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Abstract. In this paper the method hybrid compact-WENO proposed by Yu-Xin Ren, Miao’er Liu and Hanxin
Zhang has been modified to be used for relativistic fluid dynamics instead of Euler equations. The behavior of this
new fifth-order conservative hybrid method is analyzed.
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1. Introduction. Relativistic hydrodynamic simulations are more difficult than New-
tonian simulations [11]. However, there has been much progress in relativistic numerical
simulations during the last decade. We refer the reader to a comprehensive review of numeri-
cal relativistic hydrodynamics by Martı́ and Müller [10]. In this article, we investigate hybrid
compact-WENO type schemes for solving relativistic flow problems. Compact schemes are
very accurate in smooth regions with spectral resolution; see Lele [9]. However, it has been
observed that they do produce non-physical oscillations when they are directly applied to flow
with discontinuities. Moreover, it is well known that the non-physical oscillations (Gibbs
phenomena) do not decay in magnitude when the grid is refined.In order to suppress the
spurious oscillation and nonlinear instability, Cockburnand Shu [3] developed a nonlinear
stable compact scheme for shock calculations.

An alternative approach is to develop so-called hybrid methods in which the non-oscillatory
shock-capturing schemes are only used locally near discontinuities while compact schemes
are used in smooth regions. The use of a conservative compactscheme not only facilitates
the coupling with the WENO scheme, which is conservative by nature, but also makes the
overall scheme conservative no matter which boundary closure scheme is adopted.

The hybrid compact-WENO scheme combines the advantages of compact schemes in
smooth regions with the sharp WENO technique near the discontinuities. Another advan-
tage of the hybrid methods is that they are computationally more efficient than other nonlin-
ear compact schemes, since the computationally expensive non-oscillatory shock-capturing
schemes are only used in regions containing the discontinuities.

The aim of this paper is to modify the hybrid compact-WENO, formulated in [13] for
Eulerian flows, so that it can be applied to the equations of relativistic fluid dynamics (RFD).
In order to achieve this objective, we first write these equations as a hyperbolic system of
conservation laws, a task which is possible by choosing an appropriate vector of unknowns.
Then, by using the spectral decomposition of the RFD system,we are able to formulate and
modify the proposed numerical scheme.

It is worth to mentioning that recently Zhang et al. [15] proposed higher order exten-
sions of the nonlinear weighted compact schemes and the weighted essentially nonoscillatory
schemes of Jiang and Shu [8]. At the core of this contribution is the idea to directly interpolate
the flux on its stencil instead of performing the nonlinear interpolation on the conservative
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variables as in Deng and Zhang [4]. Since the authors report that this approach has the same
ability to capture strong discontinuities, while the resolution of short waves is improved and
numerical dissipation is reduced, it may have an interesting impact in the solution of the
relativistic fluid dynamics equations analyzed in this work.

This article is organized as follows. In Section2, the relativistic fluid dynamics equations
are introduced. In Section3, the compact-WENO method is described in general (Section3.1)
and its adaptation to RFD (Section3.3) is discussed. In particular, the parameter which
determines the behavior of the hybrid scheme is reformulated and discussed in Section3.2.
In Section4, the results of several numerical experiments in 1D and 2D are presented in order
to compare hybrid compact-WENO with WENO schemes. Section5 contains final remarks
and conclusions.

2. Relativistic fluid dynamics. In general, a relativistic fluid is characterized by phe-
nomena which involve gas moving at velocities close to the speed of light. In this context,
relativistic equations have to be used instead of the Euler equations for fluid dynamics.

Within the framework of restricted relativity, a relativistic flux is described by a system
of equations of local conservation laws, given by

∇µ(ρUµ) = 0 local conservation of the baryonic number density, (2.1)

∇µT
µν = 0 local conservation of the momentum-energy tensor. (2.2)

Throughout this section, Greek indices run from0 to 3, and Latin indices from1 to 3. In the
former equations,ρ is the rest mass density,Uµ the 4-velocity vector and∇µ stands for the
covariant derivative.T µν is the energy-momentum tensor, which for a perfect fluid can be
written as

T µν = ρhuµuν + pgµν , (2.3)

wherep is the pressure andh = 1 + ǫ+ p/ρ is the specific enthalpy, withǫ being the specific
internal energy. The tensorgµν defines the metric of the space-time where the fluid evolves.

The first step to build the hybrid numerical scheme consists in rewriting (2.1) and (2.2)
in conservative form, see (2.11). To do so, we recall from [5] that the system of equations
(2.1) and (2.2) can be rewritten as

∂Fµ(w)

∂xµ
= 0 (2.4)

with

w = (ρ, vi, ǫ)T , (2.5)

F 0(w) = (ρW, ρhW 2vj , ρhW 2 − p− ρW )T , (2.6)

F i(w) = (ρWvi, ρhW 2vjvi + pδij , ρhW 2vi − ρWvi)T , (2.7)

wherexµ = (t, x, y, z); andvi = ui/W , whereW is the Lorentz factor which satisfies
W = (1 − v2)−1/2, with v2 = δijv

iuj .
Consider now the variables











D = ρW

Sj = ρhW 2vj

τ = ρhW 2 − p− ρW,

(2.8)
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which are, respectively, the rest mass, momentum, and totalenergy densities, measured in the
laboratory frame. Defining now the conserved quantities

u = (D,Sj, τ)T (2.9)

f i(u) =
(

Dvi, Sjvi + pδij , Si −Dvi
)T
, (2.10)

the system takes the form

∂u

∂t
+

∑

i

∂f i

∂xi
= 0, (2.11)

which is the desired conservative representation. The system is closed with an equation of
statep = p(ρ, ǫ) and is hyperbolic for causal equations of state; see Anile [2]. The solu-
tion of hyperbolic non-linear systems of conservation lawsby means of component-wise or
characteristic-wise type schemes requires as a first step the spectral decomposition of the sys-
tem. In these schemes, the characteristic structure is usedto compute the local characteristic
fields, which define the directions along which the characteristic variables propagate. The full
spectral decomposition of the three5 × 5 Jacobian matricesBi associated with the system
(2.11),

Bi =
∂f i(u)

∂u
, (2.12)

which is at the very core of this paper, can be found in Donat etal. [5]. For completeness, we
include the expressions of the eigenvalues

λ0 = vx (triple), (2.13)

which define the material waves, and

λ± =
1

1 − v2c2s

{

vx(1 − c2s) ± cs
√

(1 − v2)[1 − vxvx − (v2 − vxvx)c2s]
}

, (2.14)

which are associated to the acoustic waves. Note that the characteristic wave speeds in the
relativistic case not only depend on the fluid velocity components in the wave propagation
direction, but also on the normal velocity components. Thiscoupling adds new numerical
difficulties which are specific to relativistic fluid dynamics; see Ibañez [7].

In what follows, for simplicity of exposition and since its extension to several dimensions
is straightforward, we shall present the component-wise algorithm in one dimension. In this
case, the Jacobian matrix of (2.12) has three real and distinct eigenvalues, one associated with
material waves and two with acoustic waves:v and(v ± cs)/(1 ± vcs).

Although component-wise methods are simple and cost effective [14], for more demand-
ing test problems, it is advisable to use the more costly, butmuch more robust, characteristic
decomposition. The combination of spectral methods with characteristic-type schemes is thus
expected to produce more precise results at a lower cost.

3. Compact-WENO scheme.In this section, we first describe in general the compact-
WENO method and we discuss how to adapt this technique to the RFD problem. In partic-
ular, we discuss and reformulate the parameter which determines the behavior of the hybrid
scheme in such a way that it can accurately solve the RFD problem.
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3.1. The finite difference equation.Consider the scalar hyperbolic conservation law

∂u

∂t
+
∂f

∂x
= 0 wheref = f(u). (3.1)

∂f
∂u is a real function ofu. Let {Ij} be a uniform partition of the solution domain in space,
whereIj = [xj−1/2, xj+1/2] andxj+1/2 − xj−1/2 = h.

The semi-discrete conservative finite difference scheme of(3.1) can be written as

∂uj

∂t
+

1

h

(

f̂j+1/2 − f̂j−1/2

)

= 0, (3.2)

wheref̂j+1/2(uj−k, ..., uj+k+1) is a numerical flux function such that

1

h

(

f̂j+1/2 − f̂j−1/2

)

=

(

∂f

∂x

)

j

+O(hk), (3.3)

which implies that the scheme iskth order accurate in space.
The time integration will be performed by means of a three-stage, TVD Runge-Kutta

scheme. Defining

Lj(u) = − 1

h

(

f̂j+1/2 − f̂j−1/2

)

, (3.4)

the TVD Runge-Kutta scheme is given by

u
(1)
j = un

j + ∆tLj(u
n), (3.5)

u
(2)
j =

3

4
un

j +
1

4
u

(1)
j +

1

4
∆tLj(u

(1)), (3.6)

un+1
j =

1

3
un

j +
2

3
u

(2)
j +

2

3
∆tLj(u

(2)). (3.7)

This scalar numerical technique is at the core of the characteristic-wise algorithm used to
solve systems of equations, where at each point we project the variables and the fluxes onto
the local characteristic space. In terms of these characteristic fields, the equations locally
decouple, and we are in a position to apply the scheme separately to each of the characteristic
fields. The specific numerical fluxes that we shall use in this article will be explained in the
following section.

3.2. The hybrid compact-WENO scheme.As we mentioned above, compact schemes
give very satisfactory results if the solution is smooth everywhere. However, Gibbs phenom-
ena will occur when there are discontinuities in the solution. Gibbs phenomena will con-
taminate the solution and may lead to nonlinear instabilities. In order to cure this deficiency
a hybrid compact-WENO method was proposed in [1, 12] in which the compact scheme is
coupled with an ENO or a WENO scheme. As a result, the proposedhybrid method uses the
compact scheme segment by segment in smooth regions, while near the discontinuities that
separate the smooth regions, the ENO/WENO scheme is used instead.

The hybrid scheme presented here appears in [13] and is constructed by considering
the weighted average of two sub-schemes: the conservative upwind compact scheme of fifth
order and the WENO scheme.

The system can be written as follows

σj+1/2φj+1/2f̂j−1/2 + f̂j+1/2 + σj+1/2ψj+1/2f̂j+3/2 = ĉj+1/2, (3.8)
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where

φj+1/2 =
1

3
+
sj+1/2

6
, ψj+1/2 =

1

3
− sj+1/2

6
, (3.9)

sj+1/2 = sign(ãj+1/2) (3.10)

ãj+1/2 =







f̂j+1−f̂j

uj+1−uj
if uj+1 − uj 6= 0,

(

∂f
∂u

)

j
, otherwise,

(3.11)

ĉj+1/2 = σj+1/2 b̂j+1/2 + (1 − σj+1/2)f̂
WENO
j+1/2 (3.12)

b̂j+1/2 =

(

1 − sj+1/2

2

) (

1

18
fj−1 +

19

18
fj +

5

9
fj+1

)

+

(

1 − sj+1/2

2

) (

5

9
fj +

19

18
fj+1 +

1

18
fj+2

)

(3.13)

f̂WENO
j+1/2 =

2
∑

γ=0

ωγf
γ
j+1/2, (3.14)

andσj+1/2 is a weight which is directly related to the smoothness of thenumerical solu-
tion. In equation (3.14), fγ

j+1/2 is obtained by a second order polynomial reconstruction of
f(u(xxj+1/2)) on theγth set candidate stencilsSγ . For eachγ, the weightωγ satisfies the
conditionωγ > 0,

∑

γ ωγ = 1; see Procedure 2.5 in [14] for more details. In this numeri-
cal scheme, a smoothness indicatorrj+1/2 is defined and the weight should be a function of
rj+1/2.

In the present paper, the smoothness indicator is designed to be

rj+1/2 = min(rj , rj+1), (3.15)

where

rj =
|2∆fj+1/2∆fj−1/2| + ε

(∆fj+1/2)2 + (∆fj−1/2)2 + ε
(3.16)

and∆fj+1/2 = fj+1−fj ; ε = 0.9r̃c

1−0.9r̃c
ζ2 is a positive real number to avoid possible division

by zero. Here,ζ is a user-specified positive number which will be explained in the next
subsection.

To make a compromise between the robustness, the efficiency,and the accuracy of the
method, it is suggested in [13] that the weight should be a continuous rather than a smooth
function of the smoothness indicator. Under these conditions, the weight takes the following
form

σj+1/2 = min

(

1,
rj+1/2

r̃c

)

, (3.17)

wherer̃c is a threshold value which is usually problem-dependent.

3.2.1. Choice of̃rc. Suppose thatε is small enough so that it can be ignored in (3.16)
and letx = ∆fj−1/2 andy = ∆fj+1/2. Then we have

rj =
2|x||y|
x2 + y2

= 2
|x|

√

x2 + y2

|y|
√

x2 + y2
= 2 sin θ cos θ = sin(2θ) where θ ∈ [0, π/2].
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We are interested in finding the values ofθ which determine under which circumstances the
WENO scheme is not used. This happens when (see (3.17))

rj
r̃c

≥ 1; that is,
sin(2θ)

r̃c
≥ 1 ⇒ sin(2θ) ≥ r̃c. (3.18)

The threshold values of this relation areθ1 ∈ [0, π/4] and θ2 ∈ [π/4, π/2], so that for
all θ ∈ [θ1, θ2], the WENO scheme is not used. Recall that (3.18) is equivalent to
tan(2θ) ≥ r̃c(θ), which provides an explicit relation betweenr̃c andtan(2θ).

Considering now thatz1 = tan(θ1) andz2 = tan(θ2), and noting that|xy | = tan(θ),
we do not have to calculate a WENO scheme for all|xy | ∈ [z1, z2], which gives a geometrical
interpretation of thẽrc parameter. On the other hand, when the value|xy | is too big or too
small due to the presence of non-smooth data, the WENO schemeis replaced by the compact
method.

FIGURE 3.1.Relation between|x

y
| and r̃c.

As we can see in Figure3.1, for small values of̃rc the relation of|xy | with r̃c is almost
linear. Under these circumstances, numerical experimentshave shown that the quality of the
solution is not very sensitive to changes of ther̃c parameter. This can be explained as a result
of this linear behavior.

In turbulent fluxes, it has been proved that compact schemes resolve the fluctuations bet-
ter than a finite difference scheme such as WENO, so it is required that the hybrid scheme
uses a compact method when such zones appear. The parameterε is used to recognize these
turbulent fluxes. When small but strong fluctuations are found in the numerical solution,
the termε dominates andσj+1/2 ≈ 1, so the scheme will be purely compact. Indeed, when
max

(

|∆fj−1/2|, |∆fj+1/2|, |∆fj+3/2|
)

< ζ thenσj+1/2 > 0.9. Note thatζ acts as a thresh-
old value, such that all fluctuations smaller than this valuewill be considered as turbulent
fluctuations and consequently will not be damped by using WENO [13].
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Numerical experiments have shown that the numerical solution is less sensitive to strong
changes inζ; thus, we will keepζ = 10−3 in all our numerical experiments, as proposed
in [13].

3.3. Compact-WENO scheme for RFD.As mentioned in Section2, and since its ex-
tension to several dimensions is straightforward, we shallhere present the hybrid scheme for
relativistic flows in one dimension only. When solving the RFD equations the evaluation of
the numerical flux functions for the characteristic-wise hybrid compact-WENO scheme can
be obtained by the following steps:

1. At each fixedxj+1/2, the average stateuj+1/2 is computed by the simple mean

uj+1/2 =
1

2
(uj + uj+1). (3.19)

2. The eigenvaluesλ(i)
j+1/2 (i = 1, 2, 3) and the left eigenvectorsl(i)j+1/2 (i = 1, 2, 3)

are computed in terms ofuj+1/2.
3. The local characteristic decompositions of the flux functions atxm for
m = j − 1, ..., j + 2 are computed by using

w(i)
m = l

(i)
j+1/2fm, i = 1, 2, 3, m = j − 1, . . . , j + 2. (3.20)

4. Define

s
(i)
j+1/2 = sign

(

λ
(i)
j+1/2

)

,

r
(i)
j+1/2 = min

(

r
(i)
j , r

(i)
j+1

)

,

r
(i)
j =

|2∆w
(i)
j+1/2∆w

(i)
j−1/2| + ε

(∆w
(i)
j+1/2)

2 + (∆w
(i)
j−1/2)

2 + ε
,

σ
(i)
j+1/2 = min



1,
r
(i)
j+1/2

r̃c



 ,

σj+1/2 = min
(i)

(

σ
(i)
j+1/2

)

.

Note thatσj+1/2 has been modified from the original formula used in [13]. This
change is due to the presence of negative pressures which appear when using the
formulation given in [13]. Moreover, the motivation for changing this term is the
fact that by using the original formula given in [13], the corresponding matrix of
(3.23) becomes extremely ill-conditioned due the height differences between the
values of the relativistic eigenvectors.
As can be seen from equation (3.12), if σ(i)

j+1/2 = 0, this implies that the scheme
only uses the WENO method in the corresponding(i) component. Recall that in our
problem, we have only one of the(i) components different from zero while the rest
are zero. Then the structure of (3.24) and (3.26) is affected due to strong coupling.

With the choice ofσj+1/2 = min(i)

(

σ
(i)
j+1/2

)

we aim to unify the behavior of the

method for the(i) components in such way that the WENO technique will be used
whenever any of the(i) components uses WENO. In this case, we can guarantee
that uniform blocks will be produced.
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For i = 1, 2, and3, the hybrid compact-WENO scheme for the scalar equation (3.8)
can be applied to the local characteristic variablesw(i) (i = 1, 2, 3) by means of the
following system of equations

σj+1/2φ
(i)
j+1/2ŵ

(i)
j−1/2 + ŵ

(i)
j+1/2 + σj+1/2ψ

(i)
j+1/2ŵ

(i)
j+3/2 = ĉ

(i)
j+1/2, (3.21)

where

φ
(i)
j+1/2 =

1

3
+
s
(i)
j+1/2

6
, ψ

(i)
j+1/2 =

1

3
−
s
(i)
j+1/2

6
,

ĉ
(i)
j+1/2 = σ

(i)
j+1/2 b̂

(i)
j+1/2 + (1 − σ

(i)
j+1/2)w̃

(i),WENO
j+1/2 , (3.22)

and

b̂
(i)
j+1/2 =





1 + s
(i)
j+1/2

2





(

1

18
w

(i)
j−1 +

19

18
w

(i)
j +

5

9
w

(i)
j+1

)

+





1 − s
(i)
j+1/2

2





(

5

9
w

(i)
j +

19

18
w

(i)
j+1 +

1

18
w

(i)
j+2

)

.

It should be noted that for fixedi, (3.21) cannot be solved directly since thêw(i)
j+1/2 is

defined locally in terms of the characteristic variablesw
(i)
m ; see (3.3). Consequently,

in the following step, (3.21) for all characteristic fields will be arranged into a block-
tridiagonal system of equations that can be solved to obtainthe numerical flux in the
physical space.

5. Fori = 1, 2, 3, equation (3.21) can be written as

Φj+1/2f̂j−1/2 + Lj+1/2f̂j+1/2 + Ψj+1/2f̂j+3/2 = ĉj+1/2, (3.23)

where

Φj+1/2 =









σ
(1)
j+1/2φ

(1)
j+1/2l

(1)
j+1/2

σ
(2)
j+1/2φ

(2)
j+1/2l

(2)
j+1/2

σ
(3)
j+1/2φ

(3)
j+1/2l

(3)
j+1/2









, (3.24)

Lj+1/2 =









l
(1)
j+1/2

l
(2)
j+1/2

l
(3)
j+1/2









, (3.25)

Ψj+1/2 =









σ
(1)
j+1/2ψ

(1)
j+1/2l

(1)
j+1/2

σ
(2)
j+1/2ψ

(2)
j+1/2l

(2)
j+1/2

σ
(3)
j+1/2ψ

(3)
j+1/2l

(3)
j+1/2









, (3.26)

ĉj+1/2 =









ĉ
(1)
j+1/2

ĉ
(2)
j+1/2

ĉ
(3)
j+1/2









. (3.27)
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4. Numerical tests. Our intention is to prove that the hybrid compact-WENO scheme
provides a better representation for shortened length scales than the one obtained when we use
only the WENO scheme. As mentioned, this behavior is expected because compact schemes
are very accurate in smooth regions with spectral-like resolution for problems which present
a large range of scales.

In what follows, we study three problems in 1D and two problems in 2D in order to
investigate the advantages of the hybrid compact-WENO method. Boundary conditions are
set by filling the data in guard or ghost cells. The computational grid is extended on each side
of the physical domain to compute the fluxes at the interfaces. In this paper, we have used
both absorbent and prescribed boundary conditions. These boundary conditions have to be
provided at each time step for all primitive and conservative variables.

For comparison purposes, we first build a reference simulation against which we will
compare every result. This solution is built by means of a WENO5 method with Lax-Friedrich
flux splitting coupled with a TVD-RK3 in a grid of 10000 pointsfor 1D and1000× 1000 for
2D, with ∆t

∆x = 0.8 for 1D and ∆t
∆x = 0.5 for 2D at a final timeT = 0.4 for 1D andT = 0.8

for 2D.
In 1D, we start testing the algorithm with a smooth 1D hydrodynamical solution which

has been recently studied numerically in [6], for different methods. The second problem to
be analyzed is a shock tube with non-oscillatory initial condition, whereas the third problem
has a turbulent right initial condition.

In 2D, the numerical experiments will be performed on the square[0, 1]2, having a uni-
formly distributed gas withΓ = 5

3 , andρ = 10, v = 0, p = 13.3. At t = 0, we start to
feed the square with a gas determined by the dataρ = 10, vx = 0, vy = 0.9c, p = 13.3 and
ρ = 10, vx = 0, vy = 0.99c, p = 13.3 for the first and second problem respectively, for the
region0.4 < x < 0.6, y = 0, while other boundary conditions are set to be absorbent.

4.1. 1D. PROBLEM 4.1. In this problem, we focus on the case of a varying density
profileρ = ρ(x, t) with constant, uniform pressurep = p0 and velocityv = v0. When these
functions are substituted into (2.11), we see that they form a consistent solution for the advec-
tion of a density profile at constant velocityv0. This test is performed on the computational
domain0 ≤ x ≤ 1 for an ideal gas withΓ = 5/3. We consider two sets of initial conditions
for this problem. The first initial conditions are given by

{p = 1.0, ρ = sin(32πx) + 2, v = 0.4} x ∈ [0, 1] (4.1)

and the second initial conditions are

{p = 1.0, ρ = sin(2πx) + 2, v = 0.4} x ∈ [0, 1]. (4.2)

In both cases, we have two smooth analytic solutions which behave as stationary traveling
waves. The solution (4.1), which presents more oscillations, is designed to prove the effec-
tiveness of the hybrid scheme when the parameterrc is varied, while the second solution (4.2)
is built to verify the order of convergence of the hybrid scheme. The corresponding results
are shown in Tables4.1 and4.2. As can be appreciated from Table4.1, for small values of
r̃c, the hybrid scheme not only gives a better error, but also a smaller CPU time. Thus, we
verify that the hybrid scheme has superior performance to the pure WENO method for this
case. This behavior is consistent with the fact that compactschemes are better suited for the
approximation of smooth oscillatory solutions. The challenge, which is the subject of the
following cases, is whether this improvement holds for highly non-smooth relativistic solu-
tions. On the other hand, in Table4.2, we can see that the order of convergence of the hybrid
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method is consistent with the third-order Runge Kutta time integration technique.
PROBLEM 4.2. The initial conditions for the second problem are

{pL = 13.3, ρL = 10, vL = 0} x ∈ [0, 0.5[, (4.3)

{pR = 0, ρR = 1, vR = 0} x ∈ [0.5, 1]. (4.4)

The results are shown in Tables4.3and4.4.

TABLE 4.1
Hybrid and WENO schemes for problem 1; initial conditions: (4.1), with N = 200 points,T = 2.5, ∆t

∆x
= 0.8.

HYBRID r̃c CPU-Time (s) ‖‖2 % WENO
0.1 11.0 0.0898 4.82
0.3 11.0 0.0884 15.22
0.5 12.0 0.0900 28.16
0.7 13.0 0.0960 47.17
0.9 13.0 0.1116 70.52

WENO – 14.0 0.1348 100

TABLE 4.2
Hybrid scheme for problem 1; initial conditions: (4.1), with r̃c = 0.1, T = 2.5, ∆t

∆x
= 0.5.

npts ‖‖2 CPU-Time (s) % WENO
25 0.08144 0.0 2.81
50 0.04406 0.0 1.40
100 0.02619 3.0 0.40
200 0.01741 9.0 0.01
400 0.01277 78.0 0.0
800 0.01073 345 0.0

TABLE 4.3
Schemes: Hybrid and WENO for problem 2 in 1D withN = 625 points,T = 0.4, ∆t

∆x
= 0.8.

HYBRID r̃c CPU-Time (s) ‖‖2 ‖‖∞ Local error % WENO
0.1 – – – – –
0.15 38.187 0.0891 1.4349 0.2668 4.43
0.2 38.046 0.0938 1.6113 0.2617 5.05
0.3 38.046 0.1003 1.7615 0.2775 5.52
0.4 38.030 0.1042 1.8361 0.2896 5.70
0.5 38.483 0.1054 1.8568 0.2943 6.01
0.6 38.436 0.1065 1.8777 0.2978 6.39
0.7 38.577 0.1075 1.8931 0.3016 7.05

WENO – 43.7 0.1156 2.0125 0.3300 100

We can see from the results of Tables4.3 and 4.4 that the new definition
σj+1/2 = min(i)

(

σ
(i)
j+1/2

)

works well. In this case the behavior of the two algorithms

are quite similar. However, as we can see in Tables4.3 and4.4, the error produced by the
hybrid method is better than corresponding error of the WENOtechnique.

Recall that the choice of the parameterr̃c corresponds to % of use of WENO. Thus,
the larger the parameter is, the more the WENO scheme will be used. So it is not difficult
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TABLE 4.4
Schemes: Hybrid and WENO for problem 2 in 1D withN = 1250 points,T = 0.4, ∆t

∆x
= 0.8.

HYBRID r̃c CPU-Time (s) ‖‖2 ‖‖∞ Local error % WENO
0.1 – – – – –
0.15 160.264 0.0511 0.9495 0.1492 1.83
0.2 154.140 0.0485 0.9030 0.1289 2.14
0.3 153.203 0.0486 0.8124 0.1390 2.50
0.4 153.421 0.0499 0.8768 0.1509 2.64
0.5 153.812 0.0511 0.9243 0.1594 2.86
0.6 160.327 0.0516 0.9446 0.1637 3.16

WENO – 172 0.0586 1.0707 0.1989 100

FIGURE 4.1.Several̃rc for problem 2 with625 points.

to notice that the smaller̃rc, the more oscillatory (near discontinuities) the solutionwill be,
because the WENO is less used; see Figures4.1and4.2.

PROBLEM 4.3. The third initial value problem is

{D(x) = 10, S(x) = 0, τ(x) = 19.95}L x ∈ [0, 0.5[, (4.5)

{D(x) = 1 + 0.2 · sin(20πx), S(x) = 0, τ(x) = 9.9 · 10−7}R x ∈ [0.5, 1]. (4.6)

As we can see in Tables4.5 and4.6, the hybrid compact-WENO scheme has smaller
error and smaller execution time than WENO. In addition the hybrid compact-WENO method
needs fewer points than the WENO technique to achieve betteraccuracy in all curves and
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FIGURE 4.2.Several̃rc for problem 2 with625 points.

TABLE 4.5
Schemes: Hybrid and WENO for problem 3 in 1D withN = 625 points,T = 0.4, ∆t

∆x
= 0.8.

HYBRID r̃c CPU-Time(s) ‖‖2 ‖‖∞ Local error % WENO
0.15 44 0.1179 1.456 0.4407 4.63
0.2 44.3 0.1190 1.4079 0.4447 5.22
0.3 44.62 0.1219 1.4874 0.4557 5.83
0.7 45 0.1290 1.6329 0.4761 8.09

WENO – 53.7 0.1465 1.7936 0.5496 100

TABLE 4.6
Schemes: Hybrid and WENO for problem 3 in 1D withN = 1250 points,T = 0.4, ∆t

∆x
= 0.8.

HYBRID r̃c CPU-Time(s) ‖‖2 ‖‖∞ Local error % WENO
0.15 178 0.0676 1.567 0.1971 5.28
0.2 178.8 0.0705 1.6507 0.2067 5.97
0.3 179 0.0727 1.79 0.2034 7.13
0.7 180 0.0779 1.938 0.2191 10.6

WENO – 218 0.0876 2.1423 0.2525 100

fewer oscillations in the solution. This can be appreciatedin Figures4.3and4.4.

4.2. 2D. PROBLEM 4.4. The first problem consists of a square[0, 1]2, where initially
there is a uniformly distributed gas withΓ = 5

3 whose density is everywhere given by
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FIGURE 4.3.Oscilations from the problem3 with 625 points.

FIGURE 4.4.Oscilations from the problem3 with 1250 points.

ρ(0, x, y) = ρ0 = 10, vx
0 (0, x, y) = vx

0 = 0, vy
0 (0, x, y) = vy

0 = 0, andp = 13.3 for
all x, y. At t = 0, an inflow flux is injected into the square with the features:ρ0 = 10,
vx
0 = 0, vy

0 = 0.9c, p = 13.3 from the region0.4 < x < 0.6, y = 0, while other boundary
conditions are set to be absorbent.
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Throughout this section, the approximation error is computed with the following for-
mula: supposingu is the exact solution,U its approximation, andN the dimension, then

∑4
i=1 ||u(:, :, i) − U(:, :, i)‖2√

4N2
, (4.7)

wherei = 1, 2, 3, 4 denotes the number of equations. The results are shown in Tables4.7and
4.8, where we can see that the hybrid compact-WENO method has smaller error and smaller
execution time than WENO, similarly to what we have seen in 1D. We can appreciate the dif-
ferences between the algorithms, for example, in the oscillations at the bottom of Figures4.5
and4.6.

TABLE 4.7
Schemes for problem 1 in 2D: Hybrid

“

∆t

∆x
= 0.5

”

, WENO
“

∆t

∆x
= 0.5

”

, N × N = 125 × 125 points,

T = 0.8, v
y

0
= 0.9c.

HYBRID r̃c CPU-Time (s) ERROR % WENO
0.2 – – –
0.3 1408 10.2821 15.75
0.5 1444 11.0893 19.86
0.8 1477 11.4797 25.73

WENO – 1853 12.6638 100

TABLE 4.8
Schemes for problem 1 in 2D: Hybrid

“

∆t

∆x
= 0.5

”

, WENO
“

∆t

∆x
= 0.5

”

, N × N = 250 × 250 points,

T = 0.8, v
y

0
= 0.9c.

HYBRID r̃c CPU-Time (s) ERROR % WENO
0.2 – – –
0.3 8508 5.7804 9.56
0.5 11088 6.4827 12.71
0.8 11135 7.0383 18

WENO – 15279 8.1697 100

PROBLEM 4.5. The second problem has the same features as the previousone except
that in this casevy

0 = 0.99c. The results are shown in Tables4.9and4.10.

TABLE 4.9
Schemes for problem 2 in 2D: Hybrid

“

∆t

∆x
= 0.3

”

, WENO
“

∆t

∆x
= 0.5

”

, N × N = 125 × 125 points,

T = 0.8, v
y

0
= 0.99c.

HYBRID r̃c CPU-Time (s) ERROR % WENO
0.8 2005 91.1982 26.49
0.85 2015 90.8966 27.54
0.9 2021 91.4507 28.76

WENO – 1689 102.4160 100

In this problem, it is important to remark that we have decreased the relation∆t
∆x to

allow the hybrid compact-WENO to work, whereas the WENO works as well as before with
∆t
∆x = 0.5. This explains why the hybrid scheme was slower than WENO in the second
problem. Nevertheless, the error obtained by the hybrid method is still smaller than the error
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FIGURE 4.5. Comparative densityρ between hybrid compact-WENO (λ = 0.5, r̃c = 0.3) and WENO
(λ = 0.5) for the first problem with125 × 125 points.

FIGURE 4.6. Comparative densityρ between hybrid compact-WENO (λ = 0.5, r̃c = 0.3) and WENO
(λ = 0.5) for the first problem with250 × 250 points.

TABLE 4.10
Schemes for problem 2 in 2D: Hybrid

“

∆t

∆x
= 0.3

”

, WENO
“

∆t

∆x
= 0.5

”

, N × N = 250 × 250 points,

T = 0.8, v
y

0
= 0.99c.

HYBRID r̃c CPU-Time (s) ERROR % WENO
0.8 14990 52.1531 18.25
0.85 15190 52.3219 19.31
0.9 16609 52.8164 20.61

WENO – 14034 62.5234 100



ETNA
Kent State University 

http://etna.math.kent.edu

HYBRID COMPACT-WENO SCHEME FOR SOLVING RELATIVISTIC FLOWS 117

FIGURE 4.7. Comparative densityρ between hybrid compact-WENO (λ = 0.3, r̃c = 0.85) and WENO
(λ = 0.5) for the second problem with125 × 125 points.

FIGURE 4.8. Comparative densityρ between hybrid compact-WENO (λ = 0.3, r̃c = 0.8) and WENO
(λ = 0.5) for the second problem with250 × 250 points.

obtained by WENO with the same number of points. We can see this in Tables4.9and4.10.
In Figures4.7and4.8, we can see how the hybrid scheme decreases the noise at the bottom
of the figure. Note also that in Figure4.8, the hybrid scheme does not have the hump around
coordinates (x = 0.5, y = 0.5) that can be seen in the WENO results.

5. Conclusions. In this article, we have modified the hybrid compact-WENO method
proposed in [13] so that it can accurately solve problems with relativisticflows, which are
characterized by having strong shocks and turbulence and which therefore have a wide range
of scales. More precisely, we numerically illustrated the superiority of the modified hybrid
compact-WENO method over the WENO technique for the solution of RFD problems.

In Section3, we have reviewed in detail the hybrid method of [13] and significant mod-
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ifications were introduced to the scheme. In particular, we discussed and reformulated the
parameter which determines the behavior of the hybrid scheme in such a way that it can
accurately solve the RFD problem; see Section3.3.

In Section4, several experiments in 1D and 2D have been carried out to compare the two
methods for relativistic problems, including a smooth solution for the 1D case, and we were
able to show that the hybrid method gives, as was to be expected, a better resolution in 1D
and 2D, owing to its spectral-like resolution property. The2D experiments were performed
for avy

0 = 0.99c.
It is worth pointing out that we have tried to use the hybrid method for the 2D prob-

lem (Problem4.5) with vy
0 = 0.999c; however, the results were not satisfactory. It is clear

that further modifications are necessary in this case and current work is in progress in this
direction.
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