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HYBRID COMPACT-WENO SCHEME FOR SOLVING RELATIVISTIC FLOWS  *
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Abstract. In this paper the method hybrid compact-WENO proposed bivuRen, Miao’er Liu and Hanxin
Zhang has been modified to be used for relativistic fluid dyinanmstead of Euler equations. The behavior of this
new fifth-order conservative hybrid method is analyzed.
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1. Introduction. Relativistic hydrodynamic simulations are more difficiitih New-
tonian simulationsI1]. However, there has been much progress in relativistic erical
simulations during the last decade. We refer the reader dorgprehensive review of numeri-
cal relativistic hydrodynamics by Marti and Miller(]. In this article, we investigate hybrid
compact-WENO type schemes for solving relativistic flowkdemns. Compact schemes are
very accurate in smooth regions with spectral resoluties;lsele P]. However, it has been
observed that they do produce non-physical oscillatiorsnthey are directly applied to flow
with discontinuities. Moreover, it is well known that the mphysical oscillations (Gibbs
phenomena) do not decay in magnitude when the grid is refihedrder to suppress the
spurious oscillation and nonlinear instability, Cockbamd Shu B] developed a nonlinear
stable compact scheme for shock calculations.

An alternative approach is to develop so-called hybrid méstin which the non-oscillatory
shock-capturing schemes are only used locally near diszotiés while compact schemes
are used in smooth regions. The use of a conservative coraplaeime not only facilitates
the coupling with the WENO scheme, which is conservative atyre, but also makes the
overall scheme conservative no matter which boundary otostheme is adopted.

The hybrid compact-WENO scheme combines the advantagesngbact schemes in
smooth regions with the sharp WENO technique near the disagties. Another advan-
tage of the hybrid methods is that they are computationatiyenefficient than other nonlin-
ear compact schemes, since the computationally expensiv@scillatory shock-capturing
schemes are only used in regions containing the discotigsui

The aim of this paper is to modify the hybrid compact-WENQnfalated in [L3] for
Eulerian flows, so that it can be applied to the equationslafivéstic fluid dynamics (RFD).
In order to achieve this objective, we first write these eigmatas a hyperbolic system of
conservation laws, a task which is possible by choosing anogyiate vector of unknowns.
Then, by using the spectral decomposition of the RFD systarare able to formulate and
modify the proposed numerical scheme.

It is worth to mentioning that recently Zhang et &l5] proposed higher order exten-
sions of the nonlinear weighted compact schemes and thénteeigssentially nonoscillatory
schemes of Jiang and SH].[At the core of this contribution is the idea to directlyenpolate
the flux on its stencil instead of performing the nonlineaeipolation on the conservative
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variables as in Deng and Zhang].[ Since the authors report that this approach has the same
ability to capture strong discontinuities, while the regwin of short waves is improved and
numerical dissipation is reduced, it may have an intergstimpact in the solution of the
relativistic fluid dynamics equations analyzed in this work

This article is organized as follows. In Sectigrthe relativistic fluid dynamics equations
are introduced. In Sectids) the compact-WENO method is described in general (Seétin
and its adaptation to RFD (Sectidh3) is discussed. In particular, the parameter which
determines the behavior of the hybrid scheme is reformdilatel discussed in Sectién2.
In Sectiord, the results of several numerical experiments in 1D and 2pegsented in order
to compare hybrid compact-WENO with WENO schemes. Sedioontains final remarks
and conclusions.

2. Relativistic fluid dynamics. In general, a relativistic fluid is characterized by phe-
nomena which involve gas moving at velocities close to theedpof light. In this context,
relativistic equations have to be used instead of the Egjeatons for fluid dynamics.

Within the framework of restricted relativity, a relatiticsflux is described by a system
of equations of local conservation laws, given by

V.(pU*) =0 local conservation of the baryonic number density, (2.1)
V. T" =0 local conservation of the momentum-energy tensor. (2.2)

Throughout this section, Greek indices run froro 3, and Latin indices from to 3. In the
former equationsy is the rest mass density/* the 4-velocity vector an®,, stands for the
covariant derivative 7'*” is the energy-momentum tensor, which for a perfect fluid can b
written as

TH = phuyuy, + pguv, (2.3)

wherep is the pressure anfd= 1 + ¢ + p/p is the specific enthalpy, withbeing the specific

internal energy. The tensgy,,, defines the metric of the space-time where the fluid evolves.
The first step to build the hybrid numerical scheme consistg\riting 2.1) and .2

in conservative form, se€(11). To do so, we recall from5] that the system of equations

(2.1 and .2 can be rewritten as

OF"(w)
T 0 (2.4)
with
w=(p,0, )7, (2.5)
FO(w) = (oW, phW?v/, phW? — p — pW)", (2.6)
Fi(w) = (pWo', phW2vi v + ps¥ | phW 20" — pWo')T, (2.7)

wherez* = (t,z,y,2); andv® = u/W, whereW is the Lorentz factor which satisfies
W=(1- v2)’1/2, with v2 = 5ijviuj.
Consider now the variables
D = pW
SI = phW 27 (2.8)
T =phW? —p— pW,
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which are, respectively, the rest mass, momentum, andaog&by densities, measured in the
laboratory frame. Defining now the conserved quantities

u= (DS, 7)" (2.9)
Fi(u) = (Dv', S0 4 ps, §" — Dv')" (2.10)
the system takes the form
ou aft
E—i_;a_xl =0, (2.11)

which is the desired conservative representation. Thesys closed with an equation of
statep = p(p, €) and is hyperbolic for causal equations of state; see Agjle The solu-

tion of hyperbolic non-linear systems of conservation ldysneans of component-wise or
characteristic-wise type schemes requires as a first stegptéttral decomposition of the sys-
tem. In these schemes, the characteristic structure istosmunpute the local characteristic
fields, which define the directions along which the charétievariables propagate. The full
spectral decomposition of the thrée< 5 Jacobian matrice®’ associated with the system

(2.19),

if[“)fi(u)
5= ou '’

(2.12)

which is at the very core of this paper, can be found in Donat.¢5]. For completeness, we
include the expressions of the eigenvalues

Ag = 0° (triple), (2.13)

which define the material waves, and

1

T 1 _.22
1 —v2c?

At {U””(l — )+ /(1 —v2)[1 —v*o* — (v2 — kuw)cg]} , (2.14)

which are associated to the acoustic waves. Note that thactkastic wave speeds in the
relativistic case not only depend on the fluid velocity comgats in the wave propagation
direction, but also on the normal velocity components. Tugpling adds new numerical
difficulties which are specific to relativistic fluid dynarsicsee IbafieZ].

In what follows, for simplicity of exposition and since itstension to several dimensions
is straightforward, we shall present the component-wigerithm in one dimension. In this
case, the Jacobian matrix &f.( 2 has three real and distinct eigenvalues, one associatied wi
material waves and two with acoustic wavesand(v + ¢;)/(1 + ves).

Although component-wise methods are simple and cost efégdt4], for more demand-
ing test problems, it is advisable to use the more costlyiuth more robust, characteristic
decomposition. The combination of spectral methods wittratteristic-type schemes is thus
expected to produce more precise results at a lower cost.

3. Compact-WENO scheme.In this section, we first describe in general the compact-
WENO method and we discuss how to adapt this technique to i froblem. In partic-
ular, we discuss and reformulate the parameter which detesthe behavior of the hybrid
scheme in such a way that it can accurately solve the RFD @mbl
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3.1. The finite difference equation.Consider the scalar hyperbolic conservation law

ou Of _
S ta, =0 wheref = f(u). (3.1)

% is a real function ofu. Let{I;} be a uniform partition of the solution domain in space,
Wherte = [$j71/2,$j+1/2] and(Ej+1/2 — «Tj—1/2 = h.

The semi-discrete conservative finite difference schentg.af can be written as

du;

1 /- .
5 T (fj+1/2 - fj71/2) =0, (32)

wheref; 1 /2(ujk, ..., uj1x11) is @ numerical flux function such that

% (fj+1/2 - fjfl/Q) = (%) o+ O(n"), (3.3)
j

which implies that the scheme ish order accurate in space.

The time integration will be performed by means of a thregst TVD Runge-Kutta
scheme. Defining

LJ(U) = —% (fj+1/2 - fj—l/2) ) (3.4)

the TVD Runge-Kutta scheme is given by

ul? =un +AtL (u™), (3.5)

1
ul? = 4u; + Z ult + 4AtL (uM), (3.6)
wtt = L 2,00 2 AtL j(u®). (3.7)

J 3.7 3]

This scalar numerical technique is at the core of the chariatit-wise algorithm used to
solve systems of equations, where at each point we projeatdtiables and the fluxes onto
the local characteristic space. In terms of these chaistitefields, the equations locally
decouple, and we are in a position to apply the scheme sepat@each of the characteristic
fields. The specific numerical fluxes that we shall use in tttisla will be explained in the
following section.

3.2. The hybrid compact-WENO scheme.As we mentioned above, compact schemes
give very satisfactory results if the solution is smoothrguwdere. However, Gibbs phenom-
ena will occur when there are discontinuities in the solutiGibbs phenomena will con-
taminate the solution and may lead to nonlinear instadditin order to cure this deficiency
a hybrid compact-WENO method was proposedlinl[2] in which the compact scheme is
coupled with an ENO or a WENO scheme. As a result, the proplogedd method uses the
compact scheme segment by segment in smooth regions, veatetime discontinuities that
separate the smooth regions, the ENO/WENO scheme is udeddns

The hybrid scheme presented here appeard3hdnd is constructed by considering
the weighted average of two sub-schemes: the conservatwmd compact scheme of fifth
order and the WENO scheme.

The system can be written as follows

Uj+1/2¢j+1/2fj71/2 + fj+1/2 + Uj+1/21/1j+1/2fj+3/2 = Cjy1/2, (3.8)
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where
ORI S =V R . A=V (3.9)
j+1/2 3 6 5 j+1/2 3 6 5 .
Sj+1/2 = sign(@;1/2) (3.10)
.fj+1_.fj If Wi _ .
U1 —us “+1 u 7& Oa
ajr12 =19 (ar\ o (3.11)
' (a_'u) , otherwise
J
G2 = 0jp1y2birye + (1 — Uj+1/z)fﬁ?}\120 (3.12)
~ 1—s i+1/2 1 19 5
bjt1/2 = (+) (1—8]‘}-_1 thit §fj+1) +
1—s j+1/2 5 19 1
(+> (gfj tglivt 1—8fj+2> (3.13)
2
fWENO
j+1/2 = Zw’Yf]-l—l/w (3.14)
~v=0

ando; i/, is a weight which is directly related to the smoothness ofrthmerical solu-
tion. In equation 3.14), f]ﬂ/z is obtained by a second order polynomial reconstruction of
J(u(zz,41/2)) on theyth set candidate stencils,. For eachy, the weightw, satisfies the
conditionw, > 0, > w, = 1; see Procedure 2.5 ir1{] for more details. In this numeri-
cal scheme, a smoothness indicatpr, /, is defined and the weight should be a function of
Tj+1/2-

In the present paper, the smoothness indicator is desigriasl t

Tjt1/2 = min(rj, rjy), (3.15)
where

[2Af; Afi_ 19l +¢
’f'j = A ‘ J+21/2 Aj .1/2 5 (316)
(Afjy12)? + (Afjo1p2)? +¢

_ C o 097 2 i i i
andAfj 12 = fi41— fii e = 1=55= ¢ is apositive real number to avoid possible division

by zero. Here( is a user-specified positive number which will be explainedhie next
subsection.

To make a compromise between the robustness, the efficiandythe accuracy of the
method, it is suggested il ] that the weight should be a continuous rather than a smooth
function of the smoothness indicator. Under these condtithe weight takes the following
form

Ojt1/2 = min (1, rjt1/2> , (3.17)

Te
wherer. is a threshold value which is usually problem-dependent.
3.2.1. Choice off.. Suppose that is small enough so that it can be ignored #1©
and letr = Af;_,, andy = Af; /2. Then we have

eyl _, lel bl
s Y R N

= 2sinfcosf = sin(20) where 6 € [0,7/2].
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We are interested in finding the valuestoivhich determine under which circumstances the
WENO scheme is not used. This happens when (368)]

Te

% >1 thatis,  S229 S L ginee) > 7 (3.18)
The threshold values of this relation afe € [0,7/4] and§, € [r/4,7/2], so that for
all & € [61,605], the WENO scheme is not used. Recall thatlg is equivalent to
tan(26) > 7.(), which provides an explicit relation betwegénandtan(26).

Considering now that; = tan(61) andz; = tan(f2), and noting that| = tan(6),
we do not have to calculate a WENO scheme fofalle [21, 23], which gives a geometrical
interpretation of the. parameter. On the other hand, when the valtieis too big or too
small due to the presence of non-smooth data, the WENO scisee@aced by the compact
method.

|x/y|

] 01 02 03 04 05 08 07 08 0.8 1

FIGURE 3.1.Relation betweerh% | and7e.

As we can see in Figurg.1, for small values of. the relation of|£| with 7. is almost
linear. Under these circumstances, numerical experinfevs shown that the quality of the
solution is not very sensitive to changes of theparameter. This can be explained as a result
of this linear behavior.

In turbulent fluxes, it has been proved that compact scheesedve the fluctuations bet-
ter than a finite difference scheme such as WENO, so it is reduhat the hybrid scheme
uses a compact method when such zones appear. The paransaised to recognize these
turbulent fluxes. When small but strong fluctuations are ¢bimthe numerical solution,
the terme dominates and;,,, ~ 1, so the scheme will be purely compact. Indeed, when
max (|Afj_1/2|, IAfjq1/2], |Afj+3/2|) < (theno;, i/, > 0.9. Note that acts as a thresh-
old value, such that all fluctuations smaller than this valile be considered as turbulent
fluctuations and consequently will not be damped by using \WEN3].
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Numerical experiments have shown that the numerical swiugiless sensitive to strong
changes ir(; thus, we will keep, = 10~2 in all our numerical experiments, as proposed

in [13].

3.3. Compact-WENO scheme for RFD.As mentioned in Sectiof, and since its ex-
tension to several dimensions is straightforward, we dteak present the hybrid scheme for
relativistic flows in one dimension only. When solving theDREquations the evaluation of
the numerical flux functions for the characteristic-wisdtg compact-WENO scheme can
be obtained by the following steps:

1. Ateach fixedr;, /2, the average state; |/, is computed by the simple mean

1
Ujr1/2 = 5(U5 + ujr1)- (3.19)

(1 = 1,2,3) and the left eigenvectoiéi)

J+1/2 (Z = 13273)

; (1)
2. The elgenvalu_esj+1/2
are computed in terms af; | ; /5.
3. The local characteristic decompositions of the flux fiong atz,,, for

m=j—1,...,j+ 2 are computed by using

wﬁ,?:zgﬁl/zfm, i=1,2,3, m=j—1,...,j+2. (3.20)
4. Define
(1) o (4)
8j41/2 = Sign (/\j+1/2) ,
(2) R (@) .01
Tjy1/2 = Min (rj ,er) ,
|2Aw§21/2Aw§1_)1/2| +e

T(l) =

j i i ’
(Aw§.+)1/2)2 + (Aw§.21/2)2 +e
(1)
O Tit1/2
0112 = Min 177:_(: ,

i (@)
Oj+1/2 = n?ll)n (Uj+1/2) :

Note thato; ./, has been modified from the original formula used i8][ This
change is due to the presence of negative pressures whigamgpen using the
formulation given in [L3]. Moreover, the motivation for changing this term is the
fact that by using the original formula given iad, the corresponding matrix of
(3.23 becomes extremely ill-conditioned due the height diffieess between the
values of the relativistic eigenvectors.

As can be seen from equatiod.{2, if aﬁm = 0, this implies that the scheme
only uses the WENO method in the correspondingomponent. Recall that in our
problem, we have only one of tl{¢) components different from zero while the rest

are zero. Then the structure &.24) and @.26) is affected due to strong coupling.
With the choice ofr; /o = min (0;21/2) we aim to unify the behavior of the

method for thgi) components in such way that the WENO technique will be used
whenever any of thé;) components uses WENO. In this case, we can guarantee
that uniform blocks will be produced.



ETNA
Kent State University
http://etna.math.kent.edu

HYBRID COMPACT-WENO SCHEME FOR SOLVING RELATIVISTIC FLOWS 109

Fori = 1,2, and3, the hybrid compact-WENO scheme for the scalar equa8d) (
can be applied to the local characteristic varia€s (i = 1, 2, 3) by means of the
following system of equations

(4) ~ (%) (4) _ A
+1/2¢g+1/2w3 12 T w]+1/2 to +1/2¢]+1/2w3+3/2 Cit1/20 (3.21)
where
(1)1/2 " 1 (1)1/2
_ 7+ i 7+
¢J+1/2 3 + 6 1/)J4r1/2 g - 6
& OO (i) _ (i), WENO
Civij2 = +1/2b]+1/2 (1- Uj+1/2)wj+1/2 5 (3.22)
and
(1)
i (i 1+5; 19 5
(1) J+1/2 (i) (i) (i
b]+1/2 5 <18 w;” 1+18w +9wj+1)+

(i)
=511 5 oS 19 "o +_ (i)
2 9 18 i1 T g it ) -

It should be noted that for fixeid (3.21) cannot be solved directly since t’méﬂ/2

defined locally in terms of the characteristic vanablé,Q; see B.3). Consequently,
in the following step, 8.21) for all characteristic fields will be arranged into a block-
tridiagonal system of equations that can be solved to othi@inumerical flux in the
physical space.

. Fori = 1,2, 3, equation 8.21) can be written as

(I)j+1/2fj71/2 + Lj+1/2fj+1/2 + ‘I’j+1/2fj+3/2 = Cjq1/2; (3.23)
where

(1) ¢ (1)
Tit1/2 7+1/2 J+1/2
D, _ (2) ¢
J+1/2 g(+)1/2 g+1/2 ]+1/2 )
3
J+1/2¢J+1/2 Jj+1/2

(3.24)

l(l)
J11/2

— 2)
Ljt1/2 = l§-+1/2 ) (3.25)

13
j+1/2

pueS) 1/)

%;)1/2 J+1/2 g)l/z

\IjjJrl/Q = +1/2¢'+1/2 j+1/2 ’ (326)
(3) w(B)

J+1/2 j+1/2"5+1/2

)
j;r)l/Q
éj+1/2 = é;+1/2 . (327)

Citr1/2
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4. Numerical tests. Our intention is to prove that the hybrid compact-WENO scaem
provides a better representation for shortened lengtestahn the one obtained when we use
only the WENO scheme. As mentioned, this behavior is expdmeause compact schemes
are very accurate in smooth regions with spectral-likeltggm for problems which present
a large range of scales.

In what follows, we study three problems in 1D and two protldeém2D in order to
investigate the advantages of the hybrid compact-WENO ogetBoundary conditions are
set by filling the data in guard or ghost cells. The compuretigrid is extended on each side
of the physical domain to compute the fluxes at the interfateshis paper, we have used
both absorbent and prescribed boundary conditions. Thasedary conditions have to be
provided at each time step for all primitive and conseneatiariables.

For comparison purposes, we first build a reference sinmagainst which we will
compare every result. This solution is built by means of a \@BMhethod with Lax-Friedrich
flux splitting coupled with a TVD-RKS3 in a grid of 10000 poirfter 1D and1000 x 1000 for
2D, with 2L = 0.8 for 1D and{L = 0.5 for 2D at a final timel” = 0.4 for 1D andT = 0.8
for 2D.

In 1D, we start testing the algorithm with a smooth 1D hydmayical solution which
has been recently studied numerically @, [for different methods. The second problem to
be analyzed is a shock tube with non-oscillatory initial dition, whereas the third problem
has a turbulent right initial condition.

In 2D, the numerical experiments will be performed on theasg(0, 1]?, having a uni-
formly distributed gas witH® = % andp = 10,v = 0,p = 13.3. At¢ = 0, we start to
feed the square with a gas determined by the gdatal0, v, = 0,v, = 0.9¢,p = 13.3 and
p =10,v, = 0,vy = 0.99¢,p = 13.3 for the first and second problem respectively, for the
region0.4 < z < 0.6,y = 0, while other boundary conditions are set to be absorbent.

4.1. 1D. PrRoOBLEM 4.1. In this problem, we focus on the case of a varying density
profile p = p(x, t) with constant, uniform pressuge= po and velocityv = vy. When these
functions are substituted int@.(L1), we see that they form a consistent solution for the advec-
tion of a density profile at constant velocity. This test is performed on the computational
domain0 < z < 1 for an ideal gas witi® = 5/3. We consider two sets of initial conditions
for this problem. The first initial conditions are given by

{p =1.0,p =sin(327z) + 2,v = 0.4} x €10,1] (4.1)
and the second initial conditions are
{p=1.0,p=sin(27z) + 2,v = 0.4} x € [0,1]. (4.2)

In both cases, we have two smooth analytic solutions whittabe as stationary traveling
waves. The solutior4(1), which presents more oscillations, is designed to proeesffec-
tiveness of the hybrid scheme when the parametervaried, while the second solutiofh.p)

is built to verify the order of convergence of the hybrid stiee The corresponding results
are shown in Tabled.1and4.2. As can be appreciated from Tabilel, for small values of
7., the hybrid scheme not only gives a better error, but alsoalemCPU time. Thus, we
verify that the hybrid scheme has superior performancedgtire WENO method for this
case. This behavior is consistent with the fact that comgetetmes are better suited for the
approximation of smooth oscillatory solutions. The chadie, which is the subject of the
following cases, is whether this improvement holds for higion-smooth relativistic solu-
tions. On the other hand, in Tabde2, we can see that the order of convergence of the hybrid
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method is consistent with the third-order Runge Kutta timtegration technique.
PROBLEM 4.2. The initial conditions for the second problem are

{pr = 13.3,pr = 10,v;, = 0} x €10,0.5], (4.3)
{pr =0,pr = 1,vg =0} x €[0.5,1]. (4.4)

The results are shown in Tablés3and4.4.

TABLE 4.1
Hybrid and WENO schemes for problem 1; initial condition&:1}, with N = 200 points,T' = 2.5, % =0.8.

HYBRID #. CPU-Time(s) ||l % WENO

0.1 11.0 0.0898 4.82
0.3 11.0 0.0884 15.22
0.5 12.0 0.0900 28.16
0.7 13.0 0.0960 47.17
0.9 13.0 0.1116 70.52
WENO - 14.0 0.1348 100
TABLE 4.2

Hybrid scheme for problem 1; initial conditions4.@), with 7. = 0.1, T = 2.5, % =0.5.

npts  |]o  CPU-Time(s) % WENO
25 0.08144 0.0 2.81
50  0.04406 0.0 1.40
100 0.02619 3.0 0.40
200 0.01741 9.0 0.01
400 0.01277 78.0 0.0
800 0.01073 345 0.0
TABLE 4.3

Schemes: Hybrid and WENO for problem 2 in 1D wih= 625 points,7’ = 0.4, % =0.8.

HYBRID 7. CPU-Time(s) |||l Il  Local error % WENO
0.1 - - - - -
0.15 38.187 0.0891 1.4349 0.2668 4.43
0.2 38.046 0.0938 1.6113  0.2617 5.05
0.3 38.046 0.1003 1.7615 0.2775 5.52
0.4 38.030 0.1042 1.8361 0.2896 5.70
0.5 38.483 0.1054 1.8568 0.2943 6.01
0.6 38.436 0.1065 1.8777 0.2978 6.39
0.7 38.577 0.1075 1.8931  0.3016 7.05

WENO - 43.7 0.1156 2.0125 0.3300 100

We can see from the results of Tablels3 and 4.4 that the new definition
Oj41/2 = ming, (0§21/2) works well. In this case the behavior of the two algorithms
are quite similar. However, as we can see in Talll8sand4.4, the error produced by the
hybrid method is better than corresponding error of the WE&EDNnique.

Recall that the choice of the paramefercorresponds to % of use of WENO. Thus,
the larger the parameter is, the more the WENO scheme willsbd.uSo it is not difficult
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TABLE 4.4
Schemes: Hybrid and WENO for problem 2 in 1D wih= 1250 points,T = 0.4, % =0.8.
HYBRID 7. CPU-Time(s) |||l= [l  Localerror % WENO
0.1 - - - - -
0.15 160.264 0.0511 0.9495 0.1492 1.83
0.2 154.140 0.0485 0.9030 0.1289 2.14
0.3 153.203 0.0486 0.8124 0.1390 2.50
0.4 153.421 0.0499 0.8768 0.1509 2.64
0.5 153.812 0.0511 0.9243 0.1594 2.86
0.6 160.327 0.0516 0.9446 0.1637 3.16
WENO - 172 0.0586 1.0707 0.1989 100
T T T
----- WENO
——— 16=0.3
0511 e —
—+—r1c=0.5
—*—r1c=0.6 )
% 13=0.7 ==
0.505 —S—r16=0.15 il
—&—rc=0.2
05 -
0.405 il
0.49 - |
1 0 ] ‘ i :
! 0 0.2 0.4 0.6 0.8 1
0.485 | [ | | I | | | -
0.786 0.788 0.79 0.792 0.794 0.796 0.798 0.8 0.802 0.804

FIGURE4.1. Severalr. for problem 2 with625 points.

to notice that the smaller,., the more oscillatory (near discontinuities) the solutiah be,
because the WENO is less used; see Figdreand4.2

PROBLEM 4.3. The third initial value problem is
x €[0,0.5],
x € 1[0.5,1].

(4.5)
(4.6)

{D(x) =10,S8(x) = 0,7(x) = 19.95}
{D(x) =1+ 0.2 -sin(207x), S(x) = 0,7(x) = 9.9- 10" "}x

As we can see in Tables5 and 4.6, the hybrid compact-WENO scheme has smaller
error and smaller execution time than WENO. In addition tyierld compact-WENO method
needs fewer points than the WENO technique to achieve battarracy in all curves and
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T

I
I
i
4
i
[}
i

0.27F
0.265
0.26 .
0.255 .
0.25 .
| 1 | | | | I- |
0.774 0.776 0.778 0.78 0.782 0.784 0.786 0.788
FIGURE4.2. Severalr. for problem 2 with625 points.
TABLE 4.5
Schemes: Hybrid and WENO for problem 3 in 1D wikh= 625 points,T" = 0.4, % =0.8.
HYBRID 7. CPU-Time(s) |||2 Il  Localerror % WENO
0.15 44 0.1179 1.456 0.4407 4.63
0.2 44.3 0.1190 1.4079 0.4447 5.22
0.3 44.62 0.1219 1.4874 0.4557 5.83
0.7 45 0.1290 1.6329 0.4761 8.09
WENO - 53.7 0.1465 1.7936 0.5496 100
TABLE 4.6
Schemes: Hybrid and WENO for problem 3 in 1D wih= 1250 points,7" = 0.4, % =0.8.
HYBRID 7.  CPU-Time(s) |||l2 Il  Localerror % WENO
0.15 178 0.0676 1.567 0.1971 5.28
0.2 178.8 0.0705 1.6507 0.2067 5.97
0.3 179 0.0727 1.79 0.2034 7.13
0.7 180 0.0779 1.938 0.2191 10.6
- 218 0.0876 2.1423 0.2525 100

5

WENO
fewer oscillations in the solution. This can be appreciatgeigures4.3and4.4.
3 Whose density is everywhere given by

4.2. 2D. PROBLEM 4.4. The first problem consists of a squébel]?, where initially

there is a uniformly distributed gas with =
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—==WENO
—e—mn=0.15
——m=03
—%—mn=07

Referance
simulation —

0.56—

0.54 -

0.82 -

0.46 —

044 zoom =

042 —

0.4 |4

078 0.8 0.6 0.2 0.e3 0.84

FIGURE 4.3. Oscilations from the probler with 625 points.

— === WENO

i —&— m=15 il

—— =3

—4— 07
Reference

simulation

i ] B 04 [ 0.8 i
.88 0.54 0.56

FIGURE 4.4.Oscilations from the problerd with 1250 points.

p(0,z,y) = po = 10, v%(0,z,y) = v¥ = 0, v§(0,2,y) = v§ = 0, andp = 13.3 for
all z, y. Att = 0, an inflow flux is injected into the square with the featurps:= 10,
vy =0, v = 0.9¢, p = 13.3 from the regiorD.4 < x < 0.6,y = 0, while other boundary
conditions are set to be absorbent.
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Throughout this section, the approximation error is coragutith the following for-
mula: supposing is the exact solutiori/ its approximation, an@ the dimension, then

Z?:l ||U(:, :ai) - U(:a :ai)HQ
4N2 ’

wherei = 1,2, 3, 4 denotes the number of equations. The results are shown ieskaiand
4.8 where we can see that the hybrid compact-WENO method hdtesmaor and smaller
execution time than WENO, similarly to what we have seen in\A® can appreciate the dif-
ferences between the algorithms, for example, in the asiciiis at the bottom of Figurés5

(4.7)

and4.6.

Schemes for problem 1 in 2D: Hybri

T =0.8,v§ =0.9c.

TABLE 4.7
Az

AL =05), WENO(4L =0.5), N x N = 125 x 125 points,

HYBRID 7. CPU-Time(s) ERROR % WENO
0.2 - - -
0.3 1408 10.2821 15.75
0.5 1444 11.0893 19.86
0.8 1477 11.4797 25.73
WENO - 1853 12.6638 100
TABLE 4.8

Schemes for problem 1 in 2D: Hybrid2L = 0.5), WENO(% = 0.5), N x N = 250 x 250 points,

T =0.8,v§ =0.9c.

HYBRID 7. CPU-Time(s) ERROR % WENO
0.2 - - -
0.3 8508 5.7804 9.56
0.5 11088 6.4827 12.71
0.8 11135 7.0383 18
WENO - 15279 8.1697 100

PROBLEM 4.5. The second problem has the same features as the previelexcept
that in this case = 0.99¢. The results are shown in Tablé®and4.1Q

TABLE 4.9

Schemes for problem 2 in 2D: Hybrié% = 0.3), WENO(% = 0.5), N x N = 125 x 125 points,

T = 0.8, v} = 0.99c.

HYBRID 7. CPU-Time(s) ERROR % WENO
0.8 2005 91.1982 26.49
0.85 2015 90.8966 27.54
0.9 2021 91.4507 28.76

WENO - 1689 102.4160 100

In this problem, it is important to remark that we have deseeathe relationﬁ—; to
allow the hybrid compact-WENO to work, whereas the WENO wgak well as before with
% = 0.5. This explains why the hybrid scheme was slower than WENGhénsecond
problem. Nevertheless, the error obtained by the hybridhoteis still smaller than the error
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FIGURE 4.5. Comparative density between hybrid compact-WENQ (= 0.5, 7 = 0.3) and WENO
(A = 0.5) for the first problem with 25 x 125 points.
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FIGURE 4.6. Comparative density between hybrid compact-WENQ (= 0.5, 7 = 0.3) and WENO
(A = 0.5) for the first problem witt250 x 250 points.

Schemes for problem 2 in 2D: Hybri

T =0.8, vg = 0.99c.

TABLE 4.10

2L =0.3), WENO( 4L = 0.5), N x N = 250 x 250 points,

HYBRID 7. CPU-Time(s) ERROR % WENO
0.8 14990 52.1531 18.25
0.85 15190 52.3219 19.31
0.9 16609 52.8164 20.61

WENO - 14034 62.5234 100
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FIGURE 4.7. Comparative density between hybrid compact-WENQ (= 0.3, 7 = 0.85) and WENO
(A = 0.5) for the second problem with25 x 125 points.
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FIGURE 4.8. Comparative density between hybrid compact-WENQ (= 0.3, 7. = 0.8) and WENO

(A = 0.5) for the second problem witk60 x 250 points.

obtained by WENO with the same number of points. We can ssértfliablest.9and4.1Q

In Figures4.7 and4.8, we can see how the hybrid scheme decreases the noise atttive bo
of the figure. Note also that in Figu#e8, the hybrid scheme does not have the hump around
coordinates{ = 0.5, y = 0.5) that can be seen in the WENO results.

5. Conclusions. In this article, we have modified the hybrid compact-WENO moeit
proposed in 13 so that it can accurately solve problems with relativigkiwvs, which are
characterized by having strong shocks and turbulence archvlerefore have a wide range
of scales. More precisely, we numerically illustrated thpesiority of the modified hybrid
compact-WENO method over the WENO technique for the satutifoRFD problems.

In Section3, we have reviewed in detail the hybrid method d8][and significant mod-
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ifications were introduced to the scheme. In particular, vseussed and reformulated the
parameter which determines the behavior of the hybrid sehiensuch a way that it can
accurately solve the RFD problem; see Secfdh

In Sectiord, several experimentsin 1D and 2D have been carried out tpamthe two
methods for relativistic problems, including a smooth solufor the 1D case, and we were
able to show that the hybrid method gives, as was to be exgheztieetter resolution in 1D
and 2D, owing to its spectral-like resolution property. TH& experiments were performed
foravy = 0.99c.

It is worth pointing out that we have tried to use the hybrictmoel for the 2D prob-
lem (Problend.5) with v§ = 0.999¢; however, the results were not satisfactory. It is clear
that further modifications are necessary in this case amemuwork is in progress in this
direction.
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