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Abstract. A symplectic block reflector is introduced. The parallel with the Euclidean block reflector is studied.
Some important features of symplectic block reflectors are given. Algorithms to compute a symplectic block reflector
that introduces a desired block of zeros into a matrix are developed.
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1. Introduction. Let V ∈ R
n×r with n ≥ r be a nonzero matrix. A block reflector is a

matrix of the form

P = I − 2V (V T V )†V T , (1.1)

where(V T V )† is the pseudo-inverse ofV T V . It is easy to see thatP is orthogonal and
symmetric and satisfiesPV = −V , andPx = x for all vectorsx orthogonal to range(V ).
The matrixP is a natural block version of the standard Householder reflectors [4, 5], i.e.,
matrices of the formI − 2(vvT )/(vT v), wherev is a nonzero vector.

Block reflectors are used to introduce blocks of zeros in selected parts of a rectangular
matrix and provide, in particular, a stable and efficient block QR-factorization of a given ma-
trix. As with many block algorithms in linear algebra, an advantage of our block extension is
the possibility of intensive use of matrix-matrix operations, which are efficient with regard to
memory management and parallelism. Theoretical and algorithmic aspects of block reflectors
are well developed in [11]; see also [8] for an application. In practice, it is more convenient
and always possible to find a block reflector of the formP = I − 2V V T with V T V = I;
see [11].

Symplectic block reflectors are intended to play analogous role asP when the Euclidean
scalar product is replaced by an indefinite scalar product induced by a skew-symmetric and
nonsingular matrix. This entails changes in the notion of Euclidean orthogonality and sym-
metry on which the construction ofP is based. The point of this note is to clarify these
changes and to study the extent to which symplectic block reflectors analogous to (1.1) can
be constructed.

Throughout this note, the skew-symmetric and nonsingular matrix mentioned above is
given by

J2n =

[
0n In

−In 0n

]
, (1.2)
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where0n andIn are the zero and identity matrices of ordern, respectively. Note thatJT =
J−1 = −J . The induced skew-symmetric scalar product is defined by

(x, y)J = xJy, ∀x, y ∈ R
2n, (1.3)

wherexJ = xT J2n is the adjoint ofx with respect to(·, ·)J . The adjoint of a matrix
A ∈ R

2n×2m with respect to(·, ·)J is defined by

AJ = JT
2mAT J2n ∈ R

2m×2n.

It is the unique matrix that satisfies

(Ax, y)J =
(
x, AJy

)
J

, ∀x ∈ R
2m, ∀y ∈ R

2n.

It is easy to see that:

• If A, B ∈ R
2n×2m, then(A + B)J = AJ + BJ ,

(
AJ

)T
=

(
AT

)J
,
(
AJ

)J
= A,

and
(
AJ

)†
=

(
A†)J

.

• If A ∈ R
2n×2k, B ∈ R

2k×2m, x ∈ R
2k, then(AB)

J
= BJAJ and(Ax)

J
= xJAJ .

A matrix A ∈ R
2n×2m such thatAJA = I2m is said to be symplectic. A matrixA ∈ R

2n×2n

such thatAJ = A is said to be skew-Hamiltonian.

2. Symplectic block reflector. A natural generalization of (1.1) to the symplectic case
would be

H = I − 2V (V JV )†V J , (2.1)

whereV ∈ R
2n×2r, n ≥ r. It also can be viewed as a block generalization of the symplectic

Householder transformations given in [10] and [6]. It is clear thatH remains unchanged
whenV is replaced byV K, whereK ∈ R

2r×2r is an arbitrary nonsingular matrix.
The matrixH is skew-Hamiltonian and symplectic,HJ = H = H−1. It satisfiesHx =

x if x is J-orthogonal to range(V ), i.e.,(x, v)J = 0 ∀v ∈ range(V ). However, it may be that
HV 6= −V , since in generalV (V JV )†V JV 6= V , in contrast withV (V T V )†V T V = V .
In the caseHV 6= −V , H is no longer a reflector. When the matrixV JV is nonsingular,
thenH = I − 2V (V JV )−1V J andH satisfiesHV = −V . In this case, it will be shown
thatH can be represented in the following interesting form:H = I − 2WW J , whereW is
some matrix satisfyingW JW = I. Furthermore, necessary and sufficient conditions will be
given. This form is then used to derive a block version of the SR algorithm [3]. Note that
the matrixV JV may be singular even ifV has full rank. These constraints will necessarily
result in some difficulties in the construction ofH .

Let E, F ∈ R
2n×2r. Assume that a symplectic block reflector (SBR)H of the form (2.1)

exists and satisfiesHE = ±F . Then(HE)JHE = F JF andEJHE = ±EJF . Hence,

EJE = F JF and EJF is skew-Hamiltonian. (2.2)

Unfortunately, the conditions (2.2) alone do not guarantee the existence of an SBR of the
form (2.1) such thatHE = ±F .

EXAMPLE 2.1. Consider the symplectic linear spaceR
8 and letE = [e1, e2, e3, e7] and

F = [12e1 + 1
4e2,

1
3e1 + 2

5e2,−e3,−e7], where{e1, . . . , e8} denotes the canonical basis of
R

8. We obtain

EJE = F JF =




0 0 0 −1
0 0 1 0
0 0 0 0
0 0 0 0


 and EJF = F JE =




0 0 0 1
0 0 −1 0
0 0 0 0
0 0 0 0


 .
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Thus, the conditions (2.2) are satisfied.
Suppose now that there existsV ∈ R

8×4 of full rank, such thatHE = F , whereH
is the SBR given byH = I − 2V (V JV )†V J . Since rank(E − F ) = 4, it follows that
V = (E −F )K, whereK is any4×4 nonsingular real matrix. There is no loss of generality
to takeK = I andH = I − 2(E −F )((E −F )J(E −F ))†(E −F )J . A simple calculation
gives

HE = [e1, e2,−e3,−e4] 6= F.

Note that the matrixV = E − F satisfies

V (V JV )†V JV = [0, 0, 2e3, 2e7]
6= V =

[
1
2e1 −

1
4e2,−

1
3e1 + 3

5e2, 2e3, 2e7

]
.

Some necessary and/or sufficient conditions that ensure theexistence ofH are given in
the following propositions.

PROPOSITION2.2. LetZ ∈ R
2n×2r andZ = range(Z) be such that

Z ∩ Z⊥J = {0}, (2.3)

where⊥J denotes orthogonality with respect to(., .)J . Then

Z(ZJZ)†ZJZ = Z.

Moreover, ifZ is full rank, thenZJZ is nonsingular.
Proof. The proof follows from the fact thatI − (ZJZ)†(ZJZ) is the orthogonal projec-

tion onto Null(ZJZ), see, e.g., [12, Chap. III], and that, due to (2.3), Null(ZJZ) ⊂ Null(Z).
Note that the inclusion Null(Z) ⊂ Null(ZJZ) is always true. Therefore Null(ZJZ) =
Null(Z), and henceZ(I − (ZJZ)†(ZJZ)) = 0. Letx ∈ R

2r be such thatZJZx = 0. From
(2.3), it follows thatZx = 0; and sinceZ is full rank, one getsx = 0.

REMARK 2.3. It is interesting to note that (2.3) implies that

R
2n = Z ⊕ Z⊥J . (2.4)

In fact, anyx ∈ R
2n can be expressed as

x = Z(ZJZ)†ZJx + (I − Z(ZJZ)†ZJ)x.

The first term of the sum belongs toZ. From (2.3), we haveZ(ZJZ)†ZJZ = Z, and hence
ZJ(I − Z(ZJZ)†ZJ) = 0. Thus, the second term of the sum is inZ⊥J .

COROLLARY 2.4. Let H = I − 2Z(ZJZ)†ZJ , with Z ∈ R
2n×2r, Z = range(Z),

2r′ = dim(Z) andZ ∩ Z⊥J = {0}. Then there existsW ∈ R
2n×2r′

, such thatW JW = I
andH = I − 2WW J .

Proof. Using Proposition2.2 and Remark2.3, H is completely determined by the fol-
lowing properties:Hx = x for x ∈ Z⊥J andHx = −x for x ∈ Z. Due to (2.3), the induced
inner product on the subspaceZ is not degenerate, and hence there exists a symplectic matrix,
see e.g., [1, 10], W ∈ R

2n×2r′

(i.e.,W JW = I), such thatZ = range(W ). It follows that
the matrixH ′ = I − 2WW J satisfiesH ′x = x for x ∈ Z⊥J andH ′x = −x for x ∈ Z.
ThusH = H ′.

PROPOSITION2.5. LetE, F ∈ R
2n×2r satisfy the conditions (2.2).

• If Z = range(D) satisfies (2.3) with D = E − F , then the SBRH = I −
2D(DJD)†DJ is such thatHE = F .
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• If Z = range(S) satisfies (2.3) withS = E+F , then the SBRH = I−2S(SJS)†SJ

is such thatHE = −F .
Proof. SinceE andF satisfy (2.2) andZ satisfies (2.3), it follows that DJS = 0,

D(DJD)†DJD = D andS(SJS)†SJS = S.
PROPOSITION 2.6. Let E, F ∈ R

2n×2r and letH be an SBR of the form (2.1). Let
D = E − F andS = E + F . Then the conditions

V (V JV )†V JD = D and (V JV )†V JS = 0 (2.5)

are necessary and sufficient forHE to equalF .
Proof. Under the conditions (2.5), we have

2HE = (I − 2V (V JV )†V J)(S + D)

= (S + D) − 2D = S − D = 2F.

Conversely, ifHE = F , thenE = HF and thereforeHS = S andHD = −D, which gives
the conditions (2.5).

PROPOSITION2.7. LetE, F ∈ R
2n×2r satisfy the conditions (2.2). If (E−F )J(E−F )

is nonsingular, then

H = I − 2(E − F )
(
(E − F )J(E − F )

)−1
(E − F )J (2.6)

is the unique SBR of the form (2.1) such thatHE = F .
Proof. The conditions onE andF ensure that

H(E + F ) = E + F andH(E − F ) = F − E.

Hence,HE = F . Now letV ∈ R
2n×r and letH̃ = I − 2V

(
V JV )

)†
V J be an SBR, such

thatHE = F . Then

E − F = 2V
(
V JV

)†
V JE

and

(E − F )J(E − F ) = 2EJ(E − F ) = 4(V JE)J
(
V JV

)†
V JE.

We conclude thatV JE andV JV are nonsingular. LetK = 2
(
V JV

)†
V JE. ThenK is

nonsingular andE − F = V K. Therefore,H = H̃.

2.1. The standard task. Given E = [ ET
1 ET

2 ET
3 ET

4 ]T ∈ R
2n×2r with E1, E3 ∈

R
k×2r andE2, E4 ∈ R

(n−k)×2r, the standard task consists of finding an SBRH , such that
HE is of the formF = [ F T

1 0 F T
3 0 ]

T with F1, F3 ∈ R
k×2r.

We present two approaches that accomplish this task. The first one requires an SBR of
the form (2.1) and only can be applied under certain conditions. The second approach uses
the product of two SBRs of the form (2.1) and always can be applied.

2.1.1. A limited approach. Using the symplectic Gram-Schmidt algorithm [9], we may
decomposeE as

E = SR, (2.7)

whereS ∈ R
2n×2q, q ≤ r, is symplectic andR ∈ R

2q×2r is block upper triangular.
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Note that it is suffices to determineH , such thatHS = Q, whereQ has the same
structure asF , since we will haveHE = QR, andQR has the same structure asF .

The properties ofH yield thatSJS = QJQ = I and thatSJQ is skew-Hamiltonian. If
we partitionS andQ conformally withE andF , i.e.,S = [ ST

1 ST
2 ST

3 ST
4 ]

T
∈ R

2n×2q with
S1, S3 ∈ R

r×2q, S2, S4 ∈ R
(n−r)×2q andQ = [ QT

1 0 QT
3 0 ]T with Q1, Q3 ∈ R

r×2r, then
the conditions onS andQ become:

[
S1

S3

]J [
S1

S3

]
+

[
S2

S4

]J [
S2

S4

]
=

[
Q1

Q3

]J [
Q1

Q3

]
= I (2.8)

and
[
S1

S3

]J [
Q1

Q3

]
=

[
Q1

Q3

]J [
S1

S3

]
. (2.9)

Assume that
[

S1

S3

]J [
S1

S3

]
has no eigenvalues onR− = {x ∈ R : x ≤ 0}. Then

[
S1

S3

]

has a generalized polar decomposition:
[
S1

S3

]
=

[
Q1

Q3

]
T, (2.10)

where
[

Q1

Q3

]
is symplectic andT is skew-Hamiltonian with eigenvalues that have positive real

part [7]. Since the matrixI+T is skew-Hamiltonian, it admits a Cholesky-like decomposition
of the form:

I + T = LJL; (2.11)

see [2]. Moreover, sinceI + T is nonsingular, so is the matrixL.
Let V = 1√

2
(S + Q)L−1. Then it is easy to check thatV JV = I, V JS = 1√

2
L.

Therefore, the SBRH = I − 2V V J is of the form (2.1) and satisfies

HE = F with F =

2r


−Q1R
0

−Q3R
0




r
n − r

r
n − r.

2.1.2. A more general approach.First, using for example Algorithm 2 in [11], we find
G ∈ R

n×p with orthonormal columns and a block reflectorP = I − 2GGT , such that

P

[
E3

E4

]
=

[
E′

3

0

]
, with E′

3 ∈ R
2r×2r. (2.12)

Let

H1 =

[
P 0
0 P

]
. (2.13)

The matrixH1 is an SBR of the form (2.1). In fact, we have

H1 = I − 2V1V
J
1 with V1 =

[
G 0
0 G

]
∈ R

2n×2p andV J
1 V1 = I. (2.14)
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Then, using the symplectic Gram-Schmidt algorithm, we may decomposeH1E as

H1E = SR, (2.15)

whereS ∈ R
2n×2q, q ≤ r is symplectic andR ∈ R

2q×2r is block upper triangular. Due
to (2.12), the matrixS is of the formS = [ ST

1 ST
2 ST

3 0 ]
T with S1, S3 ∈ R

2r×2q and

S2 ∈ R
(n−2r)×2q. Furthermore, the symplecticity ofS reduces to that of

[
ST

1 ST
3

]T
.

Let

V2 =
[
ST

1
1
2ST

2 ST
3 0

]T
∈ R

2n×2q.

Then it is easy to verify that

V J
2 V2 = V J

2 S =

[
S1

S3

]J [
S1

S3

]
= I.

Therefore the SBRH2 = I−2V2V
J
2 is of the form (2.1) and satisfiesH2S = [−ST

1 0 −ST
3 0 ]

T .
Finally, the productH = H2H1 is an SBR, such that

HE = F with F =

2r


−S1R
0

−S3R
0




2r
n − 2r

2r
n − 2r.

Note thatH is not necessarily of the form (2.1). However, it can be written as

H = I − 2V ΣV J , (2.16)

where

V = [V1, V2] ∈ R
2n×2(p+q) and Σ =

[
0 −J2p

J2q 2V J
2 V1J2p

]
∈ R

2(p+q)×2(p+q).

3. Application: block symplectic QR-factorization. The technique presented in Sec-
tion 2.1.2can be used to partition a matrix into block upper triangularform. It can be con-
sidered a block variant of the SR decomposition [3]. We illustrate the reduction where, for
clarity, the matrixA is partitioned as follows

A =




A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44


 ,

whereA1i, A3i ∈ R
2r×r, A2i, A4i ∈ R

(n−2r)×r, and1 ≤ i ≤ 4. In the first step of the
reduction, we let

A1 =




A11 A13

A21 A23

A31 A33

A41 A43



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and generate two SBRs,H
(1)
1 = I2n − 2V

(1)
1 (V

(1)
1 )J andH

(1)
2 = I2n − 2V

(1)
2 (V

(1)
2 )J , such

that

H
(1)
2 H

(1)
1 A1 =




F11 F13

0 0
F31 F33

0 0


 with Fij ∈ R

2r×r i, j = 1, 4.

The matrixH(1)
2 H

(1)
1 A is partitioned as

H
(1)
2 H

(1)
1 A =




F11 F12 F13 F14

0 F22 0 F24

F31 F32 F33 F34

0 F42 0 F44


 with F2i, F4i ∈ R

(n−2r)×r, i = 2, 4.

In the second step, the same process is applied to the submatrix

Ã2 =

[
F22 F24

F42 F44

]

to generateH̃(2)
1 = I2(n−2r) − 2Ṽ

(2)
1 (Ṽ

(2)
1 )J andH̃

(2)
2 = I2(n−2r) − 2Ṽ

(2)
2 (Ṽ

(2)
2 )J , such

that

H
(2)
2 H

(2)
1 Ã2 =




F̃22 F̃24

0 0

F̃42 F̃44

0 0


 , where F̃ij ∈ R

2r×r, i, j = 2, 4.

Let

V
(2)
1 =




02r×2p

Ṽ
(2)
1 (1:n−2r,1:2p)

02r×2p

Ṽ
(2)
1 (n−2r+1:2(n−2r),1:2p)


 , V

(2)
2 =




02r×2q

Ṽ
(2)
2 (1:n−2r,1:2q)

02r×2q

Ṽ
(2)
2 (n−2r+1:2(n−2r),1:2q)


 ,

and

H
(2)
1 = I2n − V

(2)
1 (V

(2)
1 )J , H

(2)
2 = I2n − V

(2)
2 (V

(2)
2 )J .

Then the matrixH = H
(2)
2 H

(2)
1 H

(1)
2 H

(1)
1 is symplectic and satisfies

HA =




F11 F12 F13 F14

0
[

F̃22
0

]
0

[
F̃24
0

]

F31 F32 F33 F34

0
[

F̃42
0

]
0

[
F̃44
0

]




.

4. Conclusion. The purpose of this short note is to discuss the constructionof block
symplectic reflectors analogous to those developed in [11], where the Euclidean scalar prod-
uct is replaced by a skew-symmetric scalar product. This change introduces difficulties in
the construction. We investigated necessary and/or sufficient conditions for the existence and
uniqueness of such reflectors. We discussed algorithms for computing a symplectic block
reflector that introduces a block of zeros into a matrix and showed how to obtain a symplectic
block QR factorization.
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