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ON AN UNSYMMETRIC EIGENVALUE PROBLEM GOVERNING FREE
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�
Abstract. In this paper we consider an unsymmetric eigenvalue problem occurring in fluid-solid vibrations.

We present some properties of this eigenvalue problem and a Rayleigh functional which allows for a min-max-
characterization. With this Rayleigh functional the one-sided Rayleigh functional iteration converges cubically, and
a Jacobi-Davidson-type method improves the local and global convergence properties.
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1. Introduction. For a wide class of linear selfadjoint operators
�������	�

, the
eigenvalues of the linear eigenvalue problem

��
����

can be characterized by three funda-

mental variational principles, namely the Rayleigh’s principle [13], the Poincaré’s minmax
characterization [12], and the maxmin principle of Courant [4], Fischer [5], and Weyl [20].
These variational characterizations of eigenvalues are known to be very powerful tools when
studying selfadjoint linear operators on a Hilbert space

�
. Bounds for eigenvalues, compari-

son theorems, interlacing results, and monotonicity of eigenvalues can be proved easily with
these characterizations, to name just a few.

In this paper we discuss the unsymmetric eigenvalue problem

(1.1)
����� �� ����� � 
 �
 ��� �� ����� �� �! ����� � 
 �
 ���!"

which governs free vibrations of a fluid–solid structure. Here
�#�%$�& �(')�

and
� � $�& � ' �

are the stiffness matrices,
�*��$+& �,'��

and
� � $+& � ' �

are the mass matrices of the structure
and the fluid, respectively, and

�-$#& �(' �
describes the coupling of structure and fluid.


 �
is

the structure displacement vector and

 �

the fluid pressure vector.
Problem (1.1) can be symmetrized easily. Hence, all eigenvalues are real, and the vari-

ational principles mentioned in the first paragraph hold for the symmetrized problem. How-
ever, the transformed problem incorporates the inverse of the mass matrix

� �
, which is

usually obtained from a finite element discretization of a partial differential operator and is
therefore very large and sparse. Hence, to evaluate the Rayleigh quotient of the symmetrized
problem is quite costly.

In this paper we introduce a Rayleigh functional . of the original problem (1.1) which
can be evaluated easily since it is the positive solution of a quadratic equation involving only
bilinear forms of the matrices

� � " � � " ��� " ��� , and
�

. We prove that right eigenvectors
of (1.1) are stationary points of . , and that all eigenvalues satisfy Rayleigh’s principle with
respect to . and are minimum-maximum and maximum-minimum values of . .

For symmetric eigenvalue problems the Rayleigh quotient iteration is known to con-
verge cubically to simple eigenvalues, but for unsymmetric problems its convergence is only
quadratic. Replacing the Rayleigh quotient by . , the resulting Rayleigh functional iteration/
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converges also cubically. This property suggests an iterative projection method of Jacobi-
Davidson type for (1.1).

The paper is organized as follows. In Section 2 we discuss the symmetrized version of
the eigenvalue problem (1.1), and prove some useful properties of the eigenvalues and eigen-
vectors. In particular, if 0 
  � " 
  �21  is a right eigenvector of (1.1) corresponding to


, then0 �
  � " 
  � 1  is a left eigenvector corresponding to


. This property suggests the definition of

the Rayleigh functional . for which we prove in Section 3 variational characterizations of
the eigenvalues of (1.1). Section 4 proves the cubic convergence of the Rayleigh functional
iteration. In Section 5 we consider structure-preserving iterative projection methods of non-
linear Arnoldi and of Jacobi-Davidson type based on the Rayleigh functional, the efficiency
of which is evaluated by a numerical example in Section 6.

2. Fluid-solid vibrations. Vibrations of fluid-solid structures are governed by the linear
eigenvalue problem [1, 7, 8]

(2.1)
� 
+�3� � �4� �� � � � � 
 �
 � � �5 � ��� �� �! � � � � 
 �
 � � �%�6 � 
 "

where the matrices
� � " � � $#& �7'�� , and

��� " ���8$#& � ' � are assumed to be symmetric and
positive definite.

It is important that problem (2.1) can be symmetrized, i.e., it is equivalent to a symmetric
and definite eigenvalue problem.

PROPOSITION 2.1. Let

(2.2) 9 �:� � �-;2<� ���=�-;2<� �� > �@?
Then it holds that

(2.3) 9  � � �A���B�-;C<� ��� �4�B�-;2<� ��  � ;C<� ���D� ��E �  � ;C<� � � and 9  � � �F��� �� � � �@?
This result yields at once the following properties of problem (2.1), a part of which was

proved directly in [9].
PROPOSITION 2.2. (i) All eigenvalues of the fluid-solid eigenvalue problem (2.1) are

real.
(ii) Right eigenvectors of (2.1) can be chosen orthonormal with respect to

(2.4) G� �3� � � � �� ���H� ,

and left eigenvectors can be chosen orthonormal with respect to

(2.5) I� �3� � � � �� ���H� .

(iii) If

+�3� � 
 �
 � � is a right eigenvector of (2.1) corresponding to the eigenvalue


, thenG
J�3� � )
 �
 ��� is a left eigenvector also corresponding to


.

(iv) Let K be a left eigenvector and



be a right eigenvector belonging to distinct eigen-
values. Then it holds that

(2.6) K  � 
4� � " and K  � 
4� � ?
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Proof. L�MON It follows immediately from the equivalence of (2.1) and (2.3).L�MPMON The G� -orthogonality of right eigenvectors is a consequence of the equivalence
of (2.1) and (2.3). The I� -orthogonality of left eigenvectors can be derived similarly by
postmultiplying the left eigenvector equation by� �Q;C<� � � � �Q;C<� �� > � .L�MPMPMON By the symmetry of (2.3)



is also a left eigenvalue of (2.3), and therefore9 
�� � �-;2<� � � �-;2<� �� > � � 
 �
 ��� � � �-;C<� L � � 
 � E � 
 � N
 � � � � )
 �
 ���

is a left eigenvector of (2.1) corresponding to


.L�MPRSN 
 and 9 ;2< K are eigenvectors of the symmetric eigenproblem (2.3) corresponding
to distinct eigenvalues, and therefore they are orthogonal with respect to G� . Hence,� � K  9 ;T G� 
#� K  9 ;U 9  � 
4� K  � 
 and K  � 
4�� K  � 
V� � ?

A further consequence of the equivalence of problems (2.1) and (2.3) is that the eigenval-
ues of (2.1) can be characterized by the variational principles mentionend in the introduction.

PROPOSITION 2.3. Let
 <XW )Y W[Z,Z(Z\W  �^] �

be the eigenvalues of problem (2.1)
ordered by magnitude, and let


 < " 
TY " ?(?,? corresponding right eigenvectors which are or-
thogonal with respect to G� . Then it holds that

(i) (Rayleigh’s principle)`_a�5bdcfehg 
  9  C� 

  9  � 
 �i
  9  � 
�jk� � "Ul �nm " ?,?(? " M � mpo�5brq�s g 
  9  � 

  9  � 
 �i
  9  � 
Sjk� � "2l � M E m " ?(?(? "ut E*v o ?(2.7)

(ii) (minmax characterization)

(2.8)
 _ � brcwex(y z%{a| _ b}qHs~�� {S� ~��|C� 
  9  �� 

  9  � 
 � b}qHsx(y z%{�| �^] � ] <B; _ brcwe~�� {�� ~S�|2� 
  9  C� 

  9  � 
 ?

The minmax characterization allows for comparing the eigenvalues of the t dimensional
solid eigenproblem and of the

v
dimensional fluid eigenproblem with the t E�v dimensional

coupled fluid-solid eigenvalue problem.
PROPOSITION 2.4. Let

Sj L � "�� N denote the l smallest eigenvalue of the eigenproblem��
V�� � 
 . Then it holds that j L � " � N W  j L ��� " ��� N "2l �nm " ?(?(? "ut6" �^] � ] <B; j L � " � N��  �O] <�; j L �4� " ��� N "Ul ��m " ?(?,? "ut6" j L � " � N W  j L � � " � � N "2l �nm " ?(?(? " v " �^] � ] <B; j L � " � N��  � ] <B; j L ��� " ��� N "2l �nm " ?(?(? " v ?
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Proof. Let � � �:� span ��� < " ?(?(? " � �,� , where � j $�& �A] � denotes the l th unit vector con-
taining a 1 in its l th component and zeros elsewhere. Then it holds that�j L � " � N � brcwex,y z%{a| j brq�s~�� {S� ~��|2� 
  9  C� 

  9  � 
W brcfex,y z%{a| j � {��U�2� b}qHs~�� {�� ~S�|2� 
  9  C� 

  9  � 
� brcfex,y z%�}| j � �4�)� � brq�s��� ��� ~��|C� K  �� � �-;2<� � � KK  ��� K��Sj L � � " � � N ?
The second inequality is obtained analogously from the maxmin version of (2.7), and the
third and fourth inequalities follow in the same way exchanging the roles of the structure and
the fluid.

3. An inverse-free Rayleigh functional. The minmax characterization of eigenvalues
in Proposition 2.3 suffers the disadvantage that one has to solve two linear systems with sys-
tem matrix

� �
to evaluate the Rayleigh quotient. Since the fluid-solid eigenvalue problem

usually is obtained as a finite element discretization of partial differential operators the di-
mension t is usually very large, and the evaluation of the Rayleigh quotient is very costly. In
this chapter we prove a minmax characterization using a Rayleigh functional which does not
require the solution of large linear systems.

Let
� 
 �
 � � be a right eigenvector of problem (2.1) corresponding to the eigenvalue


, and� �
 �
 ��� be a left eigenvector. Then it holds that

V� 0 �
  � " 
  �C1 � ��� �� � � � � 
 �
 � �0 )
  � " 
  � 1 � � � �� �! ����� � 
 �
 ��� � �
  � �4� 
 � E )
  � � 
 �@E 
  � � � 
 �)
  � � � 
 � � 
  � �  
 � E 
  � ��� 
 � ?
This equation suggests to define a Rayleigh functional for a general vector 0 
  � " 
  � 1 $X& �^] �
by the requirement

(3.1) .aL 
 � " 
 � N � .aL 
 � " 
 � N 
  � � � 
 � E .aL 
 � " 
 � N 
  � � 
 � E 
  � ��� 
 �.aL 
 � " 
 � N 
  � ��� 
 � � 
  � �  
 � E 
  � � � 
 � "
which is equivalent to the quadratic equation

(3.2) .�L 
 � " 
 � N Y 
  � � � 
 � E .�L 
 � " 
 � N(L 
  � ��� 
 � � 
  � � � 
 � ��� 
  � � 
 � N � 
  � �4� 
 � � � ?
The smaller root of (3.2) is negative, and hence physically meaningless. We therefore choose
the unique positive root of this equation as Rayleigh functional.

DEFINITION 3.1.

(3.3) .aL 
 � " 
 � N �3����� � 5¡ L 
 � " 
 � N E�¢ ¡ L 
 � " 
 � N Y E ~�£¤�¥ ¤ ~ ¤~ £�S¦ � ~ � if

 �h§� � "~ £ ¤ ¥ ¤ ~ ¤~�£¤ ¦ ¤ ~ ¤ if

 � � � "
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where

(3.4) ¡ L 
 � " 
 � N �:�

  � � � 
 � � 
  � ��� 
 � E � 
  � � 
 �� 
  � � � 
 �

is called Rayleigh functional of the fluid-solid vibration eigenvalue problem (2.1).
We denote by ¨ � &ª©«& �O] � � &

the function which is used to define the Rayleigh
functional, i.e.,¨UL¬. " L 
 � " 
 � NAN � . Y 
  � � � 
 � E .aL 
  � �*� 
 � � 
  � � � 
 � �Q� 
  � � 
 � N � 
  � ��� 
 � ?
As for the linear symmetric eigenproblem and nonlinear eigenvalue problems the following
result holds.

PROPOSITION 3.2. Every right eigenvector L 
  � " 
  � N  of (2.1) is a stationary point of
the Rayleigh functional, i.e.,

(3.5) k.aL 
 � " 
 � N � � ?
Proof. Differentiating the defining equation (3.2) of the Rayleigh functional yieldsk.aL 
 � " 
 � N�® � .aL 
 � " 
 � N 
  � � � 
 � E 
  � ��� 
 � � 
  � � � 
 � �Q� 
  � � 
 ��¯E � � .�L 
 � " 
 � N Y � � 
 � �Q� .�L 
 � " 
 � N°L � 
 � E � � 
 � N� .aL 
 � " 
 � N(L � �! 
 � E ��� 
 � N ��� ��� 
 � � � � ?

If 0 
  � " 
  � 1  is a right eigenvector and
#�3� .�L 
 � " 
 � N then it follows from
  � ��� 
 � E 
  � � 
 � ��)
  � ��� 
 �

that � )
  � � � 
 � E 
  � ��� 
 � � 
  � � � 
 � ��� 
  � � 
 � �±
  � � � 
 � E 
  � ��� 
 �r² � "
and from (2.1)�  Y � � 
 � ���  L � � 
 � E � 
 � N � � and �  L ��� 
 � � �  
 � N �Q� ��� 
 � � � ?
Hence, k.aL 
 � " 
 � N � � .

The following lemma prepares the proof of the variational characterizations of the eigen-
values of problem (2.1) with respect to the Rayleigh functional . .

LEMMA 3.3. Assume that

 < " ?(?(? " 
T³ are eigenvectors corresponding to the pairwise

distinct eigenvalues
 <k´ ?(?,? ´ `³ . Then it holds that

(i) ¨UL �j " ³µ _ |a< 
T_ N � ¨2L Sj " ³µ _ |a< 
`_ � 
�j N " for l ��m " ?,?(? "�¶ ?
(ii)  <kW .«· ³µ _ |a< 
`_¹¸ W  ³ ?(3.6)
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Proof. L�MON Let

n�»º ³_ |�< 
 _ and denote by


 �
,

 �

and

 � _

,

 � _

the solid and fluid
components of



and


 _
, respectively. Then it holds that¨UL �j " ³µ _ |�< 
T_ N�! Yj 
  � � � 
 � E �j L � 
  � �  
 � E 
  � ��� 
 � � 
  � � � 
 � � 
  � � 
 � N � 
  � ��� 
 �� µ3¼ � ½  Yj 
  � ¼ ��� 
 � ½ E  j L � 
  � ¼ �  
 � ½ E 
  � ¼ � � 
 � ½ � 
  � ¼ �4� 
 � ½ � 
  � ¼ � 
 � ½ N � 
  � ¼ � � 
 � ½� µ3¼ � ½  j L  j �  ½ N 
  � ¼ �*� 
 � ½ E L  j �  ½ N°L � 
  � ¼ �  
 � ½ E 
  � ¼ � � 
 � ½ N� µ¼ � ½ �| j  j L  j �  ½ N 
  � ¼ ��� 
 � ½ E L  j �  ½ N°L � 
  � ¼ �  
 � ½ E 
  � ¼ � � 
 � ½ N� ¨UL �j " ³µ _ |�< 
T_ � 
Sj N "

where we used the
�

-orthogonality of left and right eigenvectors.L�MPMON If ¶ �¾m
, we have .�L 
 < N �¿ < by construction of . . Assume that (3.6) is true for

some ¶ $#À
. Then, by the non-positivity of ¨UL Z " 
 Y E ?(?,? E 
`³ ] < N in 0 � "  Y 1 ,¨UL  < " 
 < E 
TY E ?,?(? E 
 ³ ] < N � ¨UL  < " 
TY E ?,?(? E 
 ³ ] < N W � "

and by the non-negativity of ¨2L Z " 
 < E ?(?,? E 
 ³ N in 0  ³ "BÁ N ,¨2L  ³ ] < " 
 < E ?(?,? E 
 ³ E 
 ³ ] < N � ¨UL  ³ ] < " 
 < E ?,?(? E 
 ³ N�� � ?
This implies  < W .«· ³ ] <µ _ |a< 
 _ ¸ W )³ ] < ?

THEOREM 3.4. Let
 < W  Y WÂZ,Z(ZTW  �^] � be the eigenvalues of problem (2.1), and let
 < " 
 Y " ?(?(? corresponding right eigenvectors. Then it holds that

(i) (Rayleigh’s principle) ¼ �5brcwe ��.aL 
 N �i
  G� 
 j � � "Tl �Âm " ?(?,? "uÃ � m ��5b}qHs ��.�L 
 N �i
  G� 
�j�� � "Ul � Ã E m " ?(?,? "ut E*v � ?(3.7)

(ii) (minmax characterization) ¼ � brcfex,y zhÄ�Å°| ¼ b}q�s� �| ~�� Ä�Å .aL 
 N � brq�sx(y zhÄ�ÅB| �^] � ] <B; ¼ bdcfe� �| ~�� Ä�Å .aL 
 N .
Proof. L�MON The proof of Rayleigh’s principle follows directly from Lemma 3.3.L�MPMON Let ÆÈÇ � span � 
 ¼ " ?(?(? " 
 �O] � � . Due to ÆÈÇ2É�Æ ¼ §� � � � , for any Ã -dimensional

subspace Æ ¼ , there exists

 $ ÆÈÇ�É#Æ ¼ , such that.�L 
 N\�  ¼ " for any Ã -dimensional subspace Æ ¼ .

Hence, brcfex,y z%Ä�ÅB| ¼ b}qHs~�� Ä�Å .�L 
 N��  ¼ ?
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Choosing in particular Æ ¼ � span � 
 < " ?(?,? " 
 ¼ � , we obtainbrcwex(y zhÄ Å | ¼ b}qHs� �| ~�� Ä Å .�L 
 N �� ¼ ,
and similarly we have  ¼ � brq�sx(y zhÄ Å |�Ê ] <B; ¼ bdcfe� �| ~�� Ä Å .aL 
 N .

From the minmax characterization we obtain that projection methods which preserve the
structure of the eigenvalue problem (2.1) yield upper bounds of the eigenvalues of (2.1) as
follows.

PROPOSITION 3.5. Assume that Ë � � Ë � �� Ë � � $#& �O] � ' ¼ has rank Ã . Let

(3.8)� { �3� Ë  � Ë � � Ë  � �4� Ë � Ë  � � Ë �� Ë  � � � Ë � � " � { �3� Ë  � Ë � � Ë  � ��� Ë � �� Ë  � �! Ë � Ë  � � � Ë � � "
and let G <@W G)Y Z(Z,Z�W G ¼ be the eigenvalues of the projected eigenvalue problem

(3.9)
� { K � G � { K ?

Then it holds that

(3.10)
Sj W GSj "Ìl ��m " � " ?,?(? "�Ã ?

Proof. Let Í � � Í �Í � � and

X�:� Ë Í � � Ë � Í �Ë � Í � � ?

Then it is obvious that G.aL Í N � .aL 
 N where G. denotes the Rayleigh functional of the projected
problem (3.9). Hence, for l �nm " ?(?(? "uÃ , it holds that j � bdcfex(y z%�r| j � �4�)� �ÏÎ ¤ brq�s~�� ��� ~S�|2� .�L 
 N W brcfex,y zhÐ`| j � Ð���� Å b}qHs~�� {aÐ`� ~S�|2� .�L 
 N� brcwex(y zhÐT| j � ÐC�)� Å b}qHsÑ,� Ð`� Ñ��|2� .aLÏË Í N � brcfex,y zhÐT| j � Ð���� Å b}q�sÑ(� Ð`� Ñ��|2� G.aL Í N � G j ?

4. Rayleigh functional iteration. For symmetric eigenvalue problems the Rayleigh
quotient iteration converges cubically to simple eigenvalue. For unsymmetric problems the
convergence is only quadratic, but a two-sided version was introduced by Ostrowski [10]
which was shown to be also cubically convergent [11].

In this section we consider a one-sided Rayleigh functional iteration for the unsymmetric
fluid-solid interaction eigenvalue problem and prove its local cubical convergence.

THEOREM 4.1 (Convergence of Rayleigh Functional iteration). Consider the Rayleigh
functional iteration given in Algorithm 1. Then Ò ¼ and


CÓ ¼BÔ
converge locally and cubically

towards an eigenvalue


and a corresponding eigenvector



.
Proof. The iteration formula can be rewritten as
 Ó ¼BÔ � � ;C< L � � Ò ¼ � N 
 Ó ¼ ] < Ô ?
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Algorithm 1 Rayleigh Functional iteration for fluid-solid eigenvalue problems.

Require: Initial vector

 Ó < Ô

.
1: for Ã �Âm " � " ?(?,? " until convergence do
2: Evaluate Rayleigh functional Ò ¼ � .aL 
 Ó ¼BÔ N .
3: Solve L � � Ò ¼ � N 
�Ó ¼ ] < Ô � � 
�Ó ¼BÔ for


CÓ ¼°Ô
.

4: Normalize

 Ó ¼BÔ

.
5: end for

Let the columns of Õ form a normalized basis of right eigenvectors of (2.1), such thatÕ  G� Õ � >
and


4� ÕJÖ . Then it holds thatÖ Ó ¼BÔ � Õ ;2< � ;C< L � � Ò ¼ � N^ÕXÖ Ó ¼ ] < Ô� Õ  � � � �� �*� � � �-;2<� �� ;C<� �! ��-;2<� � ;2<� � � � � � Ò ¼ � � �Ò ¼ �  ��� � Ò ¼ ��� � ÕJÖ Ó ¼ ] < Ô� Õ  V× � ���B�-;C<� ��� ���B�-;2<� ��! ��-;2<� �4�D�! ��-;2<� � E � � � � Ò ¼ � ��� �� � � ��Ø ÕJÖ Ó ¼ ] < Ô "
and it follows from (2.3)

(4.1) Ö Ó ¼BÔ � Õ  9  L � � Ò ¼ � N^ÕXÖ Ó ¼ ] < Ô � L¹Ù � Ò ¼ > N^Ö Ó ¼ ] < Ô ?
Assume that


 Ó ¼BÔ
approximates an eigenvector Ú
 of (2.1) corresponding to an eigenvalue Ú .

Denote by ¶ the multiplicity of Ú , and let Ù � diag � Ú > ³ " GÙ � . Then, the eigenvector basis Õ
can be chosen such that Ö Ó ¼BÔ � � � <Û�Ü � "
where � < is the first unit vector of dimension ¶ , Ý Ü Ý �Âm and Û is small.

Due to the stationarity of the nonlinear Rayleigh functional at eigenvectors, it holds thatÒ ¼ �5 E�Þ L Û Y N "
and the iteration procedure (4.1) yields in the eigenvector basis ÕÖ Ó ¼ ] < Ô � LßÙ � Ò ¼ > N ;2< Ö Ó ¼BÔ � � àAáâ�;TãBÅÛ L�GÙ � Ò ¼ > N ;2< Ü � ��ä � � <Þ L ÛHå N°L�GÙ � Ò ¼ > N ;C< Ü �!"
where

ä
is a scaling factor. For sufficiently small Û the diagonal elements of GÙ � Ò ¼ > are

bounded away from
�
. Therefore,Ý)Ú
 � 
CÓ ¼ ] < Ô Ý�æ¦Ý`Ú
 � 
 Ó ¼BÔ Ý å æ¦ � Ý)ÚÖ � Ö Ó ¼ ] < Ô Ý YÝ`ÚÖ � Ö Ó ¼BÔ Ý åY � Þ L Û�å NÝ ÛHÜ Ý åY � Þ L m N "

where G� �
diag L ��� " � � N and the eigenvector iterates converge locally cubically to Ú
 .

The eigenvalue iterates satisfyç Ú � Ò ¼ ] < çç Ú � Ò ¼ ç å � ç Þ L Û�è N çç Þ L Û Y N ç å � Þ L m N "
and they also converge cubically.
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5. Iterative projection methods for fluid-solid vibrations. Rayleigh functional itera-
tion converges fast, but often it is highly sensitive with respect to initial vectors. The basin
of attraction can be very small, and an erratic behaviour of the iteration can be observed. To
avoid the possible failure of the Rayleigh functional iteration one combines it with an iterative
projection method.

Iterative projection methods have proven to be very efficient if a small number of eigen-
values and eigenvectors are desired. Here the eigenproblem is projected to a subspace of
small dimension which yields approximate eigenpairs. If an error tolerance is not met then
the search space is expanded in an iterative way with the aim that some of the eigenvalues of
the reduced matrix become good approximations of some of the wanted eigenvalues of the
given large matrix.

An expansion with high approximation potential is given by the Rayleigh functional
iteration, i.e., if L�é " 
 N , where


4� ËêÖ , is a Ritz pair of the current projected problem

(5.1) Ë  L � � é � N�ËêÖ � � "
then a reasonable expansion of the search space ë � span �HË � is the solution R of the linear
system

(5.2) L � � é � NOR � � 
 ?
At least close to an eigenpair the expansion R is very sensitive to inexact solves of the

linear system (5.2). In [19] it was shown that the most robust expansion of ë which contains
the direction R of inverse iteration is ì �3�-
 E ä R where

ä
is chosen such that


  G� ì � � ,
i.e.,

(5.3) ì �5
 � 
  G� 

  G� L � � é � N ;2< � 
 L � � é � N ;C< � 
 ?
It is easily seen that ì solves the correction equations

(5.4) í > � � 
`
  
  � 
�î L � � é � N6í > � 
)
  G�
  G� 
 î ì � L � � é � N 
 " 
  G� ì � � "
which demonstrates that the resulting iterative projection method is a Jacobi-Davidson-type
method [6, 14, 15].

Expanding ë by the solution ì of (5.4), the structure of the eigenvalue problem (2.1) is
destroyed and eigenvalues of the projected problem (5.1) can become not real. We therefore
expand in every iteration step the search space by two vectors� R � �� R ��� �3� � ì � � Ë � Ë  � � � ì � �� ì � � Ë � Ë  � � � ì � �k"
where ì � 0 ì  � " ì  � 1  is an approximate solution of (5.3). Then, reordering the columns of the

projection matrix Ë , we obtain the form Ë � � Ë � �� Ë � � , and by Proposition 3.5, the eigen-

values of the projected problems (5.1) are upper bounds of the corresponding eigenvalues of
(2.1) of better accuracy.

Moreover, if é is an eigenvalue of (5.1) with corresponding eigenvector Ö then it is also
the value of the Rayleigh functional at the Ritz vector ËêÖ , i.e., é � .aLÏËêÖ2N , which is no
longer true in the non-structure-preserving Jacobi-Davidson method, where Ë is expanded
by the (approximate) solution ì of (5.4). A template of the resulting Jacobi-Davidson-type
method is contained in Algorithm 2.
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Algorithm 2 Jacobi-Davidson-type method.

Require: Initial basis Ë � � Ë � ÞÞ Ë � � , Ë  � � � Ë � � > , Ë  � ��� Ë � � > , ¶ ��m
.

1: Determine preconditioner ï*ð�L � ��ñ � N ;C< , for ñ close to first wanted eigenvalue.
2: while ¶ W number of wanted eigenvalues do
3: Compute the ¶ � th smallest eigenvalue é ³ and the corresponding eigenvectorK � 0 K  � " K  � 1  of the projected problem

(5.5)
� Ë  � � � Ë � Ë  � � Ë �Þ Ë  � ��� Ë � � � K �K ��� � é � Ë  � � � Ë � Þ� Ë  � �! Ë � Ë  � ��� Ë � � � K �K �H� ?

4: Determine Ritz vector

4� � Ë � K �Ë � K � � and the residual ò � L � � é ³ � N 
 .

5: if Ý°ò�Ý,ó�Ý 
 Ý ´õô then
6: Accept approximate ¶ th eigenpair Lßé ³ " 
 N , and increase ¶÷öø¶ E m .
7: Reduce search space Ë if indicated.
8: Determine new preconditioner ï*ð¿L � � é � N ;2< if necessary.
9: Choose approximation L�é ³ " 
 N to next eigenpair.

10: Compute residual ò � L � � é ³ � N 
 .
11: end if
12: Find approximate solution ì � 0 ì  � " ì  � 1  of correction equationí > � � 
`
  
  � 
 î L � � é ³ � N6í > � 
)
  G�
  G� 
 î ì � ò " 
  G� ì � � "

(e.g., by a preconditioned Krylov solver).
13: Orthogonalize R � � ì � � Ë � Ë  � � � ì � , R � � ì � � Ë � Ë  � ��� ì � .
14: If Ý°R � Ý ¥ � ² tol, then expand Ë � ö 0 Ë � " R � ó�ÝBR � Ý ¥ � 1 .
15: If Ý°R � Ý ¦ ¤ ² tol, then expand Ë � ö 0 Ë � " R � ó)ÝBR � Ý ¦ ¤ 1 .
16: Update projected problem (5.5).
17: end while

Some comments are as follows:
(i) If the dimension of the search space has become too large, then we reduce the ma-

trices Ë � and Ë � in step 7 such that the columns of Ë � (and Ë � ) form a
���

- (and� �
-) orthogonal basis of the space spanned by the structure (and the fluid) part of

the eigenvectors found so far. Notice, that the search space is reduced only after an
eigenpair has converged because the reduction spoils too much information and the
convergence can be retarded.

(ii) The preconditioner is updated in step 8 if the solver of (5.5) has become too slow.
(iii) Since the dimension of the projected eigenproblem is quite small it is solved by a

dense solver and therefore an approximation to the next eigenpair is at hand without
additional cost.

(iv) The correction equation is solved by a few steps of an iterative solver, e.g., GMRES,
where the preconditioner takes into account the projectors occurring in (5.4), i.e., ifï is a preconditioner of

� � é � , then the solver of (5.4) is preconditioned by

(5.6) í > � � 
`
  
  � 
�î ïdí > � 
)
  G�
  G� 
 î ?
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It may seem complicated to include the projectors into the preconditioner, but it was
pointed out already by Sleijpen and van der Vorst [15], that an implementation of
a Krylov solver with this preconditioner requires only one solve of a linear systemïÈù � Í in every iteration step, and one additional solve to initialize the method.

(v) Replacing the approximate solution ì of the correction equation (5.4) in step 12 of
Algorithm 2 by an approximation

(5.7) ì � ï ;C< L � � é � N 
 " ï*ð�L � �«ñ � N
to the Cayley transform L � �úñ � N ;2< L � � é � N 
 ( ñ close to the desired eigen-
value) one obtains an iterative projection method which was introduced in [17] for
nonlinear eigenvalue problems and which was called nonlinear Arnoldi method. Al-
though problem (1.1) is linear, no Krylov space is constructed and no Arnoldi recur-
sion holds the resulting iterative projection method again is called nonlinear Arnoldi
method.

(vi) It may happen that an eigenvector is mainly concentrated to the fluid and the solid,
respectively, and then close to this eigenvector the component of ì with respect to
the complementary structure is very small. In this case we do not expand Ë � in step
14 and Ë � in step 15, respectively.

6. Numerical experiment. In order to compute the Jacobi-Davidson-type method and
the nonlinear Arnoldi method we consider a model which describes free vibrations of a tube
bundle immersed in a slightly compressible fluid, cf., [2, 3, 18]. We consider the same finite
element model with 143082 degrees of freedom that was considered in [18].

We compare the structure-preserving iterative projection methods with Jacobi-Davidson
method for general nonsymmetric eigenvalue problems in [14], which is based on the correc-
tion equation í > � .�.  .  . î L � � é � Npí > � 
`
  
  
�î ì � ò " 
  ì � � "
where . � L � ��ñ � N 
 , and which expands the search space in every iteration step by one
vector not accounting for structure preservation. We considered the orthogonal projection
method (5.1) since the Petrov–Galerkin method suggested in [16] immediately generated
complex eigenvectors of projected problems.

We computed all 18 eigenvalues in the interval 0 � " m 1 , where we used as preconditioner
an LU and incomplete LU factorization of ï �:� � � � ?:û � , respectively, and we did not
update the preconditioner and did not reduce the subspace ë in the course of the algorithm.
We accepted an eigenpair if the the residual norm was less than

m � ;Tü
and we solved the

correction equation with GMRES preconditioned by (5.6), where we allowed at most ý
iteration steps, and we terminated GMRES if the initial residual was reduced at least by the
factor þ .

Table 6.1 shows the CPU times (on a Pentium R4 computer with 3.4 GHz and 8 GB RAM
under MATLAB R2008b) and the number of iterations necessary to determine all eigenvalues
in 0 � " m 1 for L�þ " ýXN � L m � ; å " m � N and L�þ " ýXN � L m � ;C< "�ÿ N , respectively.

The nonlinear Arnoldi method is much faster than both versions of the Jacobi-Davidson
method if a relatively precise preconditioner such as LU factorization of ï � L � � � ?:û � N is
used. Conversely, both versions of the Jacobi-Davidson method are much more robust if only
coarse preconditioners such as incomplete LU factorization of ï are available. In any case
the structure-preserving variant of Jacobi-Davidson is faster than the standard one, although it
uses much larger search spaces (recall that in the structure-preserving variant the search space
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TABLE 6.1
Comparison of structure-preserving iterative projection methods with the standard Jacobi-Davidson method.

Method Precond. Lßþ " ýXN CPU time dimension
nonlin. Arnoldi lu 23.53 62

luinc(0.001) 298.46 257
struc. pres. JD lu L m � ; å " m � N 74.80 46

lu L m � ;C< "uÿ N 44.13 57
luinc(0.001) L m � ; å " m � N 122.14 83
luinc(0.001) L m � ;C< "uÿ N 96.91 91
luinc(0.01) L m � ; å " m � N 169.48 122
luinc(0.01) L m � ;C< "uÿ N 203.94 170

standard JD lu L m � ; å " m � N 107.16 47
lu L m � ;C< "uÿ N 52.43 48

luinc(0.001) L m � ; å " m � N 170.20 88
luinc(0.001) L m � ;C< "uÿ N 156.64 100
luinc(0.01) L m � ; å " m � N 269.79 130
luinc(0.01) L m � ;C< "uÿ N 400.11 183

TABLE 6.2
Structure-preserving methods and standard JD method with restarts.

Method CPU time restarts max. dim.
nonlin. Arnoldi 282 5 131
struc. pres. JD 357 2 116
standard JD 505 2 126

is usually expanded by two vectors in every iteration step). Notice, however, that the vectors
in the structure-preserving methods occupy mutually exclusive vector coordinates such that
the required storage is even smaller than for the standard JD method.

To test the restarted version of the method, we computed all ÿ6ÿ eigenvalues of our prob-
lem in 0 � " û 1 . We restarted whenever the dimension of the search subspace exceeded the
number of already converged eigenvalues plus some prescribed threshold. Since a restart de-
stroys information on the eigenvectors and particularly on the one the method is just aiming
at, we restarted only if an eigenvector had just converged. The reduced search space was
chosen as Ë �

span � 
 < " ?(?(? " 
 ¼ � for the standard JD method, where

)j

are the eigenvec-
tors computed so far, and as Ë � � span � 
 Ó � Ô< " ?(?(? " 
 Ó � Ô¼ � and Ë � � span � 
 Ó � Ô< " ?(?(? " 
 Ó � Ô¼ �

for
the structure-preserving methods, where


 Ó � Ôj and

 Ó � Ôj are the structure and fluid part of


 j
,

respectively.
Table 6.2 shows the CPU times, number of restarts, and maximal dimensions of the

search spaces. The nonlinear Arnoldi method requires more restarts since the individual ex-
pansion of the search space for this method is less accurate than for the JD method. However,
the overall cost becomes smaller than for the JD variants since the expansion is less costly
than the approximate solution of the correction equation in every step of the JD methods.
Again the structure-preserving JD method is superior to the standard version.

7. Conclusions. For an unsymmetric eigenvalue problem governing free vibrations of
fluid-solid structures, we introduced a Rayleigh functional . , and we proved variational char-
acterizations of its eigenvalues. The corresponding Rayleigh functional iteration converges
cubically. Structure-preserving iterative projection methods yield upper bounds of the eigen-
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values of increasing accuracy. The nonlinear Arnoldi method is superior to Jacobi-Davidson-
type methods if an accurate preconditioner is available, but it is much more sensitive to coarse
preconditioners than the latter ones.
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[4] R. COURANT, Über die eigenwerte bei den differentialgleichungen der mathematischen physik, Math. Z., 7

(1920), pp. 1–57.
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