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ON ALGEBRAIC MULTILEVEL METHODS FOR NON-SYMMETRIC SYSTEMS -
CONVERGENCE RESULTS*

CHRISTIAN MENSEf AND REINHARD NABBENT

Abstract. We analyze algebraic multilevel methods applied to nonfaginic M/ -matrices. Two types of
multilevel approximate block factorizations are cons@tker The first one is related to the AMLI method. The
second method is the multiplicative counterpart of the AMipproach which we call the multiplicative algebraic
multilevel (MAMLI) method. The MAMLI method is closely refed to certain geometric and algebraic multigrid
methods, such as the AMGr method. Although these multilevethods work very well in practice for many
problems, not much is known about theoretical convergemopesties for non-symmetric problems. Here, we
establish convergence results and comparison resultsebat&MLI and MAMLI multilevel methods applied to
non-symmetric\M -matrices.
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methods, AMLI method

AMS subject classifications.65F10, 65F50, 65N22

1. Introduction. In many recent papers algebraic multigrid methods or nawiél meth-
ods were designed to solve large sparse linear systems hyg osily information on the
matrix structure and the matrix entries. Among several laigie methods the algebraic
multigrid method (AMG) and the multilevel approximate bkdfactorization are best-known.
The pioneering work on algebraic multilevel methods wasedion Brandt, McCormick, and
Ruge [L2] and Ruge and Stibef32, 34] by introducing the AMG method in the eighties; see
also 35].

Recently, a theoretical comparison of different algebraidtigrid methods applied to
symmetric positive definite systems was given by Notay#j.[However, not many theoret-
ical results known for algebraic multigrid methods appliechon-symmetric matrices.

Here we analyze algebraic multilevel methods applied to-syanmetric M -matrices.
Algebraic multilevel methods are often used as preconutisfor Krylov subspace methods.
In this paper, we focus on the convergence of these methedsasssolvers.

M-matrices occur in various fields of applied mathematicshsas numerical analy-
sis, probability, economics, and operations resea®th [Moreover, Markov chain model-
ing became relevant in several applications from computiense, such as information re-
trieval [20]. Iterative solvers, such as algebraic multigrid methads, used to compute the
steady state solution of a Markov chain, i.e., algebraicignd methods are used to find the
solution of a system with non-symmetii¢-matrix structure—a non-trivial task given the size
of the Google matrix for example; see, e.@]

Most of the algebraic multilevel methods start with a pamtiing of the unknowns into
fine and coarse grid unknowns. Related to this orderingptlyen system matrixA can be
permuted into a blocR x 2 form

A A
PAPT: FF FC )
|:ACF Acc

Here F' denotes the set of fine grid unknowns, afiddenotes the set of coarse grid
unknowns with|F'| = np and|C| = ne. This process is called coarsening. There are a lot
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of different algorithms and strategies to perform the abpaitioning; see, e.g.3p, 22, 11,
39, 30]. The choice of the partitioning has a major influence on threvergence behavior of
AMG methods. Here we assume that the coarsening is donalgliegome way. Thus, we
assume thatl is given by

(1.1) A= [ Apr Apc ] .

Acr Acc

If the submatrixA g is nonsingular, ther can be factorized as

A Ir 0 Arr 0 ][ Ir AppArc
o ACFA;‘}? Ic 0 S 0 Ic ’

where
S = (A/AFF) = ACC — ACFA;‘}:AFC

is the Schur complement. If we now use an approximaﬁm’p of Apr and an approxi-
mationS of .S, or approximations of the inverses of these matrices, waiolhe matrix\/
with

Ip 0
1.2 M = N
(1-2) AcrApy IC] 0o S 0 Ic

App Q] |:IF g}_«“}:'AFC

This factorization is known as an approximate two-levetklfactorization p9. Various
multilevel methods use this two-level block approximatetdaization as a major tool; see,
e.g., i, 5, 2,27 7, 33] and references in29]. One of these methods is the AMLI method
introduced by Axelsson and Vassilevski #y p]. With the use of the matrid/ in (1.2) one
can define the stationary iteration given by the iteratiotrina

(13) TAI\,{L[ = I— M_lA.

Here the subscript AMLI is chosen with respect to the firstafdbis approximate block
factorization by Axelsson and Vassilevski in the AMLI meth&Ve point out that the AMLI
method itself contains a lot more ingredients like, e.glypomial acceleration. Moreover,
the AMLI method is designed originally in the framework o&harchical bases to precondi-
tion the CG method.

For the iteration matri<’ 4,27 in (1.3), we obtain

~ _ —1
Arrp 0 [ Ir AppLArpc } A
0o S

Ip 0
T =71- =
AMLI <|: ACFAF1F IC :|

—AppA o <
:1_[ rpre }S Y AerAph Ie |4

Ir | =
—[ 0 }AF}[IF 0]A.
Using the restriction and prolongation operators

—AppArc

(14) R:=[-AcrAzL Ic], PT:= |
C
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and the matrices
(1.5) P, :=P'ST'RA and P,:= RTA,LRA,
one obtains
(1.6) Tanrnr =1 — PTST'RA— RTALLRA=1—P, — P

Thus,T'4 5717 can be written as an additive Schwarz method with inexaet lealves; see/[L,
19, 36] for details about Schwarz methods.

Hence, the matric€s,,,,; and M in (1.2) are constructed by an inexact block factor-
ization, i.e., by using @roductof matrices. The iteration given B4, therefore can be
regarded as a multiplicative methodi f]. Moreover, there are also some other versions of
the original AMLI method. These methods do not use the inexack factorization in {.2)
and are based on a block-diagonal preconditioner. Thexefioese AMLI versions are called
additive methods1], 3].

On the other han@’4 ;1,1 can be written as aadditive Schwarz method. To avoid con-
fusion here, we will use the terminologyMLI approachfor the inexact block factorization
in (1.2) and the resulting iterative method. Moreover, we considisrAMLI approach as an
additive Schwarz approach.

For some problems it is known that the multiplicative Schaaethod converges faster
than the additive Schwarz methotl7] 26]. So it is natural to consider a related multiplica-
tive approach. The multiplicative version, which we cak tMAMLI method or MAMLI
approach?24], is then given by

Tyvavmrr = I —P)(I — P)
= (I — PTST'RA)(I — RT AL RA)

o ) i
(1.7) - (I— [ ‘AFIP;AFC }S‘l[ AerAzL Ic }A)

Ip | =
-(I—[ 0 }AF}[IF o}A).
There are two other methods that are closely related to tHépieative version. The
first one is the reverse MAMLI method (RMAMLI). The other one the symmetrized

MAMLI method (SMAMLI) [24]. These variants are defined in terms of their iteration ma-
trices given by

(1.8) Tryvavror = (I — Pe)(I — Pr)
and
(1.9) Tsvavrr = (I — P)(I — P)(I — Py).

The multiplicative versions are closely related to cerg@ometric and algebraic multi-
grid methods. The factar — P, in (1.7) can be seen as a relaxation or smoothing step, while
I — P, in(1.7) is a coarse grid correction. In particular, the MAMLI methcan be viewed
as a two-level V(1,0) cycle, the RMAMLI method as a two-levgD,1), and the SMAMLI
method as a two-level V(1,1) cycle with fine-grid only reltiwa and special restriction and
coarse grid operators. In the AMLI approach, the smoothdrthe coarse grid correction
operator are combined in an additive way, while in the MAMIippaoach, this is done in a
multiplicative way. Hence, the MAMLI approach is closer betoriginal multigrid schemes.
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Nevertheless, general additive multigrid methods have lseecessfully developed in the last
decades]0, 18, 37].

There is also a close relationship between the MAMLI techesgand the AMGr method
introduced by MacLachlan, Manteuffel, and McCormick #1]. AMGr uses fine-grid only
relaxation, similar restriction operators, and Schur ctaments also. Ing1] convergence
results and bounds for the rate of convergence are estatllfsih the AMGr method applied
to symmetric positive definite matrices.

There exist a lot of theoretical results for the AMLI methosed as a solver or as a
preconditioner for the CG method,[5, 27, 2, 6, 13, 14]. However, the theoretical results
can be applied to symmetric positive definite matrices ddbytay gives in 8] some results
for the multilevel approximate block factorization applieo some special non-symmetric
M-matrices which arise from a specific discretization of ataier PDE. However, so far
a general convergence analysis of the AMLI approach for eeveidss of non-symmetric
matrices is still missing. In this paper we give convergemseilts for the above mentioned
AMLI approach applied to arbitrary non-symmetfi¢-matrices. Moreover, we will establish
a detailed convergence theory for the MAMLI, RMAMLI and SMANMmethods applied to
non-symmetric\/-matrices. By a recursive use of the above described twel-techniques
one can easily construct the corresponding multilevel wdthFor these multilevel methods
convergence results are also established in this paper.

Of course, the choice of the coarsening algorithm used tthggtartitioning in {.1) has
a major influence on the convergence behavior. In this papegassume that this partition-
ing is done already in an arbitrary way. We want to focus ondtwevergence behavior for
general partitionings and will compare different multédwmethods starting with the same
partitioning. Our convergence results are independenhefcoarsening technique that is
used.

Recently, additive and multiplicative Schwarz methodsimn-symmetric matrices were
analyzed in 16, 8, 26]. In these papers an algebraic convergence theory for théizal
and multiplicative Schwarz methods was introduced. The®t yields several convergence
results and comparison results. However, this theory ghesuonly special restriction and
prolongation operators, which are used in domain decortipasinethods. This theory can
not be applied to multilevel or multigrid methods. In comstréo [16, 8, 26], we use and
analyze more general restriction and prolongation opesédtere.

The paper is organized as follows. In the next section we gfivee notation and recall
some well-known results. Sectidhdescribes the properties of the approximations that we
are using in the block factorization. In Sectidrwe establish convergence and comparison
results for two-level methods, while in SectiGnthese results are extended to multilevel
methods.

2. Notation and well-known results. A matrix B is honnegative (positive), denoted
B > 0 (B > 0), if its entries are nonnegative (positive). We say tBat C'if B — C > 0,
and similarly with the strict inequality. These definitioreary over to vectors. A matrid is
a Z-matrix if its off-diagonal elements are non-positive ZAmatrix A is called a nonsingular
M-matrix if it is monotone, i.e.A~! > 0. It follows that if A and B are nonsingulai/-
matrices andd > B, thenA—! < B~![9, 38]. By p(B) we denote the spectral radius of the
matrix B.

We say(M, N) is a splitting of A if A = M — N and M is nonsingular. A splitting
is regular if AM/~* > 0 and N > 0; it is weak regular of the first type il/~! > 0 and
M~'N >0]9, 38, 40.

Here, we consider stationary iterative methods to selve= b. These methods start
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with a vectorz(®) and build a sequence of vectarét!) such that
(2.1) 20D =72 4 ¢ for i=1,2,....

The matrixT is called iteration matrix. Ifp(T) < 1 then, there exists a unique splitting
(M, N) suchthafl’ = M~!N. This splitting is given by\/ = A(I—-T)~! andN = M — A.
We say thafl" is induced by this splittingM, N).

Related to the partitioning ofl in (1.1), we will denote byl then x n identity matrix
and with/r andis thenp x np andne x ne the identity matrix, respectively.

ForA = [a; ;] € R™*™ we define the matricediag(A), triu(A) andtril(A) € R*>*"
by

_ o Joayy; fori=j
(diag(A))i,; = { otherwise,

_ a;; fori>j
(tril(A))i; = { ()J otherwise,

, a;; fori<j
(triu(A)); :{ ()'J otherwisje.

Next we recall the definition of the weighted max-norm. Gieguositive vectorw € R™,

. . ) 1
denotedv > 0, the weighted max-norm s defined for any R™ as||y||. = max |—uy;l.
J=1e o wj
The corresponding matrix norm is defined §B||,, = sup |7Tz|, and the following
zl|w=1
lemma holds.
LEMMA 2.1.Let A € R™*", be nonnegativey € R™, w > 0, and~ > 0 such that

(2.2) Aw < yw.

Then,|| A, < ~. If the inequality in(2.2) is strict, then the bound on the norm is also strict.
Moreover,

|Allw = max
i=1..n

Proof. See, e.g.]9. O
Most of our estimates hold for all positive vectarsof the formw = A~ e, wheree is
any positive vector, i.e., for any positive vectorsuch thatdw is positive. In particular, this
would hold for anM/-matrix A ande = (1,...,1)T, i.e., withw = A~'e being the row sums
of A—1,
Moreover, we need the following well-known propertieshddftmatrices.
THEOREM2.2.LetA € R™*" be a nonsingulaZ-matrix. A is a nonsingulaf\/-matrix
if and only if either of the following conditions holds:
e There exist two nonsingular monotone matricBsg, B, such thatB; < A < Bs.
e Each principal submatrix ofl is a nonsingularM/ -matrix.
Proof. See, e.g..9]. O
THEOREM2.3.Let A € R™*™ be a nonsingulai/-matrix partitioned as

A [ Arr Arc ]
Acr Acc
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whereAppr € R*** and Ao € R*~5*"~* for somes € {1,...,n — 1}. Then the Schur
complement

(A/Arp) = Acc — AcrAppArc

is a nonsingulaM -matrix.
Proof. See, e.g..9]. O
LEMMA 2.4. Let A be a nonsingulatM/-matrix and let(M, N) be a weak regular
splitting of first type. Then
Mt<at.

Proof. See, e.g.,40, Theorem 3.2].0

LEMMA 2.5.Let A be a nonsingulad/-matrix. LetM be aZ-matrix such that\/ > A.
Then,(M, M — A) is a regular splitting, and therefore a weak regular spfigi of A.

Proof. SinceM is aZ-matrix andM > A, M is anM-matrix; see 9]. The statement
then follows immediately from the definitions of a weak reggudnd regular splittings

3. The approximations. Of course, the quality of the approximatiods:» of Az p
andS of S used in the inexact multilevel block factorizations will imeportant for the con-
vergence behavior. Here we use the following propertieshefdapproximations to prove
convergence of the AMLI approach.

AssUMPTION 3.1. Let A be a nonsingular (non-symmetridy-matrix and letA be
partitioned in the followin@ x 2 block structure

A { Arr Arc ]
Acr Acc |

Furthermore, letdr and S be chosen such that the splittinéﬁlsp, XFF — AFF) and
(§, S — (A/KFF)) are weak regular of first type, i.e.,

(3.1) ApL >0 and Ir — AphApp >0,
and
(3.2) S7'>0 and Io— S5 Y(A/App) > 0.

Here (A/Arr) is defined by A/Arr) := Aco — Acr Az L Arc.
For the multiplicative versions we use a slightly modifiedafeapproximations.
ASSUMPTION 3.2. Let A be a nonsingular (non-symmetridy -matrix and letA be
partitioned in the followin@ x 2 block structure

A— Arr Arc
Acrp Acc |-

Furthermore, letd = and.S be chosen such that the splittinéﬁFF, XFF — AFF) and (§, S — EAIBT)
are weak regular of first type, i.e.,

(33) AV;};‘ >0 and Ir — AV;‘%AFF >0,
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and
(3.4) S7t>0 and Ic—STYRAPT) >0,

whereR and PT are given as in(1.4).

Here we point out that these assumptions or properties hwvingcrequire for the approx-
imations, are very weak. We will give examples of these apipnations at the end of this
section. Note that no special coarsening or no specialjoaitig of the matrixA are needed
to find these kinds of approximations.

If we compare Assumptiors.1and3.2, we see that the only difference is the condition
for the approximatiors.

Using the relation

RAPT = Acc - Acr (2A7y — AppArrAz)) Arc,

we will see in the following proposition, that Assumptidr2is weaker than Assumptidh L
PrROPOSITION3.3. Assumptior8.1implies Assumptios.2. In other words, if Assump-
tion 3.1 holds, then Assumptidh2is fulfilled also.
Proof. We only have to prove that equatioB.{) together with equation3(2) imply

equation 8.4). Hence, let the splittingéﬁpp, App — AFF) and (§, S — (A/AVFF)) be
weak regular of first type. Since

RAPT = Acc - Acw (2A5y - AppArr Az} ) Avc,
we obtain
Io = $T'RAPT = Io = §7* (Ace — Acr (247} — Ak ArrAry) Arc)
= Ie 57 (Acc — AcrAphArc)
+S ' Acr (AE}: - AV;}:'AFFAVE'IF) Arc

= Ic =57 (A/Arr) + 8 Acr (Ir - ApkArr) Apk Arc.

Using the splitting property aofl 7 andS and the sign pattern of thi/-matrix A, we obtain
Io — ST'RAPT > 0.

Hence, the splitting(g, S — }N%A]BT) is weak regular of first typell

Note that in both Assumptions there is a coupling betweeramﬁoximationsﬁpp
ands, but it is very mild. Indeed, starting with al¥-matrix A, the approximations given by
the Jacobi and the Gauss-Seidel methods and the incomplefadtorization are admissible
approximations, for example. To see this, one has to use l&htinThus admissible choices
for App are

App = diag(Apr),
App = tril(App),
App = triu(Apr),
App=LU.
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Here,L andU are the factors of an incomplefd/ factorization ofA 5 [23].
We will show in Theorenb.2that

= - —ApLA

RAPT = | ~Acpdph T A [ rrare }
is a nonsingulai/-matrix, if (KFF, KFF — App)is aweak regular splitting, i.e., one of the
above choices is used as an approximatiod pf-. Hence, the following approximatioris
fulfill our Assumption3.2,

S = RAPT,

S = diag(RAPT),
S = tril(RAPT),
S=1LU,

whereL and UNare the factors of an incomplefd/ factorization ofRAPT. Moreover (see
Theorenb.2), S can be chosen as

S=(A/Apr),
S = Ace,
§ = diag(Acc),

to fulfill Assumptions3.1and 3.2

Hence, the Assumption.1 and 3.2 allow a wide variety of approximations and all
kinds of approximations used in practice seem to be inclutdswill show that all of these
approximations and splittings result in convergent meshétbwever, specific splittings may
lead to convergence bounds that are dependent on the pespefrithe splitting.

Next, let us compare our approximations with those usedeérthieoretical analysis of
approximate multilevel block factorization applied to sytric positive definite systems. A
frequently used assumption is that

(3.5) KFF — App is symmetric positive semidefinite

see, e.9.4, 2, 29). This assumption also can be expressed with the help dfisgk as we did
with our assumptions above. Equatichg) implies that the splittindApp, Apr — App)
is a P-regular splitting ofApr. P-regular splittings are introduced by Ortega &i][ see
also R5]. A splitting A = M — N is called P-regularif/” + N = M + M™ — A is positive
definite. Note that a splitting of a symmetric positive deéninatrix A is P-regular if and
onlyif ||[I — M~1Al[4 < 1; see §2].

Hence, the usual assumption for symmetric positive defgyttems can be written in
terms of P-regular splittings. Note, however, that thera general no link between P-regular
splittings and weak regular splittings.

4. Two-level convergence-resultsWe start this section with a fundamental proposition
which is the main tool in our convergence analysis.
PROPOSITION4.1. Let A € R™*"™ be a nonsingulai/-matrix. If
e C € R™"™™is nonnegative,
e [ — C'Ais nonnegative,
e (' has no zero row,
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thenC' is nonsingular and the splittingC—!, C~! — A) of A is weak regular of first type.
Moreover,

p(I—CA) < ||I—CAlly <1,

wherew := A~ 'e for an arbitrary positive vectoe € R™.

Proof. Lete € R™ be an arbitrary positive vector. Th&Te is also positive. Sincel is
a nonsingulaf/-matrix the inversed—! is nonnegative and has no zero row. Therefore the
vectorw := A~ le is positive as well. Using these properties, we get

0<(I-CA)w=w—-CAA e =w — Ce < w.
Due to Lemma.], this leads to
(4.1) p(I —CA) < ||I —CAll, < 1.

Now assume, that’ is singular. Then there exists a nonzero veetarith Cz = 0. Let
A~z =y. Then

(I-CAy=y—Cz=y.

But this contradict44.1). Hence,C' is nonsingular. The splitting properties then follow
directly from the assumptiongl

In the following, we consid€l's ;. ; as givenin (.6).

LEMMA 4.2. Let AssumptiorB.1 be satisfied, i.e.A is a nonsingularM/-matrix par-
titioned as in(1.1) and the splittings(ﬁFF,/TpF — AFF) and (§,§— (A/XFF)) are
weak regular of first type. Then

Tavrr 2 0.

Proof. A computation leads to

o AL o Apr  Apc
Tamer =1 { 0 0 } [ Acr Acc
o _ZE;AFC o—1 71 AFF AFC
{ e 8 {_ACFAFF IC} Acr Acc

_7_ { AppArr  AppArc }
0 0

[ —A7LArc ]51 [ Acr (]F _X;}AFF) (A/ZFF) }

Ic
A=y 0}
0 0
. | ArkArcS ' Acr (Ir = AppArr) 0 ]
5o (I - AFFAFF) 0
. [0 —A7LApc (IC - 571 (4/Arr)) ]
0 Io - (A/AFF
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Using the assumptions on the approximatioﬁs,p andS, and the sign pattern of the
M-matrix A, we get thafl'4 5,17 is nonnegativedl

Lemma4.2 provides sufficient conditions for the non-negativity o tAMLI iteration
matrix. This powerful property will be used in the convergemnalysis below.

THEOREM4.3. Let Assumptior3.1 be satisfied, i.e.4 is a nonsingular\/-matrix par-

titioned as in(1.1) and the splittings(ﬁpp,ﬁpF - AFF) and (§,§ - (A/KFF)) are
weak regular of first type. Then

p (Tanrr) < | Tamerllw <1,

wherew = A~ e for an arbitrary positive vectoe. Moreover,T 4,17 is induced by a weak
regular splitting of first type, i.e.,

Tamvrr =1 —Camri4,

whereCaprr 7 is nonsingular andC 1, 7, Cansrr — A) is @ weak regular splitting of first
type ofA.

Proof. In order to use Propositiof.1we first writeTanrrr asTanir = I — CapprA.
We then establish thdt— C'4 ;1.1 A satisfies the assumptions of Propositibh

By Lemma4.2, T'ap 11 iS nonnegative. Thus it suffices to show tliat,, 1 ; is nonneg-
ative andC'4 5, 1,; has no zero row.

Since

Tappr =1 — PTST'RA— RTALLRA=1— P, — P,

the matrixC.4ps 17 is given byPTS—1R + RT AL R. With

o 1
(4.2) Mg = RTA;LR = [ AgF X ] ,
ST —AZLA S ~
(4.3) Mcg=PT'ST'R= [ Ff; Fe }5 ! { —AcrApp o },
we obtain
(4.4) Tapipr=1—(Ms+Mcee)A=1-CamriA,

WhereCA]uL] = Mg + Mcg.
Using theM-matrix and splitting properties, we see that both matrités and M¢¢
are nonnegative. As a sum of two nonnegative matriCgs, . ; is also nonnegative.
SinceA ;. andS~! are the inverses of nonsingular matrices they do not hawerpers.
Therefore, the first.r rows of

AZL 0
Mo = FF
=% 0]
are not zero rows. Moreover, the lagt rows of

Mcg =

g;;Afcg_lAgFg;}; —ZE%NAch_l
-S T AcrApk St

are not zero rows. Sinc&/c¢ and Mg are nonnegative an@ay;.; = Mcg + Mg, the
matrix C' 47,7 has no zero row.
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With Lemma4.2and Propositiord.1, we obtain

p(Tanvier) < || Tamrrllw < 1. O

Starting with an\/-matrix A and approximations as i (1) and (3.2), we proved conver-
gence of the AMLI approach for a wide class of non-symmeti@trioes. In the convergence
proof the non-negativity of the iteration matfiX 5, ; was the major tool.

Next, we analyze the MAMLI iteration matrix as given ih.{). Before we consider the
product(I — P;)(I — P,), we take consider each factor separately. It is worth mairtgpthat
not both factorg§7 — P;) and(I — P,) are nonnegative, in general. This is a major difference
from the convergence analysis for special Schwarz methivds @n [16, 8, 26]. While factor
I — P, is nonnegative the other factér— P, need not to be nonnegative; see Exanipte

PROPOSITION4.4. Let A be a nonsingulad/ -matrix partitioned as ir(1.1).

If (KFF, App — AFF) is a weak regular splitting oft - of first type, then
I—P,>0 and||I — PQHw =1,

wherew = A~ e for an arbitrary positive vectoe.
Proof. Using the splitting properties and ttié¢-matrix sign pattern, we get that

o, [ ARL 0 Arpr  Arc
I-h=1 { 0 0 Acr Acc
[ Ir — AzpArr —AppApc

0 Ic

is nonnegative.
Let e be an arbitrary positive vector. Sinekis a nonsingulai/-matrix,w = A~ 'e is
also positive. WithA ;. > 0, we obtain

AzL 0 1 AL 0
< (I-— = (71— FF = FF <
0<(I—-P)w <I [ o7 o ] A> Ale=w { o7 o } e<w

Using Lemma2.1, we get||] — Pz||,, < 1. However, since the last components bf- Ps)w
andw are the same, it holds that

(L = Pyw);

1= Pollw = sup [[(I = Pa)z]lw = [[(I = Po)wlly = max > 1

x||lw=1 [
This leads to

I = Pzll,=1. O
EXAMPLE 4.5. Consider the matrix

2 -1 0 0

a1 2 -1 0 nr
=l o0 -1 2 -1
0 0 -1 2 no

and partition it as indicated. We use the approximations

gFF:[?) g} and §:{

O wlw
N O
| I
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These approximations fulfill(1) and @.2). Thenl — P, is given by

6 0 0 0
1{1 6 -3 2
I=h=%5190 04
00 30
Although (I — Py) is not nonnegative in general, we are able to establish time no

negativity of the MAMLI iteration matrix.

LEMMA 4.6. Let Assumptior.2 be satisfied, i.e.A is a nonsingularM -matrix parti-
tioned as in(1.1) and the splittings(ﬁpp, App — AFF) and (§, S — ﬁAﬁT) are weak
regular of first type. Theffy;anrr > 0.

Proof. A computation leads to

_ZflA ~ ~ A A
Tyamrr = (I— { FIIZ re }S ' [ ~AcrApp o } { Agi Agg ])
-<I—{EF; 0}[AFF Arc })
0 0 Acr Acc
L ﬁ;;AFF KE}AFC
0 0
_~_1 =~ A A
[ |5 [ e (o Aann) A
. { Arr Arpc ]
ACF ACC
0 0
! N _ 2
B { AF[I;AFC ]S_l [ Aor (IF _A}—?}:AFF) RAPT }

_7_ [ AppArr AppArc }

0 0
[ _Aiil AFC ""_1 ~ 2
- T ] §7| Acr (Ir = AppArr) 0
[ ArrAre 15[ Rapr |
L le
_ [ Ir—AppArpr 0
i 0 0
e -1 -1 g
. | ArbArcS T cr (17 = AzpArr)” 0
~ ~ 2
—S_lACF (IF — A;};‘AFF) 0
i 31 _3-1(paApT
|0 —Aekare (1o - 571 (RaPT))

0 I — St (EAﬁT)

Using the assumption on the approximatioﬁﬁp and S and the sign pattern of the
M-matrix A, we get thafl'y; 4ps 1.7 IS Nonnegativel
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Due to Propositior3.3, Assumptior3.1also leads to a nonnegative matiix; 4 /1.1
Next we prove the convergence of the MAMLI method.
THEOREMA4.7. Let Assumptior3.2 be satisfied, i.e.4 is a nonsingularV/-matrix par-

titioned as in(1.1) and the splittings(ZFF, /TFF — AFF) and (5, S — }N%AZST) are weak
regular of first type. Then

p(Tvranvint) < || Tvamrrllw <1,

wherew = A~'e for an arbitrary positive vectoe. Moreover,T; 417 iS induced by a
weak regular splitting of first type, i.e.,

Tyvamvrer =1 —CramrrA,

whereChsanrr is nonsingular andCy ysr 1 Coranins — A) is a weak regular splitting
of first type ofA.

Proof. As in the proof of Theorem.3 we use Propositioh. 1 We first writeTh; aas1 @S
Trvaver = I—Cuapmrr A. Thenwe establish thdt- Chyy ans 11 A satisfies the assumptions
of Propositiord.1 Since with Lemmat.6 Th; apr17 IS NONNegative, it suffices to show that
Chranmrr 1S nonnegative an@y; 45,17 has no zero row. With

Tyvamvrr = — P)(I — Py),
where
P =PTST'RA and P, = RTALLRA,
we easily obtain

Tvamvrr =1 —P— P+ PP
(4.5) =] - (MCG + Mg — MchMs)A
=1—-Cyamri4,

where
Cymamrr = Mcg+ Mg — McgAMs

andMg andM¢¢ are asin4.2) and @.3).
Next we show thaty; 47 1S @ nonnegative matrix. As seen in the proof of Theo-
rem4.3, both matrices\/g andM ¢ are nonnegative. For Mo AMg, we obtain
_ _ _ZE}:'AFC o—1 T—1 AFF AFC Ai;};. O
MogAMs = [ Ic 5 [_ACFAFF Ie } Acr Acc 0 0
.6) - g;};‘AchilAcp (IF — AV}_?};‘AFF) AV;‘}? 0
' _§71ACF (IF — ZE}FAFF) Ai;,}, 0

Using the M -matrix and splitting properties, we obtain thatV/ocAMg is nonnegative.
Consequently,
4.7 Cyamrr = Meg + Ms + (—McgAMg)

is also nonnegative.
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Next, we prove that’y; ap7 has no zero row. We already established that all three
terms ofCy; ansr1 IN (4.7) are nonnegative, so it suffices to prove that the téfgy; + Mg
has no zero row. But this was already done in the proof of Témar.3. Now, using Propo-
sition 4.1, we get that

p(Trranvinr) < || Tvamvrrllw <1. O

Starting with anM-matrix A and approximations as ir8() and @.2) or (3.3 and
(3.4), respectively, we proved convergence of the AMLI and the WA method. As far
as we know these are the first convergence results for thefmdsefor a wide class of non-
symmetric matrices.

Next, we consider the RMAMLI iteration matrix as given ih§

Trvamrer = (I — P)(I — Pr).
Since
Tyamrr =T —P)(I—P) and Tryamer = I — P)(I — P1),
we immediately obtain
(4.8) p(Trvamrr) = p(Tvanir).

Thus, we have the following result.
COROLLARY 4.8. If AssumptiorB.2is satisfied, then

p (Tryvamrr) < 1.

Although the spectral radii of the iteration matrices of RRIAMLI and the MAMLI
method are the same, there are significant differences ititheture of the iteration matrices.
The iteration matrix of the RMAMLI method is not nonnegatimegeneral as shown in the
next example.

ExaMPLE 4.9. Consider the matrix used in Exampglé®

2 -1 0 0

Al -1 2z -1 0 e
0 -1 2 -1 |-
0 0 —1 2 ne

Again we use the approximations

~ 2 0 = 2.0
_ — 2
AFF—|:O 2:| and S_[O 2:|,
and we obtain

1 6 -3 2

1 8 0 0 4

TrRMAMLI = Zla 0 0 s

0 0 6 0

Now we will analyze the SMAMLI iteration matrix as given ifh.Q),

Tsyviamrr = (I —Po)(I — Pr)(I — P).
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THEOREM4.10.Let Assumptio3.2 be satisfied. Then

Tsymamrr >0, and p(Tspanmnr) < | Tsvanrrllw < 1,

wherew = A~'e for an arbitrary positive vectoe.
Proof. We easily obtain, using Lemn¥a6 and Propositior.4, that

(4.9) Tsvavinr = ([ — Po)(I — P ) (I — Py) = (I — Po)Taranrr > 0.

With Theorem4.7 and Propositiod.4, we get
(4.10)  p(Tsmancr) < [[Tsmanmrrllw < 1 = Paflwl|Taramrrllw < 1. O

In the remainder of this section, we compare the SMAMLI, MAM&and AMLI methods
with respect to the weighted maximum norm of their iteratioatrices.
THEOREM4.11.Let Assumptio3.1be satisfied. Then

I Tsvramnillw < | Tvavirllw < | Taverlle <1,

wherew = A~'e for an arbitrary positive vectoe.
Proof. The inequality||Taarrrllw < 1 was proved in Theorem.3 As shown in ¢.4)
and @.5 we have

Tamrpr =1 — (Ms+ Mcg) A
Tranvrer =1 — (Ms+ Mog — MegAMg) A
=Tamrr + McgAMgA,

whereMg and Mo are defined in4.2) and @.3).

Due to Lemmasgt.2 and4.6, both iteration matrices are nonnegative. Sinté a M-
matrix ande is a positive vectony = A~ 'e is also positive. Therefore, both teriis ;1 yw
andT'y ap 7w are positive.

As seenin4.6) the term— Mg AMg is nonnegative, so we obtain that the vedtfy g AMge
has to be non-positive. Therefore,

. (TrmAMLIW);

| Taranrrllw = ma
i=1...n w;
(Tanvipiw + MegAMgAA™e);
= max
i=1..n w;
<N Tamrrlw-

The remaining inequalityTsaransrrl|w < [|Tar anrrr||w follows directly from inequal-
ity (4.10.0

In the following, we establish a result for the AMLI, MAMLI,RAMLI and SMAMLI
methods. All these methods coincide if the blotkr is inverted exactly, i.e Arpr = App,
independent of the quality of the approximation of the Sammplemens. This result holds
for all system matricesl, symmetric or non-symmetric, and not fdf-matrices only.

THEOREM4.12. Let A be a nonsingular matrix, which is partitioned in the followi
2 x 2 block structure

A [ Arr Arc }
Acr Acc |’
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If App is nonsingular and?{FF = Arp, then

Tanver = Tvamrer = Trvavrnr = Tsyamrr-

holds for any approximatios’ of (A/Apr).
Proof. We have, with 4.4) and @.5),

Tamrr=1—(Ms+ Mca) A
Trvamvrr =1 — (Ms+ Mceg — MeogAMsg) A.

Similarly, we obtain for the RMAMLI and the SMAMLI method,

Trvamvrr =1 — (Mg + Mcog — MsAMceg) A

Tsyamrr =1 — (2Ms + Mo — MsAMcg
—MgAMg — McgAMg
—I—MsAMchMs) A.

Computing the products shows that
McgAMgs = MsAMcg =0,

and

Hence,

Tavrr =Tyvaver = Trvavrer = Tsvamvpr. O

5. Multilevel convergence results.In Section4, we proved convergence for two-level
methods. Here we extend the convergence results to meltileethods, i.e., the two-level
AMLI or MAMLI technique is used recursively on different lels or different coarse grids.
The so-called coarse grid system, the system that invohessthur complement, is then
solved or approximated by the AMLI or MAMLI approach again.

To prove convergence for the multilevel methods, we needdiewing preliminary
results. o

LEMMA 5.1.Let (AFF, App — AFF) be a weak regular splitting of first type dfr r.

Then
Bip = 2App — AppArrApy
is nonsingular and the splitting
(EFFa Brp — AFF)

of App is weak regular of first type.
Proof. We have
Byp =245y — AppArrApy
= AzL+ (I - Z;;AFF) ApL > 0.

~—~— ~——
>0 >0 >0
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Thus, By L can be written as a sum of nonnegative terms. SiAgé is nonsingular,
Ay} has no zero row. HenceB3; 1 has also no zero row. Moreover,

I-BppApe =1~ (245h - App Arpdgh) Arr

= (1- Az Arr) (1- AzpArr) 2 0.

>0 >0

Thus, we have shown that
° BFF is nonnegative,
o [ — FFAFF is nonnegative,
e By hasno zero row.

Hence, with Propositiod.1the matrix E;}m is nonsingular anr(EFF, EFF - AFF) isa

weak regular splitting of first typél
THEOREMS5.2. Let A be a nonsingulan/-matrix partitioned as

A [ Arr  Arc }
Acr Acc |’

Let (AFFa App — AFF) be a weak regular splitting of first typér . Then
- ~ ~ ~ _a-1
Acc, (A/AFF) , and RAPT = [ _ACFA;‘}? I } A { AF;“AFC ]

are nonsingularM -matrices. Moreover,

(5.1)  Acc = (A/AVFF) > { ~AcpApy I }A { _A;};AFC ] > (A/AFF).

Proof. With Theoren2.2, we have thatl¢ is a nonsingulan/-matrix.
Next, we conside A/KFF). Since (KFF, App — AFF) is a weak regular splitting,
we obtain with Lemma.4that

0< App < App.
Using theM -matrix structure ofd, we get

(A/Arr) = Acc — Acr App Apc
A
<0 >AzL <0

< Aco - AgpAzrAcy = (4/Arr) .
Similarly,

(A//TFF) = Acc — Acr Apk Apc < Acc.
—— — o~
<0 3o <0

Thus, we get the inequalities

(5.2) Ace > (4fApr) > (A/Arp).
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By Theorem2.2, Ac¢ is a nonsingulaiM/-matrix and with Theoren2.3 (A/Apr) is a
nonsingularM-matrix also. Hence, by Theoreth2, we obtain the desired property of

(A/EFF).

. - —ALA .
Next c0n5|der{ ~AcrApp I } A [ e Fe ] We obtain
- —ApLA
| ~AcrAzh J}A{ FE FC]:

=Acc — Acr (Av}_,w};‘ + Av}_,w};- — EE}AFFAV;}?) Arc
= Acc — ACFEE}PAFC = (A/EFF) ;
p-1l . A-1 , 7-1 _ 7-1 -1
whereB, = App + App — AppArrAnp.
With Lemma5.1, (EFF, EFF - AFF) is a weak regular splitting of first type. Hence,
replacingﬁFF by Brp we can follow the above part of the proof. Therefore, we abthat
- . o A—1
(A/BFF) - { ~AcrpApy I } A [ AFﬁAFc ] is a nonsingulaf/-matrix. Thus, we

get the inequalities
. A1
(5.3) Acc > [ —AcpAnL 1 ]A{ AFfAFC ] > (A/AFF).
Next, we prove%.1). We have

-1 T—1 T—1 T-1 -1 T-1 T-1 -1
Bpp = 2AFF - AFFAFFAFF = AFF + (I - AFFAFF) AFF = AFF'

>0 >0

>0

SinceA is an M -matrix, the blocksAcr and A g are non-positive. Therefore

~ —AZLA ~_
~AcrApy I }A{ Fl; Fe ] =Acc — Acr Bpp Arc
=0 2Appzo0 =0
~ B _
<Acc —Acr Apyp Arc = (A/AFF) .
<0 >p <O

Together with 6.2) and 6.3), we then obtaing.1)

~ - -1
Acc > (A/AFF) > { —ACFAI_;}; T }A|: AFiAFC ] > (A/App). O

Now, we turn to the multilevel methods. As mentioned in thgibeing of this sec-
tion, the coarse grid system is solved recursively with arative method, namely, the same
method used for the original system. To describe the muéilenethods, we need also a
hierarchy of matricest"), ..., A", whereA®") = A andA® is an. x n. matrix, etc.

First we consider the AMLI approach. Similarly to Assumpti1in the two-level case,
we need assumptions for the approximations in the multilease.
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AssUMPTIONS.3. Let A1) € R"*™ be a nonsingulad/-matrix. Forl = 1,...,L—1,
assume that
o AW is partitioned in the2 x 2 block structure

! !
Ol
Acr  Ace
o (/T%)F, /ngi)F - A%)F) is a weak regular splitting of first type,

o AU+D js given by
=
(5.4) AT — (4)A0) .

Moreover(§(L), S(L) — A(L)) is a weak regular splitting of first type.

Note that forL, = 2, Assumptiorb.3is nothing other than Assumptidhl

We immediately obtain the following lemma.

LEMMA 5.4. If Assumptiorb.3holds, all matricesA"),] = 1,..., L, are nonsingular
M-matrices.

Proof. The lemma can be proved by induction and Theo®en

The multilevel AMLI iteration matrixI'}% ,; ; is then given by

1
TAWMLI =1- 01(4]3411114(1)7

whereforl =1,...,L — 1,

O]

TO7 40
C\vnr = —App Apc

Ic

~ l)—l
AP o

+
0 0

I+1 ~)-1
Oz(afozI [ —A(CI)FA%)F Ic

andc(y) =@,
We obtain the following result.
THEOREMb.5. Let Assumptio.3be satisfied. Then

y 1
p(TXhirr) <M = CQyp AW < 1.
Proof. For level L — 1, we have

(L—=1).
Camrr=

T(L—-1)"' (L-1
A Ak

Ic

ALV 0

+
0 0

L _ ~, _ —1
e { —AG VAT Ie } :

sinceCy,,, := S, we can apply Theorem.3 Thus (5%&;, o~ A(L)) is
a weak regular splitting of first type, and sincé(“~1 is an M-matrix (see Lemm&.4)
the assumptions of Theorefn3 are satisfied. Thus, by Theoreh®, C%}i} is nonsingular
and (O&L]\E}fl O DT~ AC-D) is a weak regular splitting of first type.

Repeating this procedure for level— 2 and all other levels, we obtain

1
p (TAyrr) < I — 01(4]24L1A(1)”w <10

Next, we consider the MAMLI method. Similarly to Sectidnwe can use a weaker
assumption for the approximations used in the MAMLI method.
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ASSUMPTIONS.6. Let A(V) € R™"*™ be a nonsingulai/-matrix. Forl = 1,...,L—1
assume that
o AW is partitioned in the2 x 2 block structure

)

l l
o ]
ACF ACC

o (Z%)F, E%)F - A%)F) is a weak regular splitting of first type,
e AU+D is given by

— (l)71 (l)
AU+ — n oyt o | —A A
(5.5) [ —A(C)FA(F)F I }A ”I ro

Moreover,( S5, S(1) — A(L)) is a weak regular splitting of first type.

Again, note that for, = 2 Assumption5.6is nothing other than Assumptich2 We
immediately obtain again

LEMMA 5.7.If Assumption5.6 holds, all matricesA [ = 1, ..., L, are nonsingular
M-matrices.

Proof. The lemma can be proved by induction and Theosen[

The multilevel MAMLI method is then given by the iteration tria

1
T%AMLJ =1- CI(\{)AMLIA(I)’

where, forl =1,...,L —1,

l 0 g A0 T -
C\langpr = | AEF + pr e CI(\{AJQLI[ A AY Ie }
0 0 Ic
R ORI0) SO Tt
A A et [ g o a0 [ A 0]
c

andc'h), =507
We now are able to prove the convergence of the multilevel MAMethod.
THEOREM5.8. Let Assumptio®.6 be satisfied. Then

1
p (Tafanrr) < I - CI(\{)AMLIA(I)HM <1

Proof. The proofis similar to the proof of Theore®b. Note, that with Theorerf.2all
AU+D are M-matrices

In our two level convergence theorems, the assumptionshtoapproximations of the
coarse grid system, i.e., the Schur complement, are exgitesih the use of the original
matrix A. In detail, we usedA/Arr) for the AMLI method andRAP? for the MAMLI
method; see3.2) in Assumption3.1and @.4) in Assumption3.2.

Thus for the multilevel convergence theorems above, we tigedorresponding formu-
lation for building the coarse matrices on each level, i.e.,

AU+ — (A/g%)
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for the AMLI method and

~ l)71 1
~App Aje

(I+1) _ 0 (0t )
A = [ A Ay 1 ]a0 | A

for the MAMLI method.

However, with similar arguments as in the proofs of the teeel and the multilevel
convergence theorems, one can prove the following results.

THEOREMb5.9. Let Assumptio®.3be satisfied, except théd.4) is replaced by

+ l

, 1
P (T%MLI) <|I- Cx(éija/[LIA(l)”w <L

Proof. Obviously, all matricesi(‘t1) are nonsingulai/-matrices.
The proof for the multilevel method is based on the proof feg two-level method.
Thus, for the two-level method we assume, that= andS are chosen such that the splitting

(KFF, App — AFF) is weak regular of first type and that the splitting

(5.6) (5, S — Acc) is weak regular of first type

We omit the level indices here.
Usingl — S~tAcc > 0, we get
I - §_1(A/AVFF) =1- §_1(Acc — ACFAVE;Apc)
=1 — §71Acc + gil(AcFAi;‘}pAFc)
> 0.
Thus, (S,S — (A/Apr)) is a weak regular splitting. Therefore, the assumptions f-T
orems4.2 and 4.3 are fulfilled and we can follow their proofs. Hence, we obttiat the
new iteration matrlxl“AMU, that is built by using the approximations.§), is nonnegative.

Moreover, we also haVﬁ(TAMU) < 1andTsps s is induced by a weak regular splitting

(OAMLI ! CAMLI A).

We can then follow the proof of Theoref5to establish the convergence of the multi-
level methodO

Moreover, we have for the MAMLI method.

THEOREM5.10.Let Assumptio®.6 be satisfied, except théd.5) is replaced by

AU+ A(Cl)c
or
AU — (A/ZS?F) _
Then

(TMAMLI) < |- OMAMLJ (1)Hw <1

Proof. The proofis similar to the proof of Theore®n9. O
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6. Conclusion. In this paper we analyzed algebraic multilevel methodsiegdpb non-

symmetricM -matrices. We considered two types of AMG methods, the AMigraach and
the MAMLI method. We established convergence results fes¢hmethods used as solvers
applied to non-symmetrit/-matrices. Moreover, we gave some algebraic propertidsese
methods and the corresponding iteration matrices andiaght
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