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ON THE DECREASE OF A QUADRATIC FUNCTION ALONG THE
PROJECTED-GRADIENT PATH *

ZDENEK DOSTALT

Abstract. The Euclidean gradient projection is an efficient tool fax #xpansion of an active set in the active-
set-based algorithms for the solution of bound-constraipediratic programming problems. In this paper we exam-
ine the decrease of the convex cost function along the pegjegradient path and extend the earlier estimate given
by Joachim Schberl. The resultis an important ingredient in the developroéaptimal algorithms for the solution
of convex quadratic programming problems.
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1. Introduction. While there are well known classical results concerning tite of
convergence of many algorithms for the solution of unc@mséd quadratic programming
problems in terms of bounds on the spectrum of the Hessianxid}, until recently there
were no such results on the decrease of the cost functiond@lgorithms that were proposed
to solve the problem

min f(x), (1.1)

whereQ = {z : x > (}, f(z) = 327 Az — 27b, £ andb are given columm-vectors and A
is an x n symmetric positive definite matrix. The standard resuliseziprovide bounds on
the contraction of the gradient projectio?],[or guarantee only some qualitative properties
of convergenced, 4, 5, 12, 13, 16]. For example, Luo and Tsend4, 15] proved the linear
rate of convergence of the cost function for the gradienjgoton method even for more
general problems, but they did not make any attempt to gp#wif constants. Let us recall
that the need for such estimates emerged in the developrhsnalable algorithms for the
solution of the discretized variational inequalities. éed, the first result of this type is due
to Sctoberl [17], who found a bound on the R-linear convergence of the deeregf for the
gradient projection method and used the estimate to deyelpably the first theoretically
supported scalable algorithm for variational inequditie.ater he proposed a better proof
which enabled him to improve the original estimald][ The result was exploited in the
analysis of the rate of convergence of the active set baggditims, which combined the
conjugate gradient method with the fixed step length gragiexjection and the proportioning
algorithms p, 11].

The estimates mentioned above share an unpleasant dragwbaudly, they give a bound
on the rate of convergence only for the step lengta (0, || A||~!], with the best bound for
a = ||A||~t, while the best results were observed experimentally fgelavalues ofy, not
supported by any estimate. The point of this note is to exthadestimate J1] providing
a nontrivial bound also forr € (|| A[|~1,2||A||~!]. Our proof is based on the analysis of
the gradient path for the cost function which domindteld| —! f and whose Hessian is the
identity matrix.
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2. The projected-gradient path of a function whose Hessiarsithe identity. We start
our exposition by an analysis of the special quadratic fonct

1
F(z):= a7z - Tz
2 )

defined forz € R™ along the projected-gradient path
P (x — aVF(x)) =max{z — ag,l}, ¢g:=VF(x)=xz—c,

where themax is assumed to be carried out componentwise. Alternatifetyy > 0 and a
fixedx € R™, we can describe the projected-gradient path by means oétheed gradient
g, which is defined componentwise by

gi(a) == min{(x; — 4;)/a, g; }.
Thus,
Po(z —ag) =z —ag(z)
and we can define
P(a) = F(PQ (x— ag)) = F(z) + o(a),
o2 (2.1)
p(a) = —ag"g(a) + jllﬁ(a)H?’

where| - || denotes the Euclidean norm. Let us first examine the one diioeal case.
LEMMA 2.1. Letz, ¢, c denote real numbers, with > ¢. For o € (0,2), let F' be
defined as above for = 1 and lety be defined bya.1). Then, for anyx € (0, 1],

ola) > p(2 - a). (2.2)
Proof. First observe that, i = 1 anda > 0, then the above definitions reduce to

g=z—c¢ g(a)=min{(z - )/a,g}

and

a2 2
pla) = —agla)g + % (§(a)*.

Moreover, ifg = 0 anda > 0, thenp(a) = 0 and, ifg # 0,

(a) = er(a) for a<(x—4¥)/g or g<ao,
= wala) for a<(z—4{)/g and g >0,

where

or(a) = (—a—i— a2) g> and ¢a(a):=—(z—0)g+ %(m —0)%

or(2—a) = <<2 B “)2) ¢ = pr(a), 23)
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and, ifg <0,
pla) =pr(a) =pr(2—a) =92 - a),

i.e., (2.2 holds true.

Let us now assume that> 0 and denoté = (x — ¢)/g. Thus, ifa € (0, 1], theny is
nonincreasing ofi0, 2) and @.2) is satisfied forx € (0, 1]. To finish the proof, notice that if
1 < @, then

p(a) =pr(a), ac(0,1],
90(04) < SDF(O‘), ac (172)a

so that we can us&(3) to obtain, fora € (0, 1],

p2—a)<pr2—a)=¢r(a) =¢(a). O
Now we are able to extract the information we need on the gabfel” along the
projected-gradient path.
LEMMA 2.2.Letz,/,c € R", withz > (. Fora € (0,2), let F be defined as above and
let ¢ be defined by4.1). Then, for anyx € (0, 1],
() 2 (2 - a).
Proof. Let us define, for ang € R anda > 0,
2

FO=3¢-at  and  oi(0) = —agdi(e) + 5 @)

Using the notation introduced above, we get

n

P(a) = (Fimi) + @i@)).

i=1
To complete the proof, it is enough to apply Leménéa a

3. Decrease of the cost function along the projected-gradi¢ path. In order to use
Lemma2.2in our analysis, let us assume that ( is arbitrary, but fixed, so that we can
define, for eacla € R, a quadratic function

Faly) = af(y) + 5y — )7 (T — ad)(y — ).

We shall assume that| A|| < 1, so that, for any € R,
Foly) = af(y), Folz)=af(z) and VF,(z)=aVf(z).

Moreover, the Hessian matrix df,, is the identity, so that" has the form assumed in
Lemmaz2.2. We shall use some other relations froii]

LEMMA 3.1. LetZ denote the unique solution df.(), A\; be the smallest eigenvalue of
A a € (0,]|A7Y, x € Qandg = Az — b. Then

af (Po(z —ag)) — af(@) < Fo(Po(z — ag)) — af(3)

and

Fu(Po (z — ag)) — af(3) < a(l — ah) (f(z) — f(2)). (3.)
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Proof. Replacef by o f in the statement and the proof of Theorem 4.11df | 0

Now we are ready to prove the main result.

THEOREM 3.2. Letz denote the unique solution df.(), A; be the smallest eigenvalue
of A,z €Q,9= Az — b, 1 = 2|4~ anda € (0, 7). Then

f(Pa(z - ag)) = f(@) < n(a)(f(z) - f(2)),
where
n(a) =max{l —al;,1 — (@ —a)\}.

Proof. To begin, let us observe that, for € (0, ||A|~!], the statement reduces to

Lemma3.1 Moreover, it is enough to prove the statementdoe (|| A|| =%, %), as the case
a=Tm,i.e.,

f(Pa(z—mg)) — f(Z) < f(x) — f(Z),

follows by the continuity argument.

To prove the statement fer € (|| A|| =%, %), let us first assume thgtd|| = 1 and let
a=144, € (0,1). ThenFs dominates) f and we can apply Lemm&2to the functionf
to get

5f(Pa(z —ag)) < Fs(Po(z — ag)) < Fs(Pq (z — dg)).
Combining the latter inequality witlB(1), we get
3f (Po(z —ag)) —f(@) < 8(1—oM)((f(z) - f(2)),
that is,
f(Pa(z—ag)) — f(@) < (1= M) ((f(z) - f(@)).

To complete the proof, it is enough to apply the last inedy&dithe function| A|| =1 f. a

4. Comments and conclusionsTheorem3.2fills in a longstanding gap in our theory
of optimal algorithms B, 11] for the solution of bound-constrained quadratic prograngm
problems. In particular, the result can be used in the arsabfghese algorithms to obtain
a bound on the rate of convergence in terms of bounds on trergpe for step lengths
that are longer than allowed by the original theory. Moreptlee result also improves our
understanding of the optimal algorithms for bound- and Btyseonstrained quadratic pro-
gramming problemst], 8.

We remark that these algorithms were the key ingredienggther with the theoretical
results concerning the FETI, BETI, TFETI and TBETI domairca®position methods, in
the development of scalable algorithms for the solutiorasfational inequalities, discretized
either by the finite element metho@, [LO] or by the boundary element method. [
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