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ON THE COMPUTATION OF THE NULL SPACE OF TOEPLITZ–LIKE
MATRICES ∗
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Abstract. For many applications arising in system theory, it is important to know the structure and the dimension
of the null spaces of certain structured matrices, such as Hankel and Toeplitz matrices. In this paper, we describe an
algorithm based on the generalized Schur algorithm that computes the kernel of Toeplitz and Hankel matrices.
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1. Introduction. For many applications arising in system theory, it is important to know
the structure and the dimension of the null spaces of certainstructured matrices, such as
Hankel and Toeplitz matrices [1, 6, 8]. The properties of the kernels of Hankel matrices were
analyzed in [5]. The generalized Schur algorithm (GSA) [7] allows one to compute many
classical factorizations of a matrix, such as theQR factorization, theLDLT factorization of
a symmetric matrix, or the Cholesky factorization of a symmetric positive definite matrix.
For matrices with Toeplitz-like structure, the computation of such factorizations can be done
in a fast way via the GSA. In this paper, we describe an algorithm to compute the kernel of
Toeplitz and Hankel matrices based on the GSA.

The paper is organized as follows. In Section2, the properties of the null space of
Hankel matrices are briefly recalled. The generalized Schuralgorithm and the extension used
to compute the null space of Hankel and Toeplitz matrices is described in Section3. Some
numerical examples are reported in Section4, followed by the conclusions in Section5.

2. The kernel of Toeplitz–like matrices. The properties of the kernel of Hankel ma-
trices have been analyzed in [5]. In what follows, we briefly recall some properties of the
null spaces of Hankel matrices described in [5]. These properties will be useful in designing
an algorithm to compute such null spaces. The properties of the kernel of Toeplitz matrices
can be easily derived from those of Hankel matrices, since Toeplitz matrices can be obtained
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from Hankel matrices by exchanging the order of either the columns or the rows.

DEFINITION 2.1. Let b =
[

b1 b2 . . . bn−1 bn

]T ∈ R
n. The Hankel matrices

H [i,n](b), i = 1, . . . , n, are generated byb:

H [1,n](b) =
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H [n−1,n](b) =
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bn−1
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. .
. bn−1 bn

]

, H [n,n](b) =
[

b1 b2 · · · bn−1 bn

]

DEFINITION 2.2. Let s ≤ n. Given the vectorp =
[

p1 p2 · · · ps

]

, pi ∈ R,
i = 1, 2, . . . , s, the columns of the band Toeplitz matrix
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n×r

form aU–chain of lengthr. The vectorp is said to be a generating vector of theU–chain.
The generating vector is essentially unique; i.e., is unique up to multiplication by a constant
different from zero.

COROLLARY 2.3.

rank(H [k,n](b)) = min{k, n− k + 1, rank(H [l,n](b))}, k = 1, . . . , n,

with

l =

{

n/2 if l is even,

(n + 1)/2 if l is odd.

The behavior of the rank of the Hankel matricesH [k,n](b), k = 1, . . . , n, is depicted in
Figure2.1

The following result characterizes the kernel ofH [k,n](b), k = 1, . . . , n.
THEOREM 2.4. LetH ≡ H [k,n](b), k ∈ {1, 2, . . . , n}, be a Hankel matrix with nontriv-

ial kernel. Then the following assertions hold:

1. If H [k,n] does not have maximal rank, then the kernel ofH and its transposeH [k,n]T

is the linear hull of oneU–chain generated by the same vector.
2. In general, the kernel ofH [k,n] can be represented as the linear hull of one or two

U–chains.
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FIGURE 2.1. Example of the behavior of the rank of the Hankel matricesH[k,n](b), k = 1, . . . , n, with
n = 30. The number of columns of the matricesH[k,n](b) is reported on thex–axis. The rank of the matrices
H[k,n](b) is reported on they–axis.

3. Generalized Schur Algorithm. The generalized Schur algorithm allows us to com-
pute many classical factorizations of a matrix, such us theQR factorization, theLDLT fac-
torization of a symmetric matrix, the Cholesky factorization of a symmetric positive definite
matrix, and the inverse of the Cholesky factor. For matriceswith Toeplitz-like structure, such
factorizations can be done quickly via the GSA. A comprehensive treatment of the topic can
be found in [7].

The proposed algorithm for computing the left null space of amatrix with Toeplitz-like
structure is based on the GSA for computing the Cholesky factor and its inverse. For the sake
of simplicity, in this section we will consider a simple Toeplitz matrix instead of a general
Toeplitz–like matrix. We first describe how the GSA can compute theR factor of theQR
factorization of a full rank Toeplitz matrixT , i.e., the Cholesky factor ofT T T , and the inverse
of theR factor.

Let

T =























tn tn−1
. .. t1

tn+1 tn
. ..

. . .
. . .

. . .
. ..

. . .
. . .

. . .
. .. tm−1

tm+n−1
. . . tm+1 tm























, (3.1)

with m ≥ n. Let us first consider the caserank(T ) = ρ = n. Define

M =

[

T T T In

In 0n

]

, (3.2)

with In and0n the identity matrix and the null matrix of ordern, respectively. TheR factor of
theQR factorization ofT and its inverseR−1 can be retrieved from theLDLT factorization
of M , whereL andD are lower triangular and diagonal matrices, respectively.In fact, it can
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be easily shown that

M = LDLT =

[

RT

R−1 R−1

] [

In

−In

] [

R R−T

R−T

]

. (3.3)

Therefore, to computeR andR−1, it is sufficient to compute the firstn columns ofL. This
can be accomplished withO(n2) floating point operations by means of the GSA.

Let Z ∈ R
n×n be the shift matrix

Z =



















0 0 · · · · · · 0

1
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. . .
. . . 0

0
. . .

. . .
. . .

...
...

. . . 1
. . .

...
0 · · · 0 1 0



















n×n

(3.4)

and

Φ = Z ⊕ Z. (3.5)

It turns out that

M − ΦMΦT = GD̂GT ,

with D̂ = diag(1, 1,−1,−1) andG ∈ R
2n×4, whereG is called agenerator matrix. Hence

thedisplacement rankof M with respect toΦ, defined as the rank ofM − ΦMΦT , is 4. The
matrixΦ is calleddisplacementmatrix.

Let v = T T (T (:, 1)). The columns ofG can be chosen as

G(:, 1) = 1√
v(1)

[

vT e
(n)
1

T
]T

,

G(:, 2) =
[

0 tn−1 tn−2 · · · t1 0 · · · 0
]T

,

G(:, 3) =
[

0 GT (2 : 2n − 1, 1) 0
]T

,

G(:, 4) =
[

0 tm+n−1 · · · tm+2 tm+1 0 · · · 0
]T

.

(3.6)

Since the number of columns of the generator matrixG is 4 ≪ n, the GSA for computingR
andR−1 hasO(n2) computational complexity. It relies only on the knowledge of the matrix
G and not on the knowledge of the matrixT itself. Each iteration of the GSA involves the
following steps:

• Reduction of the generator matrix toproper form. That is, at theith iteration, all but
one of the entries of theith row of the generator matrix are annihilated by means of
a sequence of Givens and hyperbolic rotations. The column ofthe generator matrix
corresponding to the remaining nonzero entry is called thepivotcolumn.

• Multiplication of the pivot column by the displacement matrix. In this way, all the
entries of theith row of the generator matrix are now zero.

The GSA for computing the Cholesky factorR and its inverse can be summarized in the
following algorithm, written in a MATLAB –like1 style.

ALGORITHM 3.1 (Generalized Schur algorithm).
% INPUT: G, the generator matrix of the Toeplitz matrixT .
% OUTPUT: R andR−1, whereR is theR factor of aQR factorization ofT .
function [R, R−1] =schur(G);

1MATLAB is a registered trademark of The MathWorks, Inc.
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1) for k = 1 : n,
2) [cG, sG] = giv(G(k, 1), G(k, 2));

3) G(k : n + k, 1 : 2) = G(k : n + k, 1 : 2)

[

cG sG

−sG cG

]T

;

4) [cG, sG] = giv(G(k, 3), G(k, 4));

5) G(k : n + k − 1, 3 : 4) = G(k : n + k − 1, 3 : 4)

[

cG sG

−sG cG

]T

;

6) [cH , sH ] = hyp(G(k, 1), G(k, 3));

7) G(k : n + k, [1, 3]) = G(k : n + k, [1, 3])

[

cH −sH

−sH cH

]

;

8) R(k, k : n) = G(k : n, 1)T ;

9) R−1(1 : k, k) = G(n + 1 : n + k, 1);

10) G(:, 1) = ΦG(:, 1);
11)end

We have denoted bygiv the function that computes the parameters[cG, sG] of the
Givens rotationG:

[cG, sG] = giv(w1, w2) such that

[

cG sG

−sG cG

] [

w1

w2

]

=

[ √

w2
1 + w2

2

0

]

,

with w ∈ R
2. Moreover, supposew1 > w2. We have denoted byhyp the function that

computes the parameters[cH , sH ] of the hyperbolic rotation2 H :

[cH , sH ] = hyp(w1, w2) such that

[

cH −sH

−sH cH

] [

w1

w2

]

=

[ √

w2
1 − w2

2

0

]

.

The functionfunction[G] = gener(T ) computes the generator matrixG corresponding to
the Toeplitz matrixT .

Each iteration of the GSA (Algorithm3.1) involves two products of Givens rotations
by ann × 2 matrix, each of which can be accomplished with6n floating point operations,
followed by the product of a hyperbolic rotation by ann × 2 matrix, also accomplished with
6n floating point operations. Therefore, the computational complexity of the GSA is18n2

floating point operations. We remark that the GSA exhibits a lot of parallelism which can be
exploited to reduce the computational complexity. For instance, the products involving the
Givens rotations and the hyperbolic rotations can be done inparallel.

If only theR factor is needed, the computation can be done via the GSA considering only
the firstn rows and columns ofM , i.e.,T T T . Therefore, a generator matrix̂G for T with
respect to the displacement matrixZ in (3.4) can be obtained from the generator matrix for
M by considering only the firstn rows ofG in (3.6). In fact, the following gives a generator
matrix ofT T T with respect toZ:

Ĝ(:, 1) = 1√
v(1)

v,

Ĝ(:, 2) =
[

0 tn−1 tn−2 · · · t1
]T

,

Ĝ(:, 3) =
[

0 GT (2 : n − 1, 1) 0
]T

,

Ĝ(:, 4) =
[

0 tm+n−1 · · · tm+2 tm+1

]T
.

(3.7)

2Hyperbolic rotations can be computed in different ways. For“stable” implementations, see [2, 3].
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The algorithm for computing theR factor differs from Algorithm3.1only in the length
of the matrices involved. In fact, the sizes of the generatormatrix, and therefore of the matrix
R, aren × 4 andn × n, respectively.

ALGORITHM 3.2 (Generalized Schur algorithm).
% INPUT: Ĝ, the generator matrix of the Toeplitz matrixT .
% OUTPUT: R, theR factor of aQR factorization ofT .
function [R] =schur(Ĝ);

1) for k = 1 : n,

2) [cG, sG] = giv(Ĝ(k, 1), Ĝ(k, 2));

3) Ĝ(k : n, 1 : 2) = Ĝ(k : n, 1 : 2)

[

cG sG

−sG cG

]T

;

4) [cG, sG] = giv(Ĝ(k, 3), Ĝ(k, 4));

5) Ĝ(k : n, 3 : 4) = Ĝ(k : n, 3 : 4)

[

cG sG

−sG cG

]T

;

6) [cH , sH ] = hyp(Ĝ(k, 1), Ĝ(k, 3));

7) Ĝ(k : n, [1, 3]) = Ĝ(k : n, [1, 3])

[

cH −sH

−sH cH

]

;

8) R(k, k : n) = Ĝ(k : n, 1)T ;

9) Ĝ(:, 1) = ZĜ(:, 1);
10)end

FIGURE 3.1.Example of the rank profile of theR factor of theQR factorization of a singular Toeplitz matrices
(trapezoidal case).

FIGURE 3.2.Example of the rank profile of theR factor of theQR factorization of a singular Toeplitz matrices
(double trapezoidal case).

The structure and the computation of theR factor of a singular Toeplitz matrixT of rank
ρ < n ≤ m was considered in [4]. Let RT

a Ra be the Cholesky decomposition of the positive
semidefinite matrixT T T . Then, therank profileof Ra can be either oftrapezoidaltype (see
Figure3.1), or of double trapezoidaltype (see Figure3.2).

The trapezoidal case occurs when the indices of theρ linearly independent columns of
T are{1, 2, · · · , ρ − 1, ρ}. In this case, the null space of the Toeplitz matrix is generated by
oneU–chain sequence. The double trapezoidal case occurs when the set of indices of theρ
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linearly independent columns ofT is {1, 2, · · · , κ1−1, κ1, κ2, κ2 +1, · · · , κ3−1, κ3}, with
1 ≤ κ1 < κ2 ≤ κ3 ≤ n, andρ = κ1 + κ3 − κ2 + 1. In this case, the null space of the
Toeplitz matrix is generated by twoU–chain sequences [5]. Moreover, Figure3.2is obtained
by considering only the rows with indices corresponding to those of the linearly independent
columns ofT .

We will now show how the null space of singular Toeplitz matrices can be computed by
a modification of the GSA.

We briefy describe how the GSA is modified in [4] to computeRa. Since we are inter-
ested in computingRa, the GSA is again applied not to the extended matrixM , but directly
to the matrixT T T with respect to the displacement matrixZ in (3.4). Again, a generator
matrix G̃ is given by (3.7).

If rank(T ) = ρ < n, then at thekth iteration,k ≤ ρ, the hyperbolic rotation at step
6 of Algorithm 3.1 cannot be applied becausẽG(k, 1) = G̃(k, 3) for somek ∈ {1, . . . , n}.
Moreover, it turns out that the vectors̃G(k : n, 1) andG̃(k : n, 3) are equal. Hence, the first
upper trapezoidal part of the matrixRa is already computed.

The computation continues after dropping the first and the third columns ofG̃. Since
only two columns ofG̃ are now involved in the computation, the second and the fourth, steps
2 through 5 in Algorithm3.1are skipped. The computation continues untilG̃(j, 2) = G̃(j, 4)
for somej ∈ {k+1, . . . , n}. At that stage, the second trapezoidal part ofRa is also computed.
The gap between the two trapezoidal forms can be bigger than one. This happens when the
entriesk + 1, k + 2, . . . , k + l ≤ n, of G̃(:, 2) and G̃(:, 4) are zero at the end of thekth
iteration. In this case, we have a gap of lengthl + 1.

In order to show how to compute the null space of a Toeplitz matrix, let us consider the
modified augmented matrix

Mε =

[

T T T + ε2In In

In 0n

]

= M + ε2

[

In 0n

0n 0n

]

, (3.8)

with ε > 0. The displacement rank ofMε with respect toΦ is still 4, and a generator matrix
Gε of Mε with respect toΦ can be constructed as follows. Letṽ = (T T T + ε2In)e1. The
columns ofGε are

Gε(:, 1) = 1√
ṽ(1)

[

ṽT e
(n)
1

T
]T

,

Gε(:, 2) =
[

0 tn−1 tn−2 · · · t1 0 · · · 0
]T

,

Gε(:, 3) =
[

0 GT
ε (2 : 2n − 1, 1) 0

]T
,

Gε(:, 4) =
[

0 tm+n−1 · · · tm+2 tm+1 0 · · · 0
]T

.

(3.9)

We examine the behavior of the GSA applied to the modified problem asε → 0+. For
simplicity, we assume that the firstρ columns ofT are linearly independent. At iteration
(ρ + 1) of the GSA, after steps 2 through 5 of Algorithm3.1, it turns out [4] that

Gε(ρ, 1) − Gε(ρ, 3) = δε

and

|Gε(j, 1) − Gε(j, 3)| = cj,ε ≤ γε, j = ρ + 1, ρ + 2, . . . , n,

with δε ∈ R
∗

+ depending onε and such thatδε, γε → 0+ asε → 0+.
We now state a convergence theorem.
THEOREM 3.3. Let T ∈ R

m×n, m ≥ n, rank(T ) = ρ < n. LetJ1 = {1, 2, · · · , n −
1, n}. LetJ2 = {1, 2, · · · , κ1 − 1, κ1, κ2, κ2 + 1, · · · , κ3 − 1, κ3} be the set of theρ linearly
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independent columns ofT , with 1 ≤ κ1 < κ2 ≤ κ3 ≤ n andρ = κ1 + κ3 − κ2 + 1. Let
J3 = J1 \ J2. LetR be theR factor of theQR factorization ofT , with R ∈ R

ρ×n in double
trapezoidal form. LetS1 be the subspace ofRn generated by the columns ofRT and letS2

be its orthogonal complement. LetM = T T T andMε = T T T + ε2In, with ε ∈ R
∗

+. Let
Rε be the Cholesky factor ofMε andS3 = range(R−1

ε (:, ρ + 1 : n)). Then the subspaceS3

approachesS2 asε → 0+. We denote it by

S3 → S2, asε → 0+. (3.10)

Proof. LetM = UΛUT be the spectral decomposition ofM , with U ∈ R
n×ρ orthogonal

andΛ = diag(λ1, · · · , λρ), with λ1 ≥ λ2 ≥ · · · ≥ λρ > 0. Of course,range(U) = S1. Let

Mε = UεΛεU
T
ε

be the spectral decomposition ofMε, with Uε = [u
(ε)
1 , · · · , u

(ε)
n ] ∈ R

n×n orthogonal and
Λε = diag(λ1 +ε2, · · · , λρ +ε2, ε2, · · · , ε2). Letel, l ∈ J3 be thelth vector of the canonical
basis ofRn. Then

M−1
ε el = UεΛ

−1
ε UT

ε el

=

ρ
∑

i=1

u
(ε)
i

T
el

λi + ε2
u

(ε)
i +

n
∑

i=ρ+1

u
(ε)
i

T
el

ε2
u

(ε)
i .

Hence, multiplying both sides byε2

ε2M−1
ε el = ε2

ρ
∑

i=1

u
(ε)
i

T
el

λi + ε2
u

(ε)
i +

n
∑

i=ρ+1

(

u
(ε)
i

T
el

)

u
(ε)
i ,

Therefore, asε → 0+,

ε2M−1
ε el →

n
∑

i=ρ+1

(

u
(ε)
i

T
el

)

u
(ε)
i , (3.11)

that is,M−1
ε el approaches a vector belonging toS2. On the other hand,

M−1
ε el = (RT

ε Rε)
−1el

= R−1
ε R−T

ε el. (3.12)

Hence, (3.10) follows from (3.11) and (3.12).
At step 6 of iteration(ρ + 1) of Algorithm 3.1, the hyperbolic rotation to apply to

Gε(ρ + 1 : 2n, 1) andGε(ρ + 1 : 2n, 3) is

Hn =
Gε(ρ, 3)

√

δ2
ε + 2Gε(n, 3)δε

[

1 + δε

Gε(ρ+1,3) −1

−1 1 + δε

Gε(ρ+1,3)

]

.

As ε → 0+, δε approaches0, so that column(ρ + 1) of R−1
ε , i.e., the vector made up by the

entries ofGε(:, 1) from n + 1 up to 2n after the multiplication byH of the matrix having
Gε(n + 1 : 2n, 1) andGε(n + 1 : 2n, 3) as columns, approaches a vector belonging to the
subspace generated bỹQ.
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Since a vector of the null space ofT is defined up to multiplication by a constant, we
replace the hyperbolic matrixH of the stepρ + 1 by the matrix

H̃ =

[

1 + δε

Gε(n,3) −1

−1 1 + δε

Gε(n,3)

]

,

and eventually, forε → 0+, by

H̃ =

[

1 −1
−1 1

]

, (3.13)

i.e., a very simple singular matrix. Thus, a multiple of a vector belonging to the null space of
T and generating aU–chain is retrieved by replacing the elements of the hyperbolic rotation
in step 6 of Algorithm3.1(GSA) by the elements of the matrix in (3.13).

Let t be the generating vector of theU–chain. If the columnsρ + 1, ρ + 2, ρ + j,
ρ + j ≤ n, of T are also linearly dependent, it turns out that the entries ofthe second and the
fourth columns of the generator matrix after the iterationρ are zero [4]. Hence the size of the
U–chain isj + 1, and it can be computed in this way:

U(:, i) = Zi−1t, i = 1, . . . , j + 1.

We now describe the corresponding modified GSA.
ALGORITHM 3.4 (Modified Generalized Schur algorithm).

% INPUT: G, the generator matrix of the Toeplitz matrixT .
% tol1, a fixed tolerance to check the singularity
% tol2, a fixed tolerance to check the length of theU–chain
% OUTPUT: t1, the generating vector of the first possibleU–chain
% dimK1, length of the firstU–chain
% t2, the generating vector of the second possibleU–chain
% dimK2, length of the secondU–chain

function [R, t1, t2, dimK1, dimK2] =schur(G, tol1);

sing = 0; k = 1; ip(1) = 1; ip(2) = 3; dimK1 = 0; dimK2 = 0;
1) while k < n & sing < 2,
2) if sing == 0,
3) [cG, sG] = giv(G(k, 1), G(k, 2));

4) G(k : n + k, 1 : 2) = G(k : n + k, 1 : 2)

[

cG sG

−sG cG

]T

;

5) [cG, sG] = giv(G(k, 3), G(k, 4));

6) G(k : n + k − 1, 3 : 4) = G(k : n + k − 1, 3 : 4)

[

cG sG

−sG cG

]T

;

7) end % if
8) if |(G(k, ip(1))2 − G(k, ip(2))2)| < tol1,
9) [cH , sH ] = hyp(G(k, ip(1)), G(k, ip(3)));

10) G(k : n + k, [ip(1), ip(2)]) = G(k : n + k, [ip(1), ip(2)])

[

cH −sH

−sH cH

]

;

11) elseif sing == 0,
12) t1 = G(n + 1 : n + k, ind(1)) − G(n + 1 : n + k, ind(1));
13) sing = sing + 1;
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14) ip(1) = ip(1) + 1; ip(2) = ip(2) + 1;
15) while |(G(k, ip(1))2 − G(k, ip(2))2)| < tol2, & k < n,
16) dimK1 = dimK1 + 1;
17) k = k + 1;
18) end % while
19) else
20) t2 = G(n + 1 : n + k, ind(1)) − G(n + 1 : n + k, ind(1));
21) dimK2 = n − k;
22) end % if
23) G(:, 1) = ΦG(:, 1);
24) k = k + 1;
25)end % while

From a theoretical point of view

(G(k, ip(1))2 − G(k, ip(2))2) ≥ 0, (3.14)

for anyk ∈ {1, . . . , n} because of the positive semidefiniteness of the matrixT T T . How-
ever, from a computational point of view, (3.14) could assume negative values because of
the roundoff errors in floating–point arithmetic. Therefore, we consider the absolute value of
(3.14) in steps 5 and 8 of the algorithm.

The constantstol1 andtol2 are chosen equal to
√

nǫ, whereǫ is the machine precision.
The stability properties of the GSA have been studied in [9, 10]. The proposed algorithm

inherits the stability properties of the GSA, turning out tobe weakly stable.

4. Numerical Examples. In this section, we apply the algorithm developed in the pre-
vious section to some examples.

EXAMPLE 4.1. In this example, the entries of the vectorb are the elements of theFi-
bonacci sequence

b1 = 1,
b2 = 2,
bi = bi−1 + bi−2, i = 3, 4, . . . .

The corresponding Toeplitz matrix isT ≡ toeplitz(b(n : −1 : 1), b(n : n + m − 1)).
Only the first two columns ofT are linearly independent. The generating vectorp ∈ R

3 (see
Section2) is

p =
[

1, −1, 1
]T

,

which is the vector coefficients of the polynomial

p(x) = x2 − x − 1

whose roots are

1 +
√

5

2
,

1 −
√

5

2
.

Let us considerm = 12, n = 9. Let us denote bỹp the computed generating vector. Then

max
i

|pi − p̃i| = 2.104698637594993× 10−10.

Moreover, let us denote bỹZ the computed null space ofT generated bỹp. Then

‖T Z̃‖2 = 8.039173492294422× 10−11.
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EXAMPLE 4.2. This example can be found in [4]. The Toeplitz matrixT is

T =





































5 4 3 2 1 2 2 3
6 5 4 3 2 1 2 2
7 6 5 4 3 2 1 2
8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2

10 9 8 7 6 5 4 3
11 10 9 8 7 6 5 4
12 11 10 9 8 7 6 5
13 12 11 10 9 8 7 6
14 13 12 11 10 9 8 7
15 14 13 12 11 10 9 8





































.

Columns 3, 4, and 5 are linearly dependent on the first two columns, while columns 6, 7, and
8 are again linearly independent. The generator vectorp of theU–chain of the null space of
T is

p =
[

1 −2 1
]T

.

Then

max
i

|pi − p̃i| = 8.304468224196171× 10−14

and

‖T Z̃‖2 = 8.336584777351642× 10−14.

5. Conclusions and future work. A modification of the generalized Schur algorithm
is considered to compute the structured null space of Hankeland Toeplitz matrices in a fast
way. The algorithm is weakly stable, inheriting the stability properties of the generalized
Schur algorithm.

The idea exploited in this paper will be extended to develop afast algorithm to compute
the null space of more complicate structured matrices, suchas block–Hankel and block–
Toeplitz matrices.
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