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NUMERICAL LINEAR ALGEBRA
FOR NONLINEAR MICROWAVE IMAGING ∗

FABIO DI BENEDETTO†, CLAUDIO ESTATICO‡, JAMES G. NAGY§, AND MATTEO PASTORINO¶

Abstract. A nonlinear inverse scattering problem arising in microwave imaging is analyzed and numerically
solved. In particular, the dielectric properties of an inhomogeneous object (i.e., the image to restore) are retrieved
by means of its scattered microwave electromagnetic field (i.e., the input data) in a tomographic arrangement. From
a theoretical point of view, the model gives rise to a nonlinear integral equation, which is solved by a deterministic
and regularizing inexact Gauss-Newton method. At each stepof the method, matrix strategies of numerical linear
algebra are considered in order to reduce the computational(time and memory) load for solving the obtained large
and structured linear systems. These strategies involve block decompositions, splitting and regularization, and super-
resolution techniques. Some numerical results are given where the proposed algorithm is applied to recover high
resolution images of the scatterers.

Key words. inverse scattering, microwave imaging, inexact-Newton methods, block decomposition, regulariza-
tion.
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1. Introduction. Nonlinear inverse problems, which arise in many important applica-
tions, present significant mathematical and computationalchallenges [10]. For example, it is
often difficult to determine existence and uniqueness of an analytical solution in a theoret-
ical setting. But even in cases where these properties are known, and a particular solution
is sought, solving the problem in a discrete setting may still be very difficult. Indeed, nu-
merically solving a nonlinear inverse problem generally requires solving a computationally
expensive optimization problem involving very large-scale linear systems. In addition, be-
cause the underlying continuous problem is ill-posed, solutions are typically very sensitive
to noise in the measured data. Thus, special considerationsare needed in developing and
implementing algorithms to solve these problems.

In this paper we develop an efficient approach to compute approximate solutions of a
nonlinear image reconstruction problem from inverse scattering [7, 20]. Specifically, we
consider the problem of reconstructing the internal dielectric properties of an object based
on knowledge of the external scattered electric field, whichis generated by the interaction
between the object and a known incident electromagnetic microwave. Applications that use
this imaging technique range from civil and industrial engineering (nondestructive testing and
material characterization) to detection of buried objectsand medical diagnostics.

In order to restore the unknown object, the external scattered electric field must be eval-
uated from known incident electromagnetic waves. The relationship between the scattered
electric field and the incident electromagnetic waves is modeled by an integral equation.
Because the problem is highly underdetermined, a single incident electromagnetic wave is
insufficient to reconstruct an accurate approximation of the object. It is therefore necessary
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‡Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Via Ospedale 72, 09124 Cagliari,
Italy (estatico@unica.it)

§Mathematics & Computer Science Department, Emory University, Atlanta, GA 30322, USA
(nagy@mathcs.emory.edu)

¶Dipartimento di Ingegneria Biofisica ed Elettronica, Università degli Studi di Genova, via all’Opera Pia 11a,
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to increase information by using several different incident electromagnetic waves. Another
complication is that the scattered electric field inside theobject also needs to be approximated,
since it is required to invert the above integral operator. In some basic cases, a simplified ap-
proximation of the internal scattered field can be used; see the Born approximations for weak
scatterers in [7]. We, however, do not use this assumption, but instead consider the internal
scattered field as an additional unknown to recover. Our proposed scheme is therefore very
general, and can be used, for example, in applications when strong scatterers are introduced.

The approach we use to solve the resulting nonlinear image reconstruction problem is
based on Newton linearization techniques to deal with the nonlinearity, and regularization
techniques to deal with the ill-posedness [9]. The focus of this paper is on the use of numerical
linear algebra tools to exploit structure and sparsity of the large-scale linear systems that need
to be solved in the optimization algorithm. To further reduce the complexity of the problem,
we propose to recover first a number of low resolution approximations of the output object
using a coarse discretization and, after that, to reconstruct a single output image with higher
resolution. The low resolution images will be obtained in such a way that they represent
reconstructions of the object after it has been shifted by subpixel displacements. Super-
resolution methods [3, 6, 8, 11, 17, 19, 21] will then be used to fuse the different information
available in the low resolution images to obtain the high resolution image.

To reconstruct each of the low resolution images, we proposeto use a regularizing three-
level iterative algorithm, where a Gauss-Newton linearizing scheme (the first level, or out-
ermost iterative method) is inexactly solved at each iteration by an iterative block splitting
method (this is the second level, or the first inner iteration). The block iteration involves a se-
quence of smaller linear systems, which are then solved by a basic (e.g., Landweber) iterative
regularization method (this is the third level, or the innermost iteration).

The paper is outlined as follows. In Section2 we describe the mathematical model of
the inverse scattering problem from microwave imaging and the structure of the block ma-
trix arising in our linearization approach. The three-level iterative algorithm and appropriate
numerical linear algebra tools to solve the resulting nonlinear optimization problem, and to
do the super-resolution post-processing, are developed inSection3. Numerical results are
reported in Section4.

2. Mathematical formulation. Although the mathematical model for the inverse scat-
tering problem can be introduced in a general three-dimensional setting, to simplify notation,
we focus on the two-dimensional case. From a theoretical point of view, the mathemati-
cal model is related to the tomographic configuration for retrieving the cross section of an
“infinite” cylindrical object.

2.1. The mathematical model.Let us consider a cylindrical scatterer embedded in a
linear and homogeneous medium (the background), whose cross section is strictly contained
in a known, bounded, and simply connected plane of investigation Ω ⊂ R2. The dielec-
tric properties ofΩ are described by the inhomogeneous contrast functionχ : Ω −→ C,
χ(r) = ǫ(r)/ǫb − 1, where the relative refractive indexǫ(r)/ǫb is the ratio between the
dielectric permittivityǫ(r) at the pointr ∈ Ω (the position coordinate), and the constant
dielectric permittivityǫb of the background. Since the cross section of the scatterer is con-
tained inΩ, the contrast functionχ has compact support, which we assume is endowed with
Lipschitz continuous smooth boundary.

A known incident fieldui interacts with the scatterer, leading to a total fieldu on R
2

which is the sum of the incident fieldui and the scattered fieldus; that is,u = ui + us.
Thedirect (or forward) scattering problem is to compute the total fieldu from the dielectric
properties of the domainΩ. Theinversescattering problem is to retrieve the contrast function
χ, from measurements of the total fieldu in a region of observationΩ(M) (usually disjoint
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from Ω). In addition, the total electric fieldu in the regionΩ is unknown, since that region is
inaccessible to measurements.

Assuming no magnetic media are involved, the classical differential model for the di-
rect scattering problem with Sommerfeld radiation condition at infinity [7] has the following
equivalent Lippmann-Schwinger integral formulation

u(r) −
∫

Ω

G(r, r̃)u(r̃)χ(r̃) dr̃ = ui(r) , ∀r ∈ R
2, (2.1)

whereG(r, r̃) = −k2
b

j

4H
(2)
0 (kb‖r − r̃‖) is the Green’s function for the two-dimensional

Helmholtz equation,H(2)
0 is a zeroth order, second kind Hankel function,j2 = −1, and

kb = ω
√

ǫbµ0 is the background wave number for the magnetic permeabilityof the vacuum
µ0, with angular frequencyω. We remark that the integral operator on the left side is nonlinear
with respect toχ, since the total fieldu, generated by the interaction between the scatterer
and the incident field, depends onχ.

Concerning the direct problem with fixed scattering potential χ, if the incident fieldui

is a plane electromagnetic waveui(x) = exp(−jkbx · d) onΩ, whered ∈ S2 = {x ∈ R2 :
‖x‖ = 1} is the incident direction, then a solutionu ∈ L2(R2) satisfying (2.1) exists and is
unique for all wavenumberskb > 0 and all incident directionsd ∈ S2 [7, 18].

For the inverse scattering problem, a solutionχ is unique whenever it exists, but the prob-
lem is severely ill-posed; see [7] for a comprehensive discussion of the topic. However, the
integral formulation (2.1) cannot be used straightforwardly to retrieve the scattering potential
χ, since the total fieldu can only be measured in the observation domainΩ(M). We therefore
must consider its restriction onΩ(M)

∫

Ω

G(r, r̃)u(r̃)χ(r̃) dr̃ = us(r) , ∀r ∈ Ω(M), (2.2)

where the scattered fieldus = u − ui onΩ(M) represents the data we collect for the inverse
problem.

Recall that, in the above integrand, the total electric fieldu in the regionΩ is unknown.
For this reason, together with (2.2), we consider in our scheme the following integral Fred-
holm operator of the second type

u(r)−
∫

Ω

G(r, r̃)u(r̃)χ(r̃) dr̃ = ui(r) , ∀r ∈ Ω, (2.3)

which represents the implicit relationship between the unknown total and the known inci-
dent electric fields. The idea is then to use the coupled integral equations (2.2) and (2.3) to
simultaneously computeχ andu onΩ, by means of a fixed point iterative scheme.

Unfortunately, the pair of nonlinear integral equations (2.2)–(2.3) is not enough to solve
the inverse problem. Indeed, the classical theory of inverse scattering requires that the scat-
tered data be known for all wavenumberskb > 0 and all incident directionsd ∈ S2 in order
to solve the inverse problem. In a real setting, we can use a finite set ofP different configu-
rations of the source (incident field), which allows us to collect more information about the
scattered field in different radiation conditions, and, in the end, more information about the
scatter. The different source configurations are attained by varying

(i) the position of the whole apparatus, including both the emitting antenna and the
co-moving receiving detectors, and

(ii) the frequency of the incident microwaves.
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Let ui
p denote the incident electric field produced by thepth source, and letup be the

resulting total electric field measured in a regionΩ
(M)
p , which is disjoint fromΩ. The aim of

the inverse scattering problem is thus to retrieve a good approximation of the contrast function
χ onΩ, given knowledge of all the electric fieldsus

p ∈ L2(Ω
(M)
p ) , p = 1, . . . , P .

The integral equations (2.2) and (2.3) can be regarded as a system where the unknowns
areχ and{up}p=1,...,P in Ω, while the known terms are{ui

p}p=1,...,P in Ω (recall that the
incident fields are known everywhere) and the scattered electric fields{us

p}p=1,...,P , with us
p

in Ω
(M)
p , for p = 1, . . . , P .

By introducing the nonlinear operatorA :
∏P+1

p=1 L2(Ω) → (
∏P

p=1 L2(Ω
(M)
p )) ×

(
∏P

p=1 L2(Ω))

A(u1, . . . , uP , χ)(r) =




∫
Ω

G(r, r̃)u1(r̃)χ(r̃) dr̃
...∫

Ω G(r, r̃)uP (r̃)χ(r̃) dr̃

u1(r) −
∫
Ω G(r, r̃)u1(r̃)χ(r̃) dr̃

...
uP (r) −

∫
Ω G(r, r̃)uP (r̃)χ(r̃) dr̃




, (2.4)

and the known vectorb ∈ (
∏P

p=1 L2(Ω
(M)
p ))× (

∏P

p=1 L2(Ω))

b =
(
us

1, . . . , u
s
P , ui

1, . . . , u
i
P

)T
, (2.5)

the inverse scattering problem can be formally stated as thefollowing functional equation:
find χ ∈ L2(Ω) andup ∈ L2(Ω) , p = 1, . . . , P , such that

A(u1, . . . , uP , χ) = b. (2.6)

As is well known, the nonlinear inverse scattering problem is ill-posed, and a regular-
ization strategy is needed to stabilize the inversion process. In this paper, we use a suitably
regularized inexact-Newton iterative algorithm.

2.2. The Fŕechet Derivative for the Newton schemes.Let the Hilbert spaces
X =

∏P+1
p=1 L2(Ω) andY = (

∏P

p=1 L2(Ω
(M)
p )) × (

∏P

p=1 L2(Ω)) denote the domain and
codomain of the operatorA defined in (2.4). The Newton methods require the computation
of the Fréchet derivative ofA. We recall that the Fréchet derivative of the operatorA at the
pointx = (u1, . . . , uP , χ) ∈ X is the linear operatorA′

x : X −→ Y such that

A(x + h) = A(x) + A′

xh + o(‖h‖). (2.7)

Concerning the existence of such a derivative, since the integral formulation (2.1) is Fréchet
differentiable [16], both (2.2) and (2.3) are Fréchet differentiable; therefore the operatorA is
Fréchet differentiable, too.

By using this notation, the classical Newton scheme for the nonlinear equationA(x) = b
is formally the following: letx0 ∈ X be an appropriate initial guess, and compute, for
k = 0, 1, 2, . . ., the iterative stepsxk+1 = xk − (A′

xk
)−1(A(xk) − b), where the Fréchet

derivativeA′

xk
is required to be invertible. Since in inverse problems the Fréchet derivative is

usually a non-invertible and ill-posed operator, the previous simple classical scheme cannot
be used in real applications. In practice, some regularization techniques must be introduced in
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order to regularize the solution of each Newton step. This way, the iterative scheme becomes
the following, namely the inexact Gauss-Newton method,

xk+1 = xk − φ(k, A′ ∗

xk
A′

xk
)A′ ∗

xk
(A(xk)− b), (2.8)

where∗ denotes the adjoint operator,φ(k, λ) : N× [0, +∞) −→ R is a piecewise continuous
function, and the evaluation ofφ on the operator in (2.8) has the classical meaning in the
context of spectral theory [9]. Formally, the role ofφ consists of regularizing the computation
of the least squares solution(A′ ∗

xk
A′

xk
)−1A′ ∗

xk
(A(xk)− b) of the Newton step.

The simplest method belonging to the general scheme (2.8) is the Landweber algorithm
for nonlinear problems, where the regularizing schemeφ is a constant function. In particular,
φ(k, λ) = τ > 0, whereτ depends on the spectral norm ofA′ ∗

x A′

x in a neighborhood of the
solution, leading toφ(k, A′ ∗

xk
A′

xk
) = τA′ ∗

xk
A′

xk
[14]. The widely used Levenberg-Marquardt

method belongs to the class (2.8), too, since hereφ(k, λ) = (λ + µk)−1, whereµk > 0
is a regularization parameter, leading toφ(k, A′ ∗

xk
A′

xk
) = (A′ ∗

xk
A′

xk
+ µkI)−1 (notice that

the method is Gauss-Newton with Tikhonov regularization onthe linearization). Another
instance of (2.8) is the Gauss-Newton method with truncated singular value decomposition,
whereφ(k, λ) = λ−1, for λ ≥ Tk, andφ(k, λ) = 0 otherwise; in this case the regularization
parameter is the truncation threshold,Tk.

An important set of methods of type (2.8) is the class of Gauss-Newton methods with
iterative inner regularization [23], where the functionφ is evaluated by means of an iterative
formula. This is the case of the inexact Gauss-Newton methodwhen the inner regularization
is performed by means ofd Landweber iterations. In this case, the regularizing schemeφ is a
polynomial approximation of the inverse function. In particular,φ(k, λ) = Pd(λ), whered =

d(k) ∈ N andPd is thed-degree polynomialPd(λ) = τ
∑d

i=0(1 − τλ)i = 1−(1−τλ)d+1

λ
[5].

The purpose of the parameterτ > 0 is to control and to accelerate the convergence
of the iterates along the different components. In particular, consider the eigenspace re-
lated to a fixed eigenvalueλ of A′ ∗

xk
A′

xk
: after the application of the regularizing operator

φ(k, A′ ∗

xk
A′

xk
), the vectorA′ ∗

xk
(A(xk) − b) is multiplied along that component byPd(λ).

Thus, in the computation of the (generalized) solutionδ of A′ ∗

xk
A′

xk
δ = A′ ∗

xk
(A(xk)− b), the

relative error in the same component is
∣∣∣∣
(

1− (1 − τλ)d+1

λ
− 1

λ

)/
1

λ

∣∣∣∣ = |1− τλ|d+1 ;

for a detailed discussion, see [5, Equations (2.10)–(2.11)]). This means that the convergence
of the iterations toward the solutionδ is slow along the components for which the value of
λ is close to0 or 2τ−1, whereas it is the fastest one whenλ is close toτ−1. Therefore, the
convergence is always slow in the space whereλ is small, which is usually the space corrupted
by noise in inverse problems, but an appropriate choice ofτ enables us to “select” the most
important subspace of components to be first resolved in the Landweber iterative resolution
process. For instance, the simple choiceτ = ‖A′ ∗

xk
A′

xk
‖−1
2 provides the fast convergence

of the solution in the subspace related to the largest eigenvalues ofA′ ∗

xk
A′

xk
, which usually

contains much information and is less sensitive to the noiseon the data.
From a computational point of view, sincePd(λ) = Pd−1(λ) + τ(1 − λPd−1(λ)), the

evaluation ofφ(k, A′ ∗

xk
A′

xk
)A′ ∗

xk
(A(xk) − b) in the second term of (2.8) is efficiently com-

puted by the following iterative procedure:

f0 = 0, fs+1 = fs + τA′ ∗

xk
((A(xk)− b)−A′

xk
fs) , s = 0, 1, . . . , d.

For nonlinear inverse problems it is very important that solutions of the inner linear sys-
tem not be corrupted by noise; it is better to compute a solution that is over-regularized than
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one that is under-regularized. Iterative methods that converge slowly, such as Landweber,
have better noise filtering properties and do not require as precise a stopping criteria as itera-
tive methods that converge very quickly, such as conjugate gradients [13]. It is for this reason
that Landweber is often chosen to solve the inner linear systems that arise from nonlinear
inverse problems. We remark that a higher degreed of the polynomialPd(λ) results in a
better approximation of the inverse functionλ−1, and thus reduces the regularization effects
of the Landweber inner iteration. In this respect, it is interesting to notice that ifd = 0,
this method corresponds to the classical Landweber algorithm for nonlinear problems. In this
case, the regularizing schemeφ is a constant function, which can be considered as the slowest
and most regularizing algorithm among all the Gauss-Newtonmethods with Landweber inner
regularization.

By means of simple algebraic computations based on its definition (2.7), the computation
of the Fréchet derivative of the operatorA at the pointx = (u1, . . . , uP , χ) gives rise to the
following sparse and structured matrix

A′

x =




A
(M)
χ,1 0 . . . 0 A

(M)
u,1

0 A
(M)
χ,2

. . .
... A

(M)
u,2

...
. . .

. . . 0
...

0
. . .

. . . A
(M)
χ,P A

(M)
u,P

I −Aχ

. . .
. . . 0 −Au,1

0 I −Aχ

. . .
... −Au,2

...
. . .

. . . 0
...

0 . . . 0 I −Aχ −Au,P




, (2.9)

where{A(M)
χ,p }p=1,...,P , {A(M)

u,p }p=1,...,P , {Au,p}p=1,...,P , andAχ are the following linear
operators:

A(M)
χ,p h(r) =

∫

Ω

G(r, r̃)h(r̃)χ(r̃) dr̃, r ∈ Ω(M)
p ,

A(M)
u,p h(r) =

∫

Ω

G(r, r̃)up(r̃)h(r̃) dr̃, r ∈ Ω(M)
p ,

Au,ph(r) =

∫

Ω

G(r, r̃)up(r̃)h(r̃) dr̃, r ∈ Ω,

Aχh(r) =

∫

Ω

G(r, r̃)h(r̃)χ(r̃) dr̃, r ∈ Ω.

The notation of the blocks of the Fréchet derivativeA′

x recalls the dependence on the param-
eters in the associated integral kernels.

As an example of computation, for the partial derivatives inthe first row ofA′

x we have
to linearize the first component of the operatorA in (2.4) by considering an argumentx + h,
wherex = (u1, . . . , uP , χ) andh = (h1, h2, . . . , hP , hχ):

∫

Ω

G(r, r̃) (u1 + h1)(r̃) (χ + hχ)(r̃) dr̃ −
∫

Ω

G(r, r̃)u1(r̃)χ(r̃) dr̃

=

∫

Ω

G(r, r̃)h1(r̃)χ(r̃) dr̃ +

∫

Ω

G(r, r̃)u1(r̃)hχ(r̃) dr̃ +

∫

Ω

G(r, r̃)h1(r̃)hχ(r̃) dr̃,
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for r ∈ Ω
(M)
1 . Since

∫
Ω G(r, r̃)h1(r̃)hχ(r̃) dr̃ = O(‖h‖2), the first two integral operators

on the right-hand side represent the Fréchet derivative ofthe mentioned component, applied
to the variables contained inh. Therefore there is no dependence onh2, . . . , hP whereas
these two terms are respectively the matrix blocksA

(M)
χ,1 (derivative with respect tou1) and

A
(M)
u,1 (derivative with respect toχ) in the first row of (2.9) [4].

2.3. Computation of the operators. It is important to notice that in our iterative solving
scheme, which is based on the inexact-Newton method (2.8) and on the linearization (2.9), it
is required to compute many integrals involving the Green’sfunctionG. These integrals arise
in the forward operatorA and in the Fréchet derivativeA′

x, and all are of the form

I(r) =

∫

Ω

G(r, r̃) g1(r̃) g2(r̃) dr̃,

where both the functionsg1 andg2 are known. In the computation of electromagnetic fields
for applications in many areas as well as in our algorithm, these integrals are well approxi-
mated by using the so-called moment method [15]. In particular, each integralI(r) is ap-
proximated by considering a partitioning{Ωs}s=1,...,S of the integration domainΩ (i.e.,
Ω = ∪S

s=1Ωs andΩs1
∩Ωs2

= ∅ if s1 6= s2) so that

I(r) =

∫

Ω

G(r, r̃) g1(r̃) g2(r̃) dr̃ =
S∑

s=1

∫

Ωs

G(r, r̃) g1(r̃) g2(r̃) dr̃.

If a partitioning is sufficiently small, then

I(r) ≈
S∑

s=1

g1(rs) g2(rs)

∫

Ωs

G(r, r̃) dr̃,

wherers is the barycenter ofΩs. As a result, the computation of the integralI(r) is reduced
to the computation of all the integrals

∫
Ωs

G(r, r̃) dr̃, which are independent of both the func-
tions u andχ, and thus can be computed once for all the iterations. In scattering imaging
applications, a very useful analytical expression for these integrals is obtained by approxi-
mating each subdomainΩs by a circleCs of equivalent area. Indeed, in this case the integral
of the Green’s function on a circleCs is given by the following explicit formula [22]:

∫

Ωs

G(r, r̃) dr̃ ≈
∫

Cs

G(r, r̃) dr̃ = k2
b

j

4
πdsJ1(kbds)H

(2)
0 (kb‖r − rs‖)

(see the notation of (2.1)), where J1 is the first order Bessel function of first kind,
ds =

√
∆Ωs/π is the radius of the equivalent circle, and∆Ωs the area ofΩs. In our scheme,

each domainΩs corresponds to a single (rectangular) discretization region. Thus, ifr = rm,
whererm is again the barycenter of the regionΩm, we approximate all integrals in our algo-
rithm by the moment method as

I(rm) ≈
S∑

s=1

am,sg1(rs) g2(rs),

where the coefficientsam,s = k2
b

j
4πdsJ1(kbds)H

(2)
0 (kb‖rm − rs‖) can be considered as the

elements of a fixed matrix for the computation of each integral I(rm), for m = 1, . . . , S.
Notice that the above matrix has a scaled Toeplitz structure.
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3. Numerical linear algebra tools for the Newton schemes.Newton methods require
the computation of (a regularized approximation of) several linear equations involving the
derivativesA′

x for x ∈ X . In a real setting, the discretization of the inverse scattering model
leads to matricesA′

x whose dimensions are extremely large in general. Indeed, the discretiza-
tion of the model consists of

• n× n pixels for the investigation domainΩ,
• m pointwise receiving detectors on each observation domainΩ

(M)
p for each source

p = 1, . . . , P ,
• P = R ·F different sources of the incident field, whereR is the number of rotations

of the apparatus (the so-called views), andF is the number of frequencies of the
incident microwave (the so-called illuminations) for eachview.

Having introduced these constants, it is simple to check that any blockA
(M)
χ,p is anm × n2

matrix,Aχ is n2×n2, anyA
(M)
u,p is m×n2, and anyAu,p is n2× n2, so that the total size of

the matrixA′

x is

(Pm + Pn2)× (Pn2 + n2) = P (m + n2)× (P + 1)n2.

For instance, real data collected for the database of the Institut Fresnel of Marseille [1]
comes from a device withm = 241 detectors on a circular observation domainΩ

(M)
p with

a radius of about 1.5 meters, withR = 18 views andF = 9 different illuminations. In this
setup, ann× n = 64× 64 discretization ofΩ gives rise to a matrixA′

x of about7.0 · 105 ×
6.7 · 105 elements. The same setting, with the larger discretizationn × n = 1024 × 1024,
gives a size forA′

x of about1.7 · 108 × 1.7 · 108 elements!
It is essential to use advanced numerical linear algebra tools to reduce the computational

complexity of reconstruction algorithms involving these large-scale linear systems. This goal
can be reached by exploiting two peculiarities of the problem: (i) the sparsity and the block
structure arising at the first level, and (ii) the structure arising in the individual blocks. In this
paper we focus on the first approach.

3.1. Exploiting sparsity. Each inexact Newton step (2.8) involves the computation of
the normal equation system matrixE = A′ ∗

x A′

x. It is simple to show that the normal equation
system matrixE has the following block-arrow structure

E = A′ ∗

x A′

x =




M1 V1

M2 V2

. . .
...

MP VP

V ∗

1 V ∗

2 . . . V ∗

P C




, (3.1)

where each block has sizen2 × n2 and is the sum of products of structured matrix blocks of
A′

x, since

Mp = A(M)
χ,p

∗

A(M)
χ,p + (I −Aχ)∗(I −Aχ),

Vp = A(M)
χ,p

∗

A(M)
u,p + (A∗

χ − I)Au,p,

C =

P∑

p=1

A(M)
u,p

∗

A(M)
u,p +

P∑

p=1

A∗

u,pAu,p.

The simple block-arrow structure of the normal equation system matrixE can be ex-
ploited in order to obtain solving schemes with low computational complexity. In the follow-
ing subsections, we describe two approaches: a direct solver and a splitting iterative solver.
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3.1.1. Block Cholesky Factorization.As already mentioned, inexact Newton schemes
(2.8) for nonlinear functional equations arising in inverse problems usually require regular-
ization at every linearized step. As a basic example, we consider the Tikhonov regularization
method, whereφ(k, λ) = 1/(λ + µ) andµ = µ(k) > 0 is the regularization parameter that
depends on the iteration indexk. By considering the residualr = b − A(x), each iteration
of (2.8) with Tikhonov regularization can be written asx̃ = x + h̃, whereh̃ is the solution of
the block-arrow linear system

Ẽh̃ = b̃, (3.2)

whereẼ = E + µI = A′ ∗

x A′

x + µI andb̃ = A′ ∗

x r.
In the case of symmetric positive definite block-arrow matrices, the Cholesky variant

of LU factorization is very convenient. Indeed, since Cholesky factorization can be carried
through without any need for pivoting or scaling, it does notgive rise to any fill-in and it
is numerically stable [12]. The result is that each Cholesky factor inherits the same arrow
structure in its lower triangular part. By exploiting the block-arrow structure of̃E, Cholesky
decomposition at the block level gives

Ẽ = LL∗,

with

L =




L1

L2

. . .
LP

L̂1 L̂2 . . . L̂P L̂0




. (3.3)

Here the blocks ofL are defined as follows:
• Lp is the Cholesky factor of the symmetric positive definite diagonal blockM̃p =

Mp + µI; that is,M̃p = LpL
∗

p for p = 1, . . . , P .

• L̂p = VpL
−∗

p is a full matrix, forp = 1, . . . , P .

• L̂0 is the Cholesky factor of the symmetric positive definite matrix C̃−∑P

p=1 L̂pL̂
∗

p;

that is,C̃ −∑P

p=1 L̂pL̂
∗

p = L̂0L̂
∗

0, whereC̃ = C + µI.
Summarizing, thanks to the block-arrow structure ofA′

x, the Cholesky decomposition
of the normal equation system matrix̃E is computed efficiently by means ofP + 1 simple
Cholesky decompositions at the inner block level only andP triangular inversions and matrix
multiplications for computing eacĥLp. The solutioñh of the system (3.2) is then computed
by forward and backward block substitutions, according to the following scheme:

• vp = L−1
p bp, for p = 1, . . . , P ,

• vχ = L̂−1
0 (bχ −

∑P

p=1 L̂pvp),

• hχ = L̂−∗

0 vχ,
• hp = L−∗

p (vp − L̂∗

phχ), for p = 1, . . . , P ,

whereb̃ =
(
b1, b2, . . . , bP , bχ

)T
andh̃ =

(
h1, h2, . . . , hP , hχ

)T
. The overall cost of com-

putingh̃ in this way is(8P + 1)n3/6 + O(Pn2) multiplicative operations.

3.1.2. Block iterative splitting methods. In the previous subsection, each linear system
of the inexact Newton steps (2.8) with Tikhonov regularization is solved by a direct method
based on the Cholesky block decomposition (3.3). In this subsection, we analyze a different
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approach based on iterative methods, which are often preferred in inverse problems thanks to
their good regularization capabilities.

By considering again the linear system̃Eh̃ = b̃ of (3.2), a block splitting decomposition
of Ẽ gives rise to an effective iterative method whose numericalcomplexity per iteration is
linear with the number of blocks. In particular, starting from an initial guess̃h(0), due again
to the block-arrow structure, each iteration of the simple Jacobi (3.4) and the Gauss-Seidel
(3.5) block methods [12] can be written as



M̃1

M̃2

. . .
M̃P

C̃




h̃(t+1) = b̃−




V1

V2

...
VP

V ∗

1 V ∗

2 . . . V ∗

P 0




h̃(t) (3.4)

and



M̃1

M̃2

. . .
M̃P

V ∗

1 V ∗

2 . . . V ∗

P C̃




h̃(t+1) = b̃−




V1

V2

...
VP

0




h̃(t), (3.5)

respectively.

Let b̃ =
(
b1, b2, . . . , bP , bχ

)T
and h̃ =

(
h1, h2, . . . , hP , hχ

)T
denote again the block

form of the right-hand side and of the solution of (3.2), and partition the iterates̃h(t) accord-
ingly. Exploiting the simple inverse of triangular arrow (block) matrices, we can summarize
the two splitting methods as follows:

h(t+1)
p = M̃−1

p

(
bp − V ∗

p h(t)
χ

)
, (3.6)

for p = 1, . . . , P , and

h(t+1)
χ = C̃−1

(
bχ −

P∑

p=1

V ∗

p q(t)
p

)
, (3.7)

whereq
(t)
p = h

(t)
p for the Jacobi iteration (3.4) andq

(t)
p = h

(t+1)
p for the Gauss-Seidel itera-

tion (3.5).
Provided thatVp 6= 0 for all p (otherwise we would obtain a further simplification by

uncoupling some equations), it is straightforward to verify that block-arrow matrices are 2-
cyclic and consistently ordered according to the classicaldefinitions of Varga [27]; as an
interesting consequence, the convergence rate of the blockGauss-Seidel method is twice the
convergence rate of the block Jacobi one. Indeed, it can be proved that

ρ(BG) = (ρ(BJ ))2,

whereρ(BG) is the spectral radius of the Gauss-Seidel iteration matrix

BG =




M̃1

M̃2

. . .
M̃P

C̃




−1 


V1

V2

...
VP

V ∗

1 V ∗

2 . . . V ∗

P 0




,



ETNA
Kent State University 

http://etna.math.kent.edu

NUMERICAL LINEAR ALGEBRA FOR NONLINEAR MICROWAVE IMAGING 115

andρ(BJ) is the spectral radius of the Jacobi iteration matrix

BJ =




M̃1

M̃2

. . .
M̃P

V ∗

1 V ∗

2 . . . V ∗

P C̃




−1 


V1

V2

...
VP

0




.

On the other hand, the Jacobi method, although slower, can beimplemented fully in parallel,
where any one of theP+1 block systems given by (3.6) and (3.7) can be solved independently
on a different processor. The same trick for the Gauss-Seidel method would require about
double the computation time, since the computation of (3.7) must follow the computation of
theP independent block systems (3.6), for p = 1, . . . , P .

Every step of such iterative methods involves the solution of the inner linear systems (3.6)
and (3.7) at the block level only (notice that the matrix inverses areM̃−1

p , for p = 1, . . . , P ,

andC̃−1, all of themn2×n2 matrices), which can be solved either by inner direct or by inner
iterative methods. In the latter case, the regularization capabilities of iterative methods can be
very favorable, since early termination of the iterations leads to a regularized solution of the
system. With this choice, it is possible to solve the (unregularized) system with coefficient
matrix (3.1) instead of the Tikhonov regularized one (3.2), since now regularization is en-
forced in the innermost iterative method. In particular, aswe will see in the next subsection,
this is the choice we adopt in the proposed solution method and use for the numerical tests.

3.2. A three-level inexact-Newton Method.The inexact-Newton algorithm we pro-
pose is an iterative regularizing method for nonlinear equations, where each linearized step
is regularized by means of an iterative regularization scheme based on a block splitting. The
method is useful for all the nonlinear functional equationswhose linearization leads to block
matrices, as is the case for our model (2.6) with linearization (2.9).

The method can be introduced as follows, where, for the sake of simplicity, we explicitly
refer to the model (2.6).

1. Setk = 0. Choose the initial guessx0 = (u1,0, . . . , uP,0, χ0), where:
• χ0 is an approximation of the target distributionχ. If no information is avail-

able, setχ0 = 0.
• up,0 = ui

p, for p = 1, . . . , P (notice that the initial guess of the unknown total
fields are simply initialized to be the known incident field; this is the basic
choice of the widely used first order Born approximation scheme for inverse
scattering [7]).

2. Linearize equation (2.6) at the pointxk = (u1,k, . . . , uP,k, χk) by means of the
Fréchet derivativeA′

xk
of the operatorA, as shown in (2.9), obtaining the Gauss-

Newton linear equation

A′ ∗

xk
A′

xk
hk = A′ ∗

xk
(b−A(xk)), (3.8)

wherehk = (hk,1, . . . , hk,P , hk,χ) andA′ ∗

xk
(b−A(xk)) = (bk,1, . . . , bk,P , bk,χ).

3. Consider the block splitting methods (3.4) or (3.5) without Tikhonov regularization
(i.e., withµ = 0) for the solution of equation (3.8).
Seth̃(0)

k,p = 0 andh̃
(0)
k,χ = 0. Fort = 0, 1, 2, . . . , T (k):

(i) Compute a regularized solutioñh(t+1)
k,p , p = 1, . . . , P , of the firstP diagonal

system blocks

Mph
(t+1)
k,p = bk,p − V ∗

p h̃
(t)
k,χ (3.9)
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by means of a fixed numberK1 = K1(k, t, p) of iterations of the Landweber
regularization iterative method for linear systems (or another iterative regu-
larization method). For the Landweber method applied to thepth equation,
settingf0 = 0, we have

fs+1 = fs + τM∗

p (bk,p − V ∗

p h̃
(t)
k,χ −Mpfs), (3.10)

whereτ = 1/‖Mp‖2 is a fixed convergence parameter, chosen according to the
discussion of Section2.2, andMp is the system matrix. Hence, the regularized

solution ish̃(t+1)
k,p = fK1

.

(ii) Compute a regularized solutioñh(t+1)
k,χ of the last row system block

Ch
(t+1)
k,χ = bk,χ −

P∑

p=1

V ∗

p q
(t)
k,p, (3.11)

whereq
(t)
k,p = h̃

(t)
k,p for the Jacobi iteration (3.4) and q

(t)
k,p = h̃

(t+1)
k,p for the

Gauss-Seidel iteration (3.5), by means of a fixed numberK2 = K2(k, t, χ)
of iterations of the Landweber iterative regularization method for linear sys-
tems (or another iterative regularization method). For theLandweber method,
settingf0 = 0, we have

fs+1 = fs + τC∗(bk,χ −
P∑

p=1

V ∗

p q
(t)
k,p − Cfs), (3.12)

whereτ = 1/‖C‖2 is a fixed convergence parameter, chosen again accord-
ing to the discussion of Section2.2, beingC the system matrix. Hence, the
regularized solution is̃h(t+1)

k,χ = fK2
.

4. Setting̃hk =
(
h̃

(T (k)+1)
k,1 , . . . , h̃

(T (k)+1)
k,P , h̃

(T (k)+1)
k,χ

)
, update the solution by

xk+1 = xk + h̃k. (3.13)

5. Check a stopping rule forxk+1: if it is satisfied, terminate; otherwise setk ← k + 1
and go to step2.

The proposed algorithm can be summarized as a three-level iterative method:
Level I. The outer level of iterations is related to the Gauss-Newton method (3.8), and the

iterations are related to the indexk. The stopping rule can be the discrepancy prin-
ciple [23], based on the knowledge of the amount of noise in the data.

Level II. The first inner level of iterations is related to theblock splitting, either (3.4) or (3.5),
and the iterations are related to the indext as shown by (3.9) and (3.11). A suitable
number of iterationsT (k) can be estimated by means of preliminary numerical tests
and then fixed.

Level III. The second and nested inner level of iterations isrelated to the computation of
(small) numbersK1 and K2 of steps of an iterative regularization method, such
as Landweber, for each system block (3.9) and (3.11) of (i) and(ii) . These iterations
are related to the indexk as shown by (3.10) and (3.12), and the valuesK1 and
K2 can be estimated by numerical tests. We notice that, usually, these numbers are
small since, due to the severe ill-posedness of the problem,the regularization effects
of the inner iterative method have to be high.
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The overall cost of each outer iteration isT (k) + 1 times the operations required by the
following n× n matrix-vector products:

• 2 products involving eachVp, for p = 1, . . . , P ;
• 2K1 products involving eachMp, for p = 1, . . . , P ;
• 2K1 products involvingC.

A comparison with the computational cost of the Cholesky direct method of Section3.1.1
shows that the iterative approach is cheaper whenT (k) andK1 are small compared ton. Of
course, the inner structure of the blocks can be helpful to save further computations; this issue
will be discussed in Section3.3.

It is interesting to notice that some other approaches appearing in the literature [23]
correspond to a very simplified choice of the parameters of the above scheme. More precisely,
the two-level Gauss-Newton method with Landweber inner regularization described in [4] is
equivalent to the three-level scheme obtained by settingK1 = K2 = 1.

3.3. Exploiting the inner structure of the Fréchet derivative. As already noted,A′

x

is a sparse and block structured matrix. Moreover, every block of A′

x is given by the dis-
cretization of a particular linear operator of the typeB h(r) =

∫
Ω s(r, r̃)h(r̃) dr̃, where the

integral kernels is known and is given by the product of the shift invariant kernel G times
a fixed function (eitherχ or up, p = 1, . . . , P ). If each observation domainΩ(M)

p were
equal to the rectangularn× n investigation domainΩ, then the discretization of all of these
integrals would lead to Toeplitz-times-diagonal blocks, whose matrix-vector products cost
O(n2 log n) by using a fast trigonometric transform, such as the classical FFT (or, better, a
different trigonometric transform related to a particularchoice of the boundary conditions,
such as reflective or antireflective [25]). Unfortunately this does not happen in real applica-
tions, sinceΩ(M)

p is disjoint (and far) fromΩ. Then, although then2 × n2 blocksAχ and
Au,p, p = 1, . . . , P , of A′

x are always Toeplitz-times-diagonal so that the 2D FFT can beused

for the related matrix-vector product, in real applications eachm×n2 blockA
(M)
χ,p andA

(M)
u,p ,

p = 1, . . . , P , is a small lower rank extracted matrix (that is, a principalsubmatrix [24]) of
a full Toeplitz-times-diagonal matrix. If we consider a larger rectangular discretizedq × q
domainΩext which contains both then × n investigation domainΩ and all them detectors
of each observation domainΩ(M)

p , p = 1, . . . , P , then every blockA(M)
χ,p can be embedded

in a largerq2 × q2 Toeplitz-times-diagonal matrixQχ, which is associated with the integral
operator

Qχh(r) =

∫

Ωext

G(r, r̃)h(r̃)χ(r̃) dr̃

for anyr ∈ Ωext. In this way, it is possible to factorizeA(M)
χ,p as

A(M)
χ,p = R(M)

p QχT,

where the matrixR(M)
p is am×q2 restriction matrix fromΩext to Ω

(M)
p and the matrixT is a

q2 × n2 canonical injection fromΩ to Ωext (similarly for A
(M)
u,p ). According to this trick, the

matrix-vector product for any blockA(M)
χ,p andA

(M)
u,p costsO(q2 log q) instead ofO(mn2).

In practice, the appropriate computation procedure for alltheA
(M)
χ,p andA

(M)
u,p matrix-

vector products depends on both(i) the number and the position of the detectors ofΩ
(M)
p

and(ii) the dimension and the discretization step ofΩ. Suppose, for example, thatΩext is
k times larger thanΩ, so thatq = kn, and assume that aq × q 2D FFT requires8q2 log q
multiplications; see [28] for the 1-D FFT. Then the matrix-vector product withQχ is cheaper
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than the matrix-vector product withA(M)
χ,p when3 · 8 · k2n2(log(k) + log(n)) < mn2 (the

factor 3 is given by the fact that a matrix product involves two forward FFTs and one inverse
FFT, and we ignore the contribution of then2 pointwise matrix product). That is, the approach
usingQχ is cheaper when

24k2(log(k) + log(n)) < m.

In real applications, the numberm of detectors is about two to three hundred, and so the FFT
is not useful for smallk and small discretization parametersn. In the simplified case where
the detectors are equispaced on the perimeter of the rectangular domainΩext, with the same
step size ofΩ, we have thatm = 4kn, so that the previous inequality becomes

6k(log(k) + log(n)) < n.

In this case, withn = 1024, the matrix-vector products using 2D FFTs is better fork < 13;
with n = 256, for k < 5; and withn = 35, as in our numerical tests, fork < 2. This
shows that, at least in our configuration where the investigation domain is much smaller and
far from the measurement one, the FFT does not reduce the computational complexity of
matrix-vector products for all the blocksA(M)

χ,p andA
(M)
u,p , p = 1, . . . , P .

We mention that a similar idea of embedding the discretization points of a general do-
main into a larger rectangular domain in order to obtain a (block) Toeplitz matrix was also
used in [26] to describe the spectral properties of a class of structured matrices; the related
information also could be important for tuning appropriateregularizing methods.

3.4. Post-processing enhancement by super-resolution techniques. A significant dif-
ficulty in microwave imaging is that the reconstructed images have fairly low resolution.
To obtain higher resolution images we consider a post processing technique calledsuper-
resolution, which is essentially an example of data fusion; see, for example, [3, 6, 11, 21].
The aim is to reconstruct a high resolution image from a set ofknown low resolution im-
ages, each shifted by subpixel displacements. In our application we reconstructr images,
each reconstructed independently by shifting slightly themicrowave tomographic apparatus.
Let χ1, χ2, . . . , χr be the reconstructed low resolution images (e.g., using thepreviously de-
scribed three-level inexact Newton method). It is assumed that each low resolution image
is shifted by subpixel displacements from a particular reference image. These subpixel dis-
placements suggest that each low resolution image containsdifferent information about the
same object. The aim is to fuse this different information into one high resolution image. To
describe the mathematical model of super-resolution, we assume each low resolution image
can be represented as

χj = DS(yj)χ + ηj , j = 1, . . . , r,

whereηj is additive noise,D is a decimation matrix that transforms a high resolution image
into a low resolution image, andS is a sparse matrix that performs a geometric distortion
(e.g., shift) of the high resolution image,χ. The geometric distortion, and henceS, is defined
by the parameter vectoryj . The reconstruction problem amounts to computingχ from the
inverse problem




χ1

χ2

...
χr


 =




DS(y1)
DS(y2)

...
DS(yr)


χ +




η1

η2

...
ηr


 . (3.14)
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Note that if we assume that each of the low resolution images are shifted horizontally and
vertically, then eachyj contains only two values (the horizontal and vertical displacements).
If we want to consider more complicated movements (such as rotation), then eachyj might
contain up to six values that define general linear affine transformations. In either case, clearly
there are significantly fewer parameters definingy1, . . . , yr than the number of pixel values
definingχ.

In many cases, the parametersyj can be accurately determined from the imaging system;
that is, the subpixel shifts can be measured during a calibration process. In this case, equa-
tion (3.14) is a linear inverse problem, and standard techniques such as conjugate gradients
with Tikhonov regularization can be used to compute an approximation ofχ. However, if the
parameter vectoryj is not known, then an optimization scheme must be used to jointly esti-
mateχ andyj . In this case, since there are relatively few parameters definingyj , an efficient
separable nonlinear least squares approach can be used; see[6].

4. Numerical Experiments. In this section, a first implementation of the proposed
method has been developed and tested on two different scatterers to provide some numer-
ical results. A set of low resolution reconstructions related to the microwave imaging model
(2.6) in a tomographic configuration are computed by the algorithm of Section3.2on several
data sets related to subpixel linear shifts of the apparatus. After that, the super-resolution
enhancement technique of Section3.4is applied in order to improve the accuracy.
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FIGURE 4.1.Microwave tomographic apparatus

The tomographic arrangement is shown in Figure4.1and can be summarized as follows:
• the scattering object under test is contained in a square investigation areaΩ centered

at the origin, whose edge is 1m (meter) for the first test, 0.8mfor the second one,
and the (low resolution) discretization size isn× n = 31× 31;
• there arem = 241 receiving antennas equispaced on an arc of4π

3 radians belonging
to a circumference centered at the origin, whose diameter is3.34m;
• the number of rotations of the whole tomographic apparatus is R = 8, each one

equispaced byπ4 radians;
• for each rotation, the scattering object is illuminated by asingle incident plane mi-

crowave, i.e.F = 1, with a frequency of 0.3 GHz (wavelength10−3m) for the first
test and 0.8 GHz (wavelength2.6 · 10−3m) for the second one.

With this setting, for thejth rotation, theith receiver is placed at the position(ρ, θ) =
(1.67, (j − 1)π

4 + π
3 + i−1

m−1
4π
3 ), in polar coordinates, fori = 1, . . . , m andj = 1, . . . , R.
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The total fieldu measured by the receiving antennas is characterized by a signal-to-noise ratio
(SNR) of 25 dB; that is, the relative noise on the measured scattered fields is about0.6%.

In this first implementation of the proposed three-level algorithm, we use the block Jacobi
splitting (3.4) and the Landweber method for the innermost block level, as shown by the
schemes (3.10) and (3.12). It is important to remark that for all the simulations the whole
algorithm is initialized by an empty scene, i.e., for the initial guessx0 = (u1,0, . . . , uP,0, χ0)
we simply setχ0 = 0 (as if no scatter were involved) andup,0 = ui

p, p = 1, . . . , P (as if no
scattered field were produced). In this way, in our tests noa priori information is used and
needed.

The three-level algorithm requires the choice of(i) the number of outer Newton iterations
related to the indexk of (3.8), (ii) the numberT (k) of block splitting iterations, related to
the indext of (3.9) and (3.11), for any Newton iterationk, and(iii) the numbersK1(k, t, p)
andK2(k, t, χ) of Landweber iterations respectively related to the indexs of Landweber
iterations (3.10) and (3.12), for any Newton iterationk, any splitting iterationt, and any
incident wavep.

In real applications, the outer Newton iterations (3.8) can be stopped by means of a dis-
crepancy principle rule very similar to the classical one used for linear inverse problems [2].
That is, the iteration is terminated as soon as‖A(xk) − b‖ ≤ τη, whereτ > 1 is an exper-
imentally estimated small constant andη is an estimate of the noise in the datab; see [23]
for details about the discrepancy principle for nonlinear inverse problems. In these prelim-
inary tests with simulated data, we stop the Newton method after 30 iterations, a number
that was chosen experimentally by comparing the output of several different tests. The num-
ber of block Jacobi iterationsT (k) is fixed equal to 10, and the number of inner Landweber
iterations isK1(k, t, p) = K2(k, t, χ) = 1.

For the computation of the right-hand side of (3.8), the investigation domainΩ is parti-
tioned into35× 35 square subdomains, and the forward operatorA is computed by applying
the method of moments with pulse-basis functions and point matching to every instance of
the equations (2.2) and (2.3), as explained at the end of Section2.2.

After the restorations provided by the three-level algorithm, the super-resolution tech-
nique has been applied. The super-resolution leads to a large-scale ill-posed linear prob-
lem which requires a regularization algorithm. In our implementation, this linear problem is
solved by a small number of projected Landweber iterations [5], starting with an initial guess
which is the low resolution restoration in the basic center position. Specifically, five low res-
olution (LR) images from the three-level algorithm for microwave inverse scattering are the
input data that allow us to retrieve the one high resolution (HR) output image. The five LR
images are the reference image at the center of the coordinates and the four images shifted
by 1/3 of a pixel respectively to the right, to the left, to the top, and to the bottom. With this
enhancement technique, we obtain62×62 images from31×31 microwave restorations, with
a reduction of the restoration error which is often larger than 10%.

The relative restoration error of the output imageχ of the scatterer is evaluated by com-
puting‖χ̃− χ‖F /‖χ̃‖F whereχ̃ is the known true configuration of the scatterer, and‖ · ‖F
is the Frobenius norm of matrices. In the figures, the plots show the values of the relative
refractive indexǫ(r)/ǫb = χ(r) + 1, as described in Section2.1.

Test 1. The first test concerns the reconstruction of a homogeneous scatterer satisfying
the hypotheses of Section2, whose shape is similar to the digit “eight” and is shown in
Figure4.2(top left). The boundary of the scatterer has the parametricform given by formulas

x(t) =

√
cos2(t) + 8 sin2(t) cos(t)/6.6 and y(t) =

√
cos2(t) + 8 sin2(t) sin(t)/6.6,



ETNA
Kent State University 

http://etna.math.kent.edu

NUMERICAL LINEAR ALGEBRA FOR NONLINEAR MICROWAVE IMAGING 121

 

 

10 20 30 40 50 60

10

20

30

40

50

60
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

 

 

10 20 30 40 50 60

10

20

30

40

50

60
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

True object Low Resolution Restoration

 

 

10 20 30 40 50 60

10

20

30

40

50

60
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

 

 

10 20 30 40 50 60

10

20

30

40

50

60
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

τ = 1/(0.3‖A‖2) It.= 4 τ = 1/‖A‖2 It.= 2
Impr.= 6.4% Impr.= 1.7%

 

 

10 20 30 40 50 60

10

20

30

40

50

60
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

 

 

10 20 30 40 50 60

10

20

30

40

50

60
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

τ = 1/(2‖A‖2) It.= 10 τ = 1/(5‖A‖2) It.= 28
Impr.= 1.2% Impr.= 1.2%

FIGURE 4.2.Test 1 – True object and best reconstructions.

with t ∈ [0, 2π], and with a 1m square investigation domain. The contrast function χ̃ of the
scatterer is constant and equal to 0.3. The LR reference image of the contrast function is
shown in Figure4.2(top right); some HR reconstructed distributions of the contrast function
are reported in Figure4.2 (second and third row) for different values of the convergence
parameterτ of the projected Landweber method used in the super-resolution step (recall the
discussion of the role ofτ in Section2.2). For each HR image, we show the number of
projected Landweber iterations and the improvement between the LR and HR restorations,
that is, the difference between the relative restoration error of the LR image and the relative
restoration error of the HR image.

Figure4.3shows the pointwise difference between the true and the reconstructed objects.
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FIGURE 4.3.Test 1 – Absolute restoration errors.
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FIGURE 4.4.Test 1 – Super-resolution convergence history.

These restoration error results show that the localizationof the object and the reconstruction
of the permittivity are good, although the edges are smoothed due to the regularization effects
of the algorithm.

The convergence history of the projected Landweber method for the super-resolution
technique, illustrated by a plot of the relative restoration error versus the iteration number, is
shown in Figure4.4.

Test 2. The second simulation is related to a circular homogeneous annulus centered at
the origin, with external diameter of 0.4m and internal diameter of 0.2m, and two smaller
homogeneous disks with diameter of 0.1m centered at (−0.25m, 0.25m) and (0.25m, 0.25m),
where the size of the square investigation domain is 0.8m. This configuration with a hole can
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FIGURE 4.5.Test 2 – True object and best reconstructions.

be of interest for nondestructive evaluation purposes in civil engineering.
The contrast functioñχ of the scatterer is constant and equal to 0.3. As in Test 1, the

LR reference image of the contrast function is shown in Figure 4.5(top right) and some HR
reconstructed distributions of the contrast function are reported in Figure4.5 (second and
third row) for different values of the convergence parameter τ of the projected Landweber
method used in the super-resolution step. Figure4.6 shows the pointwise restoration errors,
and the convergence history for the super-resolution technique is shown in Figure4.7.

For small values ofτ , the convergence is slow and more regular (see the images on the
third row of Figure4.5); whereas for larger values ofτ , the convergence is faster and the
restorations are better, but it is much more difficult to stopthe Landweber iteration for the
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FIGURE 4.6.Test 2 – Absolute restoration errors.
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FIGURE 4.7.Test 2 – Super-resolution convergence history.

super-resolution technique (see the images on the second row of Figure4.5 and the conver-
gence histories of Figure4.7). As can be seen, the localization of the objects in the HR
restoration is good and much better than in the LR image. We remark that, from a qualitative
point of view, the improvement is much more evident than the percentage quantities would
show. In addition, although the estimate of the values of contrastχ is quite satisfying, the
shape of the scatterer is not estimated very accurately because of the severe ill-posedness of
the problem and the required regularization.
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