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ON THE CALCULATION OF APPROXIMATE FEKETE POINTS:
THE UNIVARIATE CASE *

L. P. BOS AND N. LEVENBERG!

Abstract. We discuss some theoretical aspects of the univariate dae anethod recently introduced by
Sommariva and Vianello [Comput. Math. Appl., to appear] tloe calculation of approximate Fekete points for
polynomial interpolation.
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1. Introduction. Fekete points are a set of points which are good for polynbimia
terpolation that may be defined for any compact set in any dgio&. They are therefore a
natural and important set of points from the point of view ofymomial interpolation. How-
ever, their computation involves an expensive multivariaptimization which is moreover
numerically challenging for higher degrees; cf. the welgpafjWomersley 13. Recently
Sommariva and Vianellol?] proposed a method for calculatimgpproximateFekete points
that is highly efficient and may easily be used on differembpact sets.

Polynomial interpolation, at least in one variable, is @sieal subject. However, to make
the notions we consider here precise, we briefly outline tlénrfeatures of (multivariate)
polynomial interpolation. Considek ¢ R? a compact set. The polynomials of degree at
mostn in d real variables, when restricted #6, form a certain vector space which we will
denote byP, (K'). The spacé’, (K) has a dimensiotV,, := dim(P,,(K)). The polynomial
interpolation problem fo¥ is then, given a set @V, distinct points4,, ¢ K and a function
f + K — R, tofind a polynomiap € P,,(K) such that

(1.2) p(a) = f(a), Vae€ A,.
If we choose a basis,
B, ={P,Ps,---,Ppn,},
of P, (K), then any polynomigb € P,,(K) may be written in the form

N,

=Y ¢P
=1

for some constanis; € R. Hence the conditionsl(1) may be expressed as

Ny
(1.2) pla) =Y ¢;Pi(a) = f(a), a€ Ay,
j=1

which are exactlyV,, linear equations inV,, unknownsz;. In matrix form this becomes
[P(a)]aea,,Pep,c = F,
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wherec € RV is the vector formed of the; and F is the vector of function valueg(a),
a € A,. This linear system has a unique solution precisely whendhzafied Vandermonde
determinant

(1.3) vdm(A,; By,) = det([P(a)| peB, aca, ) # 0.

If this is the case, then the interpolation probleirl) is said to becorrect
Supposing then that the interpolation probleiri) is correct, we may write the interpo-
lating polynomial in so-called Lagrange form as followsr ko= A, set

vdm(A,\{a} U {z}; B,)
vdm(A,; By) '

(1.4) lo(x) ==

Note that the numerator is just the Vandermonde determiwéhtthe interpolation point
a € A, replaced by the variable € R

It is easy to see that, € P,(K). Moreover/,(b) = da.p, the Kronecker delta, for
b € A,. Using these so-called Fundamental Lagrange Interpold&olgnomials we may
write the interpolant of1.1) as

(1.5) plx) = > fla)la(x).

acA,

The mappingf — p is a projection and hence we write= L, (f). If we regard both
f,p € C(K) then the operatok 4, has operator norm (as is not difficult to see)

14, || = max > [la(w)].

ac€A,

This operator norm, called the Lebesgue constant, givesiadon how far the interpolantis
from the best uniform polynomial approximant folt follows that the quality of approxima-
tion to f provided by the interpolant is indicated by the size of the Lebsegue constant, the
smaller it is the better.

Now, suppose that;,, C K is a subset ofV,, distinct points for whichA,, = F,
maximizesvdm(A,; B,)|. Then by (.4), each supremum norm

. <
(1.6) éneaédﬂa(xﬂ <1, a€kF,

and hence the corresponding Lebesgue constants are stich tha
[La, |l < Nu,

i.e., the Lebesgue constants grow polynomially.irwhich is the best that is known in gen-
eral. Such a seft;, (it may not be unique) is called a set of (true) Fekete poihtiegreen for

K and provide, for any<, a good (typically excellent) set of interpolation pointarore
on Fekete points (and polynomial interpolation) we referdader to4] (and its references).
Note that the Fekete point sef and also the Lebesgue constajifs,, || are independent
of the basisB,,. We also remark that for each degregthe Fekete points;,, form aset i.e.,
they do not provide an ordering of the points. In applicasiaspecially for high degrees, the
ordering of the points can be important. One such orderipgasided by the so-called Leja
points; see, for examplel(, 1]. Note, however, that the Leja points provide an ordering of
all the pointsup tothose of degree, whereas the Fekete points are oy degreen. Once

a set of Fekete points has been calculated they can be ottoleted Leja method, but we do
not pursue that here.
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Now for the Sommariva-Vianello method. Here is some MATLA®Ie that implements
the algorithm to find 21 (degree 20) approximate Fekete poletion points for the inter-
val [-1,1]:

n=21; % number of interpolation points

m=1000; x=linspace(-1,1,m); % discrete model of [-1,1]

A = gallery(’chebvand’,n,x);

% A is the n by m Vandermonde matrix

% in the Chebyshev polynomial basis

b=rand(n,1); % a random rhs

y=A\b; % vy is the MATLAB solution of Ay=b

pp=y"=0; % vector of indices of the non-zero elements of y
pts=x(pp) % selects the points from x according to pp

Before explaining what this code does, we give some exangdelts. In Figurel.1 we
show the approximate Fekete points computed by the abowe (codrked by+) as well as
the true Fekete points, the extended Chebyshev points aonditz¢ so-called Leja points.
Note how remarkably close the approximate Fekete pointscatiee true Fekete points. In
comparison, the Vandermonde determinant (using the Chebysasis) for the true Fekete
points is1.532 - 10! (the maximum possible), whereas, for the approximate Egheints, it
is1.503-10'". Forthe extended Chebyshev points (a well-known sekoélleninterpolation
points for[—1, 1]), this determinant i$.265- 10'*. As we shall see in Theorem1below, the
values of the Vandermonde determinants for the approxifekete points are sufficiently
close to the values of the Vandermonde determinants fortieeRekete points to allow us to
conclude that these two sets of points are asymptoticatlgdme.

Further, the Lebesgue constant for the true Fekete poiafgdsoximately2.6, while for
the approximate Fekete points it is approximateland for the extended Chebyshev points
approximately2.9. The reader may be interested to note that for 21 equally siya@i@ts on
the interval—1, 1] the Lebesgue constant is approximatel986.5, i.e., significantly greater.
We note the classical results that fo#- 1 Chebyshev points in the interval add + 1 equally
spaced points on a circle, the Lebesgue constants grow like:) (and this order of growth
is optimal). This is further discussed in Secti®2.

We hope that these results convince the reader that the Savarvéanello algorithm is
indeed promising. The purpose of this paper is to discusegufithe theoretical aspects of
the algorithm; to hopefully explain why this algorithm gs/euch good results. Numerical
implementation is discussed ihj]. In the next section we show how the procedure is related
to a natural greedy algorithm for constructing submatrmfemaximal determinant. We give
concrete examples of the algorithm in Secti&in Finally, in Section4 we prove that the
algorithm produces points which asymptotically exhibé& game behavior as that of the true
Fekete points for a finite union of nondegenerate compacthectted sets in the complex
plane.

2. The relation to a greedy algorithm for maximum volume subnatrices. The key
to understanding how the code segment works is the comiyrAtb . First observe that
the command\=chebvand(n,x)  produces the Vandermonde matrix of the fitstheby-
shev polynomials evaluated at the points of the vectdBpecifically, the(i, j) entry of A
is T;—1(x;) so that theith row of A corresponds to the Chebyshev basis polynommijal
and thejth column of A corresponds to thgth point inz, ;. Hence selecting a subset of
columns ofA corresponds to selecting a subset of the points of the vector

Now, note that the matrixd € R"*™ with n = 21 andm = 1000, in this case, so
that the linear systemy = b is severely underdetermined. MATLAB resolves this problem
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Approx. Fekete
Leja
Extended Cheby

True Fekete
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F1G. 1.1.Plot of various point sets for = 21

by first computing the QR factorization of (¢ € R"*", orthogonal and® € R"*™,
upper triangular) with column pivoting; cf7[ §5.4]. The basics of this algorithm are easy
to describe. In fact, the pivoting is a procedure to seleetthmost significant” among the
m >> n columns ofA.

The first column selected is the one of largest euclidearttengall this columrm; € R™.
Then, an orthogonal matrig; € R"*"™ is chosen that maps to the first column of an upper
triangular matrix, i.e.;-||a1||2e1. Here we use the notatidh ||» to denote the euclidear)
norm of a vector irR™ or C"™ (m may vary). Also, we use a dot™to denote the euclidean
inner product. We then compute

tlla]l2 * o+ x
0
(21) QIA: Al )

0
0
0

whereA; € R(n=Dx(m=1) Then these two operations are repeated to the mdtrix4, €
R("=2)x(m=2) and so on. After, steps, we arrive ) = Q1 - - - Qn_2Qn_1 andR = A, _;.
Once these have been calculated, MATLAB solves the system

Aj=b,

where A € R"*" consists of the: columns so selected anide R™. The other entries of
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y € R™ are set td). Hence the commanpp=y™=0; in the code segment above gives the
indices of the selected columns.

Let us look now at the second column.fthat the algorithm selects (the first is the one
of longest euclidean length). This would correspond to tieron of A, (in R~ 1) of longest
length. Let us call this longest column dfi, b; € R"~!, and the corresponding column of
A, as. Then by @.1) we have

ot B
0

Qrar = | - |, Qras = | b1 |,
0

for o = £||a1||2 and somes € R. We have then

0

by :Q1(I2—{(Q1a2)- L } Qa1

[Quaxll2 J [[Quaxll2’

from which we see that

0

is the component of);a» orthogonal toQ;a; and hencd|b; || x ||@1a1]|2 is the area of
the parallelogram generated l6y;a; and Q,a2. But @), is an orthogonal matrix and so
Ib1]l2 x ||Q1a1]|2 is also the area of the parallelogram generated.pgndas. It follows
that the second column is chosen so that the area it genarnisitefixed ¢ is maximal. Sim-
ilarly, the third column is chosen so that the volume it gates with fixeda; andas is
maximal, and so on.

In summary, the pivoting procedure for the QR factorizasetects columns as follows:

(1) a; is the column of4d of maximum euclidean length.

(2) Givenay, - - -, ax, the (k 4+ 1)st columnay.; is chosen so that the volume of the
“box” generated by, - - -, ax, ax11 IS as large as possible.

This is precisely the standard Greedy Algorithm for consging a maximal volume box
from a collection of vectors. Note that, in principle, thgalithm selects the columns in a
certain order. However, in the final result of the MATLAB corandA\b this information is
lost. As mentioned in the Introduction, in numerical apations the ordering of the points
is important and a version of the command that saves the arflmation would be very
useful. In this paper, however, we concentrate on the thieat@spects of theetof points
that the algorithm selects.

3. The continuous version of the algorithm. Suppose thak’ ¢ R¢ is compact. Given
a basisB,, = {Py, P»,---, Py} for P,(K) the columns of the associated Vandermonde
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matrix are of the form

P1 (:v)
P2 (I)

PN.(CC)

for somex € K. Recalling that, for a Vandemonde matrix, selecting a subSeblumns is
equivalent to selecting a subset of points, we describe tinetaus version of the Sommariva-
Vianello Algorithm as follows:

(1) The first pointz; € K is chosen to maximizgV/ (z)||».

(2) Givenxy, za,- - -, xy the (k + 1)st pointz, 1 € K is chosen so that the volume
generated by the columié(z; 1) andV (1), V(22), - - -, V(1) is as large as possible.

3.1. Firstexample: the unit circle. Here we takex to be the unit circle so th&®,, (K)
is the trigonometric polynomials of degreewith dimensionN = 2n + 1. We take the
orthonormal basis,

B, = {%, % cos(0), % sin(f), - - -, % cos(nh), % sin(nf)},
with respect to the inner-product,
2w
(3.) (Ppi= [ P PO,
0
so that
1/V2
cos(6)
oy L | sin(0)
V(0) = NG .
sin(nd)
In particular, we have
~ 2n+1
(3.2) 17Oz =/ 5—, ¥ €0,2x].

More generally,

<u
=

<u
=

Il
3| =

{ + Z cos(k0) cos(k¢) + sin(k0) sin(kgb)}

= % { + Zcos k(O — o) }
1 s 2n+1 ))
B % sm(9 “b) ’

which the reader will notice is the reproducing kernel fog 8pace of trigonometric polyno-
mials of degree at most, equipped with the inner produci.(l).
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It follows that foranyset of2n + 1 equally spaced angld9..}, k = 0,1,---,2n, i.e.,
with 8, = 6y + 2]{371'/(271 + 1),

S 2 sin(2gh)
1 sin( 2 2T
33 T2 (ki
T sin( TS )

1 sin((G — km)

27 sin( (;;i)lﬂ )

=0 forj+#k.

In other words, the column vectov%(oj) andV (6;) are orthogonal foy # k.
Conversely, fof € [0, 27| and fixedyj,

L o+ 1
7(0,) - 7(0) = 0 — sin(22F

(6; —0)) =0

:>9j—9:

7 forsomek
2n+1

== 0= Gj,k.

What is the result of the Algorithm in this case? Since By2), the length oﬂ7(9) is
constant for alp € [0, 2], the first point chosen will banyé, € [0, 2x]. The second point
0 will be so that the area generated ﬁyeo) andV(e) is as large as possible. But as shown
above,V (0) L V(6,) iff 0 = 0; for somej # 0. Hence (noting that the lengths Bf(0) are
the same for alb € R) this area will be maximized bgnyé;, j # 0. Continuing, we see
that the output of the Algorithm is a set of equally spacedesyd; }, generated in a random
order, for some), € [0, 2x]. This is also a set of true Fekete points and we see that, in this
case, the approximate Fekete points of the Algorithm ara &ue Fekete points.

3.2. Second example: the interval—1,1] ¢ R!. This example is a bit indirect. We
construct a good set of interpolation pointsferi, 1] by first calculating approximate Fekete
points on the unit circles! ¢ R? and projecting down, i.e(z,y) — = € [-1,1]. Such
indirect procedures are likley to be very useful also in saveariables.

Since(x, +y) project to the same point, in order to obtaim + 1 points in[—1, 1] itis
natural to look for an even numbeém, points, symmetric under the mappigg— —y, on
the unit circle.

In this case the number of points (on the unit circi®), is not the dimension of trigono-
metric polynomials of some total degree and hence choobkiadltest” basis is a bit more
subtle. Here we use the basis

cos(0),sin(0), - -, cos((n — 1)0),sin((n — 1)0), % cos(nd)}.

Some words of explanation are in order. First of &), spans the trigonometric polynomials

of degree at most with sin(nf) removed. This choice is made in anticipation that 2ihe
equally spaced angléds = kn/n, k =0,1,---,2n— 1 are the best possible for the purposes
of interpolation. Note thaiin(n#) is equal to O precisely at these points, and hence must be
removed from any candidate basis.
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The normalization constanlg/\/i for the first and last elements &f,, are in order that
B,, is orthonormal with respect to the equally weighted disciaher-product based on the
equally spaced pointy,. Specifically, we have:

LEMMA 3.1. Suppose thay, := kn/n, 0 < k < 2n — 1. Then the elements &f,, are
orthonormal with respect to the inner-product

2n—1

35) 0= 3 pl6)al6)
k=0
(and corresponding norip|| = /(p, p))-
Proof. We first calculate
2n—1

(cos(jh), cos(mB)) = % Z cos(j0y) cos(mby,)

o
(3.6) =5 > {cos( + m)fk) + cos((j —m)or)}.

k=0

Now, for integert, 0 < t < 2n,

_fj(%)

Hence, by 8.6), for 0 < j < m < n (and consequentl) < j +m < 2n and also
0 < |j —m| < 2n), we have

(cos(j0), cos(mb)) = 0.
Also, for0 < j = m < n, we have

I cos(j6)[|* = (cos(j6), cos(j6))

1 2n—1
= — (cos(240k) + 1)
2n =

1 2n—1

Forj = m, we have

2n—1
1 1
| —= cos(nd)||* = — Z (cos(2nby) + 1)
V2 dn =~
1 2n—1
= > (cos(2km) +1) = 1.
n

k=0
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Forj =m = 0, we have

2n—1

H2 21—1

The calculations with the sines are similar and so we ominttie

With the basisB,, the columns of the Vandermonde matrix are

_ 1/\/5 _
cos(0)
sin(0)

V(0):= : € R,

sm(( —1)0)
os(nf)/v2 |

Note that by Lemma&.1, therows of the matrix

V.= [‘7(90), ‘7(91), Ty ‘7(9271—1)]

are orthogonal and have the same euclidean length. It feltbat}” is a constant multiple of
an orthognal matrix so that thmlumnvectors are also orthogonal. In other words,

V() LV(r)  j#k
Note also that

- 1 1
IVOI3 = 5+ (0= 1) + 5 cos(nf)

_2n—1
)

1
+ = cos?(nf),
2
which is maximized precisely #&t= 6, for somek. Moreover,

- 2n—-1 1
IV(O)II3 = =5— + 5 cos? (k)

= 2n, k=0,1,---,2n — 1.

From these considerations it follows that the Algorithmpligd to the basisB,, and
6 € [0, 27] will select the angle8;, k =0,1,---,2n — 1, in somerandom order.

The projected points are thens(kw/n), 0 < k < n, which are precisely the so-called
extended Chebyshev points. Hence the Algorithm again meslan excellent set of interpo-
lation points.

Actually, from this setup it is easy to see why the Chebystwntp have small Lebesgue
constant. Although this is somewhat tangential to our maipgse it is useful to record this
here as it may also shed some light on the multivariate case.

The basic fact to note is that the trigonometric (spaig@f fundamental Lagrange poly-
nomial forfy is just

37) {0,(0) = K 0,00),
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whereK,, (0, ¢) is the reproducing kernel for the span®f and inner-producti.5). That this
holds is an example of a more general phenomenon. Indeedavesftr anyp € spariB,,),

p(0;) = (p(9), K.(6;,6)) (reproducing property)
2n—1

= % > p(Ox)Kn(6;,061) (definition of @.5)
k=0
2n—1

- k; p(0r) (%Kn(ejaek)) :

Then since € spar{B,,) was arbitrary, it follows that
lK (05,0r) =9
n n\Y;,Vk) = 04k,

and hencg1/n)K,,(0,6;) € spar{B,,) indeed coincides with the fundamental Lagrange
polynomialéy, ().

We may easily comput&’,,. Indeed, by Lemma&.1, B,, is orthonormal with respect to
the inner-product3.5) and we have

n—1

K, (0,9) = % + Z(cos(k&) cos(k¢) + sin(k0) sin(k¢)) + %cos(n@) cos(ng)
k=1
1 = 1
(3.8) =3 + Z cos(k(0 — @) + 5 cos(nf) cos(ng).
k=1

Now note that from this formula forK,, together with 8.7) and the fact that
sin(nfy) = 0, Vk, it follows that

Co, (0) = Lo, (0 — bk).-

We may simplify

éeo (9) = %Kn(ev O)

(% + i cos(k) + %cos(n@))

k=1
_ 1 sin(nb)
- 2nsin(6/2)

1
n
1

(3.9)

cos(6/2)

by a standard calculation.
From this it is easy to calculate

2n—1

4dn — 1 4 cos(2nb)
ACE <1
Py dn

from which it follows that the Lebesgue function

2n—1
> It ()] < Van.

k=0
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A more refined, but standard, calculation shows that agtuall

2n—1 2n—1
(3.10) > 1o, () = 1o, (0 — 0x)| < cIn(n)
k=0 k=0

for some constant > 0, whose exact value is not important here; see, eld,, {1.3] for
similar calculations.
Further, since

Oon—r, = (2n — k) /n
=21 — kr/n
=27 — 0,
= —0, mod 2,

we have

—0 —0) (sincely, is even)

We may use these symmetry properties to obtain a relatiomdset thetrigonometric
fundamental Lagrange polynomials for the ang@leand thealgebraicfundamental Lagrange
polynomials for the points;, = cos(6y) € [—1, 1]. (We emphasize that there are exactly1
differentay, asxo, _, = xx, as is easily seen.)

Specifically, note thaty, (9) is a combination of cosines only and hence eveh ifhere-
fore the substitution: = cos(0) results in an algebraic polynomial of degree

Lo (z) :=Lp,(0), x = cos(f).
It is easy to check that
Lo (wr) = Lo, (0k) = 1o,

and hencel,, (z) is the algebraic Lagrange polynomial fay among then + 1 pointszy,.
Similarly, ¢y, (9) is also even i and so

Ly, () =40y, (0), x=cos(d)

is the algebraic fundamental Lagrange polynomial corredpm tozx, .
The construction for’,, (x), 0 < k < n is slightly different. Although in this case
Ly, (0) is noteven, the combination

Zek (9) + £02n—k (9) = éek (9) + éek (_9)
is even. Itis easy then to check that
Ly, (x) =1Ly, (0) + Ly, . (0), z=cos(), 0<0<m,

for0 < k < n.
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It follows that the algebraic Lebesgue function (for theegxted Chebyshev points)

D Lo (@) = o, (6 |+Z|€ek )+ Loy, (0)] + 146, (0)]
k=0

2n—1

k=0
<cln(n) (by(3.10).

3.3. Using a general orthonormal basis.Suppose that: is a (regular) measure on
[—1, 1] with associated inner-product

1
(3.11) )= [ f@)g(a)dula).
We consider an orthonormal basis
Bn = {POaPIa o 7P71} C Pﬂ([_l’ 1])

for the polynomials of degree at mastP,,([—1, 1]).
The columns of the Vandermonde matrix are then

Po(.%')
. Pi(z)
Vix) = .
P, (z)

with norm (squared)
IV(@)5 =) Pi(x).

Note that this just the diagonal of the reproducing kerneltf@ spaceP, ([—1, 1]) with
inner-product8.11), sometimes also referred to as the reciprocal of the aatatChristoffel
function. To emphasize this relation we set

=Y Pl(x)
k=0
so that

V(@) = VEn(@).

To the measure. is associated the corresponding Gauss-Christoffel quadrdormula.
Specifically, ifag,a1---,a, € (—1,1) are the zeros of, 1 (z), then, for all polynomi-
alsQ(x) of degree at mosin + 1,

(3.12) | @tz Zkaak
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where the weights are given by

1
k=R (an)
Now consider the normalized columns
Py(x)
. 1 - 1 Pi(z)
Ul) =—V() = ——— .
V|2 Ky () .
Pn(x)
Specializing tar = ay, we have
Po(ax) Po(ax)
. 1 P1 (ak) P1 (ak)
U = — . =
vl B .
P(ax) Py (ax)

Define the matrix
U =[U(ao),U(ar),---,U(an)] € ROFD*(HD),
Thesth row of U is the vector

Ui := [VwoPi(ao), vwiPi(a1), - -+, /wn Pi(an)],

so that the euclidean inner-productléfandU;, by Gauss-Christoffel quadrature.(2), is

Ui-U; =Y wiPi(ax) Py(ax)

k=0
1

= [ P@P@)utz) (since deg.p;) < 2n)
-1

=d;5, (the Kronecker delta)

since the polynomial®; are orthonormal.

In other words, the rows of the matriX are orthonormal vectors. It follows thét is an

orthogonal matrix and that also the columndbére orthonormal vectors, i.e.,
Ul(ai) - Ulaz) = i

Now, if we apply the Sommariva-Vianello algorithm to the malized columsﬁ(z),
all of length1, the first point chosen will be random, as there is no way forAlgorithm
to distinguish first points. However, if by some means, wetlsefirst point toxg = a; for
somej, 0 < j < n, then since the vecto[_é(ai), 1 # j, are orthogonal ttﬁ(aj) (and to each
other), the remaining. points selected by the algorithm will be just thg ¢ # j, in some
random order.

To summarize, if the Sommariva-Vianello algorithm, using @thonormal basis, is
applied to normalized columrend the first point is (artificially) set to one of the Gauss-
Christoffel quadrature points, then the Algorithm seleptscisely the Gauus-Christoffel
quadrature points associated to the measure of orthogpriak remark that if, on the other
hand, the first point isotso set, the first point would be randomly chosen in the intexwd
would in general be a poor choice (although the algorithmldieuentually self-correct).
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3.3.1. An illustrative example. When we normalize the columns to have length one,
it is also possible that the Algorithm selects good inteafioh points, other than the Gauss-
Christoffel points, depending on how the first point is sett &ample, consider the measure

1
d =
s V1—22
The orthonormal polynomials with respect to this measuedtae Chebyshev polynomials of
the first kind. Specifically,

dzx.

2 1
Bn: ;{EaTl(x)vTQ(I)v'"an(I)}a
so that
1/V2
Tl(.%')
Vi) = /2 | B
Tn(x)

If we setz = cos(#) andy = cos(¢), then we may compute

Vi) Vi) = > {% - ZTkak(y)}
k=0

(3.13) = % {% + Zcos(kﬁ) cos(k¢)}
k=0
1 {sin((n £1/2)(0-9) | sin((n+1/2)(0+0) }
27 sin(%52) sin(242) ’

by a standard calculation.
We note that the Gauss-Christoffel quadrature points aredhos off;,;1(z), i.e.,

2k +1
ak:COS(Wj:l)ﬂ'), k:O,l,-~-,n.
By the general theory of the previous section (or else byctlicalculation), it follows that
{V(ax)} is a set of orthogonal vectors.
But notice that by .13, if we set

2k
2n+1

by, = cos( ), k=0,1,---,n,

then the set of vectors
{V(bk) : k:O,l,---m}

is also orthogonal. It follows that if we (artificially) sehd first point toxy = by =
cos(0) = 1, a not unnatural choice, then the Algorithm applied to noizea colums will
select the points;, in some random order.

Note, however, that these selected pointsravesymmetric, specificiallyz = 1 is in-
cluded, butr = —1 is not. We record, for comparison’s sake, that #arpoints (degree
20), the Vandermonde determinant is approximate96 - 10'° and the Lebesgue constant
approximately3.3.
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3.4. Gram determinants and other basesThe volume of the parallelotope generated
by the vectord/, Vs, - - -, Vi, € R™ is given by the associated Gram determinant. Specifically,

VOIQ(‘_/’lv‘_/)Qa"'v‘_/’k) - det<|:‘7;‘7;:| >
1<4,5<k
= g(vla%f"avk)-

For more information on Gram determinants, see, for exanipl€8.7].
The continuous version of the Sommariva-Vianello alganittan then be re-phrased as
(1) The first pointz; € K is chosen to maximiz&V (z)]].
(2) Givenzy,xa,-- -,z the (k + 1)st pointz,y; € K is chosen so that the Gram

determinant,

—

g(v(xl)v V(xQ)’ ) V(xk)a v(xk-f-l))a

is as large as possible.

3.4.1. The standard basis.In this section we briefly consider the use of the standard
polynomial basis,

By = {l,z,2% - 2"}

In this case the columns of the Vandermonde matrix are
1

Then we compute

In particular, forz = y,

277.1

z cox #£+1
7)) = Zx% 7
=41

Clearly, |V (z)|| is maximized forz = +1 and the algorithm will choose one of these at
random. Let us suppose without loss of generality that tisé fioint chosen ig; = +1. In
general, it is difficult to calculate the precise points ttiet algorithm chooses. Fareven it

is not too difficult to show that the second pointigs = —1. Specifically, the second point
will be the one for whichy(V (1), V (x)) is maximal. But we calculate

L V) V) V() V()
g(V(1),V(z)) = Viz)- V(1) V(z)-V(z)
I T (VIR 7 C0)
V(z) - V(1) V(z) V(z)
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We claim that, fom even, this is maximized for = —1. To see this, first note that then

(=" -1

V(-1)-V(1) = —

=0
and hence, for alt € [—1, 1],

9(V(1), V() = n||V(@)|* = (V(2) - V(1))?

<n|[V ()|
<n?  (since||V(z)|? <n)
= | V(=D)|* = (V(-1)- V(1))?
=g(V(1),V(-1)).
In other wordsg(V (1), V(z)) is indeed maximized for = —1 andz, = —1 will be the
second point chosen.
If nis odd, then
. . )" -1
V(-1)-V(1)= -t =1#0,
-1-1
and already proving that, = —1 (although we conjecture that is the case) seems to be a bit

difficult.

To see the effect of the basis, we will compute the four podhissen fom = 4 using
both the standard and Chebyshev basis.

Continuing with the standard basis, since= 4 is even we already know that = +1

(by choice) andzy = —1. Let us computexs. This will be the point for which
g(V(1),V(=1),V(x)) is maximized. But
o V) V() V) V(=1 V() V()
g(V(1),V(=1), V(@) = | V(=1)- V(1) V(-1)-V(-1) V(-1) V()
Viz)- V(1) V(x)-V(=1) V(z) - V(z)
e
4 0 11_14
=] 0 4 1174:;
1—g* 1—g* 1—28
1—x 14z 1—x2

=8(1 —z*)(1 —2?).
The derivative of this expression is

d

d—8(1 —aM)(1 — %) = 16x(z* — 1)(32° + 1),
X

and hence the Gram determinant is maximized at0 andxzs = 0.

To find the fourth point, we must maximize

GV VDT V@) S
V)V V)1 V)T V) V()
V() TQ) V(1) V(1) V(D) V) V(1) V()
V(0)-V1)  V(0)-T(-1) V)V V() V()
V@) V(1) V@ V(1) V)70 Vi) V)
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1—z?
4 0 1 =
1—x
_| O 4 1 5
1 1 1 1
1—z? 1—z? 1 1—28
1—x 14z 1—x2
=422 (2 - 1)2

The derivative of this determinant is
d
d—4:v2(x2 —1)% = 8x(x? — 1)(32% — 1).
XL

Hence the fourth point isy, = +1/+/3. In summary, the four points for = 4 and the
standard basis are

{1,-1,0,+1/v3}

which are not particularly good for interpolation.
Now let us compute the points far= 4 using the Chebyshev basis

B4 - {TO(I)a Tl('r)vTQ(I)a T3(I)}a

so that
TO I) 1
=, o | Ti(x) | T
Viz) = To(xz) | — | 222 -1
Ts(x) 4a3 — 3z

Itis easy to check that again = 1 (by choice) and:2 = —1. To find the third pointes,
we must maximize

- V)V V)T V)V
g(V(1),V(=1),V(2) = | V(-1) - V(1) V(-1)-V(-1) V(-1)-V(a)
Viz)- V(1)  V(x) - V(-1) V() V(z)
4 0 423 + 222 — 22
= 0 4 —4a? + 222 + 2z
A3 + 222 — 2 —4dad + 222 + 22 1625 — 202t + 622 + 2

=32(z% — 1)%(422 + 1).
The derivative of this determinant is

d
d—32(:102 —1)2(42 + 1) = 1282(2* — 1)(62” — 1).
X
Hence the third point will bes = +1/1/6 = .4082482...
If we takexs = +1/\/€, then, after some tedious calculations, we find that thetffiour
pointz, = (v6 — /114)/18 = —.457088...
For comparison’s sake, the Fekete points are
1 1

1, ——, +——=, +1} = {—1, —.4472135954, +.4472135954, +1},
{ =T F=A{ }
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and we see that using the Chebyshev basis has produced raréstie than for the standard
basis.

We mention in passing that for the interval there is alwaysuificial basis for which
the Algorithm selects precisely the true Fekete pointssTéiof course, not very useful as
one must know the true Fekete points a priori to construcbtsss.

PROPOSITION3.2. Suppose thak’ = [—1, 1] and thatB,, is the Lagrange basis based
at the true Fekete points fak. Then the Sommariva-Vianello algorithm will select the true
Fekete points in some order.

Proof. Let us denote the set of true Fekete points by

Fn:{a07a17"'7an}-

Then,

ln ()

SO thatV(aj) = ¢}, the standard basis vector. Hence the vecfb(r@j) are mutually orthog-
onal. Moreover, by Féjer's Theorem (cf]],

n

V@3 =Y &) <1, zel-1,1],
k=0

and||V (z)||2 = 1 only for z € F,. The result folows[

We remark that the same result holds in several variablesrigrcompact sek and
degreen with the property that the sum of the squares of the fundaah&agrange polyno-
mials based at the Fekete points is at most one, and aftainyy at the Fekete points (an
unfortunately rare occurence; see, e.g|fpr a discussion of this problem).

Of course, in applications, it will be important to selece thight” basis. In general,

we would suggest the use of a basis of polynomials orthonlosittarespect to the so-called

equilibrium measure foK of potential theory. (FoiK = [—1, 1] this would bel %dm
Tyl —x
and the orthonormal polynomials are (multiples) of the Gisblev polynomials; fo# the

unit circle this measure is just-d6 and the orthonormal polynomials are (multiples of) the

>
trigonometric polynomials.) However, for genefdlthis measure (and the associated poly-
nomials) are difficult to calculate. Sommariva and Vian¢ll@] discuss a form of “iterative
improvement” that adjusts the basis dynamically.

4. A convergence theorem for’ C C. In this section, we work in the complex plane
C. Although the basis used does have a strong influence on this piee Algorithm selects, it
turns out thatsymptoticallythe points will have the same distribution, that of the tre&dte
points.

Forzy,xo, -+, xnye1 € C, we let

Vdm(l'l, XTo, - ,$n+1) = H(l‘7 — .I'Z)

1<j
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denote the Vandermonde determinant for these points wéiera to thestandardbasis. For
K c C compact, we call

7(K) := lim max [vdm(zq, 22, - - -, zn+1)|1/(n2+1)
N—00 21,22, *,Zn+4+1€
the transfinite diameter . Thus if{fln), fzn), e ,(l:i)l} is a set of true Fekete points of
degreen for K,
. n n n ntl
nhlgo |Vdm(f1( )a f2( )a Ty 7(1+)1)|1/( 2 ) = T(K)

We formulate a general convergence theorem.

THEOREMA4.1. Suppose thak’ = U; K; C C is a finite union of continua (i.e., eadky;
is compact and connected, not a single point). Supposesfutttaty : Z, — R has the
property that
(4.1 lim n?¢(n) =0

n—oo

andthatd,, C K,n =1,2,---, are discrete subsets & such that for alk: € K,

i —al < .
Inin |z —af < ¢(n)
Then for any basis the points, ..., b,+1 € A,, C K generated by the Sommariva-Vianello
Algorithm based on points id,, satisfy

1
+
2

lim [odm (b, ....bpi1)| (2 = 7(K)

n—oo

and the discrete probability measures := n%rl Z?ill 0y, converge weak-* to the potential-
theoretic equilibrium measui@u x of K.

REMARK 4.2. ForK = [-1,1], duj_1 1 = ﬁdw; for K the unit circleS?,
dugr = #de. We refer the reader to9] for more on complex potential theory. As an
example of the condition4(l), if K = [-1,1], 4, consisting of orden?*<, ¢ > 0, equally
spaced points would suffice.

Proof. Suppose tha{tfl(”), fzn), e ,(l:i)l} is a set of true Fekete points of degreéor

K. Letthen{ai,as,---,an4+1} C A, be such that

lai — I < p(n),  i=1,-- 1,

the existence of which is guaranteed by our hypotheses.
By a result of Kdvari and Pommerenkg] jt follows that there is a constan{ > 0 such
that

n n C . -
4.2) 1 =Pl > 5, A
n
Consequently, foi # j,
la; — a;| = |(a; — fi(n)) + (fi(n) o fj(n)) + (fj(n) —a;)|
e R R L]

C1
2 o 2¢(n)
(4.3) > e for somecy > 0,

n2
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sinceg(n) = o(1/n?) by (4.1).
We will first show that

(4.4) lim |vdm(ay,as,-- -, an+1)|1/(n;]) =T7(K).

n—oo

To see this, first note that

Vdm(ay, as, -, any1)] < dm(F™, g5 p )
by the definition of Fekete points.
Also,
vdm(F(, £ ol =TT = 1)
1<J
_ m) N _(r0) _ .
—H|(f7 aj) — (f; ai) + (aj — a;)|
1<J
<TT{iA" = sl + 167 = ail + 1o, — )}
1<J
(n)—a- —+ ,(n)—al-
Ty {1 Bl 0 e
i< i< ja; = ail
2¢(n)}
< aj — a; 1+
g | J | g { CQ/TL2
2
—(Tlles = ot | TT {1+ 2ot}
i<j i<j 2
n+1
= vdm(as, a2, ang1)| (1 + esn?p(n)) ("2,
where we have sef; := 2/cy > 0.
Hence, we have
_(nt? n n
(1+ csn6(n)) =2 vdm( £, -, f0)] < vdmag, -+, an 1)
< vdm(F{™, - )|

and then 4.4) follows by takingl/("}") roots, and using4.1).
Continuing, suppose that the Sommariva-Vianello Alganttselects the points
bi,ba- -+, b1 € A, C K. Then Civril and Magdon-Ismail] have shown that

1 * *
vdm(by, b, - -+, buy1)| > (ﬁj;ijﬂVdnKalva;f"aan+1”7
whereay, - - -, a,, , are the points among,, which maximize the Vandermonde determinant.

Note that such an inequality is independent of the basis unsealculating the determinant.
Hence,

vdm( ", f5 - FD] > vdm(by, ba, - b))
1 * * *
> mh/dm(al?a@v” '7an+1)|

1
> ————|vdm RTINS R
= (TL+1)'| (a11a21 , +1)|
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by the definition of the:}. Thus,

as

lim vdm(by, bo, -, boit) ("2 = 7(K)

n—oo

lim (n + 1)!1/(71;1) =1.

n—oo

The final statement, that, converges weak-* tdu x, then follows by P, Theorem 1.5]0
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