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AN EFFICIENT GENERALIZATION OF THE RUSH-LARSEN METHOD FOR
SOLVING ELECTRO-PHYSIOLOGY MEMBRANE EQUATIONS ∗

MAURO PEREGO† AND ALESSANDRO VENEZIANI‡

Abstract. In this paper we describe a class of second-order methods forsolving ordinary differential systems
coming from some problems in electro-physiology. These methods extend to the second order of accuracy a previous
proposal by Rush and Larsen [IEEE Trans. Biomed. Eng., 25 (1978), pp. 389–392] for the same problem. The
methods can be regarded in the general framework of exponential integrators following the definition of Minchev
and Wright [NTNU Tech. Report 2/05 (2005)]. However, they dodiffer from other schemes in this class for
the specific form of linearization we pursue. We investigatethe accuracy, stability, and positivity properties of
our methods. Under simplifying assumptions on the problem at hand, our methods reduce to classical multi-step
methods. However, we show that in general the new methods have better stability and positivity properties than the
classical ones. We present a time-adaptive formulation which is well suited for our electro-physiology problems. In
particular, numerical results are presented for the Monodomain model coupled to Luo-Rudy I ionic model for the
propagation of the cardiac potential.
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1. Introduction. In this paper we propose a numerical method designed to solvesys-
tems of Ordinary Differential Equations (ODEs) coming fromcell-membrane models for
ionic currents and voltages. Starting from the Hodgkin-Huxley model [11], developed in
1952 to describe the action potential in giant squid axons, several cell-membrane models
have been developed, in particular for cardiac cells. We mention, for instance, the Beeler-
Reuter model [1], the Luo-Rudy phase I model [17] and the Winslow model [14] developed
for the ventricular cells, and the Courtemanche model [4] for the atrial cells. All these models
can be written in terms of the transmembrane potentialu, the vector of the gating variables
w and the vector of the ionic concentrationsX, as follows,

(1.1)
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























∂u

∂t
= I(t, u,X,w),

∂wi

∂t
= ai(u)wi + bi(u), i = 1, . . . , m,

∂X

∂t
= g(u,X,w),

for t ∈ (0, T ], with initial conditionsu(0) = u0, w(0) = w0 andX(0) = X0. I(t, u,X,w)

is the source term defined asI(t, u,X,w) =
1

Cm

(Iapp(t) − Iion(u,X,w)), whereCm is

the membrane capacity,Iapp is an applied current stimulus, andIion is the ionic current.
Iion, g, a, b, u0, w0 andX0 depend on the specific ionic model; in the case of Luo-Rudy
phase I model, see AppendixA for functions and parameters definitions and Figure1.1 for
the graphs of the variables. Functionsa andb of the potentialu fulfill the following in-

equalities:ai < 0, and

(

−
bi

ai

)

∈ [0, 1]. Moreoverw0
i ∈ [0, 1] for i = 1, . . . , m. This
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implies thatwi ∈ [0, 1]; see Section3.4. Typically, the system (1.1) is stiff and the gating
variables feature high gradients. The most popular method for solving this system in the
computational electro-cardiology community is the simplefirst order scheme proposed by
Rush and Larsen [25] which guarantees that the numerical solutions for gating variables are
in the range[0, 1]. In the same paper Rush and Larsen proposed a very simple timeadaptive

algorithm, based merely on the values of
∂u

∂t
. Another popular way to solve system (1.1) is

to use the more complex Runge-Kutta (RK) schemes. Here we present a second order ex-
tension of the Rush-Larsen scheme and a time adaptive strategy based on predictor-corrector
error estimates. Following the definition ofexponential integratorsadvocated1 in [18], our
schemes fall into this class. However, these schemes originate from a peculiar linearization of
the original problem (1.1) (that is neither linear nor semi-linear) which makes them different
from other methods in this class, such as Lawson or exponential time differencing methods.

In order to simulate the action potential propagation in themyocardium, ionic models
in the form (1.1) need to be coupled with the so-called Monodomain or Bidomain systems
of Partial Differential Equations (PDEs). For an introduction to these models, see, e.g., [22].
Monodomain and Bidomain systems are commonly discretized using an IMplicit-EXplicit
(IMEX) approach for the PDEs and the Rush-Larsen or RK schemes for the ionic model;
see [5, 7]. In [23, 26] a second order method based on an operator-splitting technique was
proposed for the time discretization of the PDEs, while a RK scheme was used for discretizing
the ionic model. More complex time and space adaptive methods are presented in [3, 6, 29].
We solve the coupled problem with a second order IMEX scheme combined with our ex-
tended Rush-Larsen scheme for the ionic model. Time adaptive strategy for the coupled
problem is extended as well. One dimensional simulations, using Finite Element discretiza-
tion, are reported for the solution of Monodomain system, illustrating the effectiveness of our
method.

The outline of the paper is as follows. In Section2 we recall the Rush-Larsen method
and present our extension. Section3 is devoted to the theoretical analysis of the new method.
We investigate convergence, absolute stability regions, and positivity properties. Our scheme
can be viewed as a generalization of first and second order multistep methods. We prove that
our generalization guarantees better stability and positivity properties. Section4 describes
some practical details on using the new scheme for the electro-physiology equations. Sec-
tion 5 presents the time-adaptive formulation of our method. Numerical results for the Mon-
odomain problem in electro-cardiology are presented in Section 6. Throughout the paper,
bold characters denote vectors.

2. The scheme.For the sake of simplicity we introduce our schemes for the following
scalar initial value problem,

(2.1)







dy

dt
= f(t, y) = a(t, y) y + b(t, y), t ∈ (0, T ],

y(0) = y0.

Extension to systems in the form (1.1) is straightforward and will be discussed later on.
Given a generic non-linear ordinary differential equation, there are clearly many differ-

ent ways of recasting it in the form (2.1). In applications, the identification ofa andb is
determined by the problem at hand; see (1.1). A particular class of problems for which a
specific choice of the coefficientsa andb leads to good positivity properties is analyzed in
Section3.4.

1“An exponential integrator is a numerical method which involves an exponential function (or a a related func-
tion) of the Jacobian or an approximation of it.”
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FIG. 1.1. Variables of the Luo-Rudy model as functions of time (inms): transmembrane potentialu (mV )
and intracellular calciumCa (M ) in the first row, the gating variablesh, j, m, d, f , andx in the last three rows.

Rush and Larsen [25] proposed the following numerical scheme for the solution of (2.1),

(2.2)







yn+1 = ea
nh

(

yn +
bn

an

)

−
bn

an
, n = 0, . . . , N,

y(0) = y0,

whereyn is the approximation of the solutiony(tn), tn = n h, T = Nh, andh > 0 is the
time-step. The expressionsan andbn are defined asan = a(tn, yn) andbn = a(tn, yn),
respectively. This method stems from considering the functions a andb constant on the
interval (tn, tn+1] and equal toan andbn; yn+1 is the exact solution at timetn+1 of the
linearized differential system,

(2.3)







dỹ

dt
= anỹ + bn, t ∈ (tn, tn+1],

ỹ(tn) = yn,

for n = 0, . . .N . Even if this scheme is explicit, the stability bound is significantly less re-
strictive than the one of the classical Forward Euler (FE) method. For instance, when solving
the Luo-Rudy model in the cases presented in Section4, FE is stable under the condition
h ≤ 0.01 ms, while Rush-Larsen is stable forh ≤ 0.1 ms. Moreover, the numerical solution
for the gating variables is in the physiological range[0, 1] with the Rush Larsen scheme even
for large values ofh, while this is not the case for the FE solution. We give an explanation of
these results in Sections3.3and3.4. Unfortunately, the original Rush-Larsen scheme is only
first order accurate. We therefore devise a second order extension. Let us start by rewriting



ETNA
Kent State University 

http://etna.math.kent.edu

AN EFFICIENT GENERALIZATION OF THE RUSH-LARSEN METHOD 237

scheme (2.2) in the following form,

(2.4)

{

yn+1 = ea
nhyn + hΦ(anh)bn = yn + hΦ(anh)(anyn + bn),

y(0) = y0,

for n = 0, . . .N , with

Φ(x) =







ex − 1

x
, x 6= 0,

1, x = 0.

Fora = 0 the scheme reduces to the Forward Euler (FE) scheme.
In order to increase the accuracy of this scheme, we evaluatethe functionsa andb at

tn+ 1
2 , namely,

(2.5)

{

yn+1 = yn + hΦ(an+ 1
2 h)(an+ 1

2 yn + bn+ 1
2 ), n = 0, . . . , N,

y(0) = y0,

wherean+ 1
2 andbn+ 1

2 are approximations ofa(tn+ 1
2 ) andb(tn+ 1

2 ). In particular, we select
for n = 1, . . . , N ,

(2.6)
an+ 1

2 = c−1an+1 + c0an + c1an−1, bn+ 1
2 = c−1b

n+1 + c0b
n + c1b

n−1,

a
1
2 = c−1a1 + (c0 + c1)a0, b

1
2 = c−1b

1 + (c0 + c1)b
0,

wherec−1, c0, andc1 are coefficients to be determined. For the sake of notation, in the sequel
we setω = c−1 − c1 andθ = c−1 + c1. By requiring that the approximations (2.6) are exact
for both constant and linear functions, we get the constraints

(2.7)
c−1 + c0 + c1 = θ + c0 = 1
c−1 − c1 = ω = 1

2

}

⇒ c−1 =
θ

2
+

1

4
, c0 = 1 − θ, and c1 =

θ

2
−

1

4
.

We can force (2.6) to be exact also for quadratic functions (yielding third order accuracy
of the approximation (2.6)) with c0 = 3/4, c1 = 3/8 and c−1 = −1/8. However, this
does not improve the overall accuracy of the scheme, as we prove in the next subsection (see
(3.2) below), since this just improves the accuracy in the estimates ofan+ 1

2 andbn+ 1
2 , not

the accuracy of the linearization procedure in (2.5). Therefore, we selectθ on the basis of
stability or efficiency constraints rather than on accuracyarguments.

3. Analysis of the methods.

3.1. Consistency.If a andb are sufficiently regular functions, the following local trun-
cation error (LTE) can be derived from standard Taylor expansions (prime symbol means
differentiation),

(3.1) (LTE1) =
1

h

(

y(tn+1) − yn+1
)

=

(

1

2
− ω

)

(

a′(tn)y(tn) − b′(tn)
)

h + o(h).

In particular, forω = 1
2 , the first term on the right hand side vanishes. Upon expanding the

o(h) term, the local truncation error reads

(LTE2) =

(

1

6
−

θ

2

)

(

a′′(tn)yi(t
n) − b′′(tn)

)

h2(3.2)

+
1

12

(

a′(tn)bn − anb′(tn)
)

h2 + o(h2).
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TABLE 3.1
Coefficients of the numerical schemes.

c−1 c0 c1

FE∗ 0 1 0

M∗(θ) θ
2 + 1

4 1 − θ θ
2 − 1

4

AB2∗ (M∗(−1/2)) 0 3
2 - 1

2

CN∗ (M∗(1/2)) 1
2

1
2 0

AM3∗ (M∗(1/3)) 5
12

8
12 − 1

12

From (3.1) and (3.2), we get that the LTE vanishes whenh → 0 (consistency). However, the
dependence of LTE onh is at most quadratic, independently ofθ, due to the presence of the
boxed term. This limits the accuracy of the schemes (2.5) to second order.

Notice that the proposed schemes reduce to classical two-step Adams schemes when
a = 0. As a matter of fact, in this case the scheme reduces to

yn+1 = yn + h

((

θ

2
+

1

4

)

bn+1 +
(

1 − θ
)

bn +

(

θ

2
−

1

4

)

bn−1

)

, n = 0, . . . , N.

We denote these schemes M(θ) and their generalization to the casea 6= 0 is indicated with
M∗(θ). Observe, in particular, that M(− 1

2 ), M(1
2 ), and M(1

3 ) correspond to the classical
Adams-Bashforth two-step scheme (hereafter denoted by AB2), the Crank-Nicolson scheme
(CN), and the Adams-Moulton two-step scheme (AM3), respectively. By extension, we will
denote by AB2∗, CN∗, and AM3∗ the methods M∗(− 1

2 ), M∗(1
2 ), M∗(1

3 ), respectively. We
also use the short notation FE∗ for the Rush-Larsen scheme (c−1 = 0, c0 = 1, andc1 = 0).
In Table3.1we report the coefficients for the numerical schemes used in this paper.

REMARK 3.1. Whena is constant, our schemes can be regarded in the class of Ex-
ponential Time Differencing (ETD) methods [2, 18] or in the class of exponential multistep
methods [2, 19, 20]. These methods have been devised for semi-linear problemsof the form

∂y

∂t
= Ly + N(y), y(0) = y0.

However, even if the Rush-Larsen FE∗ actually corresponds to the first order exponential
Adam Bashforth scheme, the linearization underlying the M∗(θ) schemes presented here
makes them different from the schemes mentioned in the citedpapers (and of course from
other classical methods) and deserve therefore a specific analysis.

3.2. Stability and convergence.We give first a definition of zero-stability adapted to
our scheme.

DEFINITION 3.2. A numerical method in the form (2.5) is zero-stable when

∃h0 > 0, ∃C > 0 : ∀h ∈ (0, h0], |zn − yn| ≤ Cε, 0 ≤ n ≤ N,

whereyn is the solution to problem (2.5) andzn is the solution of the perturbed problem

(3.3)







zn+1 = zn + hΦ(ah)
[

an+ 1
2 zn + bn+ 1

2

]

+ hδn+1,

z0 = y0 + δ0,

for 0 ≤ n ≤ N − 1, under the assumption that|δk| ≤ ε, 0 ≤ k ≤ N − 1.
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PROPOSITION3.3. The scheme (2.5) is zero-stable under the following conditions:
i) a andb are Lipschitz continuous functions with respect to the second argument (y)

and uniformly with respect tot, with constantsLa andLb, respectively.
ii) There exists a non-negative constantaM such that

(3.4) a(t, y) ≤ aM , ∀y ∈ R
m, t ∈ [0, T ].

It is worth noting that in gating variable models (1.1) typically ai < 0; hence, condition (ii )
holds. This is true, in particular, for the Luo-Rudy model. Before proving Proposition3.3,
we state the following Lemma.

LEMMA 3.4. Letxn satisfy

(3.5) 0 ≤ xn ≤ ξxn−1 + ηxn−2 + (ξ + η − 1)δ,

whereη ≥ 0, δ ≥ 0, x0, x1 ≥ 0, andξ ≥ 1 are given data. Then,

xn ≤

[

x0 + δ +
2

ξ
(x1 + δ)

]

(ξ + η)n .

Proof. Consider the difference equation

(3.6) x̃n = ξx̃n−1 + ηx̃n−2 + (ξ + η − 1)δ,

with x̃0 = x0 andx̃1 = x1. We have obviously thatxn ≤ x̃n. Observe that under the given
assumptions the right-hand side is non-negative, so thatx̃n ≥ 0, which is compatible with
the first inequality in (3.5). The solution to the difference equation (3.6) is

x̃n = σ1ρ
n
1 + σ2ρ

n
2 − δ,

with

ρ1,2 = 1
2

(

ξ ±
√

ξ2 + 4η
)

, σ1 = (x1+δ)−ρ2(x0+δ)
ρ1−ρ2

, and σ2 = ρ1(x0+δ)−(x1+δ)
ρ1−ρ2

.

It can be verified that|ρ1,2| ≤ ξ + η, ρ1 − ρ2 ≥ ξ, andσ1 > 0, so that

xn ≤ x̃n ≤ σ1ρ
n
1 + |σ2||ρ2|

n ≤ (σ1 + |σ2|) (ξ + η)
n

.

The lemma thus follows after some algebra exploiting the fact thatx1 + δ ≥ 0, x0 + δ ≥ 0,
andρ1 − ρ2 ≥ ξ.

Proof of Proposition3.3. Let us rewrite (2.5) as

(3.7) yn+1 = ea
n+ 1

2 h yn + Φ(an+ 1
2 h)bn+ 1

2 , n = 0, . . .N.

Fora ≤ aM , ã ≤ aM , andh ∈ (0, h0], we have

(3.8)
|Φ(ah)| ≤ ΦM , |Φ(ah) − Φ(ãh)| ≤ hLΦ|a− ã|,
|eah| ≤ eaM h, |eah − eãh| ≤ hLe|a− ã|,

whereΦM = Φ(aMh0), LΦ = Φ′(aMh0), andLe = eaMh0 .
For the sake of notation, let us writean

y andbn
y in place ofa(tn, yn) andb(tn, yn),

respectively, andan
z andbn

z for a(tn, zn) andb(tn, zn). First, we prove thatyn andbn
y are

bounded for alln = 1, . . . , N . From equation (3.7), we have

(3.9) |yn| ≤ eaM h|yn−1| + hΦM |b
n− 1

2
y |, n = 2, . . . , N.
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Notice that|b(y, t)| ≤ B0 + Lb|y| for all t ∈ [0, T ], whereB0 = maxt∈[0, T ] |b(t, 0)|.
Hence, we can write
(3.10)

|b
n− 1

2
y | ≤

1
∑

k=−1

|ckb
n−k−1
y | ≤

1
∑

k=−1

|ckB0| + Lb

1
∑

k=−1

|ck| |y
n−k−1|, n = 2, . . . , N.

Substituting (3.10) into (3.9), we have

(3.11) α|yn| ≤ β|yn−1| + γ|yn−2| + hc ΦMB0, n = 2, . . . , N,

whereα = 1 − h|c−1|LbΦM , β = eh aM + h|c0|LbΦM , γ = h|c1|LbΦM andc = |c−1| +
|c0| + |c1|. Takingh0 such thatα > 0 ∀h ∈ (0, h0], we can apply Lemma3.4and obtain,
for n = 2, . . . , N ,

|yn| ≤
(

|y0| + 2α
β
|y1| +

(

1 + 2α
β

)

hcΦM B0α
ehaM −1+hcΦM Lb

)

×
(

eh aM +h(|c0|+|c1|)LbΦM

1−h|c
−1|LbΦM

)n

.

Sinceα ≤ 1 andehaM − 1 > 0, we can write

|yn| ≤ K1

(

eh aM + h(|c0| + |c1|)LbΦM

1 − h|c−1|LbΦM

)n

= K1e
aMnh

(

1 +
h|c−1|LbΦM

1 − h|c−1|LbΦM

)n (

1 + h(|c0| + |c1|)
LbΦM

eaM h

)n

,

with K1 =
(

|y0| + 2α
β
|y1| +

(

1 + 2α
β

)

B0

Lb

)

. Exploiting the well-known inequality

(1 + x)n ≤ enx for x ≥ 0, we have

|yn| ≤ K1 eaMT e(|c−1|(1−h0|c−1|LbΦM )−1+|c0|+|c1|)LbΦM T = yM .

Sinceα|y1| ≤ (β+γ)|y0|+c h0ΦMB0, we conclude thatyn is bounded. Alsobn
y is bounded

∀n ∈ [0, N ] since|bn
y | ≤ B0 + LbyM = bM . Settingwn = zn − yn and subtracting (3.3)

from (2.5), we obtain

(3.12) wn = hδn + eha
n−

1
2

z zn−1− eha
n−

1
2

y yn−1 +hΦ(ha
n− 1

2
z )b

n− 1
2

z −hΦ(ha
n− 1

2
y )b

n− 1
2

y ,

for n = 1, . . . , N . Let us analyze separately the terms of the previous equation,
∣

∣

∣

∣

eha
n−

1
2

z zn−1 − eha
n−

1
2

y yn−1

∣

∣

∣

∣

=

∣

∣

∣

∣

eha
n−

1
2

z wn−1 +

(

eha
n−

1
2

z − eha
n−

1
2

y

)

yn−1

∣

∣

∣

∣

≤ eh aM |wn−1| + hyMLe

∣

∣

∣
a

n− 1
2

z − a
n− 1

2
y

∣

∣

∣

≤ eh aM |wn−1| + hyMLeLa

(

∑1
i=−1 |ci| |w

n−i−1|
)

,

∣

∣

∣
Φ(ha

n− 1
2

z )b
n− 1

2
z − Φ(ha

n− 1
2

y )b
n− 1

2
y

∣

∣

∣

=
∣

∣

∣
Φ(ha

n− 1
2

z )(b
n− 1

2
z − b

n− 1
2

y ) + (Φ(ha
n− 1

2
z ) − Φ(ha

n− 1
2

z ))b
n− 1

2
y

∣

∣

∣

≤ ΦM

∣

∣

∣
b

n− 1
2

z − b
n− 1

2
y

∣

∣

∣
+ bMLΦ

∣

∣

∣
a

n− 1
2

z − a
n− 1

2
y

∣

∣

∣

≤ (ΦMLb + hbMLΦLa)
(

∑1
i=−1 |ci| |w

n−i−1|
)

.
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From equation (3.12), using the previous inequalities, we obtain

α|wn| ≤ β|wn−1| + γ|wn−2| + hε,

whereα = 1 − h|c−1|K2, β = eh aM + h|c0|K2, γ = h|c1|K2 with K2 = (yMLeLa +
ΦMLb +h0bmLΦLa). Again, forh0 such thatα > 0 ∀h ∈ (0, h0], we can apply Lemma3.4
and obtain

|wn| ≤

(

|w0| + 2
α

β
|w1| +

(

1 + 2
α

β

)

ε

cK2

)(

eh aM + h(|c0| + |c1|)K2

1 − h|c−1|K2

)n

,

for n = 2, . . . , N . Noticing that|w0| ≤ ε, α|w1| ≤ (β+γ)|w0|+h0ε and that(1+x)n ≤ enx

for x ≥ 0, we obtain, forn = 1, . . . , N ,

|wn| ≤ ε

(

3 + 2
γ

β
+

β + 2α

βcK2

)(

1 +
h|c−1|K2

1 − h|c−1|K2

)n

eaM nh e(|c0|+|c1|)K2nh

≤ ε

(

3 + 2
γ

β
+

β + 2α

βcK2

)

eaM T e(|c−1|(1−h0|c−1|C)−1+|c0|+|c1|)CT ,

which proves the propostion. This argument can be easily extended to the vector case when
the exponential matrices associated with the scheme are diagonal, which is actually our case.
In this circumstance, the expressions have to be interpetedcomponent-wise, and the absolute
value (| · | ) has to be replaced by the infinite norm for both vectors and matrices (‖ · ‖∞ ).

If a(t, y) andb(t, y) are sufficiently regular functions, from zero-stability and consis-
tency, we can prove that the method is convergent of order 2, if ω = 1/2, and of order 1,
otherwise.
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FIG. 3.1. Absolute stability regions for the FE∗ (left), the AB2∗ (center) and AM3∗ methods when applied to
the model problemy′ = λy with λ = λa + λb a = λa, b = λby andλa = ρλb with ρ a real parameter.

3.3. Absolute stability. The stability over long time intervals for the linear model prob-
lem y = λy, with Re(λ) < 0, strongly depends on the implementation of the method, i.e.,
on the definition ofa andb with respect to the model problem. In particular, since the part
determined bya is solved exactly for the model problem, if we seta = λ (b = 0), we get
an unconditionally stable method, while fora = 0 andb = λy stability of the method is the
same as for the corresponding multistep method. These preliminary observations agree with
the experimental results mentioned above concerning the FE∗ method, which is more stable
than the corresponding FE scheme. In order to be more quantitative, we splitλ = λa + λb

and consider the (scalar) scheme (2.5) with a = λa andb = λb. In particular, we write
λa = ρλb, whereρ is a non-negative parameter, and investigate the time asymptotic solution
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dynamics for different values ofρ and different schemes. A similar approach for the analy-
sis of absolute stability has been used in [2, 15]. We report here the results for the sake of
completeness.

By standard arguments on finite difference equations, we obtain that the solution com-
puted by our scheme asymptotically vanishes if the roots of the polynomial

(

1 −
e

ρλh
ρ+1 − 1

ρ
c−1

)

r2 −

(

1 +
(

e
ρλh
ρ+1 − 1

)

(

1 +
c0

ρ

))

r − c1
e

ρλh
ρ+1 − 1

ρ
= 0

are strictly inside the unit circle in the complex plane. We stress that forρ → 0 we recover
the characteristic polynomial of the method M(θ). In Figure3.1 we report the region of
absolute stability of FE∗, AB2∗, and AM3∗, respectively. The shaded region is the region
of absolute stability of the corresponding traditional multistep method. As expected, whenρ
gets larger the region of absolute stability increases and the method at hand tends to become
unconditionally stable (and exact for the model problem).

This analysis gives an interesting perspective on the methods addressed here, which can
be considered a sort of “stabilization” of traditional schemes, obtained by limiting the accu-
racy to the second order.

Observe that forρ < −1 andλ < 0, we haveλa < 0 andλb > 0, which is the situation
we have from the linearization of problems coming from electro-physiology. In this case, the
region of absolute stability covers the entire half plane.

3.4. Positivity properties. As pointed out previously, one of the interesting features of
the Rush-Larsen scheme when applied to the gating equations, is that the numerical solution is
guaranteed to belong to the interval[0, 1]. Here, we investigate the positivity properties of our
schemes, giving a rigorous proof that holds also for the Rush-Larsen scheme itself. For the
sake of simplicity we consider the scalar case. The extension to the vector case, for diagonal
exponential matrices, can be carried out component-wise. Let us start with some assumptions
on the continuous problems, which are, in particular, satisfied for the applications of interest
here.

Let us suppose that there exist a functiona(t, y) < 0 and constantsK1, K2, such that

(3.13) a(t, y)(y − K1) ≤ f(t, y) ≤ a(t, y)(y − K2), ∀y ∈ R, t ∈ (0, T ].

Theny ∈ [K1, K2] provided thaty0 ∈ [K1, K2] (in the case of gating variablesK1 = 0 and
K2 = 1). This can be proved considering the subsolutiony and the supersolutiony, which
satisfy the equations,

(3.14)







dy

dt
= a(t, y)(y − K1)

y(0) = y0

{

dy

dt
= a(t, y)(y − K2)

y(0) = y0.

We have thaty ≤ y ≤ y. We claim thaty ≥ K1. In fact, multiplying the first equation in
(3.14) by (y − K1), we get

1

2

d

dt
(y − K1)

2 = a(t, y)(y − K1)
2 ≤ 0.

Hence, since(y − K1)
2 is non-increasing in time, if there existsτ ∈ [0, T ] such thaty(τ) =

K1, theny(t) = K1 for all t ∈ [τ, T ]. With same arguments we conclude thaty(t) ≤ K2.
HenceK1 ≤ y ≤ y ≤ y ≤ K2.

PROPOSITION3.5. Under the assumption (3.13), the scheme (2.5) with non-negative co-
efficients c−1, c0 and c1, has a numerical solutionyn ∈ [K1, K2], provided that
y0 ∈ [K1, K2].
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Proof. Let b(t, y) = f(t, y) − a(t, y)y. Application of our scheme yields

yn+1 = ea
n+ 1

2 hyn +

(

1 − ea
n+1

2 h

)

(

−
bn+ 1

2

an+ 1
2

)

.

We start assuming thatan+ 1
2 andbn+ 1

2 do coincide exactly witha(tn+ 1
2 ) andb(tn+ 1

2 ).
Observe that from our assumptionsK1 ≤ bn+ 1

2 /an+ 1
2 ≤ K2. Under the assumption

(3.13), if yn ∈ [K1, K2], thenyn+1 is the convex combination (with coefficientsea
n+1

2 h and

1 − ea
n+1

2 h) of terms belonging to the range[K1, K2]. Hence,yn+1 belongs to the same
range. By induction, we conclude thatyn belongs to[K1, K2] wheny0 does.

Now, we have to investigate the impact of the approximationsan+ 1
2 ≃ a(tn+ 1

2 ) and
bn+ 1

2 ≃ b(tn+ 1
2 ) on this statement. If the three coefficientsc−1, c0, c1 are nonnegative, then

the combination still has positive coefficients and−bn+1

an+1 is in the range[K1, K2].
Notice that the latter proposition includes the schemes FE∗, CN∗, and M(θ)∗ with θ > 0.

In particular, this proposition does not include scheme AB2∗. We specifically analyse AB2∗

in the next proposition.
PROPOSITION 3.6. Let f(t, y) satisfy the inequalities (3.13) with a constant,y0 ∈

[K1, K2]. Then the scheme AB2∗ is such that the numerical solutionyn belongs to[K1, K2]
under the condition

(3.15) h ≤
log(2)

|a|
.

Moreover, if the initial conditions are such that

(3.16)

(

3

2
eah −

1

2

)

K1 ≤ eahy1 − hΦ
1

2
b0 ≤

(

3

2
eah −

1

2

)

K2,

the restriction onh can be relaxed to

(3.17) h ≤
log(3)

|a|
.

Proof. Notice that whenyn fulfills (2), thenun := yn −K1 satisfies the schemeun+1 =

un + hΦ(ah)(aun + b̃
n+ 1

2 ), whereb̃
n+ 1

2 :=
3

2
b̃

n
−

1

2
b̃

n−1
andb̃

n
:= bn + aK1. In fact,

(3.18)

un+1 = yn+1 − K1 = yn + hΦ(ah)
(

ayn + bn+ 1
2

)

− K1

= yn − K1 + hΦ(ah)
(

a(yn − K1) + (bn+ 1
2 + aK1)

)

= un + hΦ(ah)
(

aun + b̃
n+ 1

2

)

.

Moreover (3.13) implies b̃n ≥ 0. Analogously,un := K2 − yn satisfies the same scheme,
with b̃

n
:= −bn − aK2 and b̃

n
≥ 0; hence, by proving thatun ≥ 0, we prove that

yn ∈ [K1, K2]. We prove that un ≥ 0 by induction. Let us define

sn = eahun − hΦ(ah)
1

2
b̃

n−1
. We have

1. s1 ≥ 0. More precisely,

s1 = eahu1 − hΦ(ah)
1

2
b̃

0
,
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which is nonnegative when (3.16) holds; otherwise, sinceu1 = eahu0 +hΦ(ah)b̃
0
,

s1 can be written as

s1 = e2ahu0 + hΦ(ah)

(

eah −
1

2

)

b̃
0
,

which is nonnegative when

(

eah −
1

2

)

≥ 0, i.e., when (3.15) holds.

2. sn ≥ 0 =⇒ sn+1 ≥ 0, n = 1, . . . , N − 1.

In fact,un+1 = eahun + hΦ(ah)

(

3

2
b̃

n
−

1

2
b̃

n−1
)

. Hence

sn+1 = eahun+1 − hΦ(ah)
1

2
b̃

n
(3.19)

= eah

[

eahun + hΦ(ah)

(

3

2
b̃

n
−

1

2
b̃

n−1
)]

− hΦ(ah)
1

2
b̃

n

= eah

[

eahun − hΦ(ah)
1

2
b̃

n−1
]

+hΦ(ah)

(

3

2
eah−

1

2

)

b̃
n

≥ eahsn + hΦ(ah)

(

3

2
eah −

1

2

)

b̃
n
≥ hΦ(ah)

(

3

2
eah −

1

2

)

b̃
n
.

The last term is nonnegative when

(

3

2
eah −

1

2

)

≥ 0, i.e., when (3.17) holds (notice

thatsn ≥ 0 =⇒ un ≥ 0, sinceeahun ≥ +hΦ(ah)
1

2
b̃

n−1
≥ 0; for this reason

b̃n ≥ 0).
Hence, by induction,sn ≥ 0, n = 1, . . . , N . This impliesun ≥ 0.

Restrictions onh (3.15) and (3.17) are to be compared with those of AB2 [12], namely,
h ≤ 1

3|a| andh ≤ 4
9|a| respectively. Positivity bounds onh for AB2∗ are significantly less

restrictive than those for AB2.

4. The scheme at work.In this section we show how to use the proposed scheme for
the solution of system (1.1). We consider the vector form of scheme (2.5),

(4.1)

{

yn+1
i = yn

i + hΦ(a
n+ 1

2

i h)(a
n+ 1

2

i yn
i + b

n+ 1
2

i ), n = 0, . . . , N, i = 1, . . . , m,
y(0) = y0,

where vectors with entriesai andbi are denoted bya andb. We takea = [0, aT ,0T ]T and
b = [I, bT ,gT ]T . Hence, the scheme (4.1) reads as follows,

(4.2)























1
h
un+1 = 1

h
un + c−1 In+1 + c0 In + c1 In−1,

1
h
wn+1

i = 1
h
wn

i + Φ(a
n+ 1

2

i h)
(

a
n+ 1

2

i wn
i + b

n+ 1
2

i

)

, i = 1, . . . , m,
1
h
Xn+1 = 1

h
Xn + c−1 gn+1 + c0 gn + c1 gn−1,

u(0) = u0, w(0) = w0, X(0) = X0,

for n = 0, . . . , N . We takeI−1 = I0 andg−1 = g0. The following results are obtained
using the Luo-Rudy phase I model with the following current stimulus,

(4.3) Iapp =

{

Imax

(

1
2 − 1

2 cos
(

2π t
tp

))

, t < tp,

0, t ≥ tp,
Imax = 60µA, tp = 1ms,
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andCm = 1µ F . We refer to the discreteL2 norm of the components of solutionyn, defined
by

‖yi‖ =

√

√

√

√

1

2

N−1
∑

n=0

[

(yn
i )

2
+
(

yn+1
i

)2
]

(tn+1 − tn).

The relative error is computed asmax
i

‖yi(t
n) − yn

i ‖

‖yi(tn)‖
. In the following simulations,

we will take T = 450 ms. In Table4.1 we compare the relative errors for different time-
steps using our explicit method AB2∗, FE∗, and their corresponding multistep methods, AB2
and FE. The “reference” solution, i.e., the solution used asthe exact one, is obtained by
solving the system with the Matlab functionode45 with parametersRelTol andAbsTol
set respectively to1e− 9 and1e− 12. Results confirm that the AB2∗ method is second order
accurate versus the first order accuracy of the Rush-Larsen method. Observe that for tiny
time-steps multistep methods feature slightly better accuracy than the corresponding starred
methods. However, their stability constraints are more restrictive, requiringh ≃ 0.01 ms.

TABLE 4.1
Relative error using different time-steps and the methods AB2∗, FE∗, AB2, and FE.

h errrel AB2∗ errrel FE∗ errrel AB2 errrel FE
2e-1 1.03-1 1.02e-1 NaN NaN
1e-1 8.73e-3 6.72e-2 NaN NaN
5e-2 3.64e-3 3.98e-2 NaN NaN
2.5e-2 1.28e-3 2.16e-2 NaN NaN
1.25e-2 3.63e-4 1.12e-2 NaN 6.65e-3
6.25e-3 9.71e-5 5.65e-3 5.65e-5 3.33e-3

4.1. Predictor-corrector strategy. In this section we recast our schemes in a predictor-
corrector (PC) framework; for an introduction to predictor-corrector schemes, see, e.g., [16,
24]. Let ŷn be the solution obtained with the predictor scheme (explicit), andyn the one
obtained with the corrector scheme (implicit); letc0 andc1 be the coefficients of predictor
scheme (c−1 = 0) andc−1, c0, c1 the coefficients of the corrector scheme. The PC time
discretization of system (1.1), for n = 1, . . . , N , reads

(4.4)

P :











1
h
ûn+1 = 1

h
un + c0 In + c1 In−1,

1
h
ŵn+1

i = 1
h
wn

i + Φ(a
n+ 1

2

i h)
(

a
n+ 1

2

i wn
i + b

n+ 1
2

i

)

, i = 1, . . . , m,
1
h
X̂n+1 = 1

h
Xn + c0 gn + c1 gn−1,

C :











1
h
un+1 = 1

h
un + c−1Î

n+1 + c0I
n + c1I

n−1,
1
h
wn+1

i = 1
h
wn

i + Φ
(

(â
n+ 1

2

i h
)

(

a
n+ 1

2

i wn
i + b̂

n+ 1
2

i

)

, i = 1, . . . , m,
1
h
Xn+1 = 1

h
Xn + c−1ĝ

n+1 + c0g
n + c1 gn−1,

whereÎn+1 andĝn+1 are computed using the predictor solutionsûn+1, ŵn+1, X̂n+1, and
(4.5)

a
n+ 1

2 = c0a
n + c1a

n−1, b
n+ 1

2 = c0b
n + c1b

n−1,

â
n+ 1

2 = c−1a(ûn+1) + c0a
n + c1a

n−1, b̂n+ 1
2 = c−1b(ûn+1) + c0b

n + c1b
n−1,

a
1
2 = (c0 + c1)a

0, b
1
2 = (c0 + c1)b

0,

â
1
2 = c−1a(û1) + (c0 + c1)a

0, b̂
1
2 = c−1b(û1) + (c0 + c1)b

0.
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TABLE 4.2
Relative errors using different time-steps for the predictor-corrector methods AB2∗-CN∗, FE∗-CN∗. The re-

sults in the first two columns refer to the PECE approach, the ones in last two columns to the PEC approach.

h AB2∗-CN∗ FE∗-CN∗ AB2∗-CN∗
PEC FE∗-CN∗

PEC

2e-1 3.41-2 5.65e-2 NaN 4.26e-2
1e-1 9.02e-3 2.33e-2 1.50e-2 3.04e-2
5e-2 2.97e-3 7.72e-3 4.15e-3 1.26e-2
2.5e-2 6.95-4 2.23e-3 9.00e-4 3.95e-3
1.25e-2 1.57e-4 6.03e-4 1.85e-4 1.09e-3
6.25e-3 3.77e-5 1.58e-4 4.16e-5 2.88e-4

TABLE 4.3
Relative errors using different time-steps for the predictor-corrector methods AB2∗-AB3∗, FE∗-AB3∗. The

results in the first two columns refer to the PECE approach, while in the last two columns to the PEC approach.

h AB2∗-AM3∗ FE∗-AM3∗ AB2∗-AM3∗
PEC FE∗-AM3∗

PEC

2e-1 6.44-2 4.07e-2 NaN 3.94e-2
1e-1 7.84e-3 2.02e-2 1.19e-2 2.91e-2
5e-2 2.67e-3 7.03e-3 3.75e-3 1.26e-2
2.5e-2 6.76e-4 2.07e-3 8.73e-4 4.02e-3
1.25e-2 1.62e-4 5.60e-4 1.91e-4 1.13e-3
6.25e-3 4.13e-5 1.47e-4 4.51e-5 2.98e-4

In Tables4.2 and4.3 we show relative errors for different predictor-correctorschemes. We
note that the best performances are obtained using a second order predictor scheme with a
PECE approach; for definition of PECE and PEC approach, see [16] or [24]. As expected,
the differences between PECE approach and PEC are more evident when large time-steps are
used.

5. Time adaptive strategy. Using an error estimate based on the PC scheme, we devise
a time-adaptive strategy.

5.1. A posteriori error estimation. Our estimate for the error‖y(tn+1) − yn+1‖ is
based on the computed solutionsyn+1 andŷn+1; for multistep methods this estimate is called
Milne’s estimate; see [16]. We start considering a predictor-corrector couple of second order
schemes, with parametersθp andθc, respectively. From (3.2) we have, fori = 1, . . . , m,
(5.1)

yi(t
n+1) − ŷn+1

i

=
(

1
6 −

θp

2

)

(

a′′
i (tn)yi(t

n) − b′′
i (tn)

)

h3 + 1
12

(

a′
i(t

n)bn
i − an

i b
′
i(t

n)
)

h3 + o(h3),

yi(t
n+1) − yn+1

i

=
(

1
6 − θc

2

) (

a′′
i (tn)yi(t

n) − b′′
i (tn)

)

h3 + 1
12

(

a′
i(t

n)bn
i − an

i b
′
i(t

n)
)

h3 + o(h3).

Subtracting equation (5.1)1 from (5.1)2 we have

(5.2)
(

a′′
i (tn)yi(t

n) − b′′
i (tn)

)

h3 =
2

θc − θp

(

yn+1
i − ŷn+1

i

)

+ o(h3).
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TABLE 5.1
Relative error using different time-steps for the predictor-corrector methods AB2∗-AB3∗, FE∗-AB3∗ corrected

by local extrapolation. The results in the first two columns refer to the PECE approach, while in the last two columns
to the PEC approach.

h AB2∗-CN∗
e AB2∗-AM3∗

e AB2∗-CN∗
e−PEC AB2∗-AM3∗

e−PEC

2e-1 NaN NaN NaN NaN
1e-1 8.16e-3 8.06e-3 4.46e-3 4.59e-3
5e-2 3.84e-4 3.91e-4 1.91e-3 1.92e-3
2.5e-2 4.88e-5 4.91e-5 3.48e-4 3.49e-4
1.25e-2 7.03e-6 7.03e-6 4.97e-5 4.97e-5
6.25e-3 4.35e-6 4.35e-6 9.48e-6 9.48e-5

Substituting the latter equation into (5.1)2, we have
(5.3)

yi(t
n+1) − yn+1

i =
θc −

1
3

θp − θc

(

yn+1
i − ŷn+1

i

)

+ 1
12

(

a′
i(t

n)bn
i − an

i b
′
i(t

n)
)

h3 + o(h3).

In view of ana posteriorierror estimator, the first derivatives ofa andb can be approximated
by forward differences,

a′
i(t

n)bn
i − an

i b
′
i(t

n) =
1

h

(

an+1
i bn

i − an
i b

n+1
i

)

+ O(h).

Therefore, we obtain the error estimate
(5.4)

yi(t
n+1) − yn+1

i =
θc −

1
3

θp − θc

(

yn+1
i − ŷn+1

i

)

+
1

12

(

an+1
i bn

i − an
i b

n+1
i

)

h2 + o(h3).

For first order predictor-corrector pairs withωp 6= ωc (both 6= 1/2), we get the following
error estimate,

(5.5) y(tn+1) − yn+1 =
ωc −

1
2

ωp − ωc

(

yn+1 − ŷn+1
)

+ o(h2).

In principle, these estimates can be used to improve the solution to get a third order method
(local extrapolation). As a matter of fact, once the error estimateEn+1 is computed with
the boxed terms above, we computeỹn+1 = yn+1 + En+1, raising by one the order of the
method. In Table5.1 we show relative errors of predictor-corrector schemes corrected with
this a posteriorierror estimation. We observe very slight differences between the schemes,
the PECE approach performing better than the PEC approach. These schemes are more accu-
rate than the second order ones (compare Table5.1with Tables4.2and4.3), even if stability is
affected by the extrapolation. Moreover, using this local extrapolation, we loose the favorable
positivity properties of the non-corrected schemes.

5.2. Time adaptive schemes.Given a vector of tolerancesτ (possibly a different tol-
erance for each variable), we look for the largest time-stepsuch thatEn

i ≤ τi, i = 1, . . . , m.
Using a first order methodEn

i ≃ Kih
2, whereK is a constant vector, ifEn is the error ob-

tained with a time-steph, then using a time-step̃h = min
i

h

√

τi

En
i

, we can obtain an error̃E

such thatẼn
i ≃ τi for somei. Similarly, using a second order method, the optimal time-step
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FIG. 5.1. Relative error curves as a function of the average steph, using the FE∗ scheme, the AB2∗ scheme,
and the time adaptive algorithm with the AB2∗-CN∗ scheme with PEC approach.

is given byh̃ = min
i

h 3

√

τi

En
i

; see [16]. In our simulations we weighted the tolerances based

on the infinity norm of the components of the solution; hence,for the Luo-Rudy model from
Figure1.1, we getτ = τ [84, 1, 1, 1, 1, 1, 1, 7e − 3]T . The time adapting algorithm reads,
therefore

While tn < T

1. Compute ŷn+1 and yn+1 with time-step h.
2. Compute the error En+1.
3. If En+1

i < τi then tn+1 = tn + h, n + 1.
4. Compute h̃, set h = 0.95 h̃ (0.95 is a precautionary parameter).

We define the recomputed percentager as the percentage of the number of times the condi-
tional expression3 is false over the total number of stepsn. Since the time-step is no longer
constant, we need to recompute the coefficients of our scheme. In particular, ifν = h

hold
is the

ratio between the time-step at the current iteration and thetime-step at the previous iteration,
we takec̃−1 = c−1, c0 = c0 + c1(1 − ν) and c̃1 = νc1 as the coefficient of the variable-
step scheme. Writing the Taylor expansions foran+ 1

2 andbn+ 1
2 and taking into account that

tn+1 − tn = hn+1 = h andtn − tn−1 = hn = h
ν

, we obtain

(5.6)
an+ 1

2 = an + ω̃a′(tn)h + θ̃a′′(tn)h2

2 + o(h2),

bn+ 1
2 = bn + ω̃b′(tn)h + θ̃b′′(tn)h2

2 + o(h2),

with ω̃ = c̃−1 −
c̃1

ν
= ω and θ̃ = c̃−1 +

c̃1

ν2
. The local truncation error expressions (3.1),

(3.2), and error estimates (5.4) and (5.5) still hold whenθ is replaced with̃θ.
REMARK 5.1. From now on we will consider only a second order time-adaptive PC

method. First order methods are used only in the first step, whose errors are estimated by
(5.5). In particular, we use FE∗ as predictor and BE (Backward Euler) as corrector.

We solve the Luo-Rudy system with our time-adaptive algorithm. More precisely, we se-
lect the predictor to be AB2∗ and use different correctors, namely AM3∗, CN∗, and M(0.6)∗.
Results are shown in Table5.2. M(0.6)∗ is more stable than CN∗ even if slightly less accurate.

In Figure5.1, we compare the error curves as a function of the average steph, using the
Rush-Larsen scheme, the AB2∗ scheme, and the time adaptive algorithm with the AB2∗-CN∗

scheme with PEC approach.
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TABLE 5.2
Average time-steph, recomputed percentager, and relative error of the solution computed using different

predictor-corrector methods with time adaptive strategy for different values of toleranceτ .

AB2∗-AM3∗ AB2∗-CN∗ AB2∗-M(0.6)∗

τ h r err h r err h r err
2.5e-2 1.25 3% 4.18e-2 1.23 4% 3.65e-2 1.24 3% 3.91e-2
5e-3 7.29e-1 3% 3.21e-3 7.23e-1 3% 2.94e-3 7.25e-1 3% 3.44e-2
1e-3 4.27e-1 2% 2.18e-3 4.25e-1 3% 9.09e-4 4.24e-1 2% 4.90e-3
1e-4 1.99e-1 1% 5.58e-4 1.98e-1 1% 2.31e-4 1.97e-1 1% 5.58e-4
1e-5 9.25e-1 8h 1.14e-4 9.19e-2 6h 7.31e-5 9.17e-2 7h 1.42e-4
1e-6 4.30e-1 6h 2.43e-5 4.27e-2 3h 1.96e-5 4.26e-2 2h 3.64e-5

TABLE 5.3
Average time-steph, recomputed percentager, and relative error of the solution computed using the predictor-

corrector method AB2∗-CN∗ with time adaptive strategy for different values toleranceτ . From left to right, the
solution is computed, respectively, with a PEC approach, with a PECE approach and local extrapolation, with PEC
approach and local extrapolation.

AB2∗-CN∗
PEC AB2∗-CN∗

e AB2∗-CN∗
e−PEC

4 τ h r err h r err h r err
2.5e-2 1.19 10% 3.10e-2 1.18 8% 2.51e-2 1.20 9% 2.22e-2
5e-3 7.22e-1 4% 3.54e-3 7.22e-1 4% 4.73e-3 7.22e-1 3% 7.28e-3
1e-3 4.25e-1 2% 1.38e-3 4.25e-1 2% 9.30e-4 4.25e-1 2% 2.75e-3
1e-4 1.98e-1 1% 2.25e-4 1.98e-1 1% 1.19e-4 1.98e-2 1e% 4.13e-4
1e-5 9.19e-2 7h 5.50e-5 9.19e-2 7h 1.48e-5 9.19e-2 7h 4.79e-5
1e-6 4.27e-2 3h 1.75e-5 4.27e-2 3h 1.66e-6 4.27e-2 3h 5.13e-6

6. Monodomain and bidomain systems.The bidomain model is one of the most pop-
ular and accurate model to describe the propagation of action potential in the myocardium. A
mathematical derivation of the bidomain model is discussedin [9]. Well-posedness analysis
results on bidomain system coupled with different ionic models are presented in [27, 28],
while several simulations of the action potential propagation using monodomain and bido-
main systems can be found in [7, 8]. A possible formulation of the problem reads
(6.1)


































































∂u

∂t
−

1

χCm

∇ ·

(

λDi

1 + λ
∇u

)

−
1

χCm

∇ ·

(

λDi − De

1 + λ
∇ue

)

= I in Ω × (0, T ],

−∇ · [Di∇u + (Di + De)∇ue] = χĨapp in Ω × (0, T ],

nTDi(∇u + ∇ue) = 0 on ∂Ω × (0, T ],

nTDe∇ue = 0 on ∂Ω × (0, T ],

∫

Ω uedx = 0 in (0, T ],

u(x, 0) = u0, ue(x, 0) = 0 in Ω,
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with the ionic current equations

(6.2)























∂X

∂t
= g(u,X,w) in Ω × (0, T ],

∂wi

∂t
= ai(u)wi + bi(u) in Ω × (0, T ],

X(x, 0) = X0, w(x, 0) = w0 in Ω.

HereΩ is the spatial domain,ue is the extracellular potential,Di andDe are the intracellular
and extracellular conductivity tensors, andχ the membrane area per unit tissue. The source
terms Ĩapp and I are defined, respectively, as̃Iapp = Ii

app + Ie
app and

I =
1

Cm

(

λIi
app − Ie

app

λ + 1
− Iion

)

, whereIi
app and Ie

app are the applied intracellular and

the extracellular current stimuli. The current stimuli must satisfy the compatibility condition
∫

Ω
(Ii

app + Ie
app) dx = 0. In the sequel we takeIi

app = −Ie
app = Iapp. The coefficientλ

is chosen in such a way thatλDi ≃ De in order to weaken the coupling between the first
and the second equation. Under the (in general not realistic) assumption that the conductivity
tensorsDi andDe are proportional, the bidomain system can be reduced to the monodomain
system, and computation ofu andue is decoupled. The monodomain system reads

(6.3)







∂u

∂t
−∇ · (DM∇u) = I in Ω × (0, T ],

nTDM∇u = 0 on ∂Ω × (0, T ],

together with (6.2) and the initial conditionu(x, 0) = u0(x). HereDM =
1

χCm

λDi

1 + λ
is the

conductivity tensor andI is defined asI =
1

Cm

(Iapp − Iion).

6.1. Monodomain model discretization. In the time discretization of (6.3) we treat
implicitly the diffusion term in order to avoid small time-steps. Usually the monodomain
system is discretized as

(6.4)



















1
h
un+1 −∇ · (DM∇un+1) = 1

h
un + In,

1
h
wn+1

i = 1
h
wn

i + Φ(an
i h) (an

i wn
i + bn

i ) , i = 1, . . . , m,

1
h
Xn+1 = 1

h
Xn + gn,

for n = 0, . . . , N . The PDE is solved by a SBDF scheme, an IMEX [13, 5] method which
combines Backward Euler with FE schemes. The gate variablesare solved by the Rush-
Larsen method and the concentration variables by FE. We callthis method SBDF-FE∗. An-
other common discretization of the monodomain model is to replace, in the first equation of
system (6.4), In by I(un,wn+1,Xn+1). Since this is similar to a Gauss-Seidel substitution
approach, we call this method SBDF-FE∗-GS.

A second order scheme can be achieved using the AB2∗ scheme for the gate equations,
AB2 for the concentration equations, and a second order IMEXscheme for the PDEs. We
choose the CNAB scheme, combining the CN scheme for the diffusion term and AB2 for the
forcing term (according to [5] the CNAB scheme is effective for solving the monodomain
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equation). In this case the discrete system reads

(6.5)











1
h
un+1 − 1

2∇ · (DM∇un+1) = 1
h
un + 1

2∇ · (DM∇un) + 3
2In − 1

2In−1,
1
h
wn+1

i = 1
h
wn

i + Φ(a
n+ 1

2

i h)
(

a
n+ 1

2

i wn
i + b

n+ 1
2

i

)

, i = 1, . . . , m,
1
h
Xn+1 = 1

h
Xn + 3

2g
n − 1

2g
n−1,

for n = 1, . . . , N , where we setI−1 = I0, g−1 = g0, anda
n+ 1

2 , b
n+ 1

2 are chosen as in
(2.6) with c−1 = 0, c0 = 3

2 , andc1 = − 1
2 .

This scheme becomes unstable for time-steps larger than1 ms and oscillations persist for
time-steps larger than0.5 ms. In order to overcome these problems and reduce at the same
time computational efforts, we apply our time adaptive scheme. We still treat the diffusion
term implicitly also in the corrector scheme. This procedure does not affect the error estimate,
since (3.1), (3.2), (5.4), (5.5) still hold. The entire time-discretized monodomain problem
reads
(6.6)

P :











1
h
ûn+1 = 1

h
un + c0 ∇ · (DM∇un) + c1 ∇ · (DM∇un−1) + c0 In + c1 In−1,

1
h
ŵn+1

i = 1
h
wn

i + Φ(a
n+ 1

2

i h)
(

a
n+ 1

2

i wn
i + b

n+ 1
2

i

)

, i = 1, . . . , m,
1
h
X̂n+1 = 1

h
Xn + c0 gn + c1 gn−1,

C :



















1
h
un+1 − c−1 ∇ · (DM∇un+1) =

1
h
un + c0∇ · (DM∇un) + c1∇ · (DM∇un−1) + c−1Î

n+1 + c0I
n + c1I

n−1,
1
h
wn+1

i = 1
h
wn

i + Φ
(

â
n+ 1

2

i h
)

(

â
n+ 1

2

i wn
i + b̂

n+ 1
2

i

)

, i = 1, . . . , m,
1
h
Xn+1 = 1

h
Xn + c−1ĝ

n+1 + c0g
n + c1 gn−1,

for n = 1, . . . , N , whereÎn+1 andĝn+1 are computed using the predictor solutionsûn+1,

ŵn+1, X̂n+1, anda
n+ 1

2 , b
n+ 1

2 , an+ 1
2 , anda

n+ 1
2 are defined as in (4.5). We solve the system

(4.4) for the 1D Luo-Rudy model. Space discretization is carriedout with a Galerkin linear
finite element method. This choice is motivated in view of extending these computations to
the 3D case. We considerΩ = (0, l) and introduce the grid points{xk}

Ne

0 given byxk =

k δx, whereδx = l
Ne

is the grid spacing. We approximateyn
i with (yn

h)i =
∑Ne

k=0 ỹn
i,kϕk,

where{ϕk}
Ne

0 is the Lagrangian base for the space of piecewise linear continuous functions
onΩ. We define the 1DL2(Ω) norm with a trapezoidal rule, namely,

‖(yn
h)i‖ =

√

√

√

√

1

2

M−1
∑

k=0

[

(

ỹn
i,k

)2

+
(

ỹn
i,k+1

)2
]

δx.

We refer then to the space-time norm‖(yn
h)i‖st corresponding to the spaceL2(0, T ; L2(Ω)).

The relative error is given bymax
i

‖(yn
h)i − yi(xk, tn)‖st

‖yi(xk, tn)‖st

. Unless stated otherwise, in the

following simulations, we takeT = 500, l = 5cm, Ne = 500 and

(6.7) Iapp(t, x) =

{

Imax

(

1
2 − 1

2 cos
(

2π t
tp

))

, t < tp, x < xp,

0, otherwise,

whereImax = 60µA, tp = 1ms andxp = 1.5mm. As reference solution we consider
the one obtained using the predictor-corrector scheme AB2∗-CN∗, adapted in time, with
τ = 1e−9 andNe = 500. We are interested in time discretization errors, hence, the reference
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TABLE 6.1
Relative errors using different time-steps for the methodsSBDF-FE∗, SBDF-FE∗-GS, and CNAB-AB2∗. The

results in the first two columns refer to the PECE approach, while in the last two columns to the PEC approach.

h SBDF-FE∗ SBDF-FE∗-GS CNAB-AB2∗

2e-1 4.47e-1 5.14e-2 NaN
1e-1 3.09e-1 6.85e-2 4.67e-2
5e-2 2.12e-1 5.71e-2 4.24e-2

2.5e-2 1.48e-1 3.71e-2 1.86e-2
1.25e-2 1.02e-1 2.17e-2 5.52e-3
6.25e-3 6.59e-2 1.18e-2 1.46e-3

TABLE 6.2
Average time-steph, recomputed percentager, and relative error of the solution for the monodomain model,

computed using different predictor-corrector methods with time adaptive strategy.

AB2∗-CN∗ AB2∗-CN∗
PEC AB2∗-M(0.6)∗PEC

τ h r err h r err h r err
1e-1 5.92e-1 1% 2.57e-1 4.78e-1 7% 1.71e-1 4.87e-1 28% 9.53e-2

2.5e-2 3.63e-1 6h 3.96e-2 3.43e-1 9h 4.04e-2 3.42e-1 15% 3.19e-2
5e-3 2.14e-1 6h 2.90e-2 2.11e-1 8h 2.70e-2 2.14e-1 7h 2.13-2
1e-3 1.26e-1 6h 1.34e-2 1.26e-1 5h 1.30e-2 1.24e-1 13% 1.10e-2
1e-4 5.70e-2 11% 3.14e-3 5.77e-2 7% 3.06e-3 5.53e-2 17% 2.67e-3
1e-5 2.62e-2 11% 6.21e-4 2.62e-2 10% 6.20e-4 2.55e-2 17% 6.13e-4

solution is computed on the same grid used for the other numerical solutions. In Table6.1
we report results obtained for different time-steps, usingthe SBDF-FE∗, SBDF-FE∗-GS, and
CNAB-AB2∗ schemes. In Table6.2we report results obtained with the AB2∗-CN∗ scheme
and the predictor-corrector scheme AB2∗-M(0.6)∗. In Figure6.1 we report relative error
curves as a function of the average time-steph, using the SBDF-FE∗ scheme, the CNAB-
AB2∗ scheme, and the time adaptive algorithm with the AB2∗-CN∗ scheme. Second order
methods withθ < 1

2 used as correctors and methods corrected with local extrapolation present
instabilities.

Our numerical methods are robust with respect to the spatialresolution as shown in
Table 6.3, where we compare the average time-steph, the recomputed percentager, and
the relative error for different mesh sizes. The reference solutions are computed using the
different grids and taking a tolerance defined asτ = 1e − 9. The recomputed percentage
increases on coarse grids, whileh and the errors are fairly insensitive.

TABLE 6.3
Average time-steph, recomputed percentager, and relative error of the solution for the monodomain model,

computed on different grids, using AB2∗-CN∗
PEC

scheme with time adaptive strategy.

AB2∗-CN∗
PEC , δx = 5

125
AB2∗-CN∗

PEC, δx = 5

250
AB2∗-CN∗

PEC, δx = 5

500

τ h r err h r err h r err
1e-1 5.18e-1 30% 1.57e-1 4.80e-1 18% 2.11e-1 4.78e-1 7% 1.71e-1

2.5e-2 3.58e-1 27% 5.97e-2 3.55e-1 16% 3.11e-2 3.43e-1 9h 4.04e-2
5e-3 2.21e-1 22% 5.32e-2 2.15e-1 9h 3.56e-2 2.11e-1 8h 2.70e-2
1e-3 1.31e-1 10% 2.30e-2 1.27e-1 8h 1.65e-2 1.26e-1 5h 1.30e-2
1e-4 6.10e-2 8% 3.69e-3 5.89e-2 3% 3.56e-3 5.77e-2 7% 3.06e-3
1e-5 2.82e-2 4% 5.33e-4 2.71e-2 5% 6.77e-4 2.62e-2 10% 6.20e-4
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FIG. 6.1. Relative error curves as a function of the average steph, using the SBDF-FE∗ scheme, the CNAB-
AB2∗ scheme, and the time adaptive algorithm with the AB2∗-CN∗ scheme with PEC approach.

REMARK 6.1. The 3D bidomain problem. A complete analysis of the results of our
solver coupled with the (2D-3D) bidomain complete model is beyond the scope of the present
work. However, we want to address briefly a possible strategyfor an efficient coupling of the
PDE solver and our method. Usually, the bidomain system is written in a symmetric form
featuring the two variablesui and ue, whereui = u + ue is the intracellular potential.
However, if we resort to the non-symmetric form, in the predictor step we can avoid solving
the second equation of the system. The time-discretized problem reads, forn = 1, . . . , N,
(6.8)

P :



















1
h
ûn+1 = 1

h
un + c0 ∇ · (DM∇un) + c1 ∇ · (DM∇un−1)

+c0 ∇ · (D∆∇(ue)n) + c1 ∇ · (D∆∇(ue)n−1) + c0 In + c1 In−1,
1
h
ŵn+1

i = 1
h
wn

i + Φ(a
n+ 1

2

i h)
(

a
n+ 1

2

i wn
i + b

n+ 1
2

i

)

,
1
h
X̂n+1 = 1

h
Xn + c0 gn + c1 gn−1,

C :



















































1
h
un+1 − c−1 ∇ · (DM∇un+1) − c−1 ∇ · (D∆∇(ue)n+1)

= 1
h
un + c0∇ · (DM∇un) + c1∇ · (DM∇un−1) + c0∇ · (D∆∇(ue)n)

+c1∇ · (D∆∇(ue)n−1) + c−1Î
n+1 + c0I

n + c1I
n−1,

−∇ ·
[

Di∇un+1 + (Di + De)∇(ue)n+1
]

= 0,

∫

Ω
(ue)n+1dx = 0,

1
h
wn+1

i = 1
h
wn

i + Φ
(

â
n+ 1

2

i h
)

(

â
n+ 1

2

i wn
i + b̂

n+ 1
2

i

)

,
1
h
Xn+1 = 1

h
Xn + c−1ĝ

n+1 + c0g
n + c1 gn−1,

whereD∆ = 1
χCm

λDi−De

1+λ
. The termsÎn+1, ĝn+1, a

n, b
n
, â

n, b̂
n

are defined as in the
system (6.6).

Most of the computational effort is required by the solutionof the PDE system in the
corrector step. An efficient way to solve this system is presented in [10]. A detailed analysis
of 3D bidomain results with our method is presented elsewhere; see [21].

7. Conclusions.We presented a generalization to the popular Rush-Larsen method used
for solving nonlinear ordinary differential systems for the ionic dynamics in electro-physiology,
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in particular for the cardiac potential propagation. We extended the method to a class of sec-
ond order schemes. These schemes fall into the set of exponential integrators, even if peculiar
linearization performed in their formulation makes them different from other schemes previ-
ously proposed.

These methods also can be regarded as a generalization of classical multistep methods
whenever the problem at hand is naturally split into a linearand a nonlinear part. We have car-
ried out the analysis of the schemes, including the Rush-Larsen scheme which to the best of
our knowledge has not been analyzed before. One of the relevant properties of these methods
is that they can preserve bounds for the solution. Analysis shows that the approach pur-
sued here improves the absolute stability properties of thecorresponding multistep scheme,
as numerical results confirm. The major limitation of our approach at this time is the accu-
racy, which is limited to the second order as a consequence ofthe linearization procedure.
Nevertheless, the methods are accurate enough to be used in realistic electro-cardiology sim-
ulations.

We presented an extensive discussion of the predictor-corrector formulation of our method
for problems in electro-physiology and on the time-adaptive implementation, which is of
paramount relevance in cardiac applications. Preliminaryresults carried out on a simplified
1D model for cardiac potential confirm the effectiveness of our approach in view of more
realistic simulations over 3D domains.

Appendix A. We describe the Luo-Rudy model phase I [17]. The variablesw, X, and
functionsI, a, b, andg of the system (1.1) are specified as follows. We made slight mod-
ifications of the original model in functionsαh, βh, αj , βj , andXi in order to make them
continuous. The modifications are only of the inequalities on u.

w = [h j m d f X ]T ,
a = −[(αh + βh), (αj + βj), (αm + βm), (αd + βd), (αf + βf ), (αX + βX)]T ,
b = [αh αj αm αd αf αX ]T ,
X = [Ca], g = −10−4Isi + 0.07(10−4 − Ca),
Iion = IK1 + IKp

+ Ib + IK + INa + Isi,
u0 = −84mV, X0 = 2e − 4mM, w0 = [1 1 0 0 1 0]T ,

where the gating functions are defined as follows:

INa = 23 m3 h j (u − ENa), ENa = 54.4mV,

αh = 0.135e−
80+u
6.8 ,

βh =

{

0.13
(

1 + e−
u+10.66

11.1

)

, u ≥ −38.7381,

3.56e0.079u + 3.1 · 105e0.35u, u < −38.7381,

αj =







(u + 37.78)
(

−1.2714 · 105 e0.2444u − 3.474 · 10−5 e−0.04391u
)

1 + e0.311(u+79.23)
, u < −37.78,

0, u ≥ −37.78,

βj =















0.3e2.535·10−7u

1 + e−0.1(u+32)
, u ≥ −39.826,

0.1212e−0.01052u

1 + e−0.1378(u+40.14)
, u < −39.826,
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αm = 0.32
u + 47.13

1 − e−0.1(u+47.13)
, βm = 0.08e−

u
11 ,

αd = 0.095
e−0.01(u−5)

1 + e−0.072(u−5)
, βd = 0.07

e−0.017(u+44)

1 + e0.05(u+44)
,

αf = 0.012
e−0.008(u+28)

1 + e0.15(u+28)
, βf = 0.0065

e−0.02(u+30)

1 + e−0.2(u+30)
,

αX = 0.0005
e0.083(u+50)

1 + e0.057(u+50)
, βX = 0.0013

e−0.06(u+20)

1 + e−0.04(u+20)
.

Ionic currents are defined as follows:

Isi = 0.09 d f(u − Esi),

Esi = 7.7 − 13.0287 ln(Ca),

IK = GKXXi(u − EK), EK = −77.01mV, GK = 0.282
√

Ko

5.4 , Ko = 5.4mM,

Xi =







2.837
e0.04(u+77) − 1

(u + 77)e0.04(u+35)
, u > −100.05,

1, u ≤ −100.05,

IK1 = GK1
αK1

αK1+βK1
(u − EK1), EK1 = −87.26mV, GK1 = 0.282

√

K0

5.4 ,

αK1 = 1.02
1

1 + e0.2385(u−EK1−59.215)
,

βK1 =
0.49124e0.08032(u−EK1+5.476) + e0.06175(u−EK1−594.31)

1 + e−0.5143(u−EK1+4.753)
,

IKp
= 0.0183Kp(u − EKp), EKp = EK1,

Kp =
1

1 + e
7.488−u

5.98

,

Ib = 0.03921(u + 59.87),
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[9] P. C. FRANZONE AND G. SAVAR É, Degenerate evolution systems modeling the cardiac electric field at
micro and macroscopic level, in Evolution Equations Semigroups and Functional Analysis, A. Lorenzi
and B. Ruff, eds., Birkhauser, Basel - Boston - Berlin, 2002,pp. 218–240.

[10] L. GERARDO-GIORDA, L. M IRABELLA , F. NOBILE, M. PEREGO, AND A. V ENEZIANI, A model-based
block-triangular preconditioner for the bidomain system in electrocardiology, J. Comput. Phys., 228
(2009), pp. 3625–3639.

[11] A. L. HODGKIN AND A. F. HUXLEY , A quantitative description of membrane current and its application to
conduction and excitation in nerve, J. Physiol., 117 (1952), pp. 500–544.

[12] W. HUNDSDORFER, S. J. RUUTH, AND R. J. SPITERI, Monotonicity-preserving linear multistep methods,
SIAM J. Numer. Anal., 41 (2003), pp. 605–623.

[13] W. HUNDSDORFER ANDJ. VERWER, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction
Equations, Vol. 33, Springer Series in Computational Mathematics, Springer, Berlin - Heidelberg - New
York, 2003.

[14] M. S. JAFRI, J. J. RICE, AND R. L. WINSLOW, Cardiac ca2+ dynamics: the roles of ryanodine receptor
adaptation and sarcoplasmic reticulum load, Biophys. J., 74 (1998), pp. 1149–1168.

[15] G. E. KARNIADAKIS , M. ISRAELI, AND S. A. ORSZAG,High-order splitting methods for the incompressible
Navier-Stokes equations, J. Comput. Phys., 97 (1991), pp. 414–443.

[16] J. D. LAMBERT, Numerical Methods For Ordinary Differential Systems, John Wiley & Sons, New York,
1991.

[17] L. L UO AND Y. RUDY, A model of the ventricular cardiac action potential: depolarization, repolarization
and their interaction, Circ. Res., 68 (1991), pp. 1501–1526.

[18] B. A. M INCHEV AND W. M. WRIGHT, A review of exponential integrators for first order semilinear prob-
lems, Tech. Report 2/05, Department of Mathematics, Norwegian University of Science and Technology,
(2005).

[19] S. NØRSETT, An a-stable modification of the Adams-Bashforth methods, in Conference on the Numerical
Solution of Differential Equations, J. Ll. Morris, ed., Dundee, Scottland, June 23-27, 1969, Lecture
Notes in Math., Vol. 109, Springer, Berlin - Heidelberg, 1969, pp. 214–219.

[20] A. OSTERMANN AND M. THALHAMMER , Positivity of exponential multistep methods, in Numerical Math-
ematics and Advanced Applications, ENUMATH 2005, A. Bermudez, D. Gomz, P. Quintela, and
P. Sagado, eds., Springer, Berlin, 2006, pp. 564–571.

[21] M. PEREGO, Mathematical and Numerical Models for Focal Cerebral Ischemia and Electrocardiology, PhD
thesis, Politecnico di Milano, 2009.

[22] A. J. PULLAN , L. K. CHENG, M. L. BUIST, AND M. L. B. A NDREW J. PULLAN , LEO K. CHENG, Math-
ematically Modelling the Electrical Activity of the Heart, World Scientific, Singapore, 2005.

[23] Z. QU AND A. GARFINKEL, An advanced algorithm for solving partial differential equation in cardiac
conduction, IEEE Trans. Biomed. Eng., 46 (1999), pp. 1166–1168.

[24] A. QUARTERONI, R. SACCO, AND F. SALERI, Numerical Mathematics, Springer, New York, 2000.
[25] S. RUSH AND H. LARSEN, A practical algorithm for solving dynamic membrane equations, IEEE Trans.

Biomed. Eng., (1978), pp. 389–392.
[26] J. SUNDNES, G. T. LINES, AND A. TVEITO, An operator splitting method for solving the bidomain equations

coupled to a volume conductor model for the torso, Math. Biosci., 194 (2005), pp. 233–248.
[27] M. V ENERONI, Reaction-diffusion systems for the microscopic cellular model of the cardiac electric field,

Math. Methods Appl. Sci., 29 (2006), pp. 1631–1661.
[28] , Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlin-

ear Anal. Real World Appl., 10 (2009), pp. 849–868.
[29] H. YU, A local space-time adaptive scheme in solving two-dimensional parabolic problems based on domain

decomposition methods, SIAM J. Sci. Comput., 23 (2001), pp. 304–322.


