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A NOTE ON SYMPLECTIC BLOCK REFLECTORS *
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Abstract. A symplectic block reflector is introduced. The paralleliwtiie Euclidean block reflector is studied.
Some important features of symplectic block reflectors ang Algorithms to compute a symplectic block reflector
that introduces a desired block of zeros into a matrix areldeed.
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1. Introduction. LetV € R™*" with n > r be a nonzero matrix. A block reflector is a
matrix of the form

P=T1-2v(VTvivT, (1.1)

where (VTV)T is the pseudo-inverse af V. It is easy to see thaP is orthogonal and
symmetric and satisfieBV = —V, and Pz = « for all vectorsz orthogonal to rangé’).
The matrix P is a natural block version of the standard Householder tefied4, 5], i.e.,
matrices of the forni — 2(vv®)/(vTv), wherev is a nonzero vector.

Block reflectors are used to introduce blocks of zeros incseteparts of a rectangular
matrix and provide, in particular, a stable and efficientklQR-factorization of a given ma-
trix. As with many block algorithms in linear algebra, an adiage of our block extension is
the possibility of intensive use of matrix-matrix operatowhich are efficient with regard to
memory management and parallelism. Theoretical and éfgoi¢ aspects of block reflectors
are well developed in1[1]; see also §] for an application. In practice, it is more convenient
and always possible to find a block reflector of the faPm= I — 2VV7T with VTV = T;
see [L1].

Symplectic block reflectors are intended to play analogolgsasP when the Euclidean
scalar product is replaced by an indefinite scalar produttdad by a skew-symmetric and
nonsingular matrix. This entails changes in the notion afliean orthogonality and sym-
metry on which the construction dP is based. The point of this note is to clarify these
changes and to study the extent to which symplectic blocka&fts analogous td (1) can
be constructed.

Throughout this note, the skew-symmetric and nonsingukrimmentioned above is
given by

0, I
= [0 5], @
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where0,, and1,, are the zero and identity matrices of orderespectively. Note that” =
J~t = —J. The induced skew-symmetric scalar product is defined by

(z,y), =2y, Va,yeR™, (1.3)

wherez’ = z7J,, is the adjoint ofz with respect to(,-) ;. The adjoint of a matrix
A € R?*2m with respect tq-, -) ; is defined by

AT = g5, AT Ty, € RPN
It is the unigue matrix that satisfies
(Az,y), = (:E,A']y)J, Vo € R?*™ vy € R?",

Itis easy to see that:
o If A,B € R then(A + B)! = A7 + BY, (A7)" = (47)7, (A7) = 4,
and(4”7)" = (ah)”.
o If Ac R2"¥%k B e R%**2m 5 c R?F then(AB)” = B/A” and(Az)” = 27 A”.
A matrix A € R?"*?™ such thatd’ A = I,,, is said to be symplectic. A matrig € R?"*2"
such thatd” = A is said to be skew-Hamiltonian.

2. Symplectic block reflector. A natural generalization ofl(1) to the symplectic case
would be

H=1-2v(V/V)iv’, (2.1)

whereV € R?"*2" n > r. It also can be viewed as a block generalization of the syatiple
Householder transformations given ih(] and [6]. It is clear thatH remains unchanged
whenV is replaced by K, whereK € R?"*2" is an arbitrary nonsingular matrix.

The matrixH is skew-Hamiltonian and symplectif’ = H = H~'. It satisfiesHx =
x iIf x is J-orthogonal to rang@’), i.e., (z,v); = 0 Vv € rangéV’). However, it may be that
HV # -V, since in generaV (V/V)TV/V #£ V| in contrast withV (VI V)TVTV = V.
In the casel{V # —V, H is no longer a reflector. When the matfiix’ V' is nonsingular,
thenH = I —2V(V/V)~1V/ and H satisfiesHV = —V. In this case, it will be shown
that H can be represented in the following interesting fofth= I — 2W W, whereW is
some matrix satisfying/’/ W = I. Furthermore, necessary and sufficient conditions will be
given. This form is then used to derive a block version of tReafgorithm B]. Note that
the matrixV’/V may be singular even i has full rank. These constraints will necessarily
result in some difficulties in the construction &f.

Let B, F € R?"*2" Assume that a symplectic block reflector (SBRpf the form @.1)
exists and satisfie§ £ = +F. Then(HE)'HE = F/F andE'HE = +E’F. Hence,

E’E = F’F and E’F is skew-Hamiltonian (2.2)

Unfortunately, the condition2(2) alone do not guarantee the existence of an SBR of the
form (2.1) such thatH £ = +F.
EXAMPLE 2.1. Consider the symplectic linear sp&¥and letE = [e1, e, €3, 7] and

F = [3e1 + ez, 3e1 + 2ea, —e3, —e7], Where{ey, . .., es} denotes the canonical basis of
R&. We obtain
00 0 -1 00 0 1
0O 0 1 O 00 -1 0
J _d _ J _ J _
F'E=F'F = 000 0 and E'F =F'F = 00 0 0
0O 0 0 O 0O 0 0 O
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Thus, the conditions(2) are satisfied.

Suppose now that there exidts € R8*4 of full rank, such thatH E = F, where H
is the SBR given byd = I — 2V (V/V)'V’/. Since rankE — F) = 4, it follows that
V = (FE - F)K,whereK is any4 x 4 nonsingular real matrix. There is no loss of generality
totakeK = I andH = —2(E — F)((E — F)’(E — F))(E — F)”’. A simple calculation
gives

HE = [ey, ez, —e3, —e4] # F.
Note that the matri¥” = E — F satisfies

VIVIWVIIVIV = (0,0, 2e3,2e]
# V=[3e1— tes, —2e1 + 2ea,2e5,2¢7]

Some necessary and/or sufficient conditions that ensurexigeence offf are given in
the following propositions.
PROPOSITION2.2. Let Z € R?*"*?" and Z = ranggZ) be such that

Znz+ =0}, (2.3)
where_ L ; denotes orthogonality with respect(o.) ;. Then
AVASA WA A=A

Moreover, if Z is full rank, thenZ” Z is nonsingular.

Proof. The proof follows from the fact that— (77 2)'(Z” Z) is the orthogonal projec-
tiononto Nul(Z” 2), see, e.g., 12, Chap. 111}, and that, due t&(3), Null(Z7 Z) c Null(Z).
Note that the inclusion NulZ) C Null(Z7Z2) is always true. Therefore N’2) =
Null(Z), and henc&Z (I — (Z7Z)1(Z7 Z)) = 0. Letx € R*" be such thaZ’ Zz = 0. From
(2.3, it follows thatZx = 0; and sinceZ is full rank, one gets: = 0. O

REMARK 2.3. Itis interesting to note tha? (3) implies that

R =Z @ 2+, (2.4)
In fact, anyz € R?" can be expressed as
v=2(2"2)72"2+(1-2(2"2)27)x.

The first term of the sum belongs . From (2.9, we haveZ (27 Z)1Z’ Z = Z, and hence
ZI(I — Z(Z72)1Z7) = 0. Thus, the second term of the sum isdrt~ .

COROLLARY 2.4. LetH = I — 2Z(Z7Z)1Z7, with Z € R*"*?", Z = ranggZ),
21’ = dim(Z) andZ N Z+7 = {0}. Then there existd’ € R2"*2"", such thatV’/W = I
andH =1 -2WWwW.

Proof. Using Propositior?2.2 and Remark.3, H is completely determined by the fol-
lowing propertiesHz = x forz € Z+7 andHz = —x forz € Z. Due to @.3), the induced
inner product on the subspagas not degenerate, and hence there exists a symplecticanatri
see e.g..T, 10, W € R2*2" (i.e., W/ W = I), such thatZ = range(W). It follows that
the matrixH’ = I — 2W W satisfiesH'z = z forx € 2+ andH'z = —x forz € Z.
ThusH = H'.0O0

PROPOSITION2.5. Let E, ' € R?"*2" satisfy the conditions2(2).

o If Z = ranggD) satisfies 2.3) with D = E — F, then the SBRH{ = I —
2D(D’ D) D7 is such thatH E = F.
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e If Z = ranggS) satisfies2.3) with S = E+ F, thenthe SBRI = 1-25(S79)1S”7
issuchthati £ = —F.
Proof. SinceE and F satisfy .2 and Z satisfies 2.3), it follows that D’S = 0,
D(D’D)tD’D = D andS(S78)S7S = S.0
PROPOSITION2.6. Let E, F € R?"*?" and let H be an SBR of the forn2(1). Let
D =FE — FandS = E + F. Then the conditions

VV/VY'V/D =D and (V/V)V/S =0 (2.5)

are necessary and sufficient firE to equalF'.
Proof. Under the conditions2(5), we have

2HE = (I -2V(V'V)IV7)(S + D)
=(S+D)-2D=5-D=2F.
Conversely, ifH E' = F,thenE = H F and therefordd S = S andH D = — D, which gives
the conditionsZ.5. 0

PROPOSITION2.7.Let E, F € R?"*?" satisfy the condition(2). If (E— F)’(E—F)
is nonsingular, then

H=I-2FE-F)(E-F)(E-F)  (E-F)’ (2.6)

is the unique SBR of the forrd.() such thatH £ = F.
Proof. The conditions o andF’ ensure that

HE+F)=E+FandH(E—F)=F — E.

Hence,HE = F. Now letV € R2"*" and letH = I — 2V (V"V))T V7 be an SBR, such
thatHE = F'. Then

E-F=2v(V'V)'V/E
and
(E-F)(E-F)=2E/(E-F)=4V’E)’ (vJv)T V'E.
We conclude that’” E and V'’V are nonsingular. Lek = 2 (VJV)Jr VJE. ThenK is

nonsingular and’ — F' = VK. Therefore H = H.0O

2.1. The standard task. Given E = [£7 5T £f 57]" € R2"*2" with By, B3 €
R*¥*2" and Fy, By € R("F)*27 the standard task consists of finding an SBRsuch that
HE is of the formF = [FT o £T 0]" with Fy, F3 € RF¥2r,

We present two approaches that accomplish this task. Thefiesrequires an SBR of
the form @.1) and only can be applied under certain conditions. The skapproach uses
the product of two SBRs of the forn2 (1) and always can be applied.

2.1.1. Alimited approach. Using the symplectic Gram-Schmidt algorith&j,[we may
decomposd’ as

E = SR, 2.7)

whereS € R?"*24, ¢ < r, is symplectic and? € R?7*2" is block upper triangular.
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Note that it is suffices to determing, such thatHS = @, where@ has the same
structure ag", since we will havel £ = Q R, and@ R has the same structure Bs

The properties off yield thatS”/S = Q7 Q = I and thatS’Q is skew-Hamiltonian. If
we partitionS andQ conformally withE and F, i.e., S = [s7 sT s¥ s7]" € R2"%24 with
S1,95 € R™24, Gy 8, € R(M)%20 andQ = [@7 0 @7 0]” with Q1, Q3 € R™*?", then
the conditions ort and@ become:

SRR R-18 8] - oo
E;r {gj - [gir [gj - (2.9)

Assume thaf g;]] [21] has no eigenvalues dd~ = {z € R: z < 0}. Then[{! |
has a generalized polar decomposition:

and

Eﬂ - {gj T, (2.10)

where{ g; } is symplectic and is skew-Hamiltonian with eigenvalues that have positi re

part[7]. Since the matri¥ + 7" is skew-Hamiltonian, it admits a Cholesky-like decomgosit
of the form:

I+T=L"L: (2.11)

see P]. Moreover, sincd + T'is nonsingular, so is the matrix.
LetV = —=(S + Q)L~". Thenitis easy to check that’V = I, VS5 =

Therefore, the SBRI = I — 2V'V”/ is of the form @.1) and satisfies

1
7§L.

2r
—QlR r
HE = F with F = 0 n—r
—QgR T
0 n—r.

2.1.2. A more general approach.First, using for example Algorithm 2 iriLfl], we find
G € R™*P with orthonormal columns and a block reflecr= I — 2GG7, such that

P Eﬂ - [%3] , with B, € R2r<2, 2.12)
Let
i, = [zg g} . (2.13)
The matrixH; is an SBR of the form4.1). In fact, we have
Hy = —2ViVy with V; = {(0; g] R andV/V, = 1. (2.14)
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Then, using the symplectic Gram-Schmidt algorithm, we megothposed; E' as
H,E = SR, (2.15)

whereS € R2"*2¢ ¢ < r is symplectic and? € R29%?" is block upper triangular. Due
to (2.12, the matrix S is of the formS = [s7 s7 s7 0] with Sy, 53 € R?7*22 and
Sy € R(=2r)x2a_ Fyrthermore, the symplecticity ¢f reduces to that of ST S3T]T.

Let

c R2n><2q

Vo= [T 4S7 ST 0"

Then it is easy to verify that

J
Jv _vda ST [S1]
VQVQ_VQS_[SS ol =1

Therefore the SBRI, = -2V, V5 is of the form @.1) and satisfiedl S = [-sT 0 —s¥ o]T.
Finally, the product! = Hs H; is an SBR, such that

2r
—SlR 2r
HE = F with F = 0 n—2r
—SgR 2r
0 n — 2r.

Note thatH is not necessarily of the forn2(1). However, it can be written as

H=1-2VxV’/, (2.16)
where
_ 2nx2(p+q) _ 10 —Jop 2(p+4) x2(p+q)
V=W, eR andZ_[qu 2V2JV1J2J6R )

3. Application: block symplectic QR-factorization. The technique presented in Sec-
tion 2.1.2can be used to partition a matrix into block upper triangtdam. It can be con-
sidered a block variant of the SR decompositi@h [We illustrate the reduction where, for
clarity, the matrixA is partitioned as follows

A A Az Ay
Agp Azp Az Aoy
Agzr Azp Azz Asyl’
Ay Ay Agz Ay

A:

whereAy;, As; € R %7 Ay, Ayy € R"=27)%7 "and1 < ¢ < 4. In the first step of the
reduction, we let

A Ags

| Aa A
A= Az Asz
Ap Ags
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and generate two SBR&\" = I,,, — 2V, (V;V)7 andH{" = I, — 2vV (v{V)7, such
that

Iy Fis
W@y |00 e m2rxr s
Hy 'H A = Fy s with Fj; € R 1,7 =1,4.
0 0

The matritz(l)Hfl)A is partitioned as

Iy Fip Fig Fig
F3y F3p Fi3 I3y
0 Fio 0 Fy

HVHEV A = With Fyy, Fy; € ROV20%7 5 — 9 4,

In the second step, the same process is applied to the siomatr

5 Fyy Iy
A =
? [F42 F4J

to generate\” = I, 5, — 2V (V) and HS” = Iy_ap — 2V (V)7 such
that

FQQ F24
HPHP A, = 0 0 here Ey; e R¥X" i j=24.

Fyo Fyy

0 0
Let

027‘X2p 027‘)(2(]
(2) \7(2)(1:71727“,1:21)) (2) V(z)(1:n72r,1:2q)
Vl - ' 02 x2p ’ ‘/2 - : 02 x 24 ’
Vi (n—2r+1:2(n—2r),1:2p) Vi (n—2r+1:2(n—2r),1:2q)

and

H1(2) =1, — V1(2)(V1(2))J, HQ(Q) = Iy, — ‘/2(2) (‘/2(2))J
Then the matrixtl = H? H® HY HY is symplectic and satisfies

F11 F12 F13 F14

o %] o [%)
HA= v Y
Fs1  Fs  Fz3  Fyy
o el o [

4. Conclusion. The purpose of this short note is to discuss the constructidriock
symplectic reflectors analogous to those developeiip fvhere the Euclidean scalar prod-
uct is replaced by a skew-symmetric scalar product. Thisgbantroduces difficulties in
the construction. We investigated necessary and/or sificonditions for the existence and
uniqueness of such reflectors. We discussed algorithmsofopating a symplectic block

reflector that introduces a block of zeros into a matrix armha&d how to obtain a symplectic
block QR factorization.
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