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Abstract. Various forms of preconditioners for elliptic finite element matrices are studied, based on suitable
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1. Introduction. Preconditioning is an essential part of an efficient iterative solution
method when solving large-scale linear and nonlinear systems of equations. This paper deals
with systems arising from the finite element discretization of elliptic partial differential equa-
tions.

The efficiency of a preconditioner is mostly judged by the condition number of the result-
ing preconditioned operator, and in applications it is important to know whether the condition
number depends critically on certain problem parameters such as jumps in the material co-
efficients. The most efficient preconditioners are based on some block partitioning of the
matrix. Common structures are block tridiagonal and two-by-two partitionings. Elementwise
constructed preconditioners can be efficient as they can be constructed locally and relatively
cheaply but still can provide a significant reduction of the condition number of the unpre-
conditioned operator.

Block tridiagonal matrices arise in many applications. For instance, such a structure
arises when decomposing the domain of definition of an elliptic operator using unidirectional
stripes, or more generally, for a decomposition such that (in addition to a corresponding
portion of the original boundary) each subdomain has a common boundary only with its
previous and next neighbours in the sequence of subdomains. This subdivision can often be
done according to different values of the coefficients in the differential operator, i.e., different
materials in the underlying physical domain. Each diagonal block in the matrix corresponds
to the restriction of the operator to one of the subdomains, and ordering the nodes in each
domain in groups and then the domains consecutively, results in a block tridiagonal matrix.

An interesting example of matrices of two-by-two block structure arises by ordering the
interior domain nodes separately from the interface nodes and ordering all interface nodes
last. This in turn results in a block diagonal submatrix with uncoupled blocks, which are only
coupled to the interface nodes ordered last. The part of the system which corresponds to the
different interior node sets can then be solved in parallel.

In both cases there arise Schur complement matrices when solving systems with these
matrices. For the block tridiagonal case, they arise at each step of the consecutive elimination
of the pivot blocks, and in the latter case by elimination of the interior nodes. Schur comple-
ment matrices are in general full matrices and must be approximated by some sparse matrix�
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in the construction of the preconditioner. The construction of such approximations and the
analysis of condition numbers of the Schur complements, both on continuous and discrete
level, are the main topic of this paper.

We give here first a general framework for the analysis of approximations of Schur com-
plement matrices. Consider a symmetric positive definite bilinear form � ���	��

� , and let ��� ,��� be two subspaces of a linear space � , where the intersection of ��� , ��� contains only the
trivial element. Here the spaces can be more general function spaces as well, but in our appli-
cations � is a finite element space, i.e., spanned by a set of finite element basis functions. As
has been shown in early publications [3, 4, 11, 13, 14], the strengthened Cauchy-Schwarz-
Bunyakowski inequality plays a fundamental role in the analysis of matrices partitioned in
two-by-two block form. The inequality takes the form� ���	��

������� � ��������� � ��
 ��
!��" ��#$� � %��'& �(� �)
*& ��� �
where

�,+.-
is the smallest such constant and is referred to as the CBS constant. In fact,

�
is the cosine of the angle between the two subspaces, measured by the inner product � ���	��

� .
For matrices in the form /1032 / �$� / �4�/ �5� / ���76 �
the CBS inequality can be written as8 9� / ��� 8 � ��� � � 8 9� / �$� 8 � �:� 8 9� / �$� 8 � � " ��#$� � % 8 � &<;>=@?
� 8 � &<;	=BADC
Alternatively, we can define

�
by

� 0FE � /HG ��#$���� / �5� / G ��$� / ��� /IG ��#$���� � ��#$�
, where

E ��C �
denotes

the spectral radius. Hence
�

measures the size of the off-diagonal blocks in relation to the
diagonal blocks. It is readily seen that��-KJL� � � 8 9� / �$� 8 � � 8 9�	M � 8 � � 8 9� / �$� 8 � � % 8 � &N; =OA �
where M �QP 0R/ ��� J / �5� / G ���� / �4� is the Schur complement matrix. Hence the condition
number satisfies

(1.1) S � / G ��$� M � ��� --�JL� � C
The remainder of the paper is organized as follows. In Section 2 we discuss briefly the

factorization of block tridiagonal matrices. We are in particular interested in approximating
the arising Schur complement matrices in such a way that their quality is insensitive to jumps
in the coefficients in the differential operator. This will be discussed in Section 3. Section 4
is devoted to an algebraic derivation of condition numbers in the approximations of matrices
partitioned in two-by-two block form, where the pivot block is block diagonal, such that the
condition number depends only on the CBS constant. A continuous analogue of the method
of Section 3 is presented on some model problems in Section 5. In Section 6 we analyze the
case of using elementwise approximations of Schur complements, and how to define them so
that they also become insensitive to coefficient jumps.

Except when it is otherwise stated, the inequalities/ �UTV� / +UT
between two symmetric matrices (of the same order) mean that

TWJ /
is positive semidefinite

or positive definite, respectively. The notation

E � / �
for a symmetric positive semidefinite

matrix

/
stands for its maximal eigenvalue. The spectral condition number of

/
is defined

by S � / � 01X Y�Z5[ � / �$\ X Y�] = � / � .
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2. Recursive approximation of Schur complements. Let us consider a symmetric,
positive definite matrix

/
with tridiagonal block structure

(2.1)

/10_^``a / ��� / ��� b C7C7C b/ �c� / �$� / �$d C7C7C bC7C7C C7CeC C7CeC C7C7C C7C7Cb b C7CeC / Ygf Y G � / Y�YKhjiik C
Here

/ ]ml 0n/ 9l�] for all o �qp . The exact block factorization of

/
takes the form/10 � MNrts(u � M G � � MNr�s 9u �5�

where M 0wv5x�y{ze|
} o~�@� � M � �7CeC7C�� M Y � and s�u is the strictly lower block triangular part of

/
.

Here the Schur complements M ] are determined recursively as

(2.2)

M �gP 0n/ �$� �M ��P 0n/ �$� J / �5� M G �� / �4� �C�C�C�C�CM ] P 01/�]�] J /�]�f ] G � M G �] G � /g] G � f ] �C�C�C�C�C
for o �,�

.
The application of this factorization to solve a linear system involves the solution of the

block triangular factors using a forward and a backward sweap. At each of them, systems
with matrices M ] , o 0 -B�eC7C7C7���

, appear that must be solved. In addition, matrix-vector multi-
plications with s u and s 9u , respectively, appear. In general, the M ] are full matrices and their
construction and the computation of actions of M G �] can be expensive.

Our goal is to approximate M ] by some matrix � ] which is sparse and the computation
of � ] and � G �] applied to vectors are cheap. We define � 0�v5x�y{ze|
} o~�@� � �'� � ��� �eC�C�C�� � Y � ,
and let the preconditioner � be defined by � 0 � � rLs u � � G � � � rLs 9u � . At the same time,
the approximation must be sufficiently accurate. For instance, it has been shown in [1] that
the following lower bound holds for the condition number: S � � G � / ���,����� ] S � � G �] M ] � .

Since systems with the matrices

/g]�]
are generally inexpensive to solve, we could try

/�]�]
as an approximation of M ] . At each step of the method we then deal with a two-by-two block
matrix in the form 2 /��]�] /g]�f ]�� �/�]�� � f ]�/�]�� � f ]�� �56 �
where / �]�] 0 ^```a / �$� / ��� b C7CeC C7C7C b/ �5� / �$� / �$d b C7C7C b

...
. . .

. . .
. . .

...b C7CeC CeC7C b /�]�f ] G � /�]�] hjiiik � o 0 -B�c�
�eC�C�C����wJ,-@C
As pointed out in the introduction, the accuracy of the approximation

/�]�� � f ]�� �
of M ]�� �HP 0�/�]�� � f ]�� � J /g]�� � f ] � /��]�] � G � /�]�f ]�� � is given by S � / G �]�� � f ]�� � M ]�� � � 0 -{\
�4-�JL� �]�� � � .
Here

� ]�� � depends on the stage of the elimination. For a model elliptic problem with constant
coefficients on a unit square and constant mesh size � , it can be seen (see, e.g., [1]) that the
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FIG. 2.1. The functions £
¤¦¥¨§© and £
¤jª~§© for which the CBS constant is taken.

basis functions which give rise to the
�

-constant at stage o are as shown in Figure 2.1, whereb + 8 ] +«-
, 8 ]�� � J 8 ]�0 � .

Since � ������
!� 0.¬®­ ¯
° �<± ° 

, one finds

� �]�� � 0 -gJ1� � \{² ]�� � � . In the limit as oK³ �
and

² ] ³ -
, one finds

� �Y 0 -IJ � . For more general problems, such as with variable
coefficients, one gets

� �]�� � 0 -�J<´�� � \O² ]�� � � and
� �Y 0 -�JN´�� � � . It follows that the quality

of this approximation deteriorates with increasing stage numbers o .
As discussed in several publications (see, e.g., [1, 9, 18]), the approximation method can

be improved in various ways. A simple method is to use a diagonal compensation in some
form, where

(2.3) � ] P 0Q/g]�] J¶µ ] �
where

µ ]
is a diagonal matrix, such that

(2.4)
µ ] 
 ]�0n/�]�f ] G �5� G �] G � /�] G � f ] 
 ]

for some given positive vector

 ]

.
First, let


 ]
be the eigenvector to

/ ]�f ] G � � G �] G � / ] G � f ] corresponding to the smallest eigen-
value · ] of this matrix. Then µ ] 
 ]�0 · ] 
 ] �
i.e.,

µ ](0 · ]q¸�] is a multiple of the identity matrix for the o th block. Since · ] is the smallest
eigenvalue, it follows that

/¹]�f ] G �5� G �] G � /�] G � f ] �ºµ ]
and then

/g]�] J /g]�f ] G ��� G �] G � /g] G � f ] �/�]�] J»µ ])0 � ] . Here � J /«0 � r�s�u � G � s 9u J»µ u �
where

µ u 01v5x¨y{z7|
} o~�B� � / ��� � / �$� �7C7CeC�� /gY�Y � , and� � J / � ]�]>0 � ] r /�]�f ] G �5� G �] G � /�] G � f ] J /�]�] � b C
Hence � � /

, which yields E � � G � / ���«-@C
In this method we must estimate the smallest eigenvalue of � G � / , which we will not do here
as the choice of � should rather be such that the smallest eigenvalue of � G � / is bounded
below by unity or some positive constant ¼ �½-

.
Consider now the choice


 ] P 01¾!]�0 ��-B�7CeC7Ce�7-¿�
, i.e.,

¾!]
has all components equal to unity.

Then � ] is obtained from

(2.5) � ] P 0n/�]�] J»µ ] �
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where

(2.6)
µ ]¨¾!])01/�]�f ] G �5� G �] G � /�] G � f ]¨¾!] C

Assume here for simplicity that

/
is an À -matrix. Then we have componentwise/ G �]�] � b � /g]�f ] G � � b � /�] G � f ] � b C

It follows by induction that � G �] G � � b componentwise. Hence

/¹]�] J /g]�f ] G ��� G �] G � /�] G � f ] is
a Á -matrix, i.e., all its off-diagonal components are non-positive. Since

� / ]�] J1µ ] � ¾ ] 0� / ]�] J / ]�f ] G � � G �] G � / ] G � f ] � ¾ ] , it holds that if this vector is nonzero then � ] 0Â/ ]�] J1µ ]
is positive definite, and also an À -matrix. Should the matrix lose positive definiteness (by
having

� / ]�] J1µ ] � ¾ ] 0 b ), we must perturb the matrices

/ ]�]
with some (small) positive

number. This has been discussed, e.g., in [1]; see also [5].
Assuming that no perturbation is required, we have� ]�0Q/g]�] J¶µ ] � /�]�] J /�]�f ] G �5� G �] G � /�] G � f ] �

with the inequality in the positive semidefinite sense. Therefore� � J / � ]�]	0 � ] r /�]�f ] G ��� G �] G � /�] G � f ] J /�]�] � b �
that is, � � /

and X ] � � G � / ���«-BC
Hence we have a lower bound. The upper bound follows from a theorem in [18], there stated
in a somewhat more general form.

THEOREM 2.1. Let

/
be a symmetric positive definite matrix partitioned in

�ÄÃW�
block form. Let � 0 � � r�s � � G � � � r,s 9 � , where � is symmetric positive definite block
diagonal and s is strictly lower block triangular, both with consistent partitioning to

/
. LetÅ ] P 0nX ] � � G ��Æ �

, where Æ 0Q/ J s J s 9 , let ÇLP 0 ��È{É Å ] and assume that Ç +U�
. ThenS � � G � / ���,� oËÊ(Ì -�¹J Ç �

YÍ ]�Î � Å ] J ¼ ���ÏJ,-®�eÐ�C
In particular, if s 0 s u , then Å ])0«XD] � � G � µ u � and if

(2.7)
µ ] � E®/ ]�]

for some

E +½-®\B�
�
then by (2.5), � ] ���4-�J E � / ]�] C
Hence

(2.8) Ç � X Y�Z5[ � � G �] / ]�] ��� --�J E +Ñ�
C
REMARK 2.2. The above two choices have somewhat opposite properties. In particular,

if

¾!]
is also an eigenvector of

/¹]�f ] G ��� G �] G � /g] G � f ] for the smallest eigenvalue, then it can be
seen that

/g]�f ] G ��� G �] G � /g] G � f ] is a multiple of the identity matrix. In the following we assume
that this does not hold.

In the following section it is analyzed how the Schur complements depend on jumps in
the coefficients in the differential operator.
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3. Schur complements for elliptic problems with jumps in their coefficients. Let us
consider a domain decomposition (DD) method for an elliptic problem discretized with FEM,
such that (in addition to a corresponding portion of the outer boundary) each subdomain has a
common boundary only with its previous and next neighbours in the sequence of subdomains.
Elliptic operators with different constant diffusion coefficient in each subdomain often arise
in the context of various (DD) procedures [2, 15, 16, 17, 19]. Our goal in this section is to
study the sensitivity of Schur complements to coefficient jumps.

In the classical DD approach, the interior domain nodes are ordered separately from
the interface nodes and all interface nodes are ordered last. Like in multigrid methods, to
avoid large condition numbers of the corresponding Schur complements, an efficient method
has proved to be to introduce one or more proper auxiliary coarse spaces that have a global
balancing effect; see, e.g., the BDD method [19] and the approach of so-called exotic coarse
spaces [16] in a Schwarz method framework.

An alternative to the above approach is to take the interface nodes into account together
with the previous subdomain in the mentioned sequence of subdomains. This approach, con-
sidered in the present paper, leads to a tridiagonal block structure as in (2.1). It will be verified
for a model problem that the condition numbers of the Schur complements are sensitive to
the jump in the first approach (namely, proportional to the magnitude of the jump) but are not
in the second approach. That is, one can have independence of jumps without introducing
auxiliary problems.

For simplicity, the detailed study is given for a decomposition of the domain Ò in three
subdomains Ò�� , Ò�� and Ò�d . According to the above, we have common boundaries Ó��<P 0ÒK��Ô Ò�� and Ó��UP 0 Ò���Ô Ò�d , but Ò�� and Ò�d have no common boundary. We will first
formulate the block forms of the stiffness matrix under the two mentioned approaches for an
isotropic Poisson equation. Then we rewrite the stiffness matrices under different diffusion
coefficient in each Ò ] , and study the variation of the corresponding condition numbers.

3.1. Basic block forms for the isotropic Poisson equation. Let us consider the Poisson
equation with homogeneous Dirichlet boundary conditions. The FEM subspace is chosen
with piecewise linear basis functions, assumed either to have node points on one of Ó ] or to
have its support entirely in one of Ò ] .

In the classical DD approach, the stiffness matrix is written in the block form

(3.1)

/10 ^````a
/ �$� b b / � f Õ ? bb / �$� b / � f Õ ? / � f Õ Ab b / d�d b / d f Õ A/KÕ ? f � /KÕ ? f � b /�Õ ? f Õ ? bb / Õ A f � / Õ A f d b / Õ A f Õ A h iiiik C

Here

/g]�f ÕOÖ�0n/ 9l�f Õ ¯ for all o �qp . Then one lets

(3.2)

/�Õ �gP 0n/ 9� Õ P 0 2 /KÕ ? f �b×6 � /KÕ ��P 0Q/ 9� Õ P 0 2 /KÕ ? f �/KÕ A f ��6 � /KÕ dIP 01/ 9d Õ P 0 2 b/�Õ A f d�6 �
(3.3)

/ ÕOÕ P 0Â2 / Õ ? f Õ ? bb / Õ A f Õ A 6 �
and thus obtains the more concise form

(3.4)

/10 ^``a / ��� b b / � Õb / �$� b / � Õb b / d$d / d Õ/KÕ � /�Õ � /KÕ d /KÕOÕ hjiik C
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The solution of the corresponding linear system can be reduced to solving systems with Ø ] P 0/ ]�]
, o 0 -B�c�
��Ù

, and an additional system with the Schur complement matrix

(3.5) ØnP 01/�ÕOÕ J /�Õ � / G ���� / � Õ J /KÕ � / G ��$� / � Õ J /KÕ d / G �d$d / d Õ C
In the other approach, the interface nodes are taken into account together with the previ-

ous subdomain. Under this reordering, the stiffness matrix in (3.1) can be rewritten as

(3.6) Ú/½0 ^````a
/ ��� / � f Õ ? b b b/�Õ ? f � /�Õ ? f Õ ? / � f Õ ? b bb /�Õ ? f � / ��� / � f Õ A bb b /�Õ A f � /KÕ A f Õ A / d f Õ Ab b b /KÕ A f d / d$d hjiiiik �

where we introduce the notation

(3.7) Ú/ �$�¹P 0 2 / �$� / � f Õ ?/KÕ ? f � /KÕ ? f Õ ? 6 � Ú/ ����P 0 2 b b/ � f Õ ? b®6 � Ú/ �c�gP 0 2 b /�Õ ? f �b bÛ6 �
(3.8) Ú/ �$��P 0 2 / �$� / � f Õ A/KÕ A f � /KÕ A f Õ A 6 � Ú/ �$d�P 0 2 b/ d f Õ A 6 � Ú/ d��IP 0 2 b/�Õ A f d56 �
to obtain the concise form

(3.9) Ú/«0 ^a Ú/ ��� Ú/ �4� bÚ/ �c� Ú/ ��� Ú/ �$db Ú/ d�� / d$d hk C
In the Schur complement approach, here only the first block remains unchanged: M �gP 0 Ú/ ��� ,
and the solution of the original system can now be reduced to solving two additional systems
corresponding to Schur complements, determined recursively as

(3.10) M � P 0 Ú/ �$� J Ú/ �5� M G �� Ú/ ��� � M d P 0Q/ d�d J Ú/ d�� M G �� Ú/ �$d C
Using notation (3.7)-(3.8) and letting

(3.11) M Õ ? P 0Q/�Õ ? f Õ ? J /�Õ ? f � / G ��$� / � f Õ ? �
we obtain

(3.12) M � 0Â2 / �$� J / Õ ? f � M G �Õ ? / � f Õ ? / � f Õ A/KÕ A f � /�Õ A f Õ A 6 C
The similar formula for M d will not be needed here.

3.2. Conditioning properties for problems with jumps in their coefficients. Now we
can turn to the case of our interest. Instead of the above Poisson equation, we consider the
FEM solution of an elliptic problem with a different constant diffusion coefficient in each Ò ] .
That is, in weak form, one seeks

�Ü& ��ÝVÞ ² �ß � Ò � , such that

(3.13) à ­�á ° �V± ° 
 0 à ­Iâ 
ã� %�
�& � Ý �
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where

á
is a weight function on Ò , such thatá�ä ­ ¯�å á ] � o 0 -B�c�
��ÙDC

In our model problem we assume

(3.14)

á � � á � � á d
and are interested in the case

(3.15)

á �gæ�æ á � C
When varying these coefficients, in order to avoid the loss of ellipticity in the limit, we also
assume that there exists a constant ¼tæUb such that

(3.16)

á d � ¼ á � C
Below, we will find that if we vary the ratio

á � \ á � unboundedly, then the condition numbers
also grow to infinity for the Schur complement in (3.5) but remain bounded for the Schur
complements in (3.10).

Let us first consider the classical DD approach again. The stiffness matrix (3.1) is then
modified as follows. The entries corresponding to basis functions with support in Ò ] are
multiplied by the weight

á ]
. For simplicity, assume that for the node points on one of Ó ] , the

support of the basis function is symmetric w.r.t the node point, and thus its parts intersecting
with the two domains have equal measure. (An opposite case will be mentioned in Remark
3.3.) Then the entries corresponding to such basis functions are multiplied by

� á ] r á l ��\O�
.

Therefore, the stiffness matrix has the form

(3.17)

/10 ^````a á �
/ �$� b b á � / � f Õ ? bb á � / ��� b á � / � f Õ ? á � / � f Õ Ab b á d / d$d b á d / d f Õ Aá � / Õ ? f � á � / Õ ? f � b ç ? � ç A� / Õ ? f Õ ? bb á � /�Õ A f � á d /KÕ A f d b ç A � ç è� /KÕ A f Õ A hjiiiik C

With these modifications, one readily sees that the Schur complement (3.5) becomes

(3.18) Ø � á � P 0«é�/KÕBÕ J á � /�Õ � / G ���� / � Õ J á � /�Õ � / G ��$� / � Õ J á d /KÕ d / G �d$d / d Õ �
where

é
is the two-by-two block diagonal matrix, blockdiag

� ç ? � ç A� ¸5Õ � � ç A � çãè� ¸5Õ � " .
PROPOSITION 3.1. There exist constants

z � � z ��æUb independent of

á
, such that

(3.19) S � Ø � á ���K� z � á �á � r z � C
Proof. Using (3.2)-(3.3), a simple calculation yieldsÚØ � á � P 0 -á � Ø � á �0Û2 ç ?ç A(Ø�� r �� /KÕ ? f Õ ? bb �� �4- r çãèç A � /�Õ A f Õ A 6 J

/ Õ � / G ���� / � Õ J á dá � / Õ d / G �d�d / d Õ �(3.20)

where ØK��P 0 �� /KÕ ? f Õ ? J /KÕ ? f � / G ��$� / � f Õ ? . Here Ø�� � b (i.e., it is positive semidefinite) and
is not a zero matrix since it is a Schur complement, corresponding to the positive definite
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matrix Ú/ �$� modified by setting a zero diffusion coefficient outside Ò � . Further,

/ Õ ¯ f Õ ¯ æ«b ,o 0 -B�c�
, and �� �4- r çãèç A ���½-

, owing to (3.14). Hence the matrixê � á � P 0Â2 ç ?ç A Ø�� r �� /KÕ ? f Õ ? bb �� ��- r çãèç A � /KÕ A f Õ A 6
satisfies

X Y�Z5[ � ê � á ����� ç ?ç A X Y�Z5[ � Ø�� � and

X Y�] = � ê � á ����� X Y�] = � /KÕ A f Õ A � , which yields for
the condition number of

ê � á �
thatS � ê � á ���K� á �á �

X Y�Z5[ � Ø � �XDY�] = � /�Õ A f Õ A � C
The condition numbers of the other two terms in (3.20) are bounded. Since S � Ø � á ��� 0S � ÚØ � á ��� , we obtain (3.19).

COROLLARY 3.2. If we vary ç ?ç A unboundedly, thenS � Ø � á ��� 0 ´<ë á �á � ì ³Rí as

á �á � ³Rí C
REMARK 3.3. The above sensitivity to ç ?ç A may be reduced if the supports of the basis

functions on Ó>� are not assumed to be symmetric with respect to the node point, but their parts
intersecting with Ò�� have small measure. However, this would in turn lead to inpractically
small element widths and very large gradients of the basis functions near Ó�� .

Let us now consider the second approach. We study the Schur complements (3.10) mod-
ified with respect to the diffusion coefficient

á
. The corresponding modification of the matrixÚ/ in (3.6) comes by first replacing the considered blocks of (3.1) by the corresponding blocks

of (3.17), and then using the same reassembling as for (3.6). Then the Schur complement M �
in (3.12) becomes modified as

(3.21) M � � á � P 0î2 á � / ��� J á �� / Õ ? f � M Õ ? � á � G � / � f Õ ? á � / � f Õ Aá � / Õ A f � �� � á � r á d � / Õ A f Õ A 6 �
where M Õ ? in (3.11) has been replaced by

(3.22) M Õ ? � á � P 0 á � r á �� /KÕ ? f Õ ? J á � /KÕ ? f � / G ��$� / � f Õ ? C
Introducing the notation

(3.23) M ���� � á � P 0n/ �$� J á � /�Õ ? f � M Õ ? � á � G � / � f Õ ? �
we have

(3.24) M � � á � P 0Â2 á � M �$�� � á � á � / � f Õ Aá � /�Õ A f � �� � á � r á d � /KÕ A f Õ A 6 C
LEMMA 3.4. There holds M Õ ? � á ��� á � M Õ ? .
Proof. We haveM Õ ? � á � 0 á ��ï -� ë á �á � r - ì /KÕ ? f Õ ? J á �á � /KÕ ? f � / G ���� / � f Õ ?$ð0 á �)ï á �á � ë -� /�Õ ? f Õ ? J /�Õ ? f � / G ��$� / � f Õ ? ì r -� /KÕ ? f Õ ?�ð C

Since, by assumption,

á � � á � , we obtain
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M Õ ? � á ��� á � ï ë -� /KÕ ? f Õ ? J /KÕ ? f � / G ��$� / � f Õ ? ì r -� /�Õ ? f Õ ? ð 0 á � M Õ ? C
Similarly to (3.23), let us denote the top left block of (3.12) by

(3.25) M �$�� P 0n/ ��� J /KÕ ? f � M G �Õ ? / � f Õ ? �
and then let

(3.26) ÚM � P 032 M ���� / � f Õ A/KÕ A f � �� �4- r ¼ � /KÕ A f Õ A 6
with ¼ from (3.16). Now we can prove the following required boundedness.

PROPOSITION 3.5. The condition number of M � � á � satisfiesS � M � � á ����� X Y�Z5[ � Ú/ �$� �X Y�] = � ÚM � � C
Hence it is bounded independently of

á
.

Proof. Clearly M �$�� � á ��� / �$� , and �� � á � r á d ��� á � owing to (3.14). Hence

(3.27) M � � á ��� á � 2 / �$� / � f Õ A/KÕ A f � /�Õ A f Õ A 6 0 á � Ú/ �$� C
To find a lower bound for M � � á � , note that Lemma 3.4 and the definitions (3.23) and (3.25)
yield

(3.28) M ���� � á �K� M �$�� C
Substituting (3.28) into (3.24), and using (3.16) and (3.26), respectively, we then obtainM � � á ��� 2 á � M �$�� á � / � f Õ Aá � /�Õ A f � �� �4- r ¼ � á � /�Õ A f Õ A 6 0 á � ÚM � C
Here ÚM � æñb , since by the above,

á � ÚM � is the Schur complement M � � á � in the caseá d 0 ¼ á � . Together with (3.27), we obtain the required statement.
Finally, we consider the second Schur complement M d from (3.10). When replacing its

considered blocks from (3.1) by the corresponding blocks of (3.17), we observe that each of
the blocks

/ d$d , Ú/ d$� and Ú/ ��d is multiplied by

á d . Hence the matrix M d becomes modified as

(3.29) M d � á � P 0 á d / d$d J á �d Ú/ d$� M � � á � G � Ú/ �$d C
We can easily prove again the following required boundedness.

PROPOSITION 3.6. The condition number of M d � á � satisfiesS � M d � á ����� X Y�Z5[ � / d$d �X Y�] = � M d � C
Hence it is bounded independently of

á
.

Proof. Obviously M d � á �ò� á d / d$d . Further, in (3.24) we can estimate each

á � below
by

á d and M �$�� � á �
below by M �$�� using (3.28), such that we obtainM � � á �K� á d 2 M ���� / � f Õ A/KÕ A f � /KÕ A f Õ A 6 0 á d M � �

and substitution into (3.29) yields M d � á �ó� á d / d�d J á d Ú/ d$� M G �� Ú/ �$d 0 á d M d . The two
bounds imply the desired estimate.
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3.3. On the growth of condition number with the number of subdomains. Whereas
we have obtained jump independence in the previous subsection, these estimates are inher-
ently unable to compensate for the number of subdomains. This follows if we relate the new
estimates to those on the original Schur complements (whose condition number is known to
increase with the number of subdomains). Namely, the appearance of the new constants

á ]
makes each inequality worse (or unchanged if the constants coincide), therefore M ] � á � cannot
be better conditioned than the original M ] .

In fact, for M � � á � , definition (3.10) implies M � � Ú/ �$� , and (3.26) and the orderingá d � á � implies M � � ÚM � . Similarly, (3.10) implies M d � Ú/ d$d . Hence the bounds in
Propositions 3.5 and 3.6, respectively, satisfyX Y�Z5[ � Ú/ �$� �XDY�] = � ÚM � � � X Y�Z5[ � M � �XDY�] = � M � � 0 S � M � � and

X Y�Z5[ � / d�d �X Y�] = � M d � � X Y�Z5[ � M d �X Y�] = � M d � 0 S � M d �5C
One can see that Proposition 3.5 can be extended to the case of more than the three

subdomains considered in our example, if similar conditions are assumed. In particular, we
assume a stripe-type decomposition (i.e., each subdomain has a common boundary only with
its previous and next neighbours in the sequence of subdomains), and the subdomains are
numbered such that the weights

á ]
are ordered monotonically. Then the proof of Proposi-

tion 3.5 can be repeated such that the role of the 1st, 2nd and 3rd subdomains are played by
the

� o JV-®� th, o th and
� o r -®�

th subdomains, respectively. Using the above arguments, however,
the bounds obtained for S � M ] � á ��� cannot be less than S � M ] � .

As shown in the introduction, the condition numbers S � M ] � deteriorate even in the pre-
conditioned form (1.1). This shows an important motivation for the efficient preconditioning
of the Schur complements. A possible improvement was given in Section 2, and in the sequel
we will study other block orderings to avoid the recursive growth of the condition numbers.
The next section yields estimates in terms of the constant

�
in the strengthened Cauchy-

Schwarz-Bunyakowski inequality.

4. Odd-even partitioning of subdomains. We assume now that we have ordered the
subdomains in an odd-even fashion so that the finite element matrix takes the form

(4.1)

/«0 ^a / � b / ��db / � / �$d/ d5� / d$� / d hk C
Here

/g]
, o 0 -B�c�

, correspond to interior node points and

/ d to edge and vertex node points.
Clearly the matrices

/ ]
themselves are block diagonal. This matrix can be factored into the

form

(4.2)
^a / � b bb / � b/ dc� / d$� M hk ^a ¸ � b / G �� / ��db ¸ � / G �� / �$db b ¸ d hk �

where M is the Schur complement matrix

(4.3) M d 01/ d$d J / dc� / G �� / �4d J / d$� / G �� / �$d
and some simpler matrix is used in a corresponding approximate block matrix factorization.
Although the actions of the matrices

/ G �] can be computed readily separately for each sub-
domain, the major problem remains how to precondition the matrix M d .

As indicated in Section 2, and shown in papers on domain decomposition methods (see,
e.g., [23, 22] and also [1]), if we just use

/ d�d as preconditioner then the condition number
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´�� � \O²Ü�

(as �t³ôb ), where � ��² are the characteristic mesh sizes for
the fine mesh and for the subdomains, respectively. Furthermore, as mentioned in Section 3,
the condition number of M d itself deteriorates as the magnitude of coefficient jumps increase,
which makes the construction of an efficient preconditioner to M d additionally difficult.

Instead, we will use a preconditioner of

/
that takes contributions from both interior and

boundary points into account. This is similar to the second approach in Section 3.
The preconditioner

T
will be in additive form

(4.4)
T 0 T � r T � C

The matrices
T � �$T � are formed from the inverse matrices^`a T �$� b T �4db ¸ � bT d5� b � M�õ ��öd � G � hjik 0 ^a / � b / ��db ¸ � b/ dc� b / d hk

G � �
and ^`a ¸ � b bb T ��� T ��db T d�� � M õ �$öd � G � hjik 0 ^a ¸ � b bb / � / �$db / d$� / d hk

G � �
where M õ ] öd 01/ d J / d ]¨/ G �] /�] d � o 0 -B�$�÷�
and the matrices

T ]ml
need not be given as we only aim at a bound on S ��T / � in which

T ]�l
will not appear. To form

T ]
, the sub-block identity matrices are deleted from the above, i.e.,

(4.5)
T �¹P 0 ^`a T ��� b T ��db b bT dc�øb � M õ ��öd � G � h ik � T ��P 0 ^`a b b bb T ��� T �$db T d�� � M õ �$öd � G � h ik C

We will show that by use of perturbations of the subblocks in the position
��ÙD��Ùù�

of
the inverses, we can derive a condition number S of the preconditioned matrix which de-

pends only on the CBS constant
� 0øE � / G ��#$�d � / dc� / G �� / ��d r / d$� / G �� / �$d � / G ��#$�d � ��#$�

,
since S �½-®\
��-�JÜ� � � ��#$� .

Let first the preconditioner
T

be defined by (4.4)-(4.5). The matrix

/
is split as/«0ôú/ � r ú/ � J»û��

where ú/ � 0 ^a / � b / ��db b b/ d5�üb / d hk � ú/ � 0 ^a b b bb / � / ��db / d$� / d hk �Ûû 0 ^a býb bbýb bbýb / d hk C
Then T � ú/ � 0 ^a ¸ �üb bb b bb b ¸ d hk � T � ú/ � 0 ^a b b bb ¸ � bb b ¸ d hk C
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A computation shows that/ T /101/ �¿T � ú/ � r T � � ú/ � J»ûH� r T � ú/ � r T � � ú/ � J»ûH�4"0n/ � ¸ r v5x�y{ze|
} o~�@� � b � b � ¸ d � r T � � ú/ � J¶ûò� r T � � ú/ � J»ûH� "0n/ r ^a býb / �4dbýb / ��dbýb / d hk r ^a ¸ � b bb b bb b ¸ d hk ^a b b bb / � / ��db / d�� b hk r ^a b b bb ¸ � bb b ¸ d hk ^a / � b / �4db b b/ dc� b b hkr � ú/ � J»ûH�4T � � ú/ � J»ûH� r � ú/ � J»ûH�4T � � ú/ � J»ûH�0n/ r ^a b b / ��db b / �$d/ d5� / d$� / d hk r ^a b b bb / � / �$db / d$� b hk ^`a bþb bbþb bbþb � M õ ��öd � G � hjik ^a b b bb / � / �$db / d$� b hk
r ^a / � b / �4db b b/ dc�øb b hk ^`a býb bbýb bbýb � M�õ �$öd � G � hjik ^a / � b / ��db b b/ d5�üb b hk0n/ r ^`a / ��d � M õ ��öd � G � / d5� b / ��db / �$d � M�õ �4öd � G � / d$� / �$d/ dc� / d�� / d h ik

0 P / rtÿ C
Hence

(4.6)

/ T / J /10 ÿ
and / ��#$� T / ��#$� 0n¸ r / G ��#$� ÿ / G ��#�� C

Let

/ d be split as

/ d 0½/ õ ��öd r / õ �$öd , where

/ õ ] öd ( o 0 -@�$�
) arises from contributions to

edge nodes from odd and even numbered subdomains, respectively. Then the matrices^a / � b / ��db b b/ d5�øb / õ ��öd hk and

^a b b bb / � / �$db / d$� / õ ��öd hk
are the full contributions from odd and even numbered subdomains, respectively, so they are
positive semidefinite. Hence

/ õ ] öd J / d ]q/ G �] /�] d ( o 0 -B�$�
) are also positive semidefinite, thusM õ ��öd 0n/ õ ��öd r / õ ��öd J / d5� / G �� / ��d � / õ ��öd or

� / õ ��öd � G � ��� M õ �4öd � G �
and similarly,

� / õ ��öd � G � ��� M�õ �$öd � G �
. Hence/ ��d � M�õ �$öd � G � / d5� � / ��d � / õ ��öd � G � / d5� � / � � / �$d � M�õ �4öd � G � / d$� � / ��d � / õ �$öd � G � / d�� � / � �

and by (4.6), / T / J / � ^a / � b / �4db / � / ��d/ dc� / d�� / d hk 0n/ C
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Therefore

(4.7)

/ ��#�� T / ��#$� �Ñ� ¸
and

X Y�Z�[ ��T / ���Q�
C
To derive a lower bound, we will use perturbations. Let then

T
be defined as above, and

let the preconditioner ÚT to

/
be defined as

(4.8) ÚT P 0 T r�� � where � P 0 � ^a býb bbýb bbýb / G �d hk for some
� � b C

The intention is to keep
�

sufficiently small so as not to increase the upper bound too much.
We have

/ ÚT / J /½0Q/ T / J / r / � / , and we wish to find a positive number · sufficiently
large to make

� · r -¿� / ÚT / � /
.

Here � · r -¿� / ÚT / J /10 · / r � · r -®��� / T / J / � r � · r -®� / � / C
Further,

(4.9)

/ � /10 � ^a býb bbýb bbýb / d hk
and, using (4.6), we have

(4.10)

� · r -®��� / ÚT / J / � 0 · ^a / � b ¼ / �4db / � ¼ / ��d¼ / d5�ü¼ / d�� ¼ � µ d hk
r � · r -¿� ^`a / �4d � M õ �$öd � G � / dc� b � / ��db / ��d � M�õ ��öd � G � / d�� � / �$d� / d5� � / d$� � � � M õ �4öd r,M õ �$öd � hjik
r �@�¨� · r -¿� r � · r -¿� � JW� � � � · r -¿�4" ^a býb bbýb bbýb / d hk �

where µ d 0n/ d5� / G �� / ��d r / d�� / G �� / ��d � M õ �4öd r,M õ �$öd 0 � / d J¶µ d �
and · � ¼ � � are positive numbers satisfying

(4.11)

·O¼ r � · r -¿� � 0 � · r -
(equating the off-diagonal matrices)

�·O¼ � 0 � · r -¿� � � (equating the
µ d -terms)

��÷� · r -¿� � � 0 �¨� · r -¿� r � · r -®� �
(equating the

/ d -terms)
C

Now we can prove
THEOREM 4.1. Assume that

/ � in (4.1) is positive definite, and let ÚT be defined in (4.8).
Then X Y�] = � ÚT / ��� -· r - and

X Y�Z5[ � ÚT / ���Ñ� r �-�JÜ� � �
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where · 0 · � � � satisfies the equation (4.11) and� 0 E � / G ��#$�d � / d5� / G �� / ��d r / d�� / G �� / ��d � / G ��#��d � ��#$� C
As
� ³îb , ·I³Rí , the condition number is asymptotically bounded byS � ÚT / ��� -��� � � � � G ��#$� r � ��#$�-�JÜ� � " �

and �ó����
	 ß S � ÚT / ��� -� -�JL� � C
Proof. We have^a / � b ¼ / �4db / � ¼ / ��d¼ / d5� ¼ / d�� ¼ � µ d hk 0 ^a ¸ � b bb ¸ � b¼ / d5� / G �� ¼ / d$� / G �� ¸ d hk ^a / � b bb / � bb b b hk ^a ¸ � b ¼ / G �� / d5�b ¸ � ¼ / G �� / d$�b b ¸ d hk

and^`a / ��d � M�õ �$öd � G � / d5� b � / ��db / ��d � M�õ ��öd � G � / d�� � / �$d� / d5� � / d$� � � � M�õ �4öd r,M�õ �$öd � h ik
0 ^a býb / �4dbýb bbýb�� M õ �$öd hk ^`a býb bbýb bbýb � M�õ �$öd � G � hjik ^a b b bb b b/ d5�üb
� M õ �$öd hk
r ^a bþb bbþb / �$dbþb�� M�õ �4öd hk ^`a býb bbýb bbýb � M õ �4öd � G � h ik ^a b b bb b bb / d�� � M�õ ��öd hk C

It follows that the first two terms in (4.10) are positive semidefinite. Since by (4.11) the last
term in (4.10) is zero, it follows that � · r -¿� / ÚT / � / �
whence

X Y�] = � ÚT / ��� -· r - . Further, using (4.7) and (4.9),X Y�Z5[ � ÚT / � 0 �����[ �Î ß 8 9 / ÚT / 88 9 / 8 �Q� r �����[ �Î ß 8 9 / � / 88 9 / 8 0 � r � �����[ �Î ß 8 9d / d 8 d8 9 / 80 � r � �����[ �Î ß 8 9d / d 8 d8 9d M d 8 d 0 � r �-�JL� � �
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where M d is from (4.3).
A computation from (4.11) shows that¼ 0�� · r -· � � � · r -B� � · r - r � · � � 0 � · r -B�

and -· r - 0 - r��gr � � �� �Kr - � � �U� � � � �
where � 0 ·· r - . Hence � +½-

. If
� ³Âb , then ·I³Rí , � ³ -

, and henceX Y�] = � ÚT / ��� -· r -�� � � � � C
For the condition number we haveS � ÚT / ��� � r � \÷�4-�JL� � �� � � �
which is minimized for

� 0 �÷�4-�JL� � � . Hence������
	 ß S � ÚT / ��� -� -�JL� � C
As follows from Section 2, for partitioning in subdomains,

� � 0 -�J�´�� � \O²Ü�
, where� �$² are the characteristic mesh sizes for the finest elements and for the macroelements,

respectively. Hence it follows from Theorem 4.1 for the condition number thatS � ÚT / � 0 ´ �ù� � \O²Ü� G ��#$� "	C
Therefore, the number of conjugate gradient iterations to solve a system with matrix

/
,

using the preconditioner ÚT 0 ÚT*� � �
with

� 0 �-�JL� � 0 ´�� � \O²Ü�
, increases at most as´ �ù� � \{²Ü� G ��#�� " , which is fairly minor. For instance,

� � \{²Ü� G ��#�� 0 �
, respectively 4, if² 0 -�� � or

² 0 �� !� � .
We remark that for convenience of the derivation of the condition number, we have for-

mulated the matrix

/
based on an odd-even ordering. However, since the matrix

T
is given

in additive form, we can actually implement the actions of the local element inverses in any
order, or even in parallel. The method can be further improved by use of a perturbation ma-
trix in the form � 0 � v5x�y{z7|÷} o~�@� � b � b � / G �d M d / G �d �

instead of (4.8). It turns out that in this
case the condition number does not depend on

�
but only on

�
, which can be chosen inde-

pendently of the coefficient in the differential operator. This shows independence of both the
mesh parameter and coefficient jumps, but will not be discussed further in this paper.

The above method can be further extended by use of a splitting of node points in a coarse
mesh set and a remaining fine mesh set. For the corresponding two-by-two block matrix the
above method can be applied for the pivot block matrix, and the arising Schur complement
matrix in the block preconditioner can likewise be preconditioned elementwise. This will be
discussed in Section 6; see further analysis in [10, 12], and for related results [21]. In the
following section elementwise preconditioners are also analyzed by more analytical means.
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5. Some model analysis on the continuous level. A continuous analogue of the method
of Section 3 is presented now on some model problems, including the introduction of a certain
modified Poincaré–Steklov operator for the interfaces. This study on the continuous level can
help the understanding of the properties of the studied factorization approach.

5.1. Preliminaries: the Poincaré–Steklov operator. As pointed out in Section 3, the
analysis of standard domain decomposition methods relies strongly on the Poincaré–Steklov
operator; see, e.g., [23, 22]. In this subsection we give a brief description, following [22].

Let us consider a boundary value problem

(5.1) " J � � 0 â �
in Ò �� ä # ­ 0 b �

where Ò is a bounded domain with Lipschitz boundary and

â & s � � Ò � . The domain Ò is
decomposed in two nonoverlapping domains Òg� and Ò�� , whose common boundary is denoted
by Ó , further, we let Ó>�gP 0%$ ÒK��&�Ó and Ó���P 0'$ Ò���&�Ó .

The Poincaré–Steklov operator is then defined in the following way. Let us choose an
arbitrary function

�½&Q² ��#$�ß$ß � Ó � . (For the definition of
² ��#$�ß�ß � Ó � and other related Sobolev

spaces, see also [23].) Let
² � � and

² � � denote the harmonic extensions of
�

in Ò � and Ò � ,
respectively, with zero boundary condition on

$ Ò , i.e.,
² ] �

, o 0 -B�c�
, is the solution of the

problem

(5.2) ()* )+
J � ² ] � 0 b � in Ò ] �² ] � ä Õ ¯ 0 b �² ] � ä Õ 0 �>C

Then the Poincaré–Steklov operator is , P ² ��#$�ß$ß � Ó � ³ ² G ��#��ß$ß � Ó � , which assigns to
�

the
jump of the normal derivatives of its harmonic extensions on Ó , i.e.,

(5.3) , � P 0 $$ Ê ² � � r $$ Ê ² � �	� on Ó C
The plus sign represents the jump with the convention that the outward normal vector Ê ofÒ � is opposite to Ê of Ò � on Ó , which will be understood throughout this paper. That is, for
a smooth function on Ò , the two normal derivatives are the opposite of each other and hence
the jump on Ó equals zero.

REMARK 5.1. Problem (5.1) can then be reduced to equation

(5.4) , � 0'-
with

-
defined as follows. Let . ] â , o 0 -B�c�

, respectively, denote the solutions of the problems

(5.5) " J � . ] â 0 â �
in Ò ] �. ] âóä # ­D¯ 0 b �

and let - P 0 J $$ Ê .:� â J $$ Ê .)� â � on Ó �
which represents the negative jump of the corresponding normal derivatives. Then

� P 0² ] � r . ] â on Ò ] ( o 0 -@�$�
) satisfies

J � � 0 â
on both Ò�� and Ò�� and is continuous on
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�

solves (5.1) if and only if its normal derivative has zero jump on Ó , which is
equivalent to (5.4).

REMARK 5.2. Green’s formula implies that the bilinear form of the Poincaré–Steklov
operator , is

(5.6) /0, �	� Å21 0 à ­ ? ° ² � �*± ° ² � Å r à ­ A ° ² � � ± ° ² � Å � %ã�	� Å &<² ��#$�ß$ß � Ó �5�
whence , is a symmetric and strictly positive operator.

On the discrete level, let us now consider a FEM discretization of problem (5.1) and let
us decompose the stiffness matrix as

(5.7)

/«0 ^a / �$� b / � Õb / ��� / � Õ/KÕ � /KÕ � /�ÕOÕ hk �
corresponding to the node points in Ò � , in Ò � and on Ó , respectively. The linear system can
be reduced to the Schur complement

(5.8) ØQP 0Q/ ÕOÕ J / Õ � / G ��$� / � Õ J / Õ � / G ��$� / � Õ �
i.e., Ø is the Schur complement for Ó with respect to both Ò¹� and Ò�� . Then, as pointed out
in [22], Ø is the discrete analogue of the Poincaré–Steklov operator (5.3). Essentially, the
term

/�ÕOÕ
is responsible for the boundary values of the considered function and the two other

terms represent the procedures involving the two harmonic extensions.
REMARK 5.3. The generalization of the above notions to the case of more (say,

|
) subdo-

mains is straightforward. Then the Poincaré–Steklov operator involves harmonic extensions
from the union of interfaces to all subdomains, and its bilinear formulation will contain a sum
of

|
terms, e.g., for

|�0 Ù
the form (5.6) is replaced by

(5.9) /3, �>� Å21 0 à ­ ? ° ² � � ± ° ² � Å r à ­ A ° ² � �*± ° ² � Å r à ­ è
° ² d � ± ° ² d Å C

Similarly, the stiffness matrix (5.7) and the corresponding Schur complement (5.8) will in-
clude

|
interior blocks

/g]�]
, e.g., for the above example

|�0 Ù
, we have

(5.10) ØnP 0n/�ÕOÕ J /KÕ � / G ��$� / � Õ J /�Õ � / G ��$� / � Õ J /�Õ d / G �d�d / d Õ
as in (3.5).

5.2. The modified Poincaré–Steklov operator. Let us consider again a FEM discretiza-
tion of problem (5.1). We decompose the domain Ò in subdomains Ò � �eC7CeC�� Ò Y , such that,
in addition to a corresponding portion of the original boundary

$ Ò , each Ò ] has a common
boundary only with its neighbours Ò ] G � and Ò ]�� � . Denoting here these common boundaries
by Ó ] G � f ] and Ó ]�f ]�� � , respectively, we decompose the stiffness matrix as in (2.1), correspond-
ing to the subdomains Ò � �7CeC7C�� Ò Y , such that the node points on Ó ]�f ]�� � are taken into account
in

/g]�]
(i.e., together with Ò ] ). Our goal is to study the factorization (2.2). Since, in con-

trast to the idea of (5.7), the boundary node points are not considered here separately, the
Schur complements in (2.2) are understood recursively as complements for Ò ] with respect
to Ò ] G � . This is an important difference as compared to (5.8), and therefore the continu-
ous analogues of the Schur complements in (2.2) will also be appropriate modifications of
the Poincaré–Steklov operator (5.3). In fact, the proper operator takes only into account the
previous subdomain Ò ] G � .
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First, for simplicity, let us consider the case of two subdomains Ò � and Ò � , where one
can follow more clearly how the operator in subsection 5.1 is modified. Similarly as therein,
the common boundary of Òg� and Ò�� is denoted by Ó , further, we let Ó��ÜP 04$ ÒK�5&�Ó andÓ)� P 06$ Ò��7&óÓ . We wish to define the continuous analogue of the Schur complementM ��P 0n/ ��� J / �c� / G ��$� / ��� .

Let us take a function
� � on Ò�� , such that

� � ä Õ A 0 b . Applying the operator
J � ä ­ A to� � (which corrresponds to the term

/ �$� in M � ), we want it to equal

â
. Let us further consider

the restriction
� � ä Õ , and calculate its harmonic extension to Òg� , i.e., let

² � � � be the solution
of the problem

(5.11) ()* )+
J � ² � � � 0 b � in ÒK� �² � � � ä Õ ? 0 b �² � � � ä Õ 0 � � �

which solves the analogue of (5.2) only on Ò�� . Accordingly, the modified Poincaré–Steklov
operator 8 assigns to

� � the jump of the normal derivative of its harmonic extension and of
itself, i.e.,

(5.12) 8 � ��P 0 $$ Ê ² � � � r $$ Ê � � � on Ó C
REMARK 5.4. Similarly as in Remark 5.1, problem (5.1) can now be reduced to the

equation

(5.13) 8 � � 0:9 �
where

9 P 0 J ## =;. � â with . � â defined in (5.5). Letting
� 0 � � P 0 ² � � � r . � â on Ò � and� 0 � � on Ò�� , it is readily seen that

�
solves (5.1) if and only if s � � 0 â

in Ò�� and (5.13)
holds on Ó .

REMARK 5.5. The analogue of Remark 5.2 holds if, according to our setting, we handle
the operators

J � ä ­ A and 8 together. Using Green’s formula, the pair Ú8 of these operators
satisfies< Ú8 ��� � �÷� � ä Õ ���)�3=��>= ä Õ �
? å < � J �8 " ��� � �
� � ä Õ ���)�3=��@= ä Õ �A? 0 à ­ A �4J � � � �B= r à Õ � 8 � � ��=
(5.14)

0 à ­ ? ° ² � � � ± ° ² � = r à ­ A ° � � ± ° =��
for all

=«&t² �C � Ò�� � P 0ED =½&t² � � Ò�� � P = ä Õ A 0 b�F , whence it is a symmetric and strictly
positive operator.

REMARK 5.6. For more subdomains, one can define 8 ] in just an analogous way.
Namely, for simplicity, let Ó ] G � denote the common boundary of Ò ] G � and Ò ] . Let

� ]
be

defined on Ò ] , such that
� ] ä # ­ ¯3G Õ ¯IH ? 0 b . We consider

� ] ä Õ ¯JH ? 0 b and solve the Dirichlet
problem on Ò �LK ±7±e± K Ò ] G � with this boundary condition (which can be reduced to previous
subproblems in a recursive way, just as is the Schur complement reduced to previous Schur
complements), and finally calculate the jump of the corresponding normal derivatives on Ó .
Here the bilinear form that replaces (5.14) will thus include a term on Ò�� K ±e±7± K Ò ] G � and a
term on Ò ] . For instance, in the case of three subdomains, we have

(5.15)

< Ú8 d ��� d �÷� d ä Õ �5�)�0=��>= ä Õ � ? 0 à ­ ?�M ­ A ° ² �4� � d ± ° ² ��� = r à ­ è
° � d ± ° =��
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for all
=,&<² �C � Ò d � P 0ND =�&'² � � Ò d � P = ä # ­ è G Õ A 0 bOF , where

² ��� � d denotes the harmonic
extension of

� d ä Õ A to Ò ��K Ò � .
REMARK 5.7. For problems with jumps in the diffusion coefficients, the conditioning

properties observed in Section 3 are in accordance with their analogues on the continuous
level. This will be outlined here. Namely, we have observed in Section 3 that the condition
numbers of the Schur complements are sensitive to jumps in the first approach but not in
the second approach. Accordingly, one can indicate for the same example that the standard
Poincaré–Steklov operator is sensitive to the jumps whereas the modified Poincaré–Steklov
operator is not.

Let us therefore consider the model problem of Section 3. The domain Ò is decomposed
in three subdomains Ò � , Ò � and Ò d , such that there are common boundaries Ó � P 0 Ò � Ô Ò �
and Ó � P 0 Ò � Ô Ò d , but Ò � and Ò d have no common boundary. We consider an elliptic
problem, formally as

J5P
�RQ�� á ° ��� 0 â
with

� ä # ­ 0 b , with weak form (3.13), where

á
is

a weight function on Ò , such that

áIä ­ ¯�å á ]
( o 0 -B�$�÷��Ù

). We assume

á � � á � � á d and,
varying the coefficients, we are interested in the case

á � \ á � ³Rí .
The standard Poincaré–Steklov operator can be extended directly to such piecewise con-

stant coefficient problems, such that one considers weighted normal derivatives on the in-
terfaces with weights

á ]
. Considering the bilinear form for our model problem with three

subdomains, the form (5.9) is replaced by
(5.16)/0, � á �~�	� Å21 0 á �Ià ­ ? ° ² � � ± ° ² � Å r á �òà ­ A ° ² � � ± ° ² � Å r á dHà ­ è

° ² d � ± ° ² d Å C
Factoring out

á � , we see that , � á � is the constant multiple of an operator, where the first
term is proportional to

á � \ á � and the other two terms are bounded as

á � \ á � ³üí , i.e.,, � á � behaves similarly as Ø � á � in Corollary 3.2.
The modified Poincaré–Steklov operator can be extended similarly to piecewise constant

coefficient problems, using the same weighted normal derivatives as above. The bilinear form
for our model problem with three subdomains is the proper modification of (5.15):

(5.17)

< Ú8 d � á �:��� d �÷� d ä Õ ���)�3=��>= ä Õ �A? 0 à ­ ? M ­ A á ° ² ��� � d ± ° ² �4� = r á d	à ­ è
° � d ± ° =��

for all
=Ï&½² �C � Ò�d � P 0SD =F&�² � � Ò�d � P = ä # ­ è G Õ A 0 b�F , where

² �4� � d denotes the

á
-

harmonic extension of
� d ä Õ A to ÒK� K Ò�� , that is,

² �4� � d 0 

if and only if


 ä Õ A 0 � d and
 ä # õ ­ ? M ­ A ö G Õ A 0 b , and further

(5.18) à ­ ? M ­ A á ° 
�± °UT å á �Ià ­ ? ° 
�± °UT r á �Hà ­ A ° 
�± °UT'0 b % T &<² �ß � Ò �VK Ò � ��C
Let us now consider an arbitrary test function

=,&'² �C � Ò�d � as required for (5.17), and denote
by Ú= an extension of

=
to Ò , such that Ú= ä ­ ? å b and Ú= ä # ­ å b . Then Ú= coincides with theá

-harmonic extension
² �4� = on Ó�� , and also on

$ � Ò�� K Ò�� � &gÓ)� since both vanish on the
latter. Hence

² ��� =�J Ú= equals zero on the entire

$ � Ò�� K Ò�� � , i.e.,
² ��� =�J Ú=,&N² �ß � ÒK� K Ò�� � .

Setting

T P 0 ² ��� =LJ Ú= in (5.18) and using Ú= ä ­ ? å b , we obtainà ­ ?�M ­ A á ° 
I± ° ² ��� = 0 à ­ ?BM ­ A á ° 
H± ° Ú= 0 á �Hà ­ A ° 
H± ° Ú=*C
Since by definition

² ��� � d 0 

, we have just obtained an equality for the first term of (5.17).

Substituting this into the whole expression in (5.17), we obtain a form for Ú8	d � á � that contains
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integrals only on Ò � and Ò d with respective weights

á � and

á d :
(5.19)

< Ú8 d � á � ��� d �÷� d ä Õ �5�)�0=��>= ä Õ �
? 0 á �>à ­ A ° 
I± ° Ú= r á d�à ­ è
° � d ± ° =*C

To sum up, the behaviour of the Schur complements under jumps in Section 3 follows
that of their continuous analogues.

5.3. Approximate modified Poincaré–Steklov operator on a model problem. In this
subsection we consider a continuous analogue of the procedure (2.5)-(2.6), and show on a
model problem that it can be carried out in a similar way as on the discrete level. This
gives an alternate illustration of the fact that the condition numbers in Theorem 2.1 are mesh
independent.

Let us consider the 3D model problem

(5.20) " J � � 0 â �
in
T �� ä #VW 0 b �

where
T Þ ; d is the unit ball. Let us fix a positive integer

|
and numbersb 0 , ß + , � +1±e±7±÷+ ,YX G � + ,YX 0 -BC

Using notation Z�P 0\[ 8 [ for the Euclidean norm of vectors 8 & ; d , we define annular subdo-
mains

(5.21) Ò l P 0ND 8 &<T P],;X G l + Z + ,;X G l�� � F � o 0 -B�eC7C7C7� | C
First, for simplicity, let

|�0 �
and ,I� 0 -{\O�

. Then (2.6) becomes
µ � ¾�0Q/ � f � / G ��$� / � f � ¾

for the constant vector

¾V0 �4-@�7CeC7C��e-¿�
. Its continuous analogue, with the notation of subsec-

tion 5.2, is to find an operator

úµ � , such that

(5.22)

úµ ��^ 0 8_^ � on Ó �
for the constant function ^ å -

. Here Ó,P 0�D 8 &L; d P`Z 0 -®\B� F , and 8 is defined in (5.12)
and the procedure before that. We have

(5.23) Ò � 0aD 8 &NT P -®\B�I+ Z +1- F and Ò � 0aD 8 &NT Pgb + Z +1-{\O� F C
Further, Ó>�gP 0b$ ÒK�c&>Ó 0%$ T

and Ó���P 0b$ Ò��d&	Ó 0fe
. Then 8_^ can be calculated explicitly.

First, the harmonic extension of ^ to Òg� is
² �A^ 0 P 
 , where



is the solution of

(5.24) ()* )+
J � 
 0 b � in Ò � �
 ä #VW 0 b �
 ä Õ 0 -�C

Here we use the form of the Laplace operator in 3D spherical coordinates, which reduces to� 
 0 �g A ## g � Z � #Vh# g � for radially symmetric functions. Then an elementary calculation yields
�� Z � 0 -Z J,-@C
Hence by (5.12) and using that now

## = 0 J ## g on Ó , we obtain 8_^ 0 J ë #Vh# g r #ji# g ì ä g Î ��#$� 0'k .
That is, 8_^ is constant on Ó , i.e., we can write 8_^ 0'k ^ on Ó , which means that the operator
required in (5.22) can be defined as

(5.25)

úµ ��P 0'k@¸ �
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where

¸
is the identity operator on Ó .

Our goal now is to verify a continuous analogue of condition (2.7). According to the
above, the operator

k@¸
corresponds to

µ � , further, as seen before, the analogue of

/ ��� is
the operator

J � , such that homogeneous Dirichlet boundary conditions are considered on
$ Ò�� 0%$ T . Hence the required analogue of (2.7) reads as

(5.26)

k@¸ �1J E � � for some

E +«-®\B�
C
Denoting by

X � the smallest eigenvalue of
J � with the given boundary conditions, and taking

into account the condition

E +R-®\B�
, inequality (5.26) is equivalent to l + X � . Here the

eigenfunctions of
J � are the restrictions to ÒK� of the eigenfunctions on

T
with homogeneous

Dirichlet boundary conditions on

$ T
. The first eigenfunction is the first three-dimensional

Bessel function

á � Z � P 0 � ���nm Zm Z , with eigenvalue

X � 0 m � æ:l . Therefore (5.26) is satisfied.
Now let us consider more subdomains. Here by (5.21),

(5.27) Ò X P 0aD 8 &<T P¹b + Z + ,��jF C
In order to determine the operator 8oX , problem (5.24) has now to be solved with Ó replaced
by ÓLX G � 0aD 8 &<; d P]Z 0 , � F . The solution is
ã� Z � 0 �g JU-�p ? JU- C
Hence the constant 4 in (5.25) is replaced by �p ? õ � G p ? ö , and accordingly, the above propertyl +�m � is replaced by condition

(5.28)
�ò+�m � ,�� ��-�J ,�� ��C

If this holds then the operator

úµ X P 0 �p ? õ � G p ? ö ¸ satisfies the required analogue of (2.7),

i.e.,

úµ X � J E � for some

E + -®\B�
. Analogous calculations can be carried out to find

úµ � �7CeC7C�� úµ X G � .
Inequality (5.28) is satisfied if, up to four digits, b C � l � k + ,I� + b Crq!-sqs� . Concerning

the case of several subdomains, one may define for technical convenience , l P 0 � lX � ��#�d in
(5.21) to have equal volume of the subdomains. Then the condition b Cm� l � k + ,H� 0 � �X � ��#$d
is satisfied up to

|�0%k�k
, i.e., (5.28) is satisfied for any reasonable number of subdomains.

6. Element by element preconditioners for matrices partitioned in
��Ã��

block form.
As the method described in Section 3 uses a recursive computation, its parallelism is re-
stricted; on the other hand, the method in Section 4 is parallelizable. Now a highly paral-
lelizable method to construct preconditioners for the Schur complement matrix is presented,
which has also shown nice results in numerical tests [10, 12]. First the method is described
briefly, then its robustness with respect to coefficient jumps is shown.

6.1. Construction of the method. Let us consider an elliptic problem with piecewise
constant coefficients. We start with a coarse mesh of triangles (tetrahedra) or rectangles
(cubes), which has been constructed such that all coefficient jumps occur across element
edges only. Each of these macroelements is then subdivided in a number (say

� � ) of miniele-
ments. The corresponding global matrix is then partitioned in

�óÃN�
block form

(6.1)

2 /Ytjtý/]tju/Yuvt /]uvu 6 �
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where

/ uvu
corresponds to the coarse (macroelement) vertex nodes. To form a preconditionerT

to

/
, we will be guided by the block matrix factorization of

/
,

(6.2)

/«0 2 /YtVt b/ uvt M u � / � 6 2 ¸ t / G �tjt / tVub ¸ u 6 �
where M u � / � 0n/Yuvu J /]uvt@/ G �tjt /]tju is the corresponding Schur complement matrix.

In general, M u � / � is a full matrix and

/Ytjt
has a very large size. Therefore, to form

T
,

we replace

/Ytjt
and M u � / � by some approximations. These will be based on macroelement

by element constructed matrices.
For the global assembled matrix

/ tjt
, we first take the restrictions

/ õRw ötjt to each macroele-

ment, form their exact inverses

/ õRw ötjt G � , and assemble them to a global matrix denoted byT tVt
, which will replace

/ G �tjt in (6.2). Similarly, each element version M�õRw ö� of M u � / � is
computed exactly from the exact form of the corresponding element matrix

(6.3)

/ õRw ö 0 x Ú/ õRw ötjt Ú/ õRw ötVuÚ/ õRw öuvt Ú/ õRw öuvuzy �
i.e., M õ{w ö� 0 Ú/ õ{w öuvu J Ú/ õRw öuvt Ú/ õRw ötVt G � Ú/ õ{w ötju . Then M u � / � in (6.2) is replaced by the assembly ofM�õRw ö� , denoted by M , and the preconditioner

T
to

/
takes the form

(6.4)
T 0 2 T G �tjt b/ uvt M 6 2 ¸ t T tjt / tjub ¸ u 6 C

Note that the actions of
T tjt

can take place fully in parallel, from the local actions of

/ õRw ötjt .
The above method can be extended to a multilevel version, but in this paper we only study

the two-level version. Our goal is to show that the condition number of
T G � / is bounded

independently of coefficient jumps in the given elliptic operator.
We will use that

(6.5)T G � /10 2 ¸�t JKT tVtB/]tjub ¸�u 6 2 T tjt@/]tjt bM G � /Yuvt � ¸|t J»T tjt@/]tjt � M G � M u � / � 6 2 ¸ t / G �tjt / tVub ¸�u 6 C
6.2. Independence of coefficient jumps in a model problem. For simplicity, we fol-

low the model problem in Section 3, and study the case of three macroelements
û � , û � andû d . Accordingly, we have common boundaries Ó���P 0 û ��Ô û � and Ó��IP 0 û ��Ô û d , but

û �
and

û d have no common boundary. These macroelements are defined to match the coefficient
of problem (3.13), i.e., á�ä w ¯ å á ] � o 0 -@�$�
�$Ù÷C
We assume as in Section 3 that the relations (3.14)-(3.16) hold. Our goal is to show that the
condition number S �¨T G � / � remains bounded as the ratio

á � \ á � grows unboundedly.
The stiffness matrix then has a form as in (3.17), where the five rows/columns now

correspond to the nodes in
û � , û � and

û d , on Ó>� and on Ó)� :
(6.6)

/10 ^````a á �
/ �$� b b á � / � f Õ ? bb á � / ��� b á � / � f Õ ? á � / � f Õ Ab b á d / d$d b á d / d f Õ Aá � /KÕ ? f � á � /�Õ ? f � b ç ? � ç A� /�Õ ? f Õ ? bb á � /�Õ A f � á d /KÕ A f d b ç A � çãè� /KÕ A f Õ A h iiiik C
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With the notation of (6.1), we have/YtVtò0 ^a á � / �$� b bb á � / �$� bb b á d / d�d hk � /Ytju(0 ^a á � / � f Õ ? bá � / � f Õ ? á � / � f Õ Ab á d / d f Õ A hk �
/Yuvtò0Â2 á � /KÕ ? f � á � /�Õ ? f � bb á � /�Õ A f � á d /KÕ A f d 6 � /Yuvu(0Â2 ç ? � ç A� /KÕ ? f Õ ? bb ç A � çãè� /�Õ A f Õ A 6 C

From (3.18), the Schur complement is

(6.7) M u � / � 0né�/ ÕBÕ J á � / Õ � / G ���� / � Õ J á � / Õ � / G ��$� / � Õ J á d / Õ d / G �d$d / d Õ �
where

é
is the diagonal matrix

(6.8)

é P 0î2 ç ? � ç A� bb ç A � ç è� 6 C
First we observe that / G �tjt / tju 0 ^a / G ��$� / � f Õ ? b/ G ��$� / � f Õ ? / G ���� / � f Õ Ab / G �d�d / d f Õ A hk

is independent of the

á ]
. Further, by construction, we haveT tjtH0 ^a �ç ? T �$� b bb �ç A T �$� bb b �çãè T d�d hk �

where
T ]�] P 01/ õRw ¯ ötjt G �

, o 0 -B�c�
�$Ù
, since the latter act independently on the three macroele-

ments. Hence T tjt@/]tju(0 ^a T �$� / � f Õ ? bT �$� / � f Õ ? T �$� / � f Õ Ab T d$d / d f Õ A hk
is also independent of the

á ]
. That is, the left and right matrices in the product in (6.5) are

independent of

á ]
. It remains to study the matrix in the center.

PROPOSITION 6.1. The condition number of M G � M u � / � is bounded as ç ?ç AH³ í .
Proof. Let ÚØ�P 0 �ç A M u � / � and ÚM P 0 �ç A M . Then S � M G � M u � / ��� 0 S � ÚM G � ÚØ � . Here,

following (3.20),
(6.9)ÚØ 0î2 ç ?ç A Ø � bb b 6 r 2 �� / Õ ? f Õ ? bb �� ��- r çãèç A � / Õ A f Õ A 6 J

/�Õ � / G ��$� / � Õ J á dá � /KÕ d / G �d$d / d Õ �
where Ø��óP 0 �� /KÕ ? f Õ ? J /KÕ ? f � / G ���� / � f Õ ? . As seen after (3.20), here ØK� is a Schur comple-
ment, corresponding to the positive definite matrix Ú/ �$� from (3.7), modified by setting the
weights

á � 0 -
and ç ? � ç A� 0 �� in the integrals. Hence ØK� is still positive definite. Denoting

by ,Y} the second to fourth terms of (6.9), we haveÚØ 0 á �á � 2 Ø��øbb b 6 r , } �
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where , } has bounded coefficients as ç ?ç A ³ í .
Let us now similarly rewrite ÚM . By definition, M is the assembly of the Schur comple-

ments M�õRw ¯ ö� for the element matrices

/ õRw ¯ ö ( o 0 -B�c�
��Ù
). To form the latter, we note that by

assumption
û � and

û d only have interior vertices on Ó�� or Ó�d , respectively, whereas
û � has

vertices on both of Ó>� and Ó)d . Therefore the element matrices take the following form:/ õ{w ? ö 0 2 á � / ��� á � / � f Õ ?á � / Õ ? f � ç ? � ç A� / Õ ? f Õ ? 6 � / õRw è ö 0ý2 á d / d$d á d / d f Õ Aá d / Õ A f d ç A � çãè� / Õ A f Õ A 6 �/ õRw A ö 0 2 á � / �$� á � / � uá � /Yu � é�/]uvu 6 � where

/Yu ��P 0n/ 9� u P 0î2 /KÕ ? f �/KÕ A f � 6 �
and

é
is from (6.8). ThenM õRw ? ö� 0 ç ? � ç A� /�Õ ? f Õ ? J á � /KÕ ? f � / G ���� / � f Õ ? � M õRw è ö� 0 ç A � çãè� /KÕ A f Õ A J á d /KÕ A f d / G �d�d / d f Õ A �M õRw A ö� 0«é�/]uvu J á � /]u � / G ��$� / � u0 2 ç ? � ç A� / Õ ? f Õ ? bb ç A � ç è� / Õ A f Õ A 6 J á � 2 / Õ ? f � / G ���� / � f Õ ? / Õ ? f � / G ���� / � f Õ A/KÕ A f � / G ���� / � f Õ ? /KÕ A f � / G ���� / � f Õ A 60Â2 ç ? � ç A� / Õ ? f Õ ? J á � / Õ ? f � / G ���� / � f Õ ? J á � / Õ ? f � / G ��$� / � f Õ AJ á � /KÕ A f � / G ���� / � f Õ ? ç A � ç è� /KÕ A f Õ A J á � /�Õ A f � / G ��$� / � f Õ A 6 C

The assembly of M õRw ¯ ö� is a
�<Ã��

block matrix, where the first and second rows/columns
correspond to the boundaries Ó � and Ó � , respectively. That is, M�õRw ? ö� and M�õ{w è ö� are added to
the (1,1) and (2,2) blocks of M õRw A ö� :M 0 2 M ��� M �4�M �c� M ���76 � where

M �$� 0 � á � r á � � /KÕ ? f Õ ? J á � /�Õ ? f � / G ��$� / � f Õ ? J á � /�Õ ? f � / G ��$� / � f Õ ? �M ��� 0 J á � /KÕ ? f � / G ���� / � f Õ A �M �5� 0 J á � /KÕ A f � / G ���� / � f Õ ? �M �$� 0 � á � r á d � /KÕ A f Õ A J á � /�Õ A f � / G ��$� / � f Õ A J á d /�Õ A f d / G �d$d / d f Õ A C
ThereforeÚM 0 2 ç ?ç A � / Õ ? f Õ ? J / Õ ? f � / G ���� / � f Õ ? � bb b 6r 2 / Õ ? f Õ ? J / Õ ? f � / G ���� / � f Õ ? J / Õ ? f � / G ���� / � f Õ AJ /KÕ A f � / G ���� / � f Õ ? �4- r ç èç A � /KÕ A f Õ A J /KÕ A f � / G ��$� / � f Õ A J ç èç A /KÕ A f d / G �d�d / d f Õ A 60 ç ?ç A 2 M �øbb b 6 r ,;~ �
where M �óP 0 /KÕ ? f Õ ? J /KÕ ? f � / G ��$� / � f Õ ? is a Schur complement of the matrix Ú/ �$� in (3.7).
Hence M � is positive definite, further, ,_~ denotes the second matrix above, which has bounded
coefficients as ç ?ç Aò³Rí . (Recall that, by assumption, b + ¼ � ç èç A �½-

.)
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Now it is easy to derive the spectral equivalence of ÚM and ÚØ . Let us consider vectors in
the form 8 0 � [ ?[ A " , where the decomposition into the vectors 8 � and 8 � corresponds to the

block form of ÚM . ThenÚM 8 ± 8 0 á �á � � M � 8 � ± 8 � � r ,;~ 8 ± 8 and ÚØ 8 ± 8 0 á �á � � Ø�� 8 � ± 8 � � r ,Y} 8 ± 8 C
Hence ÚØ 8 ± 8ÚM 8 ± 8 0 � Ø � 8 � ± 8 � � r ç Aç ? � , } 8 ± 8 �� M � 8 � ± 8 � � r ç Aç ? � , ~ 8 ± 8 � C
Here, by assumption, b � ç Aç ? �«-

. Hence

(6.10)
� Ø�� 8 � ± 8 � �� M � 8 � ± 8 � � r � , ~ 8 ± 8 � � ÚØ 8 ± 8ÚM 8 ± 8 � � Ø�� 8 � ± 8 � � r � ,Y} 8 ± 8 �� M � 8 � ± 8 � � C

Here the matrices Ø � and M � were seen to be positive definite. Let us now defineÚØ � P 0î2 Ø��übb b 6 r , } and ÚM � P 0 2 M �øbb b 6 r , ~ C
These matrices are also positive definite since they coincide with ÚØ and ÚM , respectively, in
the case

á � 0 á � . Then (6.10) impliesXDY�] = � ÚM G �� Ø�� ��� X Y�] = � ÚM G � ÚØ ��� X Y�Z5[ � ÚM G � ÚØ ��� X Y�Z5[ � M G �� ÚØ�� �5�
which yields the desired boundedness of S � ÚM G � ÚØ � as ç ?ç A ³Rí .

COROLLARY 6.2. The condition number of
T G � / is bounded as ç ?ç Aó³Rí .

Proof. We have seen just before Proposition 6.1 that the left and right matrices in the
product in (6.5) are independent of the

á ]
. Hence it remains to prove that the matrix in the

center has bounded condition number as ç ?ç A ³ôí . Since this matrix is block diagonal, its
eigenvalues coincide with those of its diagonal blocks, therefore it suffices that S �¨T tjtB/Ytjt �
and S � M G � M u � / ��� have bounded condition numbers as ç ?ç Aò³ í . The latter has been proved
in Proposition 6.1, whereas in the former caseT tjt / tjt 0 ^a T �$� / �$� b bb T �$� / ��� bb b T d$d / d�d hk
is even independent of the

á ]
.

REMARK 6.3. The above result can be extended to the case of more than three subdo-
mains under corresponding assumptions on the coefficients

á ]
.
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