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ON THE CALCULATION OF APPROXIMATE FEKETE POINTS:
THE UNIVARIATE CASE ∗

L. P. BOS† AND N. LEVENBERG‡

Abstract. We discuss some theoretical aspects of the univariate case of the method recently introduced by
Sommariva and Vianello [Comput. Math. Appl., to appear] forthe calculation of approximate Fekete points for
polynomial interpolation.
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1. Introduction. Fekete points are a set of points which are good for polynomial in-
terpolation that may be defined for any compact set in any dimension. They are therefore a
natural and important set of points from the point of view of polynomial interpolation. How-
ever, their computation involves an expensive multivariate optimization which is moreover
numerically challenging for higher degrees; cf. the webpage of Womersley [13]. Recently
Sommariva and Vianello [12] proposed a method for calculatingapproximateFekete points
that is highly efficient and may easily be used on different compact sets.

Polynomial interpolation, at least in one variable, is a classical subject. However, to make
the notions we consider here precise, we briefly outline the main features of (multivariate)
polynomial interpolation. ConsiderK ⊂ R

d a compact set. The polynomials of degree at
mostn in d real variables, when restricted toK, form a certain vector space which we will
denote byPn(K). The spacePn(K) has a dimensionNn := dim(Pn(K)). The polynomial
interpolation problem forK is then, given a set ofNn distinct pointsAn ⊂ K and a function
f : K → R, to find a polynomialp ∈ Pn(K) such that

p(a) = f(a), ∀a ∈ An.(1.1)

If we choose a basis,

Bn = {P1, P2, · · · , PNn
},

of Pn(K), then any polynomialp ∈ Pn(K) may be written in the form

p =

Nn∑

j=1

cjPj

for some constantscj ∈ R. Hence the conditions (1.1) may be expressed as

p(a) =

Nn∑

j=1

cjPj(a) = f(a), a ∈ An,(1.2)

which are exactlyNn linear equations inNn unknownscj . In matrix form this becomes

[P (a)]a∈An,P∈Bn
c = F,
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wherec ∈ RNn is the vector formed of thecj andF is the vector of function valuesf(a),
a ∈ An. This linear system has a unique solution precisely when the so-called Vandermonde
determinant

vdm(An; Bn) := det([P (a)]P∈Bn,a∈An
) 6= 0.(1.3)

If this is the case, then the interpolation problem (1.1) is said to becorrect.
Supposing then that the interpolation problem (1.1) is correct, we may write the interpo-

lating polynomial in so-called Lagrange form as follows. For a ∈ An set

ℓa(x) :=
vdm(An\{a} ∪ {x}; Bn)

vdm(An; Bn)
.(1.4)

Note that the numerator is just the Vandermonde determinantwith the interpolation point
a ∈ An replaced by the variablex ∈ Rd.

It is easy to see thatℓa ∈ Pn(K). Moreoverℓa(b) = δab, the Kronecker delta, for
b ∈ An. Using these so-called Fundamental Lagrange InterpolatingPolynomials we may
write the interpolant of (1.1) as

p(x) =
∑

a∈An

f(a)ℓa(x).(1.5)

The mappingf → p is a projection and hence we writep = LAn
(f). If we regard both

f, p ∈ C(K) then the operatorLAn
has operator norm (as is not difficult to see)

‖LAn
‖ = max

x∈K

∑

a∈An

|ℓa(x)|.

This operator norm, called the Lebesgue constant, gives a bound on how far the interpolant is
from the best uniform polynomial approximant tof. It follows that the quality of approxima-
tion to f provided by the interpolantp is indicated by the size of the Lebsegue constant, the
smaller it is the better.

Now, suppose thatFn ⊂ K is a subset ofNn distinct points for whichAn = Fn

maximizes|vdm(An; Bn)|. Then by (1.4), each supremum norm

max
x∈K

|ℓa(x)| ≤ 1, a ∈ Fn(1.6)

and hence the corresponding Lebesgue constants are such that

‖LAn
‖ ≤ Nn,

i.e., the Lebesgue constants grow polynomially inn, which is the best that is known in gen-
eral. Such a setFn (it may not be unique) is called a set of (true) Fekete points of degreen for
K and provide, for anyK, a good (typically excellent) set of interpolation points. For more
on Fekete points (and polynomial interpolation) we refer the reader to [4] (and its references).
Note that the Fekete point setsFn and also the Lebesgue constants||LAn

|| are independent
of the basisBn. We also remark that for each degreen, the Fekete pointsFn, form aset, i.e.,
they do not provide an ordering of the points. In applications, especially for high degrees, the
ordering of the points can be important. One such ordering isprovided by the so-called Leja
points; see, for example, [10, 1]. Note, however, that the Leja points provide an ordering of
all the pointsup to those of degreen, whereas the Fekete points are foronly degreen. Once
a set of Fekete points has been calculated they can be orderedby the Leja method, but we do
not pursue that here.
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Now for the Sommariva-Vianello method. Here is some MATLAB code that implements
the algorithm to find 21 (degree 20) approximate Fekete interpolation points for the inter-
val [−1, 1]:

n=21; % number of interpolation points
m=1000; x=linspace(-1,1,m); % discrete model of [-1,1]
A = gallery(’chebvand’,n,x);
% A is the n by m Vandermonde matrix
% in the Chebyshev polynomial basis
b=rand(n,1); % a random rhs
y=A\b; % y is the MATLAB solution of Ay=b
pp=y˜=0; % vector of indices of the non-zero elements of y
pts=x(pp) % selects the points from x according to pp

Before explaining what this code does, we give some example results. In Figure1.1 we
show the approximate Fekete points computed by the above code (marked by+) as well as
the true Fekete points, the extended Chebyshev points and also the so-called Leja points.
Note how remarkably close the approximate Fekete points areto the true Fekete points. In
comparison, the Vandermonde determinant (using the Chebyshev basis) for the true Fekete
points is1.532 · 1011 (the maximum possible), whereas, for the approximate Fekete points, it
is1.503·1011. For the extended Chebyshev points (a well-known set ofexcellentinterpolation
points for[−1, 1]), this determinant is1.265 ·1011. As we shall see in Theorem4.1below, the
values of the Vandermonde determinants for the approximateFekete points are sufficiently
close to the values of the Vandermonde determinants for the true Fekete points to allow us to
conclude that these two sets of points are asymptotically the same.

Further, the Lebesgue constant for the true Fekete points isapproximately2.6, while for
the approximate Fekete points it is approximately2.8 and for the extended Chebyshev points
approximately2.9. The reader may be interested to note that for 21 equally spaced points on
the interval[−1, 1] the Lebesgue constant is approximately10986.5, i.e., significantly greater.
We note the classical results that forn+1 Chebyshev points in the interval and2n+1 equally
spaced points on a circle, the Lebesgue constants grow likec ln(n) (and this order of growth
is optimal). This is further discussed in Section3.2.

We hope that these results convince the reader that the Sommariva-Vianello algorithm is
indeed promising. The purpose of this paper is to discuss some of the theoretical aspects of
the algorithm; to hopefully explain why this algorithm gives such good results. Numerical
implementation is discussed in [12]. In the next section we show how the procedure is related
to a natural greedy algorithm for constructing submatricesof maximal determinant. We give
concrete examples of the algorithm in Section3. Finally, in Section4 we prove that the
algorithm produces points which asymptotically exhibit the same behavior as that of the true
Fekete points for a finite union of nondegenerate compact, connected sets in the complex
plane.

2. The relation to a greedy algorithm for maximum volume submatrices. The key
to understanding how the code segment works is the commandy=A\b . First observe that
the commandA=chebvand(n,x) produces the Vandermonde matrix of the firstn Cheby-
shev polynomials evaluated at the points of the vectorx. Specifically, the(i, j) entry of A
is Ti−1(xj) so that theith row of A corresponds to the Chebyshev basis polynomialTi−1

and thejth column ofA corresponds to thejth point inx, xj . Hence selecting a subset of
columns ofA corresponds to selecting a subset of the points of the vectorx.

Now, note that the matrixA ∈ Rn×m with n = 21 andm = 1000, in this case, so
that the linear systemAy = b is severely underdetermined. MATLAB resolves this problem
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FIG. 1.1.Plot of various point sets forn = 21

by first computing the QR factorization ofA (Q ∈ R
n×n, orthogonal andR ∈ R

n×m,
upper triangular) with column pivoting; cf. [7, §5.4]. The basics of this algorithm are easy
to describe. In fact, the pivoting is a procedure to select the n “most significant” among the
m >> n columns ofA.

The first column selected is the one of largest euclidean length – call this columna1 ∈ Rn.
Then, an orthogonal matrixQ1 ∈ Rn×n is chosen that mapsa1 to the first column of an upper
triangular matrix, i.e.,±‖a1‖2e1. Here we use the notation‖ · ‖2 to denote the euclidean (ℓ2)
norm of a vector inRm or Cm (m may vary). Also, we use a dot “·” to denote the euclidean
inner product. We then compute

Q1A =





±‖a1‖2 ∗ · · · ∗
0
0 A1

0
0




,(2.1)

whereA1 ∈ R(n−1)×(m−1). Then these two operations are repeated to the matrixA1, A2 ∈
R(n−2)×(m−2) and so on. Aftern steps, we arrive atQ = Q1 · · ·Qn−2Qn−1 andR = An−1.
Once these have been calculated, MATLAB solves the system

Âŷ = b,

whereÂ ∈ Rn×n consists of then columns so selected and̂y ∈ Rn. The other entries of
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y ∈ Rm are set to0. Hence the commandpp=y˜=0; in the code segment above gives the
indices of the selected columns.

Let us look now at the second column ofA that the algorithm selects (the first is the one
of longest euclidean length). This would correspond to the column ofA1 (in Rn−1) of longest
length. Let us call this longest column ofA1, b1 ∈ Rn−1, and the corresponding column of
A, a2. Then by (2.1) we have

Q1a1 =





α
0
·
·
0




, Q1a2 =





β

b1




,

for α = ±‖a1‖2 and someβ ∈ R. We have then





0

b1




= Q1a2 −

{
(Q1a2) ·

Q1a1

‖Q1a1‖2

}
Q1a1

‖Q1a1‖2
,

from which we see that





0

b1





is the component ofQ1a2 orthogonal toQ1a1 and hence‖b1‖2 × ‖Q1a1‖2 is the area of
the parallelogram generated byQ1a1 and Q1a2. But Q1 is an orthogonal matrix and so
‖b1‖2 × ‖Q1a1‖2 is also the area of the parallelogram generated bya1 anda2. It follows
that the second column is chosen so that the area it generateswith fixeda1 is maximal. Sim-
ilarly, the third column is chosen so that the volume it generates with fixeda1 anda2 is
maximal, and so on.

In summary, the pivoting procedure for the QR factorizationselects columns as follows:
(1) a1 is the column ofA of maximum euclidean length.
(2) Givena1, · · · , ak, the (k + 1)st columnak+1 is chosen so that the volume of the

“box” generated bya1, · · · , ak, ak+1 is as large as possible.

This is precisely the standard Greedy Algorithm for constructing a maximal volume box
from a collection of vectors. Note that, in principle, the algorithm selects the columns in a
certain order. However, in the final result of the MATLAB commandA\b this information is
lost. As mentioned in the Introduction, in numerical applications the ordering of the points
is important and a version of the command that saves the orderinformation would be very
useful. In this paper, however, we concentrate on the theoretical aspects of thesetof points
that the algorithm selects.

3. The continuous version of the algorithm.Suppose thatK ⊂ Rd is compact. Given
a basisBn = {P1, P2, · · · , PN} for Pn(K) the columns of the associated Vandermonde
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matrix are of the form

~V (x) :=





P1(x)
P2(x)

·
·

PN (x)





for somex ∈ K. Recalling that, for a Vandemonde matrix, selecting a subsetof columns is
equivalent to selecting a subset of points, we describe a continuous version of the Sommariva-
Vianello Algorithm as follows:

(1) The first pointx1 ∈ K is chosen to maximize‖~V (x)‖2.
(2) Givenx1, x2, · · · , xk the (k + 1)st pointxk+1 ∈ K is chosen so that the volume

generated by the columns~V (xk+1) and~V (x1), ~V (x2), · · · , ~V (xk) is as large as possible.

3.1. First example: the unit circle. Here we takeK to be the unit circle so thatPn(K)
is the trigonometric polynomials of degreen with dimensionN = 2n + 1. We take the
orthonormal basis,

Bn = { 1√
2π

,
1√
π

cos(θ),
1√
π

sin(θ), · · · , 1√
π

cos(nθ),
1√
π

sin(nθ)},

with respect to the inner-product,

〈P1, P2〉 :=

∫ 2π

0

P1(θ)P2(θ)dθ,(3.1)

so that

~V (θ) =
1√
π





1/
√

2
cos(θ)
sin(θ)

·
·

sin(nθ)




.

In particular, we have

‖~V (θ)‖2 =

√
2n + 1

2π
, ∀θ ∈ [0, 2π].(3.2)

More generally,

~V (θ) · ~V (φ) =
1

π

{
1

2
+

n∑

k=1

cos(kθ) cos(kφ) + sin(kθ) sin(kφ)

}

=
1

π

{
1

2
+

n∑

k=1

cos(k(θ − φ))

}

=
1

2π

sin(2n+1
2 (θ − φ))

sin( θ−φ
2 )

,

which the reader will notice is the reproducing kernel for the space of trigonometric polyno-
mials of degree at mostn, equipped with the inner product (3.1).
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It follows that foranyset of2n + 1 equally spaced angles{θk}, k = 0, 1, · · · , 2n, i.e.,
with θk = θ0 + 2kπ/(2n + 1),

~V (θj) · ~V (θk) =
1

2π

sin(2n+1
2 (θj − θk))

sin(
θj−θk

2 )

=
1

2π

sin(2n+1
2

2(j−k)π
2n+1 )

sin( (j−k)π
2n+1 )

(3.3)

=
1

2π

sin((j − k)π)

sin( (j−k)π
2n+1 )

= 0 for j 6= k.

In other words, the column vectors~V (θj) and~V (θk) are orthogonal forj 6= k.

Conversely, forθ ∈ [0, 2π] and fixedj,

~V (θj) · ~V (θ) = 0 =⇒ sin(
2n + 1

2
(θj − θ)) = 0

=⇒ θj − θ =
2k

2n + 1
π for somek

=⇒ θ = θj−k.

What is the result of the Algorithm in this case? Since by (3.2), the length of~V (θ) is
constant for allθ ∈ [0, 2π], the first point chosen will beanyθ0 ∈ [0, 2π]. The second point
θ will be so that the area generated by~V (θ0) and~V (θ) is as large as possible. But as shown
above,~V (θ) ⊥ ~V (θ0) iff θ = θj for somej 6= 0. Hence (noting that the lengths of~V (θ) are
the same for allθ ∈ R) this area will be maximized byanyθj , j 6= 0. Continuing, we see
that the output of the Algorithm is a set of equally spaced angles{θj}, generated in a random
order, for someθ0 ∈ [0, 2π]. This is also a set of true Fekete points and we see that, in this
case, the approximate Fekete points of the Algorithm are even true Fekete points.

3.2. Second example: the interval[−1, 1] ⊂ R1. This example is a bit indirect. We
construct a good set of interpolation points on[−1, 1] by first calculating approximate Fekete
points on the unit circleS1 ⊂ R2 and projecting down, i.e.,(x, y) → x ∈ [−1, 1]. Such
indirect procedures are likley to be very useful also in several variables.

Since(x,±y) project to the same pointx, in order to obtainn + 1 points in[−1, 1] it is
natural to look for an even number,2n, points, symmetric under the mappingy → −y, on
the unit circle.

In this case the number of points (on the unit circle),2n, is not the dimension of trigono-
metric polynomials of some total degree and hence choosing the “best” basis is a bit more
subtle. Here we use the basis

Bn := { 1√
2
, cos(θ), sin(θ), · · · , cos((n − 1)θ), sin((n − 1)θ),

1√
2

cos(nθ)}.(3.4)

Some words of explanation are in order. First of all,Bn spans the trigonometric polynomials
of degree at mostn with sin(nθ) removed. This choice is made in anticipation that the2n
equally spaced anglesθk = kπ/n, k = 0, 1, · · · , 2n−1 are the best possible for the purposes
of interpolation. Note thatsin(nθ) is equal to 0 precisely at these points, and hence must be
removed from any candidate basis.
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The normalization constants1/
√

2 for the first and last elements ofBn are in order that
Bn is orthonormal with respect to the equally weighted discrete inner-product based on the
equally spaced pointsθk. Specifically, we have:

LEMMA 3.1. Suppose thatθk := kπ/n, 0 ≤ k ≤ 2n − 1. Then the elements ofBn are
orthonormal with respect to the inner-product

〈p, q〉 :=
1

n

2n−1∑

k=0

p(θk)q(θk)(3.5)

(and corresponding norm||p|| =
√
〈p, p〉).

Proof. We first calculate

〈cos(jθ), cos(mθ)〉 =
1

n

2n−1∑

k=0

cos(jθk) cos(mθk)

=
1

2n

2n−1∑

k=0

{cos((j + m)θk) + cos((j − m)θk)}.(3.6)

Now, for integert, 0 < t < 2n,

2n−1∑

k=0

cos(tθk) = ℜ
(

2n−1∑

k=0

exp(itθk)

)

= ℜ
(

2n−1∑

k=0

exp(itπ/n)k

)

= ℜ
(

exp(2itπ) − 1

exp(itπ/n) − 1

)

= 0.

Hence, by (3.6), for 0 ≤ j < m ≤ n (and consequently0 < j + m < 2n and also
0 < |j − m| < 2n), we have

〈cos(jθ), cos(mθ)〉 = 0.

Also, for 0 < j = m < n, we have

‖ cos(jθ)‖2 = 〈cos(jθ), cos(jθ)〉

=
1

2n

2n−1∑

k=0

(cos(2jθk) + 1)

=
1

2n

{
0 +

2n−1∑

k=0

1

}
= 1.

For j = m, we have

‖ 1√
2

cos(nθ)‖2 =
1

4n

2n−1∑

k=0

(cos(2nθk) + 1)

=
1

4n

2n−1∑

k=0

(cos(2kπ) + 1) = 1.
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For j = m = 0, we have

‖ 1√
2
‖2 =

1

2n

2n−1∑

k=0

1 = 1.

The calculations with the sines are similar and so we omit them.

With the basisBn the columns of the Vandermonde matrix are

~V (θ) :=





1/
√

2
cos(θ)
sin(θ)

·
·

sin((n − 1)θ)
cos(nθ)/

√
2





∈ R
2n.

Note that by Lemma3.1, therowsof the matrix

V := [~V (θ0), ~V (θ1), · · · , ~V (θ2n−1)]

are orthogonal and have the same euclidean length. It follows thatV is a constant multiple of
an orthognal matrix so that thecolumnvectors are also orthogonal. In other words,

~V (θj) ⊥ ~V (θk) j 6= k.

Note also that

‖~V (θ)‖2
2 =

1

2
+ (n − 1) +

1

2
cos2(nθ)

=
2n− 1

2
+

1

2
cos2(nθ),

which is maximized precisely atθ = θk for somek. Moreover,

‖~V (θk)‖2
2 =

2n − 1

2
+

1

2
cos2(kπ)

= 2n, k = 0, 1, · · · , 2n− 1.

From these considerations it follows that the Algorithm, applied to the basisBn and
θ ∈ [0, 2π] will select the anglesθk, k = 0, 1, · · · , 2n − 1, in somerandom order.

The projected points are thencos(kπ/n), 0 ≤ k ≤ n, which are precisely the so-called
extended Chebyshev points. Hence the Algorithm again produces an excellent set of interpo-
lation points.

Actually, from this setup it is easy to see why the Chebyshev points have small Lebesgue
constant. Although this is somewhat tangential to our main purpose it is useful to record this
here as it may also shed some light on the multivariate case.

The basic fact to note is that the trigonometric (span ofBn) fundamental Lagrange poly-
nomial forθk is just

ℓθk
(θ) =

1

n
Kn(θ, θk),(3.7)
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whereKn(θ, φ) is the reproducing kernel for the span ofBn and inner-product (3.5). That this
holds is an example of a more general phenomenon. Indeed, we have for anyp ∈ span(Bn),

p(θj) = 〈p(θ), Kn(θj , θ)〉 (reproducing property)

=
1

n

2n−1∑

k=0

p(θk)Kn(θj , θk) (definition of (3.5))

=

2n−1∑

k=0

p(θk)

(
1

n
Kn(θj , θk)

)
.

Then sincep ∈ span(Bn) was arbitrary, it follows that

1

n
Kn(θj , θk) = δjk,

and hence(1/n)Kn(θ, θk) ∈ span(Bn) indeed coincides with the fundamental Lagrange
polynomialℓθk

(θ).
We may easily computeKn. Indeed, by Lemma3.1, Bn is orthonormal with respect to

the inner-product (3.5) and we have

Kn(θ, φ) =
1

2
+

n−1∑

k=1

(cos(kθ) cos(kφ) + sin(kθ) sin(kφ)) +
1

2
cos(nθ) cos(nφ)

=
1

2
+

n−1∑

k=1

cos(k(θ − φ)) +
1

2
cos(nθ) cos(nφ).(3.8)

Now note that from this formula forKn, together with (3.7) and the fact that
sin(nθk) = 0, ∀k, it follows that

ℓθk
(θ) = ℓθ0

(θ − θk).

We may simplify

ℓθ0
(θ) =

1

n
Kn(θ, 0)

=
1

n

(
1

2
+

2n−1∑

k=1

cos(kθ) +
1

2
cos(nθ)

)

=
1

2n

sin(nθ)

sin(θ/2)
cos(θ/2)(3.9)

by a standard calculation.
From this it is easy to calculate

2n−1∑

k=0

ℓ2
θk

(θ) =
4n − 1 + cos(2nθ)

4n
≤ 1

from which it follows that the Lebesgue function

2n−1∑

k=0

|ℓθk
(θ)| ≤

√
2n.
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A more refined, but standard, calculation shows that actually

2n−1∑

k=0

|ℓθk
(θ)| =

2n−1∑

k=0

|ℓθ0
(θ − θk)| ≤ c ln(n)(3.10)

for some constantc > 0, whose exact value is not important here; see, e.g., [11, §1.3] for
similar calculations.

Further, since

θ2n−k = (2n − k)π/n

= 2π − kπ/n

= 2π − θk

= −θk mod 2π,

we have

ℓθ2n−k
(θ) = ℓθ0

(θ − θ2n−k)

= ℓθ0
(θ + θk)

= ℓθ0
(−θ − θk) (sinceℓθ0

is even)

= ℓθk
(−θ).

We may use these symmetry properties to obtain a relation between thetrigonometric
fundamental Lagrange polynomials for the anglesθk and thealgebraicfundamental Lagrange
polynomials for the pointsxk = cos(θk) ∈ [−1, 1]. (We emphasize that there are exactlyn+1
differentxk asx2n−k = xk, as is easily seen.)

Specifically, note thatℓθ0
(θ) is a combination of cosines only and hence even inθ. There-

fore the substitutionx = cos(θ) results in an algebraic polynomial of degreen,

Lx0
(x) := ℓθ0

(θ), x = cos(θ).

It is easy to check that

Lx0
(xk) = ℓθ0

(θk) = δk0,

and henceLx0
(x) is the algebraic Lagrange polynomial forx0 among then + 1 pointsxk.

Similarly, ℓθn
(θ) is also even inθ and so

Lxn
(x) := ℓθn

(θ), x = cos(θ)

is the algebraic fundamental Lagrange polynomial corresponding toxn.
The construction forLxk

(x), 0 < k < n is slightly different. Although in this case
ℓθk

(θ) is noteven, the combination

ℓθk
(θ) + ℓθ2n−k

(θ) = ℓθk
(θ) + ℓθk

(−θ)

is even. It is easy then to check that

Lxk
(x) = ℓθk

(θ) + ℓθ2n−k
(θ), x = cos(θ), 0 ≤ θ ≤ π,

for 0 < k < n.
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It follows that the algebraic Lebesgue function (for the extended Chebyshev points)

n∑

k=0

|Lxk
(x)| = |ℓθ0

(θ)| +
n−1∑

k=1

|ℓθk
(θ) + ℓθ2n−k

(θ)| + |ℓθn
(θ)|

≤
2n−1∑

k=0

|ℓθk
(θ)|

≤ c ln(n) (by (3.10)).

3.3. Using a general orthonormal basis.Suppose thatµ is a (regular) measure on
[−1, 1] with associated inner-product

〈f, g〉 :=

∫ 1

−1

f(x)g(x)dµ(x).(3.11)

We consider an orthonormal basis

Bn := {P0, P1, · · · , Pn} ⊂ Pn([−1, 1])

for the polynomials of degree at mostn, Pn([−1, 1]).
The columns of the Vandermonde matrix are then

~V (x) =





P0(x)
P1(x)

·
·

Pn(x)





with norm (squared)

‖~V (x)‖2
2 =

n∑

k=0

P 2
k (x).

Note that this just the diagonal of the reproducing kernel for the spacePn([−1, 1]) with
inner-product (3.11), sometimes also referred to as the reciprocal of the associated Christoffel
function. To emphasize this relation we set

Kn(x) :=

n∑

k=0

P 2
k (x),

so that

‖~V (x)‖2 =
√

Kn(x).

To the measureµ is associated the corresponding Gauss-Christoffel quadrature formula.
Specifically, if a0, a1 · · · , an ∈ (−1, 1) are the zeros ofPn+1(x), then, for all polynomi-
alsQ(x) of degree at most2n + 1,

∫ 1

−1

Q(x)dµ(x) =
n∑

k=0

wkQ(ak),(3.12)
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where the weights are given by

wk =
1

Kn(ak)
.

Now consider the normalized columns

~U(x) :=
1

‖~V ‖2

~V (x) =
1√

Kn(x)





P0(x)
P1(x)

·
·

Pn(x)




.

Specializing tox = ak, we have

~U(ak) =
1√

Kn(ak)





P0(ak)
P1(ak)

·
·

Pn(ak)




=

√
wk





P0(ak)
P1(ak)

·
·

Pn(ak)




.

Define the matrix

U = [~U(a0), ~U(a1), · · · , ~U(an)] ∈ R
(n+1)×(n+1).

Theith row ofU is the vector

Ui := [
√

w0Pi(a0),
√

w1Pi(a1), · · · ,
√

wnPi(an)],

so that the euclidean inner-product ofUi andUj , by Gauss-Christoffel quadrature (3.12), is

Ui · Uj =
n∑

k=0

wkPi(ak)Pj(ak)

=

∫ 1

−1

Pi(x)Pj(x)dµ(x) (since deg(PiPj) ≤ 2n)

= δij , (the Kronecker delta)

since the polynomialsPi are orthonormal.
In other words, the rows of the matrixU are orthonormal vectors. It follows thatU is an

orthogonal matrix and that also the columns ofU are orthonormal vectors, i.e.,

~U(ai) · ~U(aj) = δij .

Now, if we apply the Sommariva-Vianello algorithm to the normalized colums,~U(x),
all of length1, the first point chosen will be random, as there is no way for theAlgorithm
to distinguish first points. However, if by some means, we setthe first point tox0 = aj for
somej, 0 ≤ j ≤ n, then since the vectors~U(ai), i 6= j, are orthogonal to~U(aj) (and to each
other), the remainingn points selected by the algorithm will be just theai, i 6= j, in some
random order.

To summarize, if the Sommariva-Vianello algorithm, using an orthonormal basis, is
applied to normalized columnsand the first point is (artificially) set to one of the Gauss-
Christoffel quadrature points, then the Algorithm selectsprecisely the Gauus-Christoffel
quadrature points associated to the measure of orthogonality. We remark that if, on the other
hand, the first point isnotso set, the first point would be randomly chosen in the interval and
would in general be a poor choice (although the algorithm would eventually self-correct).
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3.3.1. An illustrative example. When we normalize the columns to have length one,
it is also possible that the Algorithm selects good interpolation points, other than the Gauss-
Christoffel points, depending on how the first point is set. For example, consider the measure

dµ =
1√

1 − x2
dx.

The orthonormal polynomials with respect to this measure are the Chebyshev polynomials of
the first kind. Specifically,

Bn =

√
2

π
{ 1√

2
, T1(x), T2(x), · · · , Tn(x)},

so that

~V (x) =

√
2

π





1/
√

2
T1(x)
T2(x)

·
·

Tn(x)




.

If we setx = cos(θ) andy = cos(φ), then we may compute

~V (x) · ~V (y) =
2

π

{
1

2
+

n∑

k=0

Tk(x)Tk(y)

}

=
2

π

{
1

2
+

n∑

k=0

cos(kθ) cos(kφ)

}
(3.13)

=
1

2π

{
sin((n + 1/2)(θ − φ))

sin( θ−φ
2 )

+
sin((n + 1/2)(θ + φ))

sin( θ+φ
2 )

}
,

by a standard calculation.
We note that the Gauss-Christoffel quadrature points are the zeros ofTn+1(x), i.e.,

ak = cos(
2k + 1

2(n + 1)
π), k = 0, 1, · · · , n.

By the general theory of the previous section (or else by direct calculation), it follows that
{~V (ak)} is a set of orthogonal vectors.

But notice that by (3.13), if we set

bk = cos(
2k

2n + 1
π), k = 0, 1, · · · , n,

then the set of vectors
{

~V (bk) : k = 0, 1, · · · , n
}

is also orthogonal. It follows that if we (artificially) set the first point tox0 = b0 =
cos(0) = 1, a not unnatural choice, then the Algorithm applied to normalized colums will
select the pointsbk in some random order.

Note, however, that these selected points arenot symmetric, specificially,x = 1 is in-
cluded, butx = −1 is not. We record, for comparison’s sake, that for21 points (degree
20), the Vandermonde determinant is approximately5.796 · 1010 and the Lebesgue constant
approximately3.3.
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3.4. Gram determinants and other bases.The volume of the parallelotope generated
by the vectors~V1, ~V2, · · · , ~Vk ∈ Rn is given by the associated Gram determinant. Specifically,

Vol2(~V1, ~V2, · · · , ~Vk) = det

([
~Vi · ~Vj

]

1≤i,j≤k

)

=: g(~V1, ~V2, · · · , ~Vk).

For more information on Gram determinants, see, for example, [6, §8.7].
The continuous version of the Sommariva-Vianello algorithm can then be re-phrased as
(1) The first pointx1 ∈ K is chosen to maximize‖~V (x)‖2.
(2) Givenx1, x2, · · · , xk the (k + 1)st pointxk+1 ∈ K is chosen so that the Gram

determinant,

g(~V (x1), ~V (x2), · · · , ~V (xk), ~V (xk+1)),

is as large as possible.

3.4.1. The standard basis.In this section we briefly consider the use of the standard
polynomial basis,

Bn := {1, x, x2, · · · , xn−1}.

In this case the columns of the Vandermonde matrix are

~V (x) =





1
x
x2

·
·

xn−1




.

Then we compute

~V (x) · ~V (y) =

n−1∑

k=0

xkyk =

{
(xy)n−1

xy−1 : xy 6= 1

n : xy = 1
.

In particular, forx = y,

‖~V (x)‖2 =

n−1∑

k=0

x2k =

{
x2n−1
x2−1 : x 6= ±1

n : x = ±1
.

Clearly, ‖~V (x)‖ is maximized forx = ±1 and the algorithm will choose one of these at
random. Let us suppose without loss of generality that the first point chosen isx1 = +1. In
general, it is difficult to calculate the precise points thatthe algorithm chooses. Forn even it
is not too difficult to show that the second point isx2 = −1. Specifically, the second point
will be the one for whichg(~V (1), ~V (x)) is maximal. But we calculate

g(~V (1), ~V (x)) =

∣∣∣∣
~V (1) · ~V (1) ~V (1) · ~V (x)
~V (x) · ~V (1) ~V (x) · ~V (x)

∣∣∣∣

=

∣∣∣∣
n ~V (1) · ~V (x)

~V (x) · ~V (1) ~V (x) · ~V (x)

∣∣∣∣

= n‖~V (x)‖2 − (~V (x) · ~V (1))2.
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We claim that, forn even, this is maximized forx = −1. To see this, first note that then

~V (−1) · ~V (1) =
(−1)n − 1

−1 − 1
= 0

and hence, for allx ∈ [−1, 1],

g(~V (1), ~V (x)) = n‖~V (x)‖2 − (~V (x) · ~V (1))2

≤ n‖~V (x)‖2

≤ n2 (since‖~V (x)‖2 ≤ n)

= n‖~V (−1)‖2 − (~V (−1) · ~V (1))2

= g(~V (1), ~V (−1)).

In other words,g(~V (1), ~V (x)) is indeed maximized forx = −1 andx2 = −1 will be the
second point chosen.

If n is odd, then

~V (−1) · ~V (1) =
(−1)n − 1

−1 − 1
= 1 6= 0,

and already proving thatx2 = −1 (although we conjecture that is the case) seems to be a bit
difficult.

To see the effect of the basis, we will compute the four pointschosen forn = 4 using
both the standard and Chebyshev basis.

Continuing with the standard basis, sincen = 4 is even we already know thatx1 = +1
(by choice) andx2 = −1. Let us computex3. This will be the point for which
g(~V (1), ~V (−1), ~V (x)) is maximized. But

g(~V (1), ~V (−1), ~V (x)) =

∣∣∣∣∣∣

~V (1) · ~V (1) ~V (1) · ~V (−1) ~V (1) · ~V (x)
~V (−1) · ~V (1) ~V (−1) · ~V (−1) ~V (−1) · ~V (x)
~V (x) · ~V (1) ~V (x) · ~V (−1) ~V (x) · ~V (x)

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

4 0 1−x4

1−x

0 4 1−x4

1+x
1−x4

1−x
1−x4

1+x
1−x8

1−x2

∣∣∣∣∣∣∣

= 8(1 − x4)(1 − x2).

The derivative of this expression is

d

dx
8(1 − x4)(1 − x2) = 16x(x2 − 1)(3x2 + 1),

and hence the Gram determinant is maximized atx = 0 andx3 = 0.
To find the fourth point, we must maximize

g(~V (1), ~V (−1), ~V ( 0 ), ~V (x))

=

∣∣∣∣∣∣∣∣

~V (1) · ~V (1) ~V (1) · ~V (−1) ~V (1) · ~V (0) ~V (1) · ~V (x)
~V (−1) · ~V (1) ~V (−1) · ~V (−1) ~V (−1) · ~V (0) ~V (−1) · ~V (x)
~V (0) · ~V (1) ~V (0) · ~V (−1) ~V (0) · ~V (0) ~V (0) · ~V (x)
~V (x) · ~V (1) ~V (x) · ~V (−1) ~V (x) · ~V (0) ~V (x) · ~V (x)

∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣

4 0 1 1−x4

1−x

0 4 1 1−x4

1+x
1 1 1 1

1−x4

1−x
1−x4

1+x 1 1−x8

1−x2

∣∣∣∣∣∣∣∣

= 4x2(x2 − 1)2.

The derivative of this determinant is

d

dx
4x2(x2 − 1)2 = 8x(x2 − 1)(3x2 − 1).

Hence the fourth point isx4 = ±1/
√

3. In summary, the four points forn = 4 and the
standard basis are

{1,−1, 0,±1/
√

3}

which are not particularly good for interpolation.
Now let us compute the points forn = 4 using the Chebyshev basis

B4 = {T0(x), T1(x), T2(x), T3(x)},

so that

~V (x) =





T0(x)
T1(x)
T2(x)
T3(x)



 =





1
x

2x2 − 1
4x3 − 3x



 .

It is easy to check that againx1 = 1 (by choice) andx2 = −1. To find the third pointx3,
we must maximize

g(~V (1), ~V (−1), ~V (x)) =

∣∣∣∣∣∣

~V (1) · ~V (1) ~V (1) · ~V (−1) ~V (1) · ~V (x)
~V (−1) · ~V (1) ~V (−1) · ~V (−1) ~V (−1) · ~V (x)
~V (x) · ~V (1) ~V (x) · ~V (−1) ~V (x) · ~V (x)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

4 0 4x3 + 2x2 − 2x
0 4 −4x3 + 2x2 + 2x

4x3 + 2x2 − 2x −4x3 + 2x2 + 2x 16x6 − 20x4 + 6x2 + 2

∣∣∣∣∣∣

= 32(x2 − 1)2(4x2 + 1).

The derivative of this determinant is

d

dx
32(x2 − 1)2(4x2 + 1) = 128x(x2 − 1)(6x2 − 1).

Hence the third point will bex3 = ±1/
√

6 = .4082482...
If we takex3 = +1/

√
6, then, after some tedious calculations, we find that the fourth

pointx4 = (
√

6 −
√

114)/18 = −.457088...
For comparison’s sake, the Fekete points are

{−1,− 1√
5
, +

1√
5
, +1} = {−1,−.4472135954, +.4472135954,+1},
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and we see that using the Chebyshev basis has produced a better result than for the standard
basis.

We mention in passing that for the interval there is always anartificial basis for which
the Algorithm selects precisely the true Fekete points. This is, of course, not very useful as
one must know the true Fekete points a priori to construct thebasis.

PROPOSITION3.2. Suppose thatK = [−1, 1] and thatBn is the Lagrange basis based
at the true Fekete points forK. Then the Sommariva-Vianello algorithm will select the true
Fekete points in some order.

Proof. Let us denote the set of true Fekete points by

Fn = {a0, a1, · · · , an}.

Then,

~V (x) =





ℓ0(x)
ℓ1(x)
·
·

ℓn(x)




,

so that~V (aj) = ~ej, the standard basis vector. Hence the vectors~V (aj) are mutually orthog-
onal. Moreover, by Féjer’s Theorem (cf. [3]),

‖~V (x)‖2
2 =

n∑

k=0

ℓ2
k(x) ≤ 1, x ∈ [−1, 1],

and‖~V (x)‖2 = 1 only for x ∈ Fn. The result folows.
We remark that the same result holds in several variables forany compact setK and

degreen with the property that the sum of the squares of the fundamental Lagrange polyno-
mials based at the Fekete points is at most one, and attains1 only at the Fekete points (an
unfortunately rare occurence; see, e.g., [3] for a discussion of this problem).

Of course, in applications, it will be important to select the “right” basis. In general,
we would suggest the use of a basis of polynomials orthonormal with respect to the so-called

equilibrium measure forK of potential theory. (ForK = [−1, 1] this would be
1

π

1√
1 − x2

dx

and the orthonormal polynomials are (multiples) of the Chebyshev polynomials; forK the

unit circle this measure is just
1

2π
dθ and the orthonormal polynomials are (multiples of) the

trigonometric polynomials.) However, for generalK this measure (and the associated poly-
nomials) are difficult to calculate. Sommariva and Vianello[12] discuss a form of “iterative
improvement” that adjusts the basis dynamically.

4. A convergence theorem forK ⊂ C. In this section, we work in the complex plane
C. Although the basis used does have a strong influence on the points the Algorithm selects, it
turns out thatasymptoticallythe points will have the same distribution, that of the true Fekete
points.

Forx1, x2, · · · , xn+1 ∈ C, we let

vdm(x1, x2, · · · , xn+1) :=
∏

i<j

(xj − xi)
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denote the Vandermonde determinant for these points with respect to thestandardbasis. For
K ⊂ C compact, we call

τ(K) := lim
n→∞

max
z1,z2,···,zn+1∈K

|vdm(z1, z2, · · · , zn+1)|1/(n+1

2 )

the transfinite diameter ofK. Thus if{f (n)
1 , f

(n)
2 , · · · , f (n)

n+1} is a set of true Fekete points of
degreen for K,

lim
n→∞

|vdm(f
(n)
1 , f

(n)
2 , · · · , f (n)

n+1)|1/(n+1

2 ) = τ(K).

We formulate a general convergence theorem.
THEOREM 4.1. Suppose thatK = ∪iKi ⊂ C is a finite union of continua (i.e., eachKi

is compact and connected, not a single point). Suppose further thatφ : Z+ → R has the
property that

lim
n→∞

n2φ(n) = 0(4.1)

and thatAn ⊂ K, n = 1, 2, · · · , are discrete subsets ofK such that for allx ∈ K,

min
a∈An

|x − a| ≤ φ(n).

Then for any basis the pointsb1, ..., bn+1 ∈ An ⊂ K generated by the Sommariva-Vianello
Algorithm based on points inAn satisfy

lim
n→∞

|vdm(b1, ..., bn+1)|
1

(n+1
2 ) = τ(K)

and the discrete probability measuresµn := 1
n+1

∑n+1
j=1 δbj

converge weak-* to the potential-
theoretic equilibrium measuredµK of K.

REMARK 4.2. ForK = [−1, 1], dµ[−1,1] = 1√
1−x2

dx; for K the unit circleS1,

dµS1 = 1
2π dθ. We refer the reader to [9] for more on complex potential theory. As an

example of the condition (4.1), if K = [−1, 1], An consisting of ordern2+ǫ, ǫ > 0, equally
spaced points would suffice.

Proof. Suppose that{f (n)
1 , f

(n)
2 , · · · , f (n)

n+1} is a set of true Fekete points of degreen for
K. Let then{a1, a2, · · · , an+1} ⊂ An be such that

|ai − f
(n)
i | ≤ φ(n), i = 1, · · · , n + 1,

the existence of which is guaranteed by our hypotheses.
By a result of Kövari and Pommerenke [8] it follows that there is a constantc1 > 0 such

that

|f (n)
i − f

(n)
j | ≥ c1

n2
, i 6= j.(4.2)

Consequently, fori 6= j,

|ai − aj | = |(ai − f
(n)
i ) + (f

(n)
i − f

(n)
j ) + (f

(n)
j − aj)|

≥ |f (n)
i − f

(n)
j | − |f (n)

i − ai| − |f (n)
j − aj |

≥ c1

n2
− 2φ(n)

≥ c2

n2
for somec2 > 0,(4.3)
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sinceφ(n) = o(1/n2) by (4.1).
We will first show that

lim
n→∞

|vdm(a1, a2, · · · , an+1)|1/(n+1

2 ) = τ(K).(4.4)

To see this, first note that

|vdm(a1, a2, · · · , an+1)| ≤ |vdm(f
(n)
1 , f

(n)
2 , · · · , f (n)

n+1)|

by the definition of Fekete points.
Also,

|vdm(f
(n)
1 , f

(n)
2 , · · · , f (n)

n+1)| =
∏

i<j

|f (n)
j − f

(n)
i |

=
∏

i<j

|(f (n)
j − aj) − (f

(n)
i − ai) + (aj − ai)|

≤
∏

i<j

{
|f (n)

j − aj| + |f (n)
i − ai| + |aj − ai)|

}

≤
∏

i<j

|aj − ai|
∏

i<j

{
1 +

|f (n)
j − aj | + |f (n)

i − ai|
|aj − ai|

}

≤




∏

i<j

|aj − ai|




∏

i<j

{
1 +

2φ(n)

c2/n2

}

=




∏

i<j

|aj − ai|




∏

i<j

{
1 +

2

c2
n2φ(n)

}

= |vdm(a1, a2, · · · , an+1)|(1 + c3n
2φ(n))(

n+1

2 ),

where we have setc3 := 2/c2 > 0.
Hence, we have

(1 + c3n
2φ(n))−(n+1

2 )|vdm(f
(n)
1 , · · · , f (n)

n+1)| ≤ |vdm(a1, · · · , an+1)|
≤ |vdm(f

(n)
1 , · · · , f (n)

n+1)|

and then (4.4) follows by taking1/
(
n+1

2

)
roots, and using (4.1).

Continuing, suppose that the Sommariva-Vianello Algorithm selects the points
b1, b2 · · · , bn+1 ∈ An ⊂ K. Then Çivril and Magdon-Ismail [5] have shown that

|vdm(b1, b2, · · · , bn+1)| ≥
1

(n + 1)!
|vdm(a∗

1, a
∗
2, · · · , a∗

n+1)|,

wherea∗
1, · · · , a∗

n+1 are the points amongAn which maximize the Vandermonde determinant.
Note that such an inequality is independent of the basis usedin calculating the determinant.
Hence,

|vdm(f
(n)
1 , f

(n)
2 , · · · , f (n)

n+1)| ≥ |vdm(b1, b2, · · · , bn+1)|

≥ 1

(n + 1)!
|vdm(a∗

1, a
∗
2, · · · , a∗

n+1)|

≥ 1

(n + 1)!
|vdm(a1, a2, · · · , an+1)|,
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by the definition of thea∗
j . Thus,

lim
n→∞

|vdm(b1, b2, · · · , bn+1)|1/(n+1

2 ) = τ(K)

as

lim
n→∞

(n + 1)!1/(n+1

2 ) = 1.

The final statement, thatµn converges weak-* todµK , then follows by [2, Theorem 1.5].
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