6.4] in connection with some questions in computer algebra. They gave a description of
the bases for the ideals inJG whenG satisfies some additional assumptions:G is connected
to 1, in case of [10] andG is aD-invariant space spanned by monomials (order ideals) in case
of [7]. Further discussion on the relationship between these assumptions can be found in [3].

The main result of the next section characterizes (parametrizes)PG (equivalentlyJG)
without any assumptions onG. In this sense Theorem2.3 below extends the results of [10]
and [7] to arbitrary G. This parametrization allows to “compute” all ideal projectors for
general subspaceG. The two examples in Section3 of the paper show the difference between
parametrization ofPG for specialG and arbitraryG.

As in [10] and [7], the indispensable tool in caring out the characterization of PG is
a commuting family of multiplication operators (matrices)on G: MP := (Mj , j = 1 : d)
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defined byMj(g) := P (xjg) for everyg ∈ G. These operators are similar (literally and
figuratively) to the multiplication mapsmj onk[x]/J defined bymj([f ]) := [xjf ] ∈ k[x]/J
for every [f ] ∈ k[x]/J . A relationship between ideals, multiplication maps and numerical
analysis was initiated and explored by H. Stetter [17].

Unlike [10] and [7], our proofs rely on the language of ideal projectors. It is my belief that
this language, as a substitute for a division algorithm, allows extensions and simplification of
some of the arguments used in algebraic geometry.

In the consecutive sections we will present applications ofthe interrelations between
ideal projectors, zero-dimensional ideals and commuting matrices to such diverse fields as
linear algebra, solutions of polynomial equations and algebraic geometry.

We will make use of the following observation due to Carl de Boor [2].
THEOREM 1.2. A linear operatorP : k[x] → k[x] is an ideal projector if and only if

(1.2) P (fg) = P (f · P (g))

for all f, g ∈ k[x].
In terms of the quotient algebrak[x]/J , (1.2) says that[f [g]] = [fg] ∈ k[x]/J , for all

f, g ∈ k[x].
For everyJ ∈ IG, we useMJ = (M1, . . . , Md) to denote the sequence of multiplication

operators onG defined byMi(g) = PJ (xig). It is easy to see (cf. [2]) that this is a sequence
of pairwise commuting operators which is cyclic, with the cyclic vectorPJ1 ∈ G:

(1.3) {p (MJ ) (PJ1), p ∈ k[x]} = G.

2. Border schemes.Let g = (g1, . . . , gN ) be a linear basis forG. We define the border
of g as

∂g := {1, xigk, i = 1, . . . , d, k = 1, . . . , N} \G.

For every idealJ ∈ IG, the decomposition (1.1) induces anideal projectorPJ ontoG
with ker PJ = J . From (1.1) it follows that for every idealJ ∈ IG and for everyb ∈ ∂g

there exists a unique (!) polynomialpb = PJb ∈ G such thatb − pb ∈ J . As it turns out, the
set{b − pb, b ∈ ∂g} forms an ideal basis forJ , called a (generalized) border basis.

PROPOSITION 2.1. Let J ∈ IG and for everyb ∈ ∂g let pb := PJb be the unique
polynomial inG such thatb − pb ∈ J . Then{b − pb, b ∈ ∂g} forms an ideal basis forJ .

This proposition is not new; cf. [2], [16]. The proof below is essentially the same as
in [2] and presented purely for convenience.

Proof. We wish to prove that for every element off ∈ J there arefi,k ∈ k[x] such that

f =
∑

i,k

fi,k · (xigk − PJ (xigk)) ,

sincexigk − PJ (xigk) = 0 if xigk ∈ G.
SinceJ is the range ofI − PJ , and by linearity ofPJ , it suffices to show that for every

monomialxα there arefi,k ∈ k[x] such that

x
α − PJx

α =
∑

fi,k · (xigk − PJ (xigk)) .

The rest of the proof is by induction on the degree|α| :=
∑

αj . If |α| = 0 then
1 − PJ1 = 1 − p1 ∈ {b − pb, b ∈ ∂g} and there is nothing to prove. Next, assume that
x

α − PJx
α ∈ 〈b − gb, b ∈ ∂g〉. Then, for everyi = 1, . . . , d,

xix
α − PJ (xix

α) = xix
α − PJ (xiPJx

α) = xi (xα − PJx
α) + xiPJx

α − PJ (xiPJx
α) .
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By the inductive assumption,xi (xα − PJx
α) ∈ 〈b − gb, b ∈ ∂g〉.. Also PJx

α ∈ G hence
PJx

α =
∑

akgk and

xiPJx
α − PJ (xiPJx

α) =
∑

k

akxigk −
∑

k

akPJ (xigk)

=
∑

ak (xigk − PJ (xigk)) ∈ 〈b − gb, b ∈ ∂g〉 ,

sincexigk − PJ (xigk) = 0 if xigk ∈ G.
REMARK 2.2. This proposition is a direct generalization of Proposition 6.4.15 in [7],

where it is proved forD-invariant subspacesG spanned by monomials. The argument in [7]
uses the division algorithm with remainder coming from the spaceG. This, once again, shows
that the language of ideal projectors is an alternative to that of division algorithm: for every
f ∈ k[x],

f =
∑

fb · pb + PJf

wherePJf is the unique “remainder” inG of the division off by the idealJ .
What about a converse? That is, what polynomials(pb, b ∈ ∂g) have the property that

the ideal〈b − pb, b ∈ ∂g〉 is in IG? This is the question first dealt with in [10] with some
additional assumptions onG; cf. also [3] and [7].

Mimicking the terminology of [7, 6.4B], we will characterize those border prebases
that are border bases. We will present necessary and sufficient conditions on polynomials
{pb, b ∈ ∂g} for {b − pb, b ∈ ∂g} to be a basis for an ideal inIG. As in [7, 6.4B], the crite-
rion involves formal multiplication operatorsMj : G → G defined by

Migk =

{

xigk if xigk ∈ G,
pxigk

if xigk /∈ G.

Here is the main theorem of this section.
THEOREM 2.3. Let (pb, b ∈ ∂g) be a sequence of polynomials inG. Then the ideal

〈f − pf , f ∈ ∂g〉 ∈ IG if and only if
(i) MiMk = MkMi for all i, k = 1, . . . , d,
(ii) g (M1, . . . , Md) p1 = g for all g ∈ G.

Proof. First assume thatJ = 〈b − pb, f ∈ ∂g〉 ∈ IG and letPJ be the ideal projector
ontoG with kerPJ = J .. ThenMig = PJ (xig) for all i = 1, . . . , d. It follows from (1.2)
that

MjMk(g) = PJ (xiPJ (xkg)) = PJ (xixkg) = PJ (xkxig) = MkMi(g),

which proves (i). Also observe that ifg =
∑

aαx
α, then, forM := (M1, . . . , Md) and

g0 := P1, we have

g (M1, . . . , Md) g0 = g =
∑

aαM
α (PJ1) =

∑

aαPJ (xα (PJ1))

=
∑

aαPJ (xα) = PJ

(

∑

aαxα
)

= PJg = g,

which proves (ii).
Now, suppose that (i) and (ii) hold. Then the mappingϕ : k[x] → k[x] defined by

ϕf = f(M)p1
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is a ring homomorphism, hence its kernel

K := kerϕ = {f ∈ k[x] : f(M)p1 = 0}
by (ii)
= {f ∈ k[x] : f(M) = 0}

is an ideal ink[x]. By (ii) the range ofϕ is G andK ∩ G = 0. By the fundamental theorem
of homomorphismsk[x]/K is isomorphic toG. In particular codimension ofK is equal to
dimG andK complementsG.

Let hb be the unique element inG such thatb − hb ∈ K. We need to show thatJ = K
or, alternatively thathb = gb for everyb ∈ ∂g. Sinceb − hb ∈ K we have

0 = (b(M) − hb(M))p1
by (ii)
= b(M)p1 − hb.

On the other hand, by definition ofM, we haveb(M)p1 = pb which implies thatpb = hb for
all b ∈ ∂g.

REMARK 2.4. If G is a D-invariant subspaces ofk[x] spanned by monomials, then
1 ∈ G and, by theD-invariance, condition (ii) of Theorem2.3 is automatically satisfied (see
Example3.1below). Hence Theorem2.3generalizes Theorem 6.4.30 of [7] with, what seems
to be, a shorter, simpler proof, courtesy of the language of ideal projectors.

The operatorsM1, . . . , Mk can be written asN × N matrices in the basisg and, the
polynomialp1 ∈ G generates anN × 1 matrix of its coefficients.

DEFINITION 2.5. The affine schemeBg defined by the idealIg generated by the entries
of the matricesMjMi − MiMj , i, j = 1, . . . , d, and the coordinates of the vectorp1,

〈gk (M1, . . . , Md) p1 − gk〉 , k = 1, . . . , N,

is called the generalized border scheme forg or g-border scheme. It parametrizes the family
of idealsIG or, equivalently, the family of ideal projectorsPG.

Unlike the border schemes for monomialD-invariant subspaces ofk[x], the g-border
scheme is defined by, possibly,N extra parameters (if1 /∈ G): coefficients ofp1, andN extra
equations:gk (M1, . . . , Md) p1 − gk = 0; cf. Example3.2below.

Note that, for the idealJ ∈ IG, the operatorsMj depend only on the spaceG and not on
its basisg. The entries of the matricesMj depend on the basis, hence theg-border scheme
depends on the particular choice of basisg for G.

3. Two examples.The first example is standard; cf. [8, Example 18.23], [13], [15].
EXAMPLE 3.1. Let g = (1, x, y) ⊂ k[x] and G be the space spanned byg. Thus

∂g =
{

x2, xy, y2
}

and everyP ∈ PG is determine by its values

Px2 = a0 + b0x + c0y,

Pxy = a1 + b1x + c1y,

Py2 = a2 + b2x + c2y.

or, equivalently, by nine coefficients

(3.1) (a0, a1, a2, b0, b1, b2, c0, c1, c2) .

So what are the condition on the coefficients (3.1) that guarantee that the ideal
〈

x2 − Px2, xy − Pxy, y2 − Py2
〉

complementsG? To answer this question we form formal multiplication matrices

M1 =





0 a0 a1

1 b0 b1

0 c0 c1



 , M2 =





0 a1 a2

1 b1 b2

0 c1 c2



 .
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This is the case whenG is a monomialD-invariant space and the conditions (ii) of Theo-
rem 2.3 is automatically satisfied. All that is left is to enforce thecommutativity. The six
quadratic equations obtained fromM1M2 − M2M1 = 0 are











































(a0b1 + a1c1) − (a1b0 + a2c0) = 0,

(a1 + b0b1 + b1c1) − (b0b1 + b2c0) = 0,
(

c2
1 + b1c0

)

− (a0 + b0c1 + c0c2) = 0,

(a0b2 + a1c2) − (a1b1 + a2c1) = 0,

(a2 + b0b2 + b1c2) −
(

b2
1 + b2c1

)

= 0,

(b2c0 + c1c2) − (a1 + b1c1 + c1c2) = 0.

A close examination reveals that there is a lot of redundancyin these equations. The solutions
to these equations are given by

(3.2)

a0 = −b0c1 + c2
1 + b1c0 − c0c2,

a1 = b2c0 − b1c1,

a2 = b2
1 − c2b1 − b0b2 + b2c1.

The border schemeBg is a six-dimensional affine variety ink9 that consists of all nine-tuples
(a0, a1, a2, b0, b1, b2, c0, c1, c2) satisfying (3.2).

By checking (3.2) we see that the following four projectors defined by

(3.3)

T : Tx2 = T (xy) = Ty2 = 0,

P∗ : P∗x
2 = y, P∗(xy) = P∗y

2 = 0,

L : Lx2 = x, L(xy) = 0, Ly2 = y,

H : Hx2 = Hxy = Hy2 = y,

are in fact ideal projectors ontoG. The first,T , is the Taylor projector ontoG, it interpolates
the function and its first partial derivatives at0. The second,P∗, also interpolates various
derivatives at zero, namely

δ0, δ0 ◦ Dx, δ0 ◦
(

D2
x + 2Dy

)

,

and is a different projector. Hence, unlike the case in one variable, there are two (infinitely
many) ideal projectors ontoG such that the zero locusZ(kerP ) of the idealker P is {0}..
The projectorL is a Lagrange projector interpolating at sites(0, 0), (1, 0) and(0, 1). Finally
the last projectorH interpolates the value of a function and its derivative withrespect tox at
zero and the value of the function at(1, 1).

EXAMPLE 3.2. We want to determine and parametrize the family of ideals that comple-
ment the two-dimensional spaceG spanned byg = {x, y}. In this case,G is notD-invariant
and1 /∈ G, hence in addition to commutativity condition we need to enforce condition (ii) of
Theorem2.3: Let

p1 = ux + vy =

[

u
v

]

and matrices

M1 =

[

a c
b d

]

, M2 =

[

A C
B D

]

.
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The commutativity conditions give four equations:














Bc − Cb = 0,
Ab − bD − Ba + Bd = 0,
cD − Ac + Ca − Cd = 0,
Cb − Bc = 0.

The two additional equationsM1p1 = x, M2p1 = y give four more equations:














au + cv − 1 = 0,
bu + dv = 0,
Au + Cv = 0,
vD + Bu − 1 = 0.

Together these two sets of equations define a four-dimensional affine algebraic set (theg-
border scheme) ink10. Clearly(u, v) can not be zero. Ifu, v 6= 0, then the solutions to these
equations are given in terms of four free parameters,u, v, C, d:

b = −d
v

u
, A = −C

v

u
, c = −C

v

u
, D = −

−1 + du

v
, B = d, a =

Cv2 + u

u2
,

and all ideal projectors ontoG are given by

P1 = ux + vy, Px2 = ax − d
v

u
y, Pxy = −C

v

u
x + dy, Py2 = Cx −

−1 + du

v
y.

The remaining cases are listed below:

2) C = 0, d = −
vD − 1

u
, B = −

vD − 1

u
, A = 0, c = 0, b =

vD − 1

u2
v, a =

1

u
.

3) d = 0, C = 0, u = 0, A = D, v =
1

D
, B = 0, c = D.

4) v = 0, d =
1

u
, A = 0, c = 0, B =

1

u
, b = 0, a =

1

u
.

4. Applications.

4.1. To linear algebra. It is well-known and easy to see (cf. [18]) that every square
matrixM is similar to its transpose. This is not the case for sequences of commuting matrices.
For instance, the pair of matrices(M1, M2) associated with the Taylor projectorT in (3.3)
has the form





0 0 0
1 0 0
0 0 0



 ,





0 0 0
0 0 0
1 0 0



 ,

with the cyclic vectore1 = (1, 0, 0). The adjoint pair of matrices(M t
1, M

t
2) is not cyclic.

Hence there cannot be an invertible transformationS such thatM t
i = SMiS

−1 for i = 1, 2.
As an easy application of ideal projectors we obtain the following non-trivial result.

THEOREM 4.1. A cyclic sequenceL = (L1, . . . , Ld) is similar to its transposeLt =
(Lt

1, . . . , L
t
d) if and only ifLt is cyclic.

The starting point is the observation (cf. [5], [11, Theorem 1.9], [12]) that not only an
ideal projector generates a cyclic sequence of commuting operators (and therefore matrices)
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but any cyclic sequence of commuting matrices is similar to asequence of multiplication
operators for some ideal projector.

PROPOSITION4.2. Let L = (L1, . . . , Ld) be a cyclic sequence of commutingN × N
matrices. Then the ideal

JL := {f ∈ k[x] : f(L) = 0}

has codimensionN andL is similar to the matrices of multiplication operatorsMP of any
ideal projectorP with ker P = JL.

Proof. Let v0 be a cyclic vector forL. Define

ϕ : k[x] → kN ,
f → f(L)v0.

SinceL is cyclic,ϕ is onto and by the fundamental theorem of homomorphismsk[x]/ kerϕ
is isomorphic tokN . But

kerϕ = {f ∈ k[x] : f(L)v0 = 0} = JL,

which shows that codimension ofJL is N .
Now, let G be a subspace that complementsJL and letP be an ideal projector ontoG

with ker P = JL. SinceG complementsJL, it follows that the restrictionϕ|G of ϕ to G is
invertible and, by direct computation,

P =
(

ϕ|G

)−1

◦ ϕ.

To show thatL is similar to the sequence of multiplication operatorsMP we will verify the

identity:
(

ϕ|G

)−1

◦ Lj ◦
(

ϕ|G

)

= Mj , i.e.,

(

ϕ|G

)−1

◦ Lj ◦
(

ϕ|G

)

g = PL (xjg) ,

for all g ∈ G. Indeed,

P (xjg) =
(

ϕ|G

)−1

ϕ (xjg) =
(

ϕ|G

)−1

(Ljg(L)v0) =
(

ϕ|G

)−1

◦ Lj (g(L)v0)

=

(

(

ϕ|G

)−1

◦ Lj ◦ ϕ

)

(g) =
(

ϕ|G

)−1

◦ Lj ◦
(

ϕ|G

)

(g),

sinceg ∈ G.
Proof of Theorem4.1. Suppose thatLt is cyclic. SincekerLt = kerL, by Proposi-

tion 4.2, Lt is similar to matrices for multiplication operatorsMP for the projectorP just as
L is. By transitivity,Lt is similar toL. The converse is obvious. That is, ifL

t = SLS−1,
thenL

t is also cyclic.
In general the problem of (simultaneous) similarity of twod-tuple of matrices seems to

be quite difficult; cf. [6]. The following generalization of Theorem4.1is straightforward, but
may be new.

THEOREM 4.3. Let L be a cyclicd-tuple of commutingN × N matrices and letB =
(B1, . . . , Bd) be an arbitraryd-tuple ofN × N matrices. ThenB is similar toL if and only
if B is a cyclicd-tuple of commuting matrices.

PROBLEM 4.4. What are the necessary and sufficient conditions for a general commut-
ing sequence of matrices to be similar to its transpose?
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4.2. To real solutions of polynomial systems.A standard exercise in Calculus uses the
intermediate value theorem to prove that every real polynomial of odd degree has at least
one real zero. In this section we give a simple proof of a (hopefully original) observation
that generalizes this statement to the systems of polynomial equations in several variables.
Namely, we prove that every ideal of real polynomials of odd codimension has a common
zero.

In one variable every polynomialp ∈ R[x] of odd degree defines the ideal

J := 〈p〉 := {fp, f ∈ R[x]},

that complements the spaceR<2n−1[x] of polynomials of degree less than2n − 1; thusJ is
of odd codimension. The existence of a solution is equivalent to

Z(I) := {x ∈ R : q(x) = 0 for all q ∈ J} 6= ∅.

The existence of a real solution for ideals of odd codimension is intuitively obvious from the
principle of conjugation. Ifz1, . . . , zm ∈ Cd are all the solutions of the generators ofJ , then
they must be invariant under the conjugation. If they are allcomplex one has to have an even
number of them. This translates to even codimension. But thetechnical proof of this needs
to take into account multiplicities of solutions and is moreinvolved than the one, presented
below, using multiplication operators.

THEOREM 4.5. LetJ ⊂ R[x] = R [x1, . . . , xd] be an ideal of odd codimension. Then

Z(J) := {x ∈ R
d : q(x) = 0 for all q ∈ J} 6= ∅.

Proof. Let P be an ideal projector fromR[x] onto a subspaceG ⊂ R[x] with ker P =
J . To prove the theorem it suffices to show that the sequenceMJ := (M1, . . . , Md) of
commuting operators on an odd-dimensional spaceG has a common eigenvector. Indeed, if
Mjg = λjg for someg 6= 0, then for everyp ∈ J , p (M1, . . . , Md) = 0. Hence

0 = p (M1, . . . , Md) g = p (λ1, . . . , λd) · g,

and the eigentuple(λ1, . . . , λd) is a zero ofp.
The proof thatMJ has a common eigenvector is by induction ond. If d = 1, then the

characteristic polynomial ofM1 has an odd degree and thus has a real root that corresponds to
an eigenvector ofM1. Assume that the statement is true for any sequence ofd−1 commuting
operators. LetH be a subspace ofG of minimal odd dimension, invariant with respect to
M1, . . . , Md. Let M̃1, . . . , M̃d be the restrictions ofM1, . . . , Md to H. It is clearly enough
to prove thatM̃1, . . . , M̃d have a common eigenvector inH. Let h ∈ H be an eigenvector
for M̃d corresponding to an eigenvalueλ. Consider the spaces

H1 := ker
(

M̃d − λI
)

, H2 := ran
(

M̃d − λI
)

.

These two spaces are invariant with respect toM1, . . . , Md, and one of the two has an odd
dimension sincedim H1 + dim H2 = dim H. SinceH1 6= {0}, dimH2 < dim H, and from
minimality of H it follows thatH1 has and odd dimension and henceH1 = H. ThusMd is
a multiple of the identity onH and any eigenvector inH, common toM1, . . . , Md−1, is also
an eigenvector ofMd.

For instance, any system of three quadratic equations

x2 − (a0 + b0x + c0y) = 0,

xy − (a1 + b1x + c1y) = 0,

y2 − (a2 + b2x + c2y) = 0,
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with coefficients satisfying (3.2) has a real solution since, by Example3.1, the corresponding
ideal complements the space of linear polynomials, hence has codimension3.

4.3. To the geometry of border schemes.For a monomialD-invariant spaceG ⊂ k[x]
the following problem was posed in [13]:

PROBLEM 4.6. Is the border schemeBg, whereg is the monomials basis forG, con-
nected?

In other words, given two ideal projectors,P0 andP1 ∈ PG, does there exist a continu-
ous family of ideal projectorsP (t) ∈ PG such thatP (0) = P0 andP (1) = P1? The answer
is affirmative for thoseD-invariant monomial spacesG wheredeg f ≥ max{deg g : g ∈ G}
for everyf ∈ ∂g. It is interesting to note that it follows from the general theory of Gr̈obner
basis (cf. [8, Remark 18.3], [13]), that “the Hilbert schemes” are connected. That is, for a
given pair of ideal projectorsP0, P1 ∈ PG there exists a continuous familyP (t) of ideal
projectors, such thatP (0) = P0, P (1) = P1, anddim ranP = dimG for all t. The rub
is: for somet the ideal projectorP (t) may project onto a subspace of dimensionN that is
different fromG.

Are generalized border schemes connected? The answer inR[x], real polynomials in one
variable, is clearly negative. Indeed, letG be the one-dimensional space spanned byx. Then
the familyJG consists of maximal ideals, missing the one supported at zero. And sinceR/{0}
is not connected, neither is the border schemeB(x). Of course, this based on the peculiarity
of one-dimensional real space, where a point separates the space. A more subtle example can
be obtained by the projectors onto the two dimensional subspaceG = span

{

1, x2
}

in R[x].
If P ∈ PG is given by

(4.1) Px = a + bx2, Px3 = c + dx2,

then the multiplication matrix forP is

M =

[

a c
b d

]

,

and by Theorem2.3, the requirement on the coefficients is

M2(1, 0)t =
(

a2 + bc, ab + bd
)t

= (0, 1)t,

which implies thatb 6= 0. Thus, the ideal projectorsP0 andP1 given by

P0x = 1 + x2, P0x
3 = −1 − x2,

P1x = 1 − x2, P1x
3 = 1 − x2,

satisfy (i) and (ii) of Theorem2.3, yet cannot be connected by a continuous family of ideal
projectors given by (4.1) with b 6= 0. HenceB(1,x2) is not connected.

PROBLEM 4.7. Are the generalized border schemes inC[x] connected? Are generalized
border schemes inR[x] connected ford ≥ 2?
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