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ON ALGEBRAIC MULTILEVEL METHODS FOR NON-SYMMETRIC SYSTEMS -
CONVERGENCE RESULTS∗

CHRISTIAN MENSE† AND REINHARD NABBEN†

Abstract. We analyze algebraic multilevel methods applied to non-symmetric M -matrices. Two types of
multilevel approximate block factorizations are considered. The first one is related to the AMLI method. The
second method is the multiplicative counterpart of the AMLIapproach which we call the multiplicative algebraic
multilevel (MAMLI) method. The MAMLI method is closely related to certain geometric and algebraic multigrid
methods, such as the AMGr method. Although these multilevelmethods work very well in practice for many
problems, not much is known about theoretical convergence properties for non-symmetric problems. Here, we
establish convergence results and comparison results between AMLI and MAMLI multilevel methods applied to
non-symmetricM -matrices.
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1. Introduction. In many recent papers algebraic multigrid methods or multilevel meth-
ods were designed to solve large sparse linear systems by using only information on the
matrix structure and the matrix entries. Among several algebraic methods the algebraic
multigrid method (AMG) and the multilevel approximate block factorization are best-known.
The pioneering work on algebraic multilevel methods was done by Brandt, McCormick, and
Ruge [12] and Ruge and Stüben [32, 34] by introducing the AMG method in the eighties; see
also [35].

Recently, a theoretical comparison of different algebraicmultigrid methods applied to
symmetric positive definite systems was given by Notay in [29]. However, not many theoret-
ical results known for algebraic multigrid methods appliedto non-symmetric matrices.

Here we analyze algebraic multilevel methods applied to non-symmetricM -matrices.
Algebraic multilevel methods are often used as preconditioners for Krylov subspace methods.
In this paper, we focus on the convergence of these methods used as solvers.

M -matrices occur in various fields of applied mathematics such as numerical analy-
sis, probability, economics, and operations research [9]. Moreover, Markov chain model-
ing became relevant in several applications from computer science, such as information re-
trieval [20]. Iterative solvers, such as algebraic multigrid methods,are used to compute the
steady state solution of a Markov chain, i.e., algebraic multigrid methods are used to find the
solution of a system with non-symmetricM -matrix structure–a non-trivial task given the size
of the Google matrix for example; see, e.g., [20].

Most of the algebraic multilevel methods start with a partitioning of the unknowns into
fine and coarse grid unknowns. Related to this ordering, then × n system matrixA can be
permuted into a block2 × 2 form

PAPT =

[
AFF AFC

ACF ACC

]
.

Here F denotes the set of fine grid unknowns, andC denotes the set of coarse grid
unknowns with|F | = nF and|C| = nC . This process is called coarsening. There are a lot
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of different algorithms and strategies to perform the abovepartitioning; see, e.g., [32, 22, 11,
39, 30]. The choice of the partitioning has a major influence on the convergence behavior of
AMG methods. Here we assume that the coarsening is done already in some way. Thus, we
assume thatA is given by

A =

[
AFF AFC

ACF ACC

]
.(1.1)

If the submatrixAFF is nonsingular, thenA can be factorized as

A =

[
IF 0

ACF A−1
FF IC

] [
AFF 0

0 S

] [
IF A−1

FF AFC

0 IC

]
,

where

S := (A/AFF ) := ACC − ACF A−1
FF AFC

is the Schur complement. If we now use an approximationÃFF of AFF and an approxi-
mationS̃ of S, or approximations of the inverses of these matrices, we obtain the matrixM
with

M =

[
IF 0

ACF Ã−1
FF IC

] [
ÃFF 0

0 S̃

][
IF Ã−1

FF AFC

0 IC

]
.(1.2)

This factorization is known as an approximate two-level block factorization [29]. Various
multilevel methods use this two-level block approximate factorization as a major tool; see,
e.g., [4, 5, 2, 27, 7, 33] and references in [29]. One of these methods is the AMLI method
introduced by Axelsson and Vassilevski in [4, 5]. With the use of the matrixM in (1.2) one
can define the stationary iteration given by the iteration matrix

TAMLI = I − M−1A.(1.3)

Here the subscript AMLI is chosen with respect to the first useof this approximate block
factorization by Axelsson and Vassilevski in the AMLI method. We point out that the AMLI
method itself contains a lot more ingredients like, e.g., polynomial acceleration. Moreover,
the AMLI method is designed originally in the framework of hierarchical bases to precondi-
tion the CG method.

For the iteration matrixTAMLI in (1.3), we obtain

TAMLI = I −

([
IF 0

ACF Ã−1
FF IC

] [
ÃFF 0

0 S̃

][
IF Ã−1

FF AFC

0 IC

])−1

A

= I −

[
−Ã−1

FF AFC

IC

]
S̃−1

[
−ACF Ã−1

FF IC

]
A

−

[
IF

0

]
Ã−1

FF

[
IF 0

]
A.

Using the restriction and prolongation operators

R̃ := [−ACF Ã−1
FF IC ], P̃T :=

[
−Ã−1

FF AFC

IC

]
, R̂T :=

[
IF

0

]
(1.4)
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and the matrices

P1 := P̃T S̃−1R̃A and P2 := R̂T Ã−1
FF R̂A,(1.5)

one obtains

TAMLI = I − P̃T S̃−1R̃A − R̂T Ã−1
FF R̂A = I − P1 − P2.(1.6)

Thus,TAMLI can be written as an additive Schwarz method with inexact local solves; see [41,
19, 36] for details about Schwarz methods.

Hence, the matricesTAMLI andM in (1.2) are constructed by an inexact block factor-
ization, i.e., by using aproductof matrices. The iteration given byTAMLI therefore can be
regarded as a multiplicative method [4, 5]. Moreover, there are also some other versions of
the original AMLI method. These methods do not use the inexact block factorization in (1.2)
and are based on a block-diagonal preconditioner. Therefore, these AMLI versions are called
additive methods [1, 3].

On the other handTAMLI can be written as anadditiveSchwarz method. To avoid con-
fusion here, we will use the terminologyAMLI approachfor the inexact block factorization
in (1.2) and the resulting iterative method. Moreover, we considerthis AMLI approach as an
additive Schwarz approach.

For some problems it is known that the multiplicative Schwarz method converges faster
than the additive Schwarz method [17, 26]. So it is natural to consider a related multiplica-
tive approach. The multiplicative version, which we call the MAMLI method or MAMLI
approach [24], is then given by

TMAMLI = (I − P1)(I − P2)

= (I − P̃T S̃−1R̃A)(I − R̂T Ã−1
FF R̂A)

=

(
I −

[
−Ã−1

FF AFC

IC

]
S̃−1

[
−ACF Ã−1

FF IC

]
A

)
(1.7)

·

(
I −

[
IF

0

]
Ã−1

FF

[
IF 0

]
A

)
.

There are two other methods that are closely related to the multiplicative version. The
first one is the reverse MAMLI method (RMAMLI). The other one is the symmetrized
MAMLI method (SMAMLI) [ 24]. These variants are defined in terms of their iteration ma-
trices given by

TRMAMLI = (I − P2)(I − P1)(1.8)

and

TSMAMLI = (I − P2)(I − P1)(I − P2).(1.9)

The multiplicative versions are closely related to certaingeometric and algebraic multi-
grid methods. The factorI −P2 in (1.7) can be seen as a relaxation or smoothing step, while
I − P1 in (1.7) is a coarse grid correction. In particular, the MAMLI method can be viewed
as a two-level V(1,0) cycle, the RMAMLI method as a two-levelV(0,1), and the SMAMLI
method as a two-level V(1,1) cycle with fine-grid only relaxation and special restriction and
coarse grid operators. In the AMLI approach, the smoother and the coarse grid correction
operator are combined in an additive way, while in the MAMLI approach, this is done in a
multiplicative way. Hence, the MAMLI approach is closer to the original multigrid schemes.
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Nevertheless, general additive multigrid methods have been successfully developed in the last
decades [10, 18, 37].

There is also a close relationship between the MAMLI techniques and the AMGr method
introduced by MacLachlan, Manteuffel, and McCormick in [21]. AMGr uses fine-grid only
relaxation, similar restriction operators, and Schur complements also. In [21] convergence
results and bounds for the rate of convergence are established for the AMGr method applied
to symmetric positive definite matrices.

There exist a lot of theoretical results for the AMLI method used as a solver or as a
preconditioner for the CG method [4, 5, 27, 2, 6, 13, 14]. However, the theoretical results
can be applied to symmetric positive definite matrices only.Notay gives in [28] some results
for the multilevel approximate block factorization applied to some special non-symmetric
M -matrices which arise from a specific discretization of a certain PDE. However, so far
a general convergence analysis of the AMLI approach for a wide class of non-symmetric
matrices is still missing. In this paper we give convergenceresults for the above mentioned
AMLI approach applied to arbitrary non-symmetricM -matrices. Moreover, we will establish
a detailed convergence theory for the MAMLI, RMAMLI and SMAMLI methods applied to
non-symmetricM -matrices. By a recursive use of the above described two-level techniques
one can easily construct the corresponding multilevel methods. For these multilevel methods
convergence results are also established in this paper.

Of course, the choice of the coarsening algorithm used to getthe partitioning in (1.1) has
a major influence on the convergence behavior. In this paper,we assume that this partition-
ing is done already in an arbitrary way. We want to focus on theconvergence behavior for
general partitionings and will compare different multilevel methods starting with the same
partitioning. Our convergence results are independent of the coarsening technique that is
used.

Recently, additive and multiplicative Schwarz methods fornon-symmetric matrices were
analyzed in [16, 8, 26]. In these papers an algebraic convergence theory for the additive
and multiplicative Schwarz methods was introduced. This theory yields several convergence
results and comparison results. However, this theory includes only special restriction and
prolongation operators, which are used in domain decomposition methods. This theory can
not be applied to multilevel or multigrid methods. In contrast to [16, 8, 26], we use and
analyze more general restriction and prolongation operators here.

The paper is organized as follows. In the next section we givesome notation and recall
some well-known results. Section3 describes the properties of the approximations that we
are using in the block factorization. In Section4 we establish convergence and comparison
results for two-level methods, while in Section5 these results are extended to multilevel
methods.

2. Notation and well-known results. A matrix B is nonnegative (positive), denoted
B ≥ 0 (B > 0), if its entries are nonnegative (positive). We say thatB ≥ C if B − C ≥ 0,
and similarly with the strict inequality. These definitionscarry over to vectors. A matrixA is
aZ-matrix if its off-diagonal elements are non-positive. AZ-matrixA is called a nonsingular
M -matrix if it is monotone, i.e.,A−1 ≥ 0. It follows that if A andB are nonsingularM -
matrices andA ≥ B, thenA−1 ≤ B−1 [9, 38]. By ρ(B) we denote the spectral radius of the
matrixB.

We say(M, N) is a splitting ofA if A = M − N andM is nonsingular. A splitting
is regular ifM−1 ≥ 0 andN ≥ 0; it is weak regular of the first type ifM−1 ≥ 0 and
M−1N ≥ 0 [9, 38, 40].

Here, we consider stationary iterative methods to solveAx = b. These methods start
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with a vectorx(0) and build a sequence of vectorsx(i+1) such that

x(i+1) = Tx(i) + c for i = 1, 2, . . . .(2.1)

The matrixT is called iteration matrix. Ifρ(T ) < 1 then, there exists a unique splitting
(M, N) such thatT = M−1N . This splitting is given byM = A(I−T )−1 andN = M−A.
We say thatT is induced by this splitting(M, N).

Related to the partitioning ofA in (1.1), we will denote byI then × n identity matrix
and withIF andIC thenF × nF andnC × nC the identity matrix, respectively.

For A = [ai,j ] ∈ R
n×n we define the matricesdiag(A), triu(A) andtril(A) ∈ R

n×n

by

(diag(A))i,j =

{
ai,j for i = j
0 otherwise,

(tril(A))i,j =

{
ai,j for i ≥ j
0 otherwise,

(triu(A))i,j =

{
ai,j for i ≤ j
0 otherwise.

Next we recall the definition of the weighted max-norm. Givena positive vectorw ∈ R
n,

denotedw > 0, the weighted max-norm is defined for anyy ∈ R
n as‖y‖w = max

j=1,··· ,n
|

1

wj

yj |.

The corresponding matrix norm is defined as‖T ‖w = sup
‖x‖w=1

‖Tx‖w and the following

lemma holds.
LEMMA 2.1. LetA ∈ R

n×n, be nonnegative,w ∈ R
n, w > 0, andγ > 0 such that

(2.2) Aw ≤ γw.

Then,‖A‖w ≤ γ. If the inequality in(2.2) is strict, then the bound on the norm is also strict.
Moreover,

‖A‖w = max
i=1...n

(Aw)i

wi

.

Proof. See, e.g.,[15].
Most of our estimates hold for all positive vectorsw of the formw = A−1e, wheree is

any positive vector, i.e., for any positive vectorw such thatAw is positive. In particular, this
would hold for anM -matrixA ande = (1, . . . , 1)T , i.e., withw = A−1e being the row sums
of A−1.

Moreover, we need the following well-known properties ofM -matrices.
THEOREM2.2. LetA ∈ R

n×n be a nonsingularZ-matrix.A is a nonsingularM -matrix
if and only if either of the following conditions holds:

• There exist two nonsingular monotone matricesB1, B2, such thatB1 ≤ A ≤ B2.
• Each principal submatrix ofA is a nonsingularM -matrix.

Proof. See, e.g., [9].
THEOREM 2.3. LetA ∈ R

n×n be a nonsingularM -matrix partitioned as

A =

[
AFF AFC

ACF ACC

]
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whereAFF ∈ R
s×s andACC ∈ R

n−s×n−s for somes ∈ {1, . . . , n − 1}. Then the Schur
complement

(A/AFF ) = ACC − ACF A−1
FF AFC

is a nonsingularM -matrix.
Proof. See, e.g., [9].
LEMMA 2.4. Let A be a nonsingularM -matrix and let(M, N) be a weak regular

splitting of first type. Then

M−1 ≤ A−1 .

Proof. See, e.g., [40, Theorem 3.2].
LEMMA 2.5. Let A be a nonsingularM -matrix. LetM be aZ-matrix such thatM ≥ A.

Then,(M, M − A) is a regular splitting, and therefore a weak regular splitting, ofA.
Proof. SinceM is aZ-matrix andM ≥ A, M is anM -matrix; see [9]. The statement

then follows immediately from the definitions of a weak regular and regular splittings.

3. The approximations. Of course, the quality of the approximations̃AFF of AFF

andS̃ of S used in the inexact multilevel block factorizations will beimportant for the con-
vergence behavior. Here we use the following properties of the approximations to prove
convergence of the AMLI approach.

ASSUMPTION 3.1. Let A be a nonsingular (non-symmetric)M -matrix and letA be
partitioned in the following2 × 2 block structure

A =

[
AFF AFC

ACF ACC

]
.

Furthermore, letÃFF and S̃ be chosen such that the splittings
(
ÃFF , ÃFF − AFF

)
and

(
S̃, S̃ − (A/ÃFF )

)
are weak regular of first type, i.e.,

Ã−1
FF ≥ 0 and IF − Ã−1

FF AFF ≥ 0,(3.1)

and

S̃−1 ≥ 0 and IC − S̃−1(A/ÃFF ) ≥ 0.(3.2)

Here(A/ÃFF ) is defined by(A/ÃFF ) := ACC − ACF Ã−1
FF AFC .

For the multiplicative versions we use a slightly modified set of approximations.
ASSUMPTION 3.2. Let A be a nonsingular (non-symmetric)M -matrix and letA be

partitioned in the following2 × 2 block structure

A =

[
AFF AFC

ACF ACC

]
.

Furthermore, letÃFF andS̃ be chosen such that the splittings
(
ÃFF , ÃFF − AFF

)
and

(
S̃, S̃ − R̃AP̃T

)

are weak regular of first type, i.e.,

Ã−1
FF ≥ 0 and IF − Ã−1

FF AFF ≥ 0,(3.3)
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and

S̃−1 ≥ 0 and IC − S̃−1(R̃AP̃T ) ≥ 0,(3.4)

whereR̃ andP̃T are given as in(1.4).
Here we point out that these assumptions or properties, which we require for the approx-

imations, are very weak. We will give examples of these approximations at the end of this
section. Note that no special coarsening or no special partitioning of the matrixA are needed
to find these kinds of approximations.

If we compare Assumptions3.1and3.2, we see that the only difference is the condition
for the approximatioñS.

Using the relation

R̃AP̃T = ACC − ACF

(
2Ã−1

FF − Ã−1
FF AFF Ã−1

FF

)
AFC ,

we will see in the following proposition, that Assumption3.2is weaker than Assumption3.1.
PROPOSITION3.3. Assumption3.1 implies Assumption3.2. In other words, if Assump-

tion 3.1holds, then Assumption3.2is fulfilled also.
Proof. We only have to prove that equation (3.1) together with equation (3.2) imply

equation (3.4). Hence, let the splittings
(
ÃFF , ÃFF − AFF

)
and

(
S̃, S̃ − (A/ÃFF )

)
be

weak regular of first type. Since

R̃AP̃T = ACC − ACF

(
2Ã−1

FF − Ã−1
FF AFF Ã−1

FF

)
AFC ,

we obtain

IC − S̃−1R̃AP̃T = IC − S̃−1
(
ACC − ACF

(
2Ã−1

FF − Ã−1
FF AFF Ã−1

FF

)
AFC

)

= IC − S̃−1
(
ACC − ACF Ã−1

FF AFC

)

+S̃−1ACF

(
Ã−1

FF − Ã−1
FF AFF Ã−1

FF

)
AFC

= IC − S̃−1
(
A/ÃFF

)
+ S̃−1ACF

(
IF − Ã−1

FF AFF

)
Ã−1

FF AFC .

Using the splitting property of̃AFF andS̃ and the sign pattern of theM -matrixA, we obtain

IC − S̃−1R̃AP̃T ≥ 0.

Hence, the splitting
(
S̃, S̃ − R̃AP̃T

)
is weak regular of first type.

Note that in both Assumptions there is a coupling between theapproximationsÃFF

andS̃, but it is very mild. Indeed, starting with anM -matrixA, the approximations given by
the Jacobi and the Gauss-Seidel methods and the incomplete LU-factorization are admissible
approximations, for example. To see this, one has to use Lemma2.5. Thus admissible choices
for ÃFF are

ÃFF = diag(AFF ),

ÃFF = tril(AFF ),

ÃFF = triu(AFF ),

ÃFF = L̃Ũ .
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Here,L̃ andŨ are the factors of an incompleteLU factorization ofAFF [23].
We will show in Theorem5.2that

R̃AP̃T =
[
−ACF Ã−1

FF I
]
A

[
−Ã−1

FF AFC

I

]

is a nonsingularM -matrix, if (ÃFF , ÃFF −AFF ) is a weak regular splitting, i.e., one of the
above choices is used as an approximation ofAFF . Hence, the following approximations̃S
fulfill our Assumption3.2,

S̃ = R̃AP̃T ,

S̃ = diag(R̃AP̃T ),

S̃ = tril(R̃AP̃T ),

S̃ = L̂Û ,

whereL̂ andÛ are the factors of an incompleteLU factorization ofR̃AP̃T . Moreover (see
Theorem5.2), S̃ can be chosen as

S̃ = (A/ÃFF ),

S̃ = ACC ,

S̃ = diag(ACC),

to fulfill Assumptions3.1and 3.2.
Hence, the Assumptions3.1 and 3.2 allow a wide variety of approximations and all

kinds of approximations used in practice seem to be included. We will show that all of these
approximations and splittings result in convergent methods. However, specific splittings may
lead to convergence bounds that are dependent on the properties of the splitting.

Next, let us compare our approximations with those used in the theoretical analysis of
approximate multilevel block factorization applied to symmetric positive definite systems. A
frequently used assumption is that

ÃFF − AFF is symmetric positive semidefinite;(3.5)

see, e.g., [4, 2, 29]. This assumption also can be expressed with the help of splittings as we did
with our assumptions above. Equation (3.5) implies that the splitting(ÃFF , ÃFF − AFF )
is a P-regular splitting ofAFF . P-regular splittings are introduced by Ortega in [31]; see
also [25]. A splitting A = M −N is called P-regular ifMT +N = M +MT −A is positive
definite. Note that a splitting of a symmetric positive definite matrixA is P-regular if and
only if ‖I − M−1A‖A < 1; see [42].

Hence, the usual assumption for symmetric positive definitesystems can be written in
terms of P-regular splittings. Note, however, that there isin general no link between P-regular
splittings and weak regular splittings.

4. Two-level convergence-results.We start this section with a fundamental proposition
which is the main tool in our convergence analysis.

PROPOSITION4.1. LetA ∈ R
n×n be a nonsingularM -matrix. If

• C ∈ R
n×n is nonnegative,

• I − CA is nonnegative,
• C has no zero row,
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thenC is nonsingular and the splitting(C−1, C−1 − A) of A is weak regular of first type.
Moreover,

ρ(I − CA) ≤ ‖I − CA‖w < 1,

wherew := A−1e for an arbitrary positive vectore ∈ R
n.

Proof. Let e ∈ R
n be an arbitrary positive vector. ThenCe is also positive. SinceA is

a nonsingularM -matrix the inverseA−1 is nonnegative and has no zero row. Therefore the
vectorw := A−1e is positive as well. Using these properties, we get

0 ≤ (I − CA) w = w − CAA−1e = w − Ce < w.

Due to Lemma2.1, this leads to

ρ(I − CA) ≤ ‖I − CA‖w < 1.(4.1)

Now assume, thatC is singular. Then there exists a nonzero vectorz with Cz = 0. Let
A−1z = y. Then

(I − CA)y = y − Cz = y.

But this contradicts(4.1). Hence,C is nonsingular. The splitting properties then follow
directly from the assumptions.

In the following, we considerTAMLI as given in (1.6).
LEMMA 4.2. Let Assumption3.1 be satisfied, i.e.,A is a nonsingularM -matrix par-

titioned as in(1.1) and the splittings
(
ÃFF , ÃFF − AFF

)
and

(
S̃, S̃ −

(
A/ÃFF

))
are

weak regular of first type. Then

TAMLI ≥ 0.

Proof. A computation leads to

TAMLI = I −

[
Ã−1

FF 0
0 0

] [
AFF AFC

ACF ACC

]

−

[
−Ã−1

FF AFC

IC

]
S̃−1

[
−ACF Ã−1

FF IC

] [ AFF AFC

ACF ACC

]

= I −

[
Ã−1

FF AFF Ã−1
FF AFC

0 0

]

−

[
−Ã−1

FF AFC

IC

]
S̃−1

[
ACF

(
IF − Ã−1

FF AFF

) (
A/ÃFF

) ]

=

[
IF − Ã−1

FF AFF 0
0 0

]

+


 Ã−1

FF AFC S̃−1ACF

(
IF − Ã−1

FF AFF

)
0

−S̃−1ACF

(
IF − Ã−1

FF AFF

)
0




+


 0 −Ã−1

FF AFC

(
IC − S̃−1

(
A/ÃFF

))

0 IC − S̃−1
(
A/ÃFF

)

 .
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Using the assumptions on the approximations,ÃFF andS̃, and the sign pattern of the
M -matrixA, we get thatTAMLI is nonnegative.

Lemma4.2 provides sufficient conditions for the non-negativity of the AMLI iteration
matrix. This powerful property will be used in the convergence analysis below.

THEOREM 4.3. Let Assumption3.1be satisfied, i.e.,A is a nonsingularM -matrix par-

titioned as in(1.1) and the splittings
(
ÃFF , ÃFF − AFF

)
and

(
S̃, S̃ −

(
A/ÃFF

))
are

weak regular of first type. Then

ρ (TAMLI) ≤ ‖TAMLI‖w < 1,

wherew = A−1e for an arbitrary positive vectore. Moreover,TAMLI is induced by a weak
regular splitting of first type, i.e.,

TAMLI = I − CAMLIA,

whereCAMLI is nonsingular and(C−1
AMLI , C

−1
AMLI − A) is a weak regular splitting of first

type ofA.
Proof. In order to use Proposition4.1we first writeTAMLI asTAMLI = I − CAMLIA.

We then establish thatI − CAMLIA satisfies the assumptions of Proposition4.1.
By Lemma4.2, TAMLI is nonnegative. Thus it suffices to show thatCAMLI is nonneg-

ative andCAMLI has no zero row.
Since

TAMLI = I − P̃T S̃−1R̃A − R̂T Ã−1
FF R̂A = I − P1 − P2,

the matrixCAMLI is given byP̃T S̃−1R̃ + R̂T Ã−1
FF R̂. With

MS := R̂T Ã−1
FF R̂ =

[
Ã−1

FF 0
0 0

]
,(4.2)

MCG := P̃T S̃−1R̃ =

[
−Ã−1

FF AFC

IC

]
S̃−1

[
−ACF Ã−1

FF IC

]
,(4.3)

we obtain

(4.4) TAMLI = I − (MS + MCG)A = I − CAMLIA ,

whereCAMLI := MS + MCG.
Using theM -matrix and splitting properties, we see that both matricesMS andMCG

are nonnegative. As a sum of two nonnegative matrices,CAMLI is also nonnegative.
SinceÃ−1

FF andS̃−1 are the inverses of nonsingular matrices they do not have zero rows.
Therefore, the firstnF rows of

MS =

[
Ã−1

FF 0
0 0

]

are not zero rows. Moreover, the lastnC rows of

MCG =

[
Ã−1

FF AFC S̃−1ACF Ã−1
FF −Ã−1

FF AFC S̃−1

−S̃−1ACF Ã−1
FF S̃−1

]

are not zero rows. SinceMCG andMS are nonnegative andCAMLI = MCG + MS, the
matrixCAMLI has no zero row.
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With Lemma4.2and Proposition4.1, we obtain

ρ (TAMLI) ≤ ‖TAMLI‖w < 1.

Starting with anM -matrixA and approximations as in (3.1) and (3.2), we proved conver-
gence of the AMLI approach for a wide class of non-symmetric matrices. In the convergence
proof the non-negativity of the iteration matrixTAMLI was the major tool.

Next, we analyze the MAMLI iteration matrix as given in (1.7). Before we consider the
product(I−P1)(I−P2), we take consider each factor separately. It is worth mentioning that
not both factors(I −P1) and(I −P2) are nonnegative, in general. This is a major difference
from the convergence analysis for special Schwarz methods given in [16, 8, 26]. While factor
I − P2 is nonnegative the other factorI − P1 need not to be nonnegative; see Example4.5.

PROPOSITION4.4. LetA be a nonsingularM -matrix partitioned as in(1.1).

If
(
ÃFF , ÃFF − AFF

)
is a weak regular splitting ofAFF of first type, then

I − P2 ≥ 0 and‖I − P2‖w = 1,

wherew = A−1e for an arbitrary positive vectore.
Proof. Using the splitting properties and theM -matrix sign pattern, we get that

I − P2 = I −

[
Ã−1

FF 0
0 0

] [
AFF AFC

ACF ACC

]

=

[
IF − Ã−1

FF AFF −Ã−1
FF AFC

0 IC

]

is nonnegative.
Let e be an arbitrary positive vector. SinceA is a nonsingularM -matrix,w = A−1e is

also positive. WithÃ−1
FF ≥ 0, we obtain

0 ≤ (I − P2)w =

(
I −

[
Ã−1

FF 0
0 0

]
A

)
A−1e = w −

[
Ã−1

FF 0
0 0

]
e ≤ w.

Using Lemma2.1, we get‖I −P2‖w ≤ 1. However, since the last components of(I −P2)w
andw are the same, it holds that

‖I − P2‖w = sup
‖x‖w=1

‖(I − P2)x‖w ≥ ‖(I − P2)w‖w = max
i

((I − P2)w)i

wi

≥ 1.

This leads to

‖I − P2‖w = 1.

EXAMPLE 4.5. Consider the matrix

A =




2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2




}
nF

}
nC

and partition it as indicated. We use the approximations

ÃFF =

[
2 0
0 2

]
and S̃ =

[
3
2 0
0 2

]
.
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These approximations fulfill (3.1) and (3.2). ThenI − P1 is given by

I − P1 =
1

6




6 0 0 0
1 6 −3 2
2 0 0 4
0 0 3 0


 .

Although (I − P1) is not nonnegative in general, we are able to establish the non-
negativity of the MAMLI iteration matrix.

LEMMA 4.6. Let Assumption3.2 be satisfied, i.e.,A is a nonsingularM -matrix parti-

tioned as in(1.1) and the splittings
(
ÃFF , ÃFF − AFF

)
and

(
S̃, S̃ − R̃AP̃T

)
are weak

regular of first type. ThenTMAMLI ≥ 0.
Proof. A computation leads to

TMAMLI =

(
I −

[
−Ã−1

FF AFC

IC

]
S̃−1

[
−ACF Ã−1

FF IC

] [ AFF AFC

ACF ACC

])

·

(
I −

[
Ã−1

FF 0
0 0

] [
AFF AFC

ACF ACC

])

= I −

[
Ã−1

FF AFF Ã−1
FF AFC

0 0

]

−

[
−Ã−1

FF AFC

IC

]
S̃−1

[
−ACF

(
2I − Ã−1

FF AFF

)
Ã−1

FF IC

]

·

[
AFF AFC

ACF ACC

]

= I −

[
Ã−1

FF AFF Ã−1
FF AFC

0 0

]

−

[
−Ã−1

FF AFC

IC

]
S̃−1

[
ACF

(
IF − Ã−1

FF AFF

)2

R̃AP̃T

]

= I −

[
Ã−1

FF AFF Ã−1
FF AFC

0 0

]

−

[
−Ã−1

FF AFC

IC

]
S̃−1

[
ACF

(
IF − Ã−1

FF AFF

)2

0

]

−

[
−Ã−1

FF AFC

IC

]
S̃−1

[
0 R̃AP̃T

]

=

[
IF − Ã−1

FF AFF 0
0 0

]

+




Ã−1
FF AFC S̃−1ACF

(
IF − Ã−1

FF AFF

)2

0

−S̃−1ACF

(
IF − Ã−1

FF AFF

)2

0




+



 0 −Ã−1
FF AFC

(
IC − S̃−1

(
R̃AP̃T

))

0 IC − S̃−1
(
R̃AP̃T

)



 .

Using the assumption on the approximationsÃFF and S̃ and the sign pattern of the
M -matrixA, we get thatTMAMLI is nonnegative.
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Due to Proposition3.3, Assumption3.1also leads to a nonnegative matrixTMAMLI .
Next we prove the convergence of the MAMLI method.
THEOREM 4.7. Let Assumption3.2be satisfied, i.e.,A is a nonsingularM -matrix par-

titioned as in(1.1) and the splittings
(
ÃFF , ÃFF − AFF

)
and

(
S̃, S̃ − R̃AP̃T

)
are weak

regular of first type. Then

ρ (TMAMLI) ≤ ‖TMAMLI‖w < 1,

wherew = A−1e for an arbitrary positive vectore. Moreover,TMAMLI is induced by a
weak regular splitting of first type, i.e.,

TMAMLI = I − CMAMLIA,

whereCMAMLI is nonsingular and(C−1
MAMLI , C−1

MAMLI − A) is a weak regular splitting
of first type ofA.

Proof.As in the proof of Theorem4.3, we use Proposition4.1. We first writeTMAMLI as
TMAMLI = I−CMAMLIA. Then we establish thatI−CMAMLIA satisfies the assumptions
of Proposition4.1. Since with Lemma4.6TMAMLI is nonnegative, it suffices to show that
CMAMLI is nonnegative andCMAMLI has no zero row. With

TMAMLI = (I − P1)(I − P2),

where

P1 = P̃T S̃−1R̃A and P2 = R̂T Ã−1
FF R̂A,

we easily obtain

TMAMLI = I − P1 − P2 + P1P2

= I − (MCG + MS − MCGAMS)A(4.5)

= I − CMAMLIA,

where

CMAMLI := MCG + MS − MCGAMS

andMS andMCG are as in (4.2) and (4.3).
Next we show thatCMAMLI is a nonnegative matrix. As seen in the proof of Theo-

rem4.3, both matricesMS andMCG are nonnegative. For−MCGAMS , we obtain

− MCGAMS = −

[
−Ã−1

FF AFC

IC

]
S̃−1

[
−ACF Ã−1

FF IC

][
AFF AFC

ACF ACC

] [
Ã−1

FF 0
0 0

]

=



 Ã−1
FF AFC S̃−1ACF

(
IF − Ã−1

FF AFF

)
Ã−1

FF 0

−S̃−1ACF

(
IF − Ã−1

FF AFF

)
Ã−1

FF 0



 .(4.6)

Using theM -matrix and splitting properties, we obtain that−MCGAMS is nonnegative.
Consequently,

(4.7) CMAMLI = MCG + MS + (−MCGAMS)

is also nonnegative.
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Next, we prove thatCMAMLI has no zero row. We already established that all three
terms ofCMAMLI in (4.7) are nonnegative, so it suffices to prove that the termMCG + MS

has no zero row. But this was already done in the proof of Theorem4.3. Now, using Propo-
sition4.1, we get that

ρ (TMAMLI) ≤ ‖TMAMLI‖w < 1.

Starting with anM -matrix A and approximations as in (3.1) and (3.2) or (3.3) and
(3.4), respectively, we proved convergence of the AMLI and the MAMLI method. As far
as we know these are the first convergence results for these methods for a wide class of non-
symmetric matrices.

Next, we consider the RMAMLI iteration matrix as given in (1.8)

TRMAMLI = (I − P2)(I − P1).

Since

TMAMLI = (I − P1)(I − P2) and TRMAMLI = (I − P2)(I − P1),

we immediately obtain

(4.8) ρ(TRMAMLI) = ρ(TMAMLI).

Thus, we have the following result.
COROLLARY 4.8. If Assumption3.2 is satisfied, then

ρ (TRMAMLI) < 1.

Although the spectral radii of the iteration matrices of theRMAMLI and the MAMLI
method are the same, there are significant differences in thestructure of the iteration matrices.
The iteration matrix of the RMAMLI method is not nonnegativein general as shown in the
next example.

EXAMPLE 4.9. Consider the matrix used in Example4.5

A =




2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2


 .

}
nF

}
nC

Again we use the approximations

ÃFF =

[
2 0
0 2

]
and S̃ =

[
3
2 0
0 2

]
,

and we obtain

TRMAMLI =
1

12




1 6 −3 2
8 0 0 4
4 0 0 8
0 0 6 0


 .

Now we will analyze the SMAMLI iteration matrix as given in (1.9),

TSMAMLI = (I − P2)(I − P1)(I − P2).
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THEOREM 4.10.Let Assumption3.2be satisfied. Then

TSMAMLI ≥ 0, and ρ (TSMAMLI) ≤ ‖TSMAMLI‖w < 1,

wherew = A−1e for an arbitrary positive vectore.
Proof. We easily obtain, using Lemma4.6and Proposition4.4, that

(4.9) TSMAMLI = (I − P2)(I − P1)(I − P2) = (I − P2)TMAMLI ≥ 0.

With Theorem4.7and Proposition4.4, we get

ρ(TSMAMLI) ≤ ‖TSMAMLI‖w ≤ ‖I − P2‖w‖TMAMLI‖w < 1.(4.10)

In the remainder of this section, we compare the SMAMLI, MAMLI, and AMLI methods
with respect to the weighted maximum norm of their iterationmatrices.

THEOREM 4.11.Let Assumption3.1be satisfied. Then

‖TSMAMLI‖w ≤ ‖TMAMLI‖w ≤ ‖TAMLI‖w < 1,

wherew = A−1e for an arbitrary positive vectore.
Proof. The inequality‖TAMLI‖w < 1 was proved in Theorem4.3. As shown in (4.4)

and (4.5) we have

TAMLI = I − (MS + MCG)A

TMAMLI = I − (MS + MCG − MCGAMS)A

= TAMLI + MCGAMSA,

whereMS andMCG are defined in (4.2) and (4.3).
Due to Lemmas4.2 and4.6, both iteration matrices are nonnegative. SinceA is aM -

matrix ande is a positive vector,w = A−1e is also positive. Therefore, both termsTAMLIw
andTMAMLIw are positive.

As seen in (4.6) the term−MCGAMS is nonnegative, so we obtain that the vectorMCGAMSe
has to be non-positive. Therefore,

‖TMAMLI‖w = max
i=1...n

(TMAMLIw)i

wi

= max
i=1...n

(TAMLIw + MCGAMSAA−1e)i

wi

≤ ‖TAMLI‖w.

The remaining inequality‖TSMAMLI‖w ≤ ‖TMAMLI‖w follows directly from inequal-
ity (4.10).

In the following, we establish a result for the AMLI, MAMLI, RMAMLI and SMAMLI
methods. All these methods coincide if the blockAFF is inverted exactly, i.e.,̃AFF = AFF ,
independent of the quality of the approximation of the SchurcomplementS. This result holds
for all system matricesA, symmetric or non-symmetric, and not forM -matrices only.

THEOREM 4.12. Let A be a nonsingular matrix, which is partitioned in the following
2 × 2 block structure

A =

[
AFF AFC

ACF ACC

]
.
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If AFF is nonsingular and̃AFF = AFF , then

TAMLI = TMAMLI = TRMAMLI = TSMAMLI .

holds for any approximatioñS of (A/AFF ).
Proof. We have, with (4.4) and (4.5),

TAMLI = I − (MS + MCG)A

TMAMLI = I − (MS + MCG − MCGAMS) A.

Similarly, we obtain for the RMAMLI and the SMAMLI method,

TRMAMLI = I − (MS + MCG − MSAMCG)A

TSMAMLI = I − (2MS + MCG − MSAMCG

−MSAMS − MCGAMS

+MSAMCGAMS)A.

Computing the products shows that

MCGAMS = MSAMCG = 0,

and

MSAMS =

[
A−1

FF 0
0 0

]
= MS .

Hence,

TAMLI = TMAMLI = TRMAMLI = TSMAMLI .

5. Multilevel convergence results.In Section4, we proved convergence for two-level
methods. Here we extend the convergence results to multilevel methods, i.e., the two-level
AMLI or MAMLI technique is used recursively on different levels or different coarse grids.
The so-called coarse grid system, the system that involves the Schur complement, is then
solved or approximated by the AMLI or MAMLI approach again.

To prove convergence for the multilevel methods, we need thefollowing preliminary
results.

LEMMA 5.1. Let
(
ÃFF , ÃFF − AFF

)
be a weak regular splitting of first type ofAFF .

Then

B̃−1
FF := 2Ã−1

FF − Ã−1
FF AFF Ã−1

FF

is nonsingular and the splitting
(
B̃FF , B̃FF − AFF

)

of AFF is weak regular of first type.
Proof. We have

B̃−1
FF = 2Ã−1

FF − Ã−1
FF AFF Ã−1

FF

= Ã−1
FF︸︷︷︸
≥0

+
(
I − Ã−1

FF AFF

)

︸ ︷︷ ︸
≥0

Ã−1
FF︸︷︷︸
≥0

≥ 0.
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Thus,B̃−1
FF can be written as a sum of nonnegative terms. SinceÃ−1

FF is nonsingular,
Ã−1

FF has no zero row. Hence,̃B−1
FF has also no zero row. Moreover,

I − B̃−1
FF AFF = I −

(
2Ã−1

FF − Ã−1
FF AFF Ã−1

FF

)
AFF

=
(
I − Ã−1

FF AFF

)

︸ ︷︷ ︸
≥0

(
I − Ã−1

FF AFF

)

︸ ︷︷ ︸
≥0

≥ 0.

Thus, we have shown that
• B̃−1

FF is nonnegative,
• I − B̃−1

FF AFF is nonnegative,
• B̃−1

FF has no zero row.

Hence, with Proposition4.1 the matrix B̃−1
FF is nonsingular and

(
B̃FF , B̃FF − AFF

)
is a

weak regular splitting of first type.
THEOREM 5.2. LetA be a nonsingularM -matrix partitioned as

A =

[
AFF AFC

ACF ACC

]
.

Let
(
ÃFF , ÃFF − AFF

)
be a weak regular splitting of first typeAFF . Then

ACC ,
(
A/ÃFF

)
, and R̃AP̃T =

[
−ACF Ã−1

FF I
]
A

[
−Ã−1

FF AFC

I

]

are nonsingularM -matrices. Moreover,

(5.1) ACC ≥
(
A/ÃFF

)
≥
[
−ACF Ã−1

FF I
]
A

[
−Ã−1

FF AFC

I

]
≥ (A/AFF ) .

Proof. With Theorem2.2, we have thatACC is a nonsingularM -matrix.

Next, we consider
(
A/ÃFF

)
. Since

(
ÃFF , ÃFF − AFF

)
is a weak regular splitting,

we obtain with Lemma2.4that

0 ≤ Ã−1
FF ≤ A−1

FF .

Using theM -matrix structure ofA, we get

(A/AFF ) = ACC − ACF︸︷︷︸
≤0

A−1
FF︸︷︷︸

≥ eA
−1

F F

AFC︸︷︷︸
≤0

≤ ACC − A−1
CF Ã−1

FF ACF =
(
A/ÃFF

)
.

Similarly,
(
A/ÃFF

)
= ACC − ACF︸︷︷︸

≤0

Ã−1
FF︸︷︷︸
≥0

AFC︸︷︷︸
≤0

≤ ACC .

Thus, we get the inequalities

(5.2) ACC ≥
(
A/ÃFF

)
≥ (A/AFF ) .
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By Theorem2.2, ACC is a nonsingularM -matrix and with Theorem2.3 (A/AFF ) is a
nonsingularM -matrix also. Hence, by Theorem2.2, we obtain the desired property of(
A/ÃFF

)
.

Next consider
[
−ACF Ã−1

FF I
]
A

[
−Ã−1

FF AFC

I

]
. We obtain

[
−ACF Ã−1

FF I
]

A

[
−Ã−1

FF AFC

I

]
=

= ACC − ACF

(
Ã−1

FF + Ã−1
FF − Ã−1

FF AFF Ã−1
FF

)
AFC

= ACC − ACF B̃−1
FF AFC =

(
A/B̃FF

)
,

whereB̃−1
FF := Ã−1

FF + Ã−1
FF − Ã−1

FF AFF Ã−1
FF .

With Lemma5.1,
(
B̃FF , B̃FF − AFF

)
is a weak regular splitting of first type. Hence,

replacingÃFF by B̃FF we can follow the above part of the proof. Therefore, we obtain that
(
A/B̃FF

)
=
[
−ACF Ã−1

FF I
]
A

[
−Ã−1

FF AFC

I

]
is a nonsingularM -matrix. Thus, we

get the inequalities

(5.3) ACC ≥
[
−ACF Ã−1

FF I
]
A

[
−Ã−1

FF AFC

I

]
≥ (A/AFF ) .

Next, we prove (5.1). We have

B̃−1
FF = 2Ã−1

FF − Ã−1
FF AFF Ã−1

FF = Ã−1
FF︸︷︷︸
≥0

+
(
I − Ã−1

FF AFF

)

︸ ︷︷ ︸
≥0

Ã−1
FF︸︷︷︸
≥0

≥ Ã−1
FF .

SinceA is anM -matrix, the blocksACF andAFC are non-positive. Therefore

[
−ACF Ã−1

FF I
]
A

[
−Ã−1

FF AFC

I

]
= ACC − ACF︸︷︷︸

≤0

B̃−1
FF︸︷︷︸

≥ eA
−1

F F
≥0

AFC︸︷︷︸
≤0

≤ ACC − ACF︸︷︷︸
≤0

Ã−1
FF︸︷︷︸
≥0

AFC︸︷︷︸
≤0

=
(
A/ÃFF

)
.

Together with (5.2) and (5.3), we then obtain (5.1)

ACC ≥
(
A/ÃFF

)
≥
[
−ACF Ã−1

FF I
]
A

[
−Ã−1

FF AFC

I

]
≥ (A/AFF ) .

Now, we turn to the multilevel methods. As mentioned in the beginning of this sec-
tion, the coarse grid system is solved recursively with an iterative method, namely, the same
method used for the original system. To describe the multilevel methods, we need also a
hierarchy of matricesA(1), . . . , A(L), whereA(1) = A andA(2) is anc × nc matrix, etc.

First we consider the AMLI approach. Similarly to Assumption 3.1in the two-level case,
we need assumptions for the approximations in the multilevel case.
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ASSUMPTION5.3. LetA(1) ∈ R
n×n be a nonsingularM -matrix. Forl = 1, . . . , L−1,

assume that
• A(l) is partitioned in the2 × 2 block structure

A(l) =

[
A

(l)
FF A

(l)
FC

A
(l)
CF A

(l)
CC

]
,

•
(
Ã

(l)
FF , Ã

(l)
FF − A

(l)
FF

)
is a weak regular splitting of first type,

• A(l+1) is given by

(5.4) A(l+1) =
(
A/Ã

(l)
FF

)
.

Moreover
(
S̃(L), S̃(L) − A(L)

)
is a weak regular splitting of first type.

Note that forL = 2, Assumption5.3 is nothing other than Assumption3.1.
We immediately obtain the following lemma.
LEMMA 5.4. If Assumption5.3holds, all matricesA(l), l = 1, . . . , L, are nonsingular

M -matrices.
Proof. The lemma can be proved by induction and Theorem5.2.
The multilevel AMLI iteration matrixT M

AMLI is then given by

T M
AMLI = I − C

(1)
AMLIA

(1),

where forl = 1, . . . , L − 1,

C
(l)
AMLI :=

[
Ã

(l)−1

FF 0
0 0

]
+

[
−Ã

(l)−1

FF A
(l)
FC

IC

]
C

(l+1)
AMLI

[
−A

(l)
CF Ã

(l)−1

FF IC

]

andC
(L)
AMLI := S(L)−1

.
We obtain the following result.
THEOREM 5.5. Let Assumption5.3be satisfied. Then

ρ
(
T M

AMLI

)
≤ ‖I − C

(1)
AMLIA

(1)‖w < 1.

Proof. For levelL − 1, we have

C
(L−1)
AMLI :=[

Ã
(L−1)−1

FF 0
0 0

]
+

[
−Ã

(L−1)−1

FF A
(L−1)
FC

IC

]
C

(L)
AMLI

[
−A

(L−1)
CF Ã

(L−1)−1

FF IC

]
.

SinceC
(L)
AMLI := S̃(L)−1

, we can apply Theorem4.3. Thus
(
C̃

(L)−1

AMLI , C̃
(L)−1

AMLI − A(L)
)

is

a weak regular splitting of first type, and sinceA(L−1) is anM -matrix (see Lemma5.4)
the assumptions of Theorem4.3are satisfied. Thus, by Theorem4.3, C

(L−1)
AMLI is nonsingular

and
(
C

(L−1)−1

AMLI , C
(L−1)−1

AMLI − A(L−1)
)

is a weak regular splitting of first type.

Repeating this procedure for levelL − 2 and all other levels, we obtain

ρ
(
T M

AMLI

)
≤ ‖I − C

(1)
AMLIA

(1)‖w < 1.

Next, we consider the MAMLI method. Similarly to Section4, we can use a weaker
assumption for the approximations used in the MAMLI method.
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ASSUMPTION5.6. LetA(1) ∈ R
n×n be a nonsingularM -matrix. Forl = 1, . . . , L−1,

assume that
• A(l) is partitioned in the2 × 2 block structure

A(l) =

[
A

(l)
FF A

(l)
FC

A
(l)
CF A

(l)
CC

]
,

•
(
Ã

(l)
FF , Ã

(l)
FF − A

(l)
FF

)
is a weak regular splitting of first type,

• A(l+1) is given by

(5.5) A(l+1) =
[
−A

(l)
CF Ã

(l)−1

FF I

]
A(l)

[
−Ã

(l)−1

FF A
(l)
FC

I

]
.

Moreover,
(
S̃(L), S̃(L) − A(L)

)
is a weak regular splitting of first type.

Again, note that forL = 2 Assumption5.6 is nothing other than Assumption3.2. We
immediately obtain again

LEMMA 5.7. If Assumption5.6holds, all matricesA(l), l = 1, . . . , L, are nonsingular
M -matrices.

Proof. The lemma can be proved by induction and Theorem5.2.
The multilevel MAMLI method is then given by the iteration matrix

T M
MAMLI = I − C

(1)
MAMLIA

(1),

where, forl = 1, . . . , L − 1,

C
(l)
MAMLI :=

[
Ã

(l)−1

FF 0
0 0

]
+

[
−Ã

(l)−1

FF A
(l)
FC

IC

]
C

(l+1)
MAMLI

[
−A

(l)
CF Ã

(l)−1

FF IC

]

−

[
−Ã

(l)−1

FF A
(l)
FC

IC

]
C

(l+1)
MAMLI

[
−A

(l)
CF Ã

(l)−1

FF IC

]
A(l)

[
Ã

(l)−1

FF 0
0 0

]

andC
(L)
MAMLI := S(L)−1

.
We now are able to prove the convergence of the multilevel MAMLI method.
THEOREM 5.8. Let Assumption5.6be satisfied. Then

ρ
(
T M

MAMLI

)
≤ ‖I − C

(1)
MAMLIA

(1)‖w < 1.

Proof. The proof is similar to the proof of Theorem5.5. Note, that with Theorem5.2all
A(l+1) areM -matrices.

In our two level convergence theorems, the assumptions for the approximations of the
coarse grid system, i.e., the Schur complement, are expressed with the use of the original
matrix A. In detail, we used(A/ÃFF ) for the AMLI method andR̃AP̃T for the MAMLI
method; see (3.2) in Assumption3.1and (3.4) in Assumption3.2.

Thus for the multilevel convergence theorems above, we usedthe corresponding formu-
lation for building the coarse matrices on each level, i.e.,

A(l+1) =
(
A/Ã

(l)
FF

)
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for the AMLI method and

A(l+1) =
[
−A

(l)
CF Ã

(l)−1

FF I

]
A(l)

[
−Ã

(l)−1

FF A
(l)
FC

I

]

for the MAMLI method.
However, with similar arguments as in the proofs of the two-level and the multilevel

convergence theorems, one can prove the following results.
THEOREM 5.9. Let Assumption5.3be satisfied, except that(5.4) is replaced by

A(l+1) = A
(l)
CC .

Then

ρ
(
T M

AMLI

)
≤ ‖I − C

(1)
AMLIA

(1)‖w < 1.

Proof. Obviously, all matricesA(l+1) are nonsingularM -matrices.
The proof for the multilevel method is based on the proof for the two-level method.

Thus, for the two-level method we assume, thatÃFF andS̃ are chosen such that the splitting(
ÃFF , ÃFF − AFF

)
is weak regular of first type and that the splitting

(
S̃, S̃ − ACC

)
is weak regular of first type.(5.6)

We omit the level indices here.
UsingI − S̃−1ACC ≥ 0, we get

I − S̃−1(A/ÃFF ) = I − S̃−1(ACC − ACF Ã−1
FF AFC)

= I − S̃−1ACC + S̃−1(ACF Ã−1
FF AFC)

≥ 0.

Thus,(S̃, S̃ − (A/ÃFF )) is a weak regular splitting. Therefore, the assumptions of The-
orems4.2 and4.3 are fulfilled and we can follow their proofs. Hence, we obtainthat the
new iteration matrixT̂AMLI , that is built by using the approximations (5.6), is nonnegative.
Moreover, we also haveρ(T̂AMLI) < 1 andT̂AMLI is induced by a weak regular splitting
(ĈAMLI−1 , Ĉ−1

AMLI − A).
We can then follow the proof of Theorem5.5 to establish the convergence of the multi-

level method.
Moreover, we have for the MAMLI method.
THEOREM 5.10.Let Assumption5.6be satisfied, except that(5.5) is replaced by

A(l+1) = A
(l)
CC

or

A(l+1) =
(
A/Ã

(l)
FF

)
.

Then

ρ
(
T M

MAMLI

)
≤ ‖I − C

(1)
MAMLIA

(1)‖w < 1.

Proof. The proof is similar to the proof of Theorem5.9.
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6. Conclusion. In this paper we analyzed algebraic multilevel methods applied to non-
symmetricM -matrices. We considered two types of AMG methods, the AMLI approach and
the MAMLI method. We established convergence results for these methods used as solvers
applied to non-symmetricM -matrices. Moreover, we gave some algebraic properties of these
methods and the corresponding iteration matrices and splittings.

Aknowledgment. We would like to thank the referees for helpful comments.
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