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AN EFFICIENT GENERALIZATION OF THE RUSH-LARSEN METHOD FOR
SOLVING ELECTRO-PHYSIOLOGY MEMBRANE EQUATIONS *

MAURO PEREGO AND ALESSANDRO VENEZIANF

Abstract. In this paper we describe a class of second-order methodsfeing ordinary differential systems
coming from some problems in electro-physiology. Thesehord extend to the second order of accuracy a previous
proposal by Rush and Larsen [IEEE Trans. Biomed. Eng., 2380 %p. 389-392] for the same problem. The
methods can be regarded in the general framework of expiahémtegrators following the definition of Minchev
and Wright [NTNU Tech. Report 2/05 (2005)]. However, they differ from other schemes in this class for
the specific form of linearization we pursue. We investigtite accuracy, stability, and positivity properties of
our methods. Under simplifying assumptions on the probléimaad, our methods reduce to classical multi-step
methods. However, we show that in general the new methodsthetter stability and positivity properties than the
classical ones. We present a time-adaptive formulatiorchvisi well suited for our electro-physiology problems. In
particular, numerical results are presented for the Monmaln model coupled to Luo-Rudy | ionic model for the
propagation of the cardiac potential.
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1. Introduction. In this paper we propose a numerical method designed to sgke
tems of Ordinary Differential Equations (ODEs) coming framll-membrane models for
ionic currents and voltages. Starting from the Hodgkin-tléyxmodel [L1], developed in
1952 to describe the action potential in giant squid axoegeml cell-membrane models
have been developed, in particular for cardiac cells. Wetimenfor instance, the Beeler-
Reuter model]], the Luo-Rudy phase | model}] and the Winslow model14] developed
for the ventricular cells, and the Courtemanche modjidr the atrial cells. All these models
can be written in terms of the transmembrane potentighe vector of the gating variables
w and the vector of the ionic concentratiols as follows,

% = I(t7u’ X'7 W)’
1.1) a(;“;}i =a;(u)w; + b;(u), i=1,...,m,
aa_f = g(u7 X’ W)7

for ¢ € (0, T, with initial conditionsu(0) = u°, w(0) = w" andX(0) = X°. I(¢,u, X, w)
is the source term defined &¢t, u, X, w) = o (Lapp(t) = Lion(u, X, w)), whereC,, is

the membrane capacity,,, is an applied current stimulus, arg,, is the ionic current.
Lion, g, a, b, ug, wy andX, depend on the specific ionic model; in the case of Luo-Rudy
phase | model, see Appendixfor functions and parameters definitions and Figlrefor

the graphs of the variables. Functionsandb of the potentiak: fulfill the following in-

. b; , .
equalities:a; < 0, and (——) € [0, 1]. Moreoverw! € [0, 1] fori = 1,...,m. This
Q;
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implies thatw; € [0, 1]; see Sectior3.4. Typically, the system1(.]) is stiff and the gating
variables feature high gradients. The most popular metboddlving this system in the
computational electro-cardiology community is the simfilst order scheme proposed by
Rush and Larser2p] which guarantees that the numerical solutions for gatiagables are
in the rangd0, 1]. In the same paper Rush and Larsen proposed a very simpladapgive

. ) .
algorithm, based merely on the values-e+. Another popular way to solve system.{) is

to use the more complex Runge-Kutta (RK) schemes. Here vweeipra second order ex-
tension of the Rush-Larsen scheme and a time adaptivegstriaésed on predictor-corrector
error estimates. Following the definition ekponential integratoradvocated in [18], our
schemes fall into this class. However, these schemes ategirom a peculiar linearization of
the original problem1.1) (that is neither linear nor semi-linear) which makes theffecent
from other methods in this class, such as Lawson or expaaleintie differencing methods.

In order to simulate the action potential propagation inrmgcardium, ionic models
in the form (L.1) need to be coupled with the so-called Monodomain or Bidonsgistems
of Partial Differential Equations (PDESs). For an introdantto these models, see, e.@Z].
Monodomain and Bidomain systems are commonly discretiz@guan IMplicit-EXplicit
(IMEX) approach for the PDEs and the Rush-Larsen or RK scladimethe ionic model;
see b, 7]. In[23, 26] a second order method based on an operator-splitting igebmwas
proposed for the time discretization of the PDEs, while a Rifesne was used for discretizing
the ionic model. More complex time and space adaptive methoel presented i8] 6, 29].
We solve the coupled problem with a second order IMEX scheamsbined with our ex-
tended Rush-Larsen scheme for the ionic model. Time adaptiategy for the coupled
problem is extended as well. One dimensional simulatiosisiguFinite Element discretiza-
tion, are reported for the solution of Monodomain systetustrating the effectiveness of our
method.

The outline of the paper is as follows. In Sectidmve recall the Rush-Larsen method
and present our extension. Sect®is devoted to the theoretical analysis of the new method.
We investigate convergence, absolute stability regiomd pesitivity properties. Our scheme
can be viewed as a generalization of first and second ordeistep methods. We prove that
our generalization guarantees better stability and pitsitproperties. Sectiod describes
some practical details on using the new scheme for the elgtiysiology equations. Sec-
tion 5 presents the time-adaptive formulation of our method. Nuraéresults for the Mon-
odomain problem in electro-cardiology are presented irti®e®. Throughout the paper,
bold characters denote vectors.

2. The scheme.For the sake of simplicity we introduce our schemes for thiefong
scalar initial value problem,

(2.1) % = f(t,y)=alt,y)y +b(ty), te(0,T]

y(0) = o°.

Extension to systems in the forrh.() is straightforward and will be discussed later on.

Given a generic non-linear ordinary differential equatitrere are clearly many differ-
ent ways of recasting it in the forn2(1). In applications, the identification @& andb is
determined by the problem at hand; séel). A particular class of problems for which a
specific choice of the coefficienssandb leads to good positivity properties is analyzed in
Section3.4.

1“An exponential integrator is a numerical method which ilwes an exponential function (or a a related func-
tion) of the Jacobian or an approximation of it.”
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FIG. 1.1. Variables of the Luo-Rudy model as functions of timen{is): transmembrane potential (mV’)
and intracellular calciumC'a (M) in the first row, the gating variables, j, m, d, f, andz in the last three rows.

Rush and Larser2f] proposed the following numerical scheme for the solutib(?ol),

n bn bn

an an
y(0) =,

wherey” is the approximation of the solutiof(¢"), t* = nh, T = Nh, andh > 0 is the
time-step. The expressioad andb™ are defined aa™ = a(t",y™) andb™ = a(t", y™),
respectively. This method stems from considering the fonsta andb constant on the
interval (", t"*1] and equal tm™ andb”; y"*! is the exact solution at tim&'*! of the
linearized differential system,

(2.2)

dy _

— =a"g+b", te (" ",
(2.3) dt 4 ( ]

gen) =y",

forn = 0,...N. Even if this scheme is explicit, the stability bound is sigantly less re-
strictive than the one of the classical Forward Euler (FE}hoé. For instance, when solving
the Luo-Rudy model in the cases presented in SectjdrE is stable under the condition
h < 0.01 ms, while Rush-Larsen is stable for< 0.1 ms. Moreover, the numerical solution
for the gating variables is in the physiological rarigel] with the Rush Larsen scheme even
for large values of., while this is not the case for the FE solution. We give an axation of
these results in Sectio®s3and3.4. Unfortunately, the original Rush-Larsen scheme is only
first order accurate. We therefore devise a second ordeng®ie Let us start by rewriting
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schemeZ.2) in the following form,

(2.9 { y*th ="yt £ hd(@th)b™ = y" + he(a"h)(@"y" + b"),
' =y,

forn =0,...N, with

e’ —1
1, xz =0.

Fora = 0 the scheme reduces to the Forward Euler (FE) scheme.
In order to increase the accuracy of this scheme, we evathat&unctionsa andb at
"%, namely,

(2:3) y(0) =,

wherea™*z andb™* 2 are approximations af(¢" %) andb(¢"+%). In particular, we select
forn=1,..., N,

{ Y=yt 4+ hd@ T ER) @Ry + b E), n=0,.. N,

1 1 _
antz = C_1an+l + cpa™ + cla"‘l, btz = C_1bn+1 + cob™ + c1b™ 1,

2.6
( ) a% = C,1a1 —+ (CO —+ Cl)ao, b% = C,1b1 —+ (C() —+ Cl)bo,

wherec_1, ¢g, ande; are coefficients to be determined. For the sake of notatiathg sequel
we setw = c_; — ¢; andf = c_1 + ¢1. By requiring that the approximation2.¢) are exact
for both constant and linear functions, we get the condfsain

ccitecpt+ca=0+c=1 6 B
2.7) cc1—a=w=3 }:>C—1—2+4700—1 0, andc; =

N D
B~ =

We can force 2.6) to be exact also for quadratic functions (yielding thirdler accuracy
of the approximationZ.6)) with ¢ = 3/4, ¢4 = 3/8 andc_; = —1/8. However, this
does not improve the overall accuracy of the scheme, as we jindhe next subsection (see
(3.2 below), since this just improves the accuracy in the estmafa™tz andb™*z, not
the accuracy of the linearization procedure !15. Therefore, we seledt on the basis of
stability or efficiency constraints rather than on accuraguments.

3. Analysis of the methods.

3.1. Consistency.If a andb are sufficiently regular functions, the following local tru
cation error (LTE) can be derived from standard Taylor exgiams (prime symbol means
differentiation),

(3.1) (LTEy) = —(y("™) —y"™") = (% - w) (@' (t")y(t™) = b'(t"))h + o(h).

> =

In particular, forw = % the first term on the right hand side vanishes. Upon expayitiie
o(h) term, the local truncation error reads

(3.2) 11En) = (5 - 5 ) (@)~ b))

+ 1—12(a’(t")b" —a"b’(t"))h? |+ o(h?).
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TABLE 3.1
Coefficients of the numerical schemes.

Cc_1 Co C1
FE* 0 1 0
M*(6) st+1 1-0 §-1
AB2* (M*(—1/2)) | © 3 -3
CN* (M*(1/2)) : : 0
AM3* (M*(1/3)) > 5 -5

From 3.1) and 3.2, we get that the LTE vanishes whén— 0 (consistency). However, the
dependence of LTE oh is at most quadratic, independentlytfdue to the presence of the
boxed term. This limits the accuracy of the schenieS) (o second order.

Notice that the proposed schemes reduce to classical ®poAstiams schemes when
a = 0. As a matter of fact, in this case the scheme reduces to

0 1 0 1
n+l _ ,n 24z n+1 _ n v+ n—1 _
Yy =y +h<(2+4>b +(1-6)b +(2 4>b > n=0,...,N.

We denote these schemegNland their generalization to the case# 0 is indicated with
M*(6). Observe, in particular, that (-3), M(3), and M%) correspond to the classical
Adams-Bashforth two-step scheme (hereafter denoted by) AB@ Crank-Nicolson scheme
(CN), and the Adams-Moulton two-step scheme (AM3), respelst By extension, we will
denote by AB2, CN*, and AM3' the methods M(—31), M*(3), M*(3), respectively. We
also use the short notation Fior the Rush-Larsen scheme_( = 0, ¢p = 1, andc; = 0).

In Table3.1we report the coefficients for the numerical schemes useusmaper.

REMARK 3.1. Whena is constant, our schemes can be regarded in the class of Ex-
ponential Time Differencing (ETD) methodg,[1g] or in the class of exponential multistep
methods 2, 19, 20]. These methods have been devised for semi-linear probdéthe form

% =Ly+N(y),  y0) =1y
However, even if the Rush-Larsen FEctually corresponds to the first order exponential
Adam Bashforth scheme, the linearization underlying theg/1 schemes presented here
makes them different from the schemes mentioned in the piégetrs (and of course from
other classical methods) and deserve therefore a spec#igsas

3.2. Stability and convergence.We give first a definition of zero-stability adapted to
our scheme.
DEFINITION 3.2. A numerical method in the forn2 (5 is zero-stable when

Jho >0, 3C >0: Vh € (0,ho], |2"—9y"| <Ce, 0<n<N,
wherey™ is the solution to problem?2(5) and z™ is the solution of the perturbed problem

2= 2m 4 hd(ah)[@m 3 2 4 b E] 4 R
(3.3)
20 — 40 4 80,

for0 <mn < N — 1, under the assumption that*| < ¢,0 <k < N — 1.
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PrROPOSITION3.3. The scheme2(5) is zero-stable under the following conditions:
i) a andb are Lipschitz continuous functions with respect to the sda@rgumenty)
and uniformly with respect tg with constantd., and L, respectively.
i) There exists a non-negative constani such that

(3.4) at,y) < am, Yy e R™ t €10, T).

It is worth noting that in gating variable models.{) typically a; < 0; hence, conditionii)
holds. This is true, in particular, for the Luo-Rudy modelef8re proving Propositio.3,
we state the following Lemma.

LEMMA 3.4.Leta™ satisfy

(3.5) 0<a" <& '+ nx"_2 + (&4 n—1),

wheren > 0,6 > 0, 2%, 2" > 0, and¢ > 1 are given data. Then,
2 n
" < x0+5+g(:c1—|—5) E+n)".

Proof. Consider the difference equation
(3.6) =" A"+ (E 4 — 1)6,

with 29 = 20 andz! = z!. We have obviously that” < z". Observe that under the given
assumptions the right-hand side is non-negative, soithat 0, which is compatible with
the first inequality in 8.5). The solution to the difference equatidh) is

" = o1p] + o2p5 — 9,
with
It can be verified thap; 2| < £+ n, p1 — p2 > &, ando; > 0, so that
g < 3" < oipt A+ |oa|p2]™ < (o1 + o) (E4+10)"

The lemma thus follows after some algebra exploiting thetlaat 2! + 6 > 0,20 +6 > 0,
andp; — p2 > €. u
Proof of Propositior8.3. Let us rewrite 2.5) as

na L
(3.7) Yyt =¢? +2hyn—i—<1>(an+%h) btz n=0,...N.
Fora < aps, & < apr, andh € (0, hy], we have

(3.8) |®(ah)| < ®ur, [P(ah) — ®(ah)| < hlela - al,
. |€ah|§€aMh’ |€ah_eah| ghLe|a—a|,
WhereQ)M = (I)(a]who), Lo = (I)/(a]uho), andLe = eanmho,
For the sake of notation, let us writg} andby in place ofa(t",y") andb(t",y"),
respectively, and? andb’ for a(t",2") andb(t", 2"). First, we prove thay” andby are
bounded foralh = 1,..., N. From equation3.7), we have

(3.9) g™ < e®h =1 £ by bl E|, n=2,...,N.
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Notice that|b(y,t)| < Bo + Lyly| for all t € [0, T], where By = max;co, 7] [P(t,0)].
Hence, we can write
(3.10)

1 1 1
1
by 21 < Y lexbl FH < > ekBol + Lo Y el [y, m=2,...,N.
k=—1 k=—1 k=—1

Substituting 8.10 into (3.9), we have
(3.11) aly”| < Bly" | +ly" 2 + he Py By, n=2,...,N,

wherea = 1 — h|C_1|Lb(I)M, 6= ehanm + h|CQ|Lb‘I)]u, v = h|Cl|Lb(I)M andc = |C_1| +
lco| + |ca]. Takinghg such thaty > 0 Vh € (0, ho], we can apply Lemma&.4and obtain,
forn=2,..., N,

hcPy B
1< (100 + 25007 + (14 25) cretubie )
"M 4h(leolt|er ) LoPar |
1—h|071‘qu>]u :

Sincea < 1 ande*» — 1 > 0, we can write

| < K, <eha]\/1 + h(|co| + |01|)Lb(I)M>n
- 1-— h|C_1|Lb(I)]u
h|C_1|Lb(I)]u " qu)lw "
= Kyemmh (] — — 2~ 1+h
' ( Ti- hle—1|Ly®m + hlleol + eal) eanh | 7
with K, = (lyol + 25yt + (1+2%) f—g) Exploiting the well-known inequality
(1+ )™ <e™ forz > 0, we have
ly"| < K eam T elle-1l(=hole—a|Lu@a) " +leo | Hler ) Lv@uT _ o

Sincealy'| < (6+7)[y°|+ ¢ ho® By, we conclude thag™ is bounded. Alsd}, is bounded
Vn € [0, N] sincelby| < Bo + Lyyay = by Settinguw™ = 2" — y™ and subtracting3.3
from (2.5), we obtain

[N

n o__ n ha:i% n—1 __ ha;li% n—1 ”_% n—%_ n—% n—
(3.12) w" = hé" +e z e y" '+ h®(ha: )b h®(ha, )b,

forn=1,..., N. Let us analyze separately the terms of the previous equatio

_1 _1
haz 2 Zn—l _ ehaZ 2 yn—l

n—4i n—1 n_1
ha. 2wn71 + (ehaz 2 _ chay 2) ynfl
_ n—2i n
<ehanm|w =l ¢ hyyLela; > —ay, ?

< el w4 hyyrLeLa (X1 el [0 ).

1

[@(ral#)b2 ¢~ d(hay F)by
— |o(nal*)(b2* — by ¥) + (@(hal ™) — (nal F)by
<Py [b27F b E| f by Le|al T —al
< (®prLy + hbprLoLy) (Z;:_l ] |w"*i*1|) '
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From equation3.12), using the previous inequalities, we obtain
alw"] < Bl + w7 + he,

wherea = 1 — hlc_1|Ka, 8 = e + hlcg| K2, v = hlei| Kz with Ko = (yaLeLa +
O Ly + hobm Lo Ly). Again, forhg such thate > 0 Vh € (0, hgl, we can apply Lemma.4
and obtain

« o € el 4 h(|co| + |e1]) K2 "
w"| < w0+2—w1—|—(1—|—2—)—>( > ,
) < (o0l + 2510 )= tolk

forn = 2,..., N. Noticing thafw®| < ¢, a|w!| < (B+7)|w°|+hoe and thaf1+z)" < e"®
for z > 0, we obtain, fom =1,..., N,

v B+ 2 hle_1|Ks \" h
n| < 3 9L 1 aymn (lco|+]|e1|) Kanh
|w|_€< + ﬁ+ ﬁcK2>< +1—h|c_1|K2 e e

3+ 2ﬁ + e

which proves the propostion. This argument can be easignebdd to the vector case when
the exponential matrices associated with the scheme agerlid which is actually our case.
In this circumstance, the expressions have to be interpeteghonent-wise, and the absolute
value (| - |) has to be replaced by the infinite norm for both vectors antfioes (|| - || ). O

If a(t,y) andb(t,y) are sufficiently regular functions, from zero-stabilitydaconsis-
tency, we can prove that the method is convergent of order@2,+ 1/2, and of order 1,
otherwise.

.. ( v, B+ 2a> g T g(le—11(1=hole_1]0) " +|eol+lea |)COT

Im(hA)
Im(hA)
Im(hA)

Ty e T 3 5 et

FIG. 3.1. Absolute stability regions for the FHleft), the AB2 (center) and AM3 methods when applied to
the model probleny’ = Ay with A = A\q + Ay @ = Ao, b = A\py and Xy = pA,, with p a real parameter.

3.3. Absolute stability. The stability over long time intervals for the linear modebb-
lemy = Ay, with Re()\) < 0, strongly depends on the implementation of the method, i.e.
on the definition ofa andb with respect to the model problem. In particular, since the p
determined bya is solved exactly for the model problem, if we set= \ (b = 0), we get
an unconditionally stable method, while far= 0 andb = \y stability of the method is the
same as for the corresponding multistep method. Thesampneliy observations agree with
the experimental results mentioned above concerning thienké#thod, which is more stable
than the corresponding FE scheme. In order to be more gatweit we splith = A\, + A,
and consider the (scalar) schen®e5 with a = A\, andb = );,. In particular, we write
Aa = pXp, Wherep is a non-negative parameter, and investigate the time asyimpolution
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dynamics for different values gf and different schemes. A similar approach for the analy-
sis of absolute stability has been used2n5]. We report here the results for the sake of
completeness.

By standard arguments on finite difference equations, wainlhat the solution com-
puted by our scheme asymptotically vanishes if the roote@pblynomial

pAR pAh

T — 1 pAR T — 1
1—67071 7’2—(1+(6pj\r’1—1)(1-}-0—0))7’—0167—0
P P P

are strictly inside the unit circle in the complex plane. Wess that fop — 0 we recover
the characteristic polynomial of the method®\. In Figure 3.1 we report the region of
absolute stability of FE, AB2*, and AM3, respectively. The shaded region is the region
of absolute stability of the corresponding traditional tratép method. As expected, when
gets larger the region of absolute stability increases hadhrtethod at hand tends to become
unconditionally stable (and exact for the model problem).

This analysis gives an interesting perspective on the ndstaddressed here, which can
be considered a sort of “stabilization” of traditional sofes, obtained by limiting the accu-
racy to the second order.

Observe that fop < —1 and\ < 0, we have\, < 0 and);, > 0, which is the situation
we have from the linearization of problems coming from ateqthysiology. In this case, the
region of absolute stability covers the entire half plane.

3.4. Positivity properties. As pointed out previously, one of the interesting featurfes o
the Rush-Larsen scheme when applied to the gating equatidhat the numerical solution is
guaranteed to belong to the inter@l 1]. Here, we investigate the positivity properties of our
schemes, giving a rigorous proof that holds also for the Riesisen scheme itself. For the
sake of simplicity we consider the scalar case. The extarisithe vector case, for diagonal
exponential matrices, can be carried out component-wiseus start with some assumptions
on the continuous problems, which are, in particular, §atiSor the applications of interest
here.

Let us suppose that there exist a functadn, y) < 0 and constant&’;, Ko, such that

(3.13) at,y)ly — K1) < f(t,y) <at,y)y — K2), VyeR,te(0,T]

Theny € [K;, K] provided that)® € [K7, K5] (in the case of gating variablés, = 0 and
K> = 1). This can be proved considering the subsolugcand the supersolutiop, which
satisfy the equations,

d —
314) Y —aty)ly - K) { W aum@- )
y(0) = o 7(0) = yo.

We have thay < y < 7. We claim thaty > K. In fact, multiplying the first equation in
(3.14 by (y — K1), we get

%%(E —K))? = a(t,y
Hence, sincéy — K7)? is non-increasing in time, if there existse [0, 7] such thaty(r) =
Ky, theny(t) = K, forall t € [r, T]. With same arguments we conclude tét) < K.
HenceK; <y <y <7 < K.

PROPOSITION3.5. Under the assumptior3(13, the scheme2(5) with non-negative co-
efficientsc_1, ¢y and ¢;, has a numerical solutiony” € [K;,K>], provided that
yo S [Kl, Kg]

)y — K1)* 0.
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Proof. Letb(¢,y) = f(t,y) — a(t, y)y. Application of our scheme yields

1 1 pnt3s
n+1 a"tan n a"tzp
=e +1—e — .
Yy Y ( ) ( anJr% )

We start assuming tha"z andb”*2 do coincide exactly witta(¢"*2) andb(t"+2).
Observe that from our assumptio§, < b"*é/a“% < Ks,. Under the assumption
(3.13, if y € [K,, K>, theny™t! is the convex combination (with coefficients " *" and
1- ean+%h) of terms belonging to the randé;, K»|. Hence,y"*! belongs to the same
range. By induction, we conclude thgt belongs td K, K»] wheny® does.

Now, we have to investigate the impact of the approximatm’rrs% ~ a(t"Jr%) and
brts ~ b(t"Jr%) on this statement. If the three coefficients, cq, ¢c; are nonnegative, then
the combination still has positive coefficients an§% is in the rangéK, Ks). a

Notice that the latter proposition includes the schemes EBI*, and M#)* with 6 > 0.
In particular, this proposition does not include scheme AB&e specifically analyse AB2
in the next proposition.

PROPOSITION3.6. Let f(t, y) satisfy the inequalities3(13 with a constant,y® €

[K!, K?]. Then the scheme AB such that the numerical solutigft belongs tg K, K]
under the condition

log(2)
3.15 h< .
(3.15) e

Moreover, if the initial conditions are such that

3 ah 1 ah 1 O 3 ah 1
. S < g
(3.16) (26 2) Ky <e h<1> b 5¢ 5 Ko,
the restriction o can be relaxed to
(3.17) h < 083)
Y

Proof. Notice that whemny™ fulfills (2), thenu™ := y™ — K satisfies the schem&*! =

u" + hd(ah)(@u™ +b" %), whereb" " ? .= 26" - %6 andb” :=b" +aK"'. In fact,

n—1

u”"'l e yn+1 — Kl = yn —+ h@(ah) (ay" + bn-’_%) - Kl
(3.18) —y" — K' + hd(ah) (a(y” — KY 4 (bt 4 aKl))
JUPSIS |
= u" + hd(ah) (au" +h *2) .
Moreover 8.13 impliesd”™ > 0. Analogously, = K? — y™ satisfies the same scheme,

with b" := —b” —aK? andb” > 0; hence, by proving that™ > 0, we prove that
y" € [KY K?. We prove thatu™ > 0 by induction. Let us define

1on-
s = edhyn htI)(ah) B""'. We have
1. s > 0. More precisely,

st = eyl — hd(ah) b

N =
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which is nonnegative wher$ (L6 holds; otherwise, since' = 40 + hd(ah)b’,
s! can be written as

Sl 2ah O + h@(ah) ( . _) 607

o . 1 .
which is nonnegative wheﬁeah — 5) >0, i.e., when 8.15 holds.
2.5">0 = s"T'>0,n=1,...,N — 1.

3en 1ean—
In fact,u™+! = 3"y + hd(ah) <§b - §b 1). Hence

(3.19) s"tl = ehyntt — h@(ah)%f)
= e3h [ ahy" 4 hd(ah) (56 - 16"‘1” - hcb(ah)lB"
2 2 2
1
2

=l {eahu" — h®(ah) ~n1} +h®(ah) (§eah— 1) b"

2 2
ah .n ah I\ gn 3 ah 1\ gn

> s 4+ hd(ah) | e ~3 b > h®(ah) b

. . 3 ., 1 . .
The last term is nonnegative wh n2—ea ~3 > 0,i.e.,when8.17) holds (notice

. 1pon— :

thats” > 0 = ™ > 0, sincee?"u” > +h<I>(ah)§b ' > 0; for this reason
b > 0).

Hence, by inductions™ > 0,n =1, ..., N. This impliesu™ > 0. d

Restrictions orh (3.19 and @.17) are to be compared with those of AB2], namely,
h < 3\a| andh < 9\a| respectively. Positivity bounds dnfor AB2* are significantly less
restrictive than those for AB2.

4. The scheme at work.In this section we show how to use the proposed scheme for
the solution of systemil(1). We consider the vector form of scheniej),

(4.1) {y? —yr+hd@ 2R @ Ry b ) =0, N, i=1,...,m,
y(0) =y",

where vectors with entries; andb; are denoted by andb. We takea = [0,a”,07]7 and
b = [I,b",g”]". Hence, the scheméd () reads as follows,

}llunJrl — hun +C,1]n+1 +C()In +Cl I 1
1
n+1 n+z n-l— n+ .
Fwith = 1wl + (a; zh)(ai 2wl +b, 2 i=1,...,m,

(4.2) X = 21X e g +cog" 418" 11
u(0) = ug, w(0)=wp, X(0)=Xo,

forn =0,...,N. We takeI=! = IY andg~! = g°. The following results are obtained
using the Luo-Rudy phase | model with the following currdimsilus,

1
(4.3) Iy = Imaa (2 2 €08 (27T )) <ty Imaz = 60uA, t, = 1ms,
0, t 2>ty
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andC,, = 1u F. We refer to the discret&? norm of the components of solutigit, defined
by

N—-1
1 2 2
lyill =\ 5 2 [0 + ()] =),
n=0
: . (") — oyl . : .
The relative error is computed asax W In the following simulations,
v Yi

we will takeT" = 450 ms. In Table4.1we corhpare the relative errors for different time-
steps using our explicit method ABZFE*, and their corresponding multistep methods, AB2
and FE. The “reference” solution, i.e., the solution usedh&sexact one, is obtained by
solving the system with the Matlab functionle45 with parameterfel Tol andAbsTol

set respectively tée — 9 andle — 12. Results confirm that the AB2nethod is second order
accurate versus the first order accuracy of the Rush-Larsthad. Observe that for tiny
time-steps multistep methods feature slightly better emmuthan the corresponding starred
methods. However, their stability constraints are morgigive, requiringh ~ 0.01 ms.

TABLE 4.1
Relative error using different time-steps and the methd8i2*AFE*, AB2, and FE.

h errre; AB2*  err. FE*  err,. AB2  err,. FE
2e-1 1.03-1 1.02e-1 NaN NaN

le-1 8.73e-3 6.72e-2 NaN NaN

5e-2 3.64e-3 3.98e-2 NaN NaN
2.5e-2 | 1.28e-3 2.16e-2 NaN NaN
1.25e-2| 3.63e-4 1.12e-2 NaN 6.65e-3
6.25e-3| 9.71e-5 5.65e-3 5.65e-5 3.33e-3

4.1. Predictor-corrector strategy. In this section we recast our schemes in a predictor-
corrector (PC) framework; for an introduction to predictmrrector schemes, see, e.d.6|
24]. Let y™ be the solution obtained with the predictor scheme (expliendy™ the one
obtained with the corrector scheme (implicit); fgtand¢; be the coefficients of predictor
schemed_; = 0) andc_1, cq, ¢1 the coefficients of the corrector scheme. The PC time
discretization of systenil(1), forn = 1,..., N, reads

Tt = fun 4G I" e I
1
) 1entl 1 —ntggy (ntg 7nts C_
P:q wm = qwl + 0(a, Zh)(ai 2wl +b; , i=1,...,m,
1xn+l 1 = = -1
(4.4) FXH = X" +20g" +e g
: L+l — lun_i_c fn+1 +eol™ + ¢ I 1
h — % —1 0 C1 )

n+i n+i ~n+i .
C:{ Lyt = Lyn 4 o((a) 2h)(ai 2 Wi + b ) i=1,...,m,

FXMH = X" e 18" +cog™ + 18",

where/™*! andg”*! are computed using the predictor solutiaris !, w™+!, X"+ and
(4.5)

@t —gpa" +za", BT =gb" + b,

a"tz = c_1a(a™t) + coa™ + c1a™ L, brts: = c_1b(a" 1) + cob™ + ¢;b" 7L,
= (¢o +7¢1)a’, bt — (¢o +¢1)b?,
c_ra(@l) + (co+¢1)a’, b2 =c_1b(al) + (co + c1)bC.

S
Wl ol

Q>
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TABLE 4.2
Relative errors using different time-steps for the prasfictorrector methods AB2CN*, FE*-CN*. The re-
sults in the first two columns refer to the PECE approach, thesan last two columns to the PEC approach.

h AB2*-CN*  FE"-CN" AB2"-CNpp~ FE*-CNpge
2e-1 3.41-2 5.65e-2 NaN 4.26e-2

le-1 9.02e-3 2.33e-2 1.50e-2 3.04e-2
5e-2 2.97e-3 7.72e-3 4.15e-3 1.26e-2
2.5e-2 | 6.954 2.23e-3 9.00e-4 3.95e-3
1.25e-2| 1.57e-4 6.03e-4 1.85e-4 1.09e-3
6.25e-3| 3.77e-5 1.58e-4 4.16e-5 2.88e-4

TABLE 4.3

Relative errors using different time-steps for the preaficiorrector methods AB2AB3*, FE*-AB3*. The
results in the first two columns refer to the PECE approachilenh the last two columns to the PEC approach.

h AB2*-AM3* FE*-AM3* AB2*-AM3%.. FE*-AM3% ..
2e-1 6.44-2 4.07e-2 NaN 3.94e-2

le-1 7.84e-3 2.02e-2 1.19e-2 2.91e-2
5e-2 2.67e-3 7.03e-3 3.75e-3 1.26e-2
2.5e-2 | 6.76e-4 2.07e-3 8.73e-4 4.02e-3
1.25e-2| 1.62e-4 5.60e-4 1.91e-4 1.13e-3
6.25e-3| 4.13e-5 1.47e-4 4.51e-5 2.98e-4

In Tables4.2 and4.3 we show relative errors for different predictor-correcéshemes. We
note that the best performances are obtained using a secdadpedictor scheme with a
PECE approach; for definition of PECE and PEC approach, sgef [24]. As expected,
the differences between PECE approach and PEC are morenewiden large time-steps are
used.

5. Time adaptive strategy. Using an error estimate based on the PC scheme, we devise
a time-adaptive strategy.

5.1. A posteriori error estimation. Our estimate for the errgfy (1" 1) — y"*1| is
based on the computed solutigris™ andy™*!; for multistep methods this estimate is called
Milne’s estimate; seelff]. We start considering a predictor-corrector couple ofosetorder
schemes, with parametets andd.., respectively. From3.2) we have, fori = 1,...,m,

(5.1)
Bt = i

= (&= %) (alm)me) = BY()h® + 5 (2 ()b — bl () + o(h®),

(4

2

= (&%) (@Y (")w(t™) — b (")) 1 + y (@4(E)by — arbl(t™) P + ofh?).

Subtracting equatiorb(1); from (5.1), we have

2
gt + o(h3).

62 (@) = bR = g (]
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TABLE 5.1
Relative error using different time-steps for the prediatorrector methods AB2AB3*, FE*-AB3* corrected
by local extrapolation. The results in the first two columefer to the PECE approach, while in the last two columns
to the PEC approach.

h AB2*-CN! AB2*-AM3} AB2*-CN!_,p- AB2*-AM3}_ ..~
2e-1 NaN NaN NaN NaN

le-1 8.16e-3 8.06e-3 4.46e-3 4.59e-3

5e-2 3.84e-4 3.91e-4 1.91e-3 1.92e-3
2.5e-2 | 4.88e-5 4.91e-5 3.48e-4 3.49e-4
1.25e-2| 7.03e-6 7.03e-6 4.97e-5 4.97e-5
6.25e-3| 4.35e-6 4.35e-6 9.48e-6 9.48e-5

Substituting the latter equation intb.()2, we have
(5.3)
I
gt~y = ?93 (g™ = 97™") + g5 (aj(t™)by —apbi(t")) h® + o(h®).
In view of ana posteriorierror estimator, the first derivatives afandb can be approximated
by forward differences,

1
a;(t")b; —aibi(t") = 7 (ai*'b} —aj bi*!) + O(h).
Therefore, we obtain the error estimate
(5.4)
n+1 n+1 0‘3 - % n+1 ~n—+1 1 n+l pn npntl 2 3
yi(t )_yi = (yz —Y; )+_(ai bi —a; bi )h +0(h )
0, — 6, 12

For first order predictor-corrector pairs with, # w. (both# 1/2), we get the following
error estimate,

1
We — 35 n %

(55) y(tn-ﬁ-l) _ yn+1 — ~ _(j (y +1 _ y +1) + O(hQ).
D c

In principle, these estimates can be used to improve théisolto get a third order method
(local extrapolation). As a matter of fact, once the error estim®&*! is computed with
the boxed terms above, we compgte'! = y"*! + E"*! raising by one the order of the
method. In Tablé.1we show relative errors of predictor-corrector schemesemted with
this a posteriorierror estimation. We observe very slight differences betwte schemes,
the PECE approach performing better than the PEC approdgselschemes are more accu-
rate than the second order ones (compare Talileith Tables4.2and4.3), even if stability is
affected by the extrapolation. Moreover, using this locatagolation, we loose the favorable
positivity properties of the non-corrected schemes.

5.2. Time adaptive schemesGiven a vector of tolerances (possibly a different tol-
erance for each variable), we look for the largest time-stegh thatE?* < 7;,i =1,...,m.
Using a first order method” ~ K,h?, whereK is a constant vector, E" is the error ob-
Ti

n

K2

tained with a time-step, then using a time-stelp = min h , we can obtain an errdt
3

such thatEf ~ 7; for somei. Similarly, using a second order method, the optimal tireg-s
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—x—FE* E
—o—AB2*
AB2'-CN;,_ |

10 10

FIG. 5.1. Relative error curves as a function of the average stepsing the FE scheme, the AB2scheme,
and the time adaptive algorithm with the ABEN* scheme with PEC approach.

is given byh = min A 3 % see [LG]. In our simulations we weighted the tolerances based
i\ B

on the infinity norm of thé components of the solution; herfieethe Luo-Rudy model from
Figurel.1, we getr = 7[84, 1, 1, 1, 1, 1, 1, 7e — 3]T. The time adapting algorithm reads,
therefore

While t" < T

1. Compute 3”1 and y™*! with time-step h.

2. Compute the error E"*1,

3. If B < 7 then t" ! =" 4 h,n 4 1.

4. Compute h, set h = 0.95h (0.95 is a precautionary parameter).
We define the recomputed percentages the percentage of the number of times the condi-
tional expressioR is false over the total number of stepsSince the time-step is no longer
constant, we need to recompute the coefficients of our schierparticular, ifv = " is the
ratio between the time-step at the current iteration andithe-step at the prewous |terat|on
we takec_1 = c_1, ¢ = ¢o + c1(1 — v) andé; = ve; as the coefficient of the variable-
step scheme. Writing the Taylor expansionsd@f% andb™*z and taking into account that
tnHl — ¢ = prFl = pandt™ — "1 = b = 1, we obtain

56 an+%1 =a" +@al(t,)h + éf\”(tn)%:—l- o(h?),
b2 = b" + &b/ (t,)h + Ob" (t,) 2 + o(h?),

¢
withw = ¢_1 — —1 =wandd =é_; + — . The local truncation error expressiori 1),
I/

(3.2, and error est|mate§(4) and 6.5) still hold whend is replaced wittg.

REMARK 5.1. From now on we will consider only a second order timepdigta PC
method. First order methods are used only in the first stemse/terrors are estimated by
(5.9. In particular, we use FEas predictor and BE (Backward Euler) as corrector.

We solve the Luo-Rudy system with our time-adaptive al@ponit More precisely, we se-
lect the predictor to be AB2and use different correctors, namely AMEN*, and M0.6)*.
Results are shown in Tabfe2. M(0.6)* is more stable than CNeven if slightly less accurate.

In Figure5.1, we compare the error curves as a function of the averageisteging the
Rush-Larsen scheme, the AB&heme, and the time adaptive algorithm with the AB2\*
scheme with PEC approach.
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TABLE 5.2
Average time-stefh, recomputed percentage and relative error of the solution computed using différen
predictor-corrector methods with time adaptive strategydifferent values of tolerance.

AB2*-AM3* AB2*-CN* AB2*-M(0.6)*

T h r err h r err h r err
2.5e-2 1.25 3% 4.18e-2] 1.23 4% 3.65e-2] 1.24 3% 3.91e-2
5e-3 | 7.29e-1 3% 3.21e-3 7.23e-1 3% 2.94e-3 7.25e-1 3% 3.44e-2
le-3 | 4.27e-1 2% 2.18e-3 4.25e-1 3% 9.09e-4 4.24e-1 2% 4.90e-3
le-4 | 1.99e-1 1% 5.58e-4 1.98e-1 1% 2.31le-4 1.97e-1 1% 5.58e-4
le-5 | 9.25e-1 & 1.14e-4| 9.19e-2 6, 7.31e-5| 9.17e-2 T 1.42e-4
le-6 | 4.30e-1 6% 2.43e-5| 4.27e-2 F 1.96e-5| 4.26e-2 Zo 3.64e-5

TABLE 5.3

Average time-step, recomputed percentage and relative error of the solution computed using the premi
corrector method AB2CN* with time adaptive strategy for different values tolerance From left to right, the
solution is computed, respectively, with a PEC approacth @wiPECE approach and local extrapolation, with PEC
approach and local extrapolation.

AB2*-CNp 5o AB2*-CN; AB2*-CN’_ ppc

4T h r err h r err h r err

2.5e-2 1.19 10% 3.10e-2 1.18 8% 2.51e-2] 1.20 9%  2.22e-2
5e-3 | 7.22e-1 4% 3.54e-3 7.22e-1 4% 4.73e-3 7.22e-1 3% 7.28e-3
le-3 | 4.25e-1 2% 1.38e-3 4.25e-1 2% 9.30e-4 4.25e-1 2% 2.75e-3
le-4 | 1.98e-1 1% 2.25e-4 1.98e-1 1% 1.19e-4 1.98e-2 1e% 4.13e-4
le-5 | 9.19e-2 T 5.50e-5| 9.19e-2 To 1.48e-5| 9.19e-2 T 4.79e-5
le-6 | 4.27e-2 3w 1.75e-5| 4.27e-2 3 1.66e-6| 4.27e-2 o 5.13e-6

6. Monodomain and bidomain systems.The bidomain model is one of the most pop-
ular and accurate model to describe the propagation ofraptitential in the myocardium. A
mathematical derivation of the bidomain model is discussdd]. Well-posedness analysis
results on bidomain system coupled with different ionic misdare presented ir2y, 28],
while several simulations of the action potential propagatising monodomain and bido-
main systems can be found in, B]. A possible formulation of the problem reads

(6.1)
8u 1 )\Dz 1 )\Dz - De .
V. - . ¢l =1 Q T
ot oV (1+)\vu> N < T+ A V“) in §2>< (0,77,
—V - [D;Vu + (D; + D) V] = xlupp in Q x (0,77,
n’D;(Vu+ Vu®) =0 onoQ x (0,7,
n’D, Vu¢ =0 onoQ x (0,7,
Joutdx =0 in (0,71,
u(x,0) = ug, u(x,0) =0 in Q,
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with the ionic current equations

OX _ g(u, X, w) inQ x (0,7),
ot

6.2 )

(62) aaut}l = a;(u)w; + b;(u) in Q x (0,7,

X(x,0) = Xo, w(x,0) =wgy in Q.

Here( is the spatial domain,® is the extracellular potential)? andD¢ are the intracellular
and extracellular conductivity tensors, apdhe membrane area per unit tissue. The source

terms I,,, and I are defined, respectively, ad,,, = I. + I¢  and

] app app

1 /\Illlpp — Ispp i e iad i
I = o\ T T Lion |, wherel,, and I, are the applied intracellular and
the extracellular current stimuli. The current stimuli meatisfy the compatibility condition
Jo Ik, + I¢,,) dx = 0. In the sequel we také, = —I¢,, = I°?". The coefficient\
is chosen in such a way thaD; ~ D. in order to weaken the coupling between the first
and the second equation. Under the (in general not reglestsumption that the conductivity
tensordD; andD, are proportional, the bidomain system can be reduced to tredomain
system, and computation aefand«° is decoupled. The monodomain system reads

u _ V- (DMVu) =T inQx(0,7),
(6.3) ot
n"DMVy =0 onoQ x (0,7,
. - L M 1 AD; .
together with 6.2) and the initial conditioni(x, 0) = ug(x). HereD" = VRERDY is the
XCm

1

conductivity tensor and is defined ad = c

(Iapp - Iion)-

6.1. Monodomain model discretization. In the time discretization of§(3) we treat
implicitly the diffusion term in order to avoid small timeeps. Usually the monodomain
system is discretized as

Fu"tt =V (DMVurt) = Lun 4 I
(6.4) Fwitt = Tyl + ®(alh) (afw? +07), i=1,...,m,
%Xn+1 — %X" _i_gn’

forn = 0,...,N. The PDE is solved by a SBDF scheme, an IMEX,[5] method which
combines Backward Euler with FE schemes. The gate variabiesolved by the Rush-
Larsen method and the concentration variables by FE. Wethialmethod SBDF-FE An-
other common discretization of the monodomain model is ptaiee, in the first equation of
system 6.4), I" by I(u™, w"™1, X" *1), Since this is similar to a Gauss-Seidel substitution
approach, we call this method SBDF-FES.

A second order scheme can be achieved using the*ABReme for the gate equations,
AB2 for the concentration equations, and a second order IMEXeme for the PDEs. We
choose the CNAB scheme, combining the CN scheme for thesiliffiterm and AB2 for the
forcing term (according tog] the CNAB scheme is effective for solving the monodomain
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equation). In this case the discrete system reads

Fu"tt — 2V (DMt = fut 4+ 3V - (DMVu) + 210 - S,
(6.5) Lyt = Ly 4 d(a) 2 h) (a:’*z ?+bf+2) L i=1,....m,
IXrtl = IXn 4 Sgn — Lgnt,
forn = 1,...,N, where we sef ' = 1°, g~! = g% anda™t3, b"*2 are chosen as in

(26) with c_.1=0,¢c0= %, andc1 = —%.
This scheme becomes unstable for time-steps largenthanand oscillations persist for
time-steps larger thaf.5 ms. In order to overcome these problems and reduce at the same

time computational efforts, we apply our time adaptive scbe We still treat the diffusion
term implicitly also in the corrector scheme. This proceddioes not affect the error estimate,
since B.1), (3.2, (5.4), (5.9 still hold. The entire time-discretized monodomain peahl

reads

(6.6)
Fantl = 1un 46 V- (DMVu") + 6 V- (DMVur—1) 46 I + 6 1"
1 1 — 1
P Lptt = Lyn 4 o(@tin) (a?“w;l +b?+2) L i=1,...,m,
%X"H =+X"+Cg" +ag"
%u’”l —c_ 1 V- (DMyyrtl) =
o %u" +coV - (DMVu") + 1V - (DMVu1) + e 1 1"+ coI™ + 1 177 Y,
. 1 1 ~ 1
) Reptt = bep oI (@ T 4007 i1, m,
FXM = 2X" e 18" gt + gt
forn = 1,..., N, wherel"*! andg™*! are computed using the predictor solutiaifs™,

Wil X+l andant 5" % @}, andat} are defined as ind(5). We solve the system
(4.4) for the 1D Luo-Rudy model. Space discretization is carnatiwith a Galerkin linear
finite element method. This choice is motivated in view ofexting these computations to
the 3D case. We considér = (0, /) and introduce the grid pointsz, }o given by, =
kdx, wheredz = NL is the grid spacing. We approximagg with (y}!); = fo;o Uik Pk
where{gok}évc is the Lagrangian base for the space of piecewise lineairaanis functions
on (). We define the 10.%(2) norm with a trapezoidal rule, namely,

M—-1

i = |5 2 | (520)"+ (#20) ] 6o

k=0

We refer then to the space-time nofiity?);|| s« corresponding to the spad&(0,7'; L*(12)).
[(yh)i — yilar, t)[]st

o _ yi(zr, t)| st
following simulations, we tak& = 500, [ = 5¢m, N, = 500 and

1_1 t
(6.7) Lopp(t, ) = Inaa (2 5 cos (27Ttp)) , <y, .CC < Tp,
0, otherwise

The relative error is given bynax . Unless stated otherwise, in the
K3

wherel,,q.. = 60pA, t, = lms andz, = 1.5mm. As reference solution we consider
the one obtained using the predictor-corrector scheme*ABY*, adapted in time, with
T =1le—9andN, = 500. We are interested in time discretization errors, heneergference
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TABLE 6.1
Relative errors using different time-steps for the met®BOF-FE, SBDF-FE -GS, and CNAB-AB2 The
results in the first two columns refer to the PECE approacthileah the last two columns to the PEC approach.

h SBDF-FE© SBDF-FE-GS CNAB-ABZ2
2e-1 4.47e-1 5.14e-2 NaN
le-1 3.09e-1 6.85e-2 4.67e-2
5e-2 2.12e-1 5.71e-2 4.24e-2

2.5e-2 1.48e-1 3.71e-2 1.86e-2

1.25e-2| 1.02e-1 2.17e-2 5.52e-3

6.25e-3| 6.59e-2 1.18e-2 1.46e-3
TABLE 6.2

Average time-step, recomputed percentage and relative error of the solution for the monodomain model
computed using different predictor-corrector method$wiine adaptive strategy.

AB2*-CN* AB2*-CNp e AB2*-M(0.6)prc

T h r err h r err h r err
le-1 | 5.92e-1 1% 2.57e-1 4.78e-1 7% 1.71e-1 4.87e-1 28% 9.53e-2
2.5e-2| 3.63e-1 6, 3.96e-2| 3.43e-1 Yo 4.04e-2| 3.42e-1 15% 3.19e-2
5e-3 | 2.14e-1 6 2.90e-2| 2.11e-1 & 2.70e-2| 2.14e-1 Vo  2.13-2
le-3 | 1.26e-1 G 1.34e-2| 1.26e-1 % 1.30e-2| 1.24e-1 13% 1.10e-2
le-4 | 5.70e-2 11% 3.14e-3 5.77e-2 7%  3.06e-3 5.53e-2 17% 2.67e-3
le-5 | 2.62e-2 11% 6.21e-4 2.62e-2 10% 6.20e-4 2.55e-2 17% 6.13e-4

solution is computed on the same grid used for the other nigalesolutions. In Tablé.1
we report results obtained for different time-steps, ushegSBDF-FE, SBDF-FE -GS, and
CNAB-AB2* schemes. In Tablé.2we report results obtained with the ABZN* scheme
and the predictor-corrector scheme ABRI(0.6)*. In Figure6.1 we report relative error
curves as a function of the average time-stepsing the SBDF-FE scheme, the CNAB-
AB2* scheme, and the time adaptive algorithm with the AB2N* scheme. Second order
methods with) < % used as correctors and methods corrected with local exttipo present
instabilities.

Our numerical methods are robust with respect to the speglution as shown in
Table 6.3 where we compare the average time-steghe recomputed percentage and
the relative error for different mesh sizes. The referermat®ns are computed using the
different grids and taking a tolerance definedras- 1e — 9. The recomputed percentage
increases on coarse grids, whiland the errors are fairly insensitive.

TABLE 6.3
Average time-step, recomputed percentage and relative error of the solution for the monodomain model
computed on different grids, using ABEN}, ., . scheme with time adaptive strategy.

AB2*-CNppc, 0 = % AB2*-CNp e, 0x = % AB2*-CNp ey 0 = %
T h r err h r err h r err
le-1 | 5.18e-1 30% 1.57e-1 4.80e-1 18% 2.11e-1 4.78e-1 7% 1.71e-1
2.5e-2| 3.58e-1 27% 5.97e-2 3.55e-1 16% 3.11e-2 3.43e-1 %o 4.04e-2
5e-3 | 2.21le-1 22% 5.32e-2 2.15e-1 Y% 3.56e-2| 2.11e-1 8w 2.70e-2
le-3 | 1.31e-1 10% 2.30e-2 1.27e-1 8, 1.65e-2| 1.26e-1 5 1.30e-2
le-4 | 6.10e-2 8% 3.69e-3 5.89e-2 3% 3.56e-3 5.77e-2 7%  3.06e-3

le-5 | 2.82e-2 4% 5.33e-4 2.71e-2 5% 6.77e-4 2.62e-2 10% 6.20e-4
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, —*— SBDF-FE -GS

—6— CNAB-AB2"
AB2'-CNy,_

10 10 107 10

FIG. 6.1. Relative error curves as a function of the average stepsing the SBDF-FE scheme, the CNAB-
AB2* scheme, and the time adaptive algorithm with the ABA* scheme with PEC approach.

REMARK 6.1. The 3D bidomain problemA complete analysis of the results of our
solver coupled with the (2D-3D) bidomain complete modelgdnd the scope of the present
work. However, we want to address briefly a possible strateggn efficient coupling of the
PDE solver and our method. Usually, the bidomain system idemrin a symmetric form
featuring the two variables® and u®, whereu! = u + u¢ is the intracellular potential.
However, if we resort to the non-symmetric form, in the potdii step we can avoid solving

the second equation of the system. The time-discretizedlgmoreads, fon = 1,..., N,
(6.8)
Fantt = 1un 46 V- (DMVu") +¢, V- (DM Vur1)
+2 V- (DAVu)") +¢ V- (DAV ()" 1) + ¢ I" 4+, I 1,
. 1 1 —n4+1
PN garet = rur v a@ in (o L er 45,
Ixntl = 1Xn 4 gyg" + ¢ 8",
Fu — e 1 V- (DMVurt) — ey V- (DAV(uf)" )
= qu" +coV - (DMVu") + 1V - (DYVu" ™) + ¢V - (DAV(uf)")
+e1V - (DAV(u®)" 1) + e I 4 o™ + ¢ I,
. =V [DiVurt + (D; + D)V (u)" ] =0,
fQ(ue)"Jrldx =0,
1 1 ap41
Lot = L @) n) (a7 wp 4077,
FXH = X" e 8" 4 cog” + a1 g™
whereD® = _1_2Di-D-  The terms/"*!, g"*!, @, b", a", b are defined as in the
XCm +X
system 6.6).

Most of the computational effort is required by the solutmfithe PDE system in the
corrector step. An efficient way to solve this system is pné=gin [L(]. A detailed analysis
of 3D bidomain results with our method is presented elseejsze P1].

7. Conclusions. We presented a generalization to the popular Rush-Larsémoaeased
for solving nonlinear ordinary differential systems foetionic dynamics in electro-physiology,
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in particular for the cardiac potential propagation. Weeexted the method to a class of sec-
ond order schemes. These schemes fall into the set of expi@retegrators, even if peculiar
linearization performed in their formulation makes therfiedent from other schemes previ-
ously proposed.

These methods also can be regarded as a generalizatiorssicalamultistep methods
whenever the problem at hand is naturally split into a lireeat a nonlinear part. We have car-
ried out the analysis of the schemes, including the Ruskdrascheme which to the best of
our knowledge has not been analyzed before. One of the rdlpvaperties of these methods
is that they can preserve bounds for the solution. Analyls@vs that the approach pur-
sued here improves the absolute stability properties ottmeesponding multistep scheme,
as numerical results confirm. The major limitation of our Eggeh at this time is the accu-
racy, which is limited to the second order as a consequentieedinearization procedure.
Nevertheless, the methods are accurate enough to be usslistic electro-cardiology sim-
ulations.

We presented an extensive discussion of the predictoectmrformulation of our method
for problems in electro-physiology and on the time-adapiimplementation, which is of
paramount relevance in cardiac applications. Prelimimasylts carried out on a simplified
1D model for cardiac potential confirm the effectiveness wf approach in view of more
realistic simulations over 3D domains.

Appendix A. We describe the Luo-Rudy model phasé.7][ The variablesw, X, and
functionsI, a, b, andg of the system1.1) are specified as follows. We made slight mod-
ifications of the original model in functionsy,, 8, «;, 8;, andX; in order to make them
continuous. The modifications are only of the inequalities.0

w=[hjmdfX],

a=—[(an+6r), (aj+B), (am + Bm)s (aa+ Ba), (ay+ B), (ax + Bx)]T,
b=[an aj am aq ay ax]’,

X =[Ca], g=-10"*I;+0.07(10~* = Ca),

Lion = Ir1 + Ik, + Iy + I + INa + L,

up = —84mV, Xg=2e—4mM, wo=/[110010]7T,

where the gating functions are defined as follows:

INa =23 m3 h] (u — ENa)a ENa = 544mV,

ap = 0.135¢ 55",

5 { 0.13 (1 + e—%) , u > —38.7381,
.

| 3.5660079u 4 3.1 105035, 4 < —38.7381,
(1 + 37.78) (—1.2714 - 10° 024440 _ 3 474 . 105 ¢~0-04301u)

U= 1 + ¢0311(ut79.23) . u< —37.78,
’ u> —37.78,
0.3¢2-535:10" Tu

g =] 1+e 013’ u > —39.826,

J ~0.01052u
0.1212
: u < —39.826,

1 4+ ¢—0.1378(u+40.14)’
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u+47.13 o
Ay = 0321 —e_0~1(u+47-13)’ Bm = 0.08¢ T,
e—0.0l(u—S) 8—0.017(u+44)
ag = 0.095- e 0.072(u—5)’ fa=0.077 T e0.05(utdd)’
6—0.008(u+28) 6—0.02(u+30)
ay = 00125y By = 0.00657 T e 0.2(ut30)’
e0.083(qu50) 870.06(u+20)

lonic currents are defined as follows:

Isi = 009df(u — Esi),
E. = 17.7—13.0287In(Ca),
Ix =G XXi(u—Eg), Eg=-77.01mV, Gg =0282/% K, =54mM,

X;

5.4°
60.04(u+77) -1
_ 2.837(u e U ~100.05,
1, u < —100.05,

IK1 = EK1%(U - EK1)7 EKI = —87.26mV, 6}{1 = 0.282 KZ,

a1 = 1.02

ax1+BK1 5.

1
1+ €0-2385(u—Ex1—59.215) ’

0.4912460,08032(u7EK1+5.476) + 80.06175(u7E'K17594.31)

Prer = 1 4 ¢—0.5143(u—FEk1+4.753) )
IKP = 00183Kp(u — EKP)’ EKp — EKla

Ky

1

1

7.488—u

1+ e 5098
— 0.03921 (u + 59.87),
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