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GEGENBAUER POLYNOMIALS AND
SEMISEPARABLE MATRICES*

JENS KEINER'

Abstract. In this paper, we develop a new O(n log n) algorithm for converting coefficients between expansions
in different families of Gegenbauer polynomials up to a finite degree n. To this end, we show that the correspond-
ing linear mapping is represented by the eigenvector matrix of an explicitly known diagonal plus upper triangular
semiseparable matrix. The method is based on a new efficient algorithm for computing the eigendecomposition of
such a matrix. Using fast summation techniques, the eigenvectors of an n X n matrix can be computed explicitly with
O (n2) arithmetic operations and the eigenvector matrix can be applied to an arbitrary vector at cost O (nlogn).
All algorithms are accurate up to a prefixed accuracy €. We provide brief numerical results.
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1. Introduction. The development and implementation of numerical algorithms for
solving problems from mathematical physics has long evolved since the beginning of the
computer age. With the availability of larger and larger computational resources, over the
years, the demand for solving physical problems computationally has created a growing need
for efficient and accurate algorithms. These involve the large class of special functions of
mathematical physics which arise during mathematical formulation of the problem at hand.
Standard references in this area are, for example, Nikiforov and Uvarov [32], Temme [41],
and Olver [34].

The increased impact of numerical algorithms could not have become more clear since
the publication of the celebrated FFT algorithm by Cooley and Tukey in [7]. The same
method was used - with paper and pencil - already by Gauss in 1805 to estimate the trajecto-
ries of asteroids and has laid the foundation for a substantial part of everyday-use numerical
algorithms. In the wake of the FFT algorithm, which in essence deals with sine and cosine
functions, similar algorithms for more general function systems have drawn more and more
attention. This also holds for Gegenbauer polynomials where sines and cosines (in this order)
are included in the form of Chebyshev polynomials of second and first kind.

Gegenbauer polynomials are frequent companions in the mathematical treatment of a
range of problems motivated from physics. Often-cited examples are Schrodinger-type equa-
tions which lead to differential equations of hypergeometric type; see [32, pp. 1]. Gegenbauer
polynomials C,(La) with parameter « > 0 and degree n form a complete set of orthogonal
polynomial solutions to the more special Gegenbauer differential equation

(1-2*)y" — 2a+ Dy +n(n+2a)y=0 (n€Ng, a>—-1/2,a#0,z € [-1,1]).

Most textbooks on classical orthogonal polynomials mention Gegenbauer polynomials as a
special case, notably Szeg6 [40], Chihara [6] and Nikiforov and Uvarov [32].

In this paper, we treat the problem of coefficient conversion between expansions in differ-
ent families of Gegenbauer polynomials. It is a common task to evaluate, analyse or somehow

process a function f which is known by its finite expansion in Gegenbauer polynomials CT(LO‘)
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for a certain fixed value of o, i.e.

N
£ =3 .
n=0

It also happens frequently that this can be done most efficiently when the whole expansion
could be converted into another one for a different parameter value 3,

N
F=Y vCP.
n=0

A usual example is the case o > 0 and 8 = 0 which corresponds to a conversion to Cheby-
shev polynomials of first kind. Expansions in these polynomials can be efficiently handled
with FFT and NFFT techniques publicly available in software libraries; see [12, 25]. In most
cases avoiding coefficient conversion results in prohibitively costly computations if no fast
algorithms for the original form are available.

Many papers discussing coefficient conversion and related problems are available in the
literature. Alpert and Rokhlin [2] consider the special case of converting between Legendre
polynomials and Chebyshev polynomials of first kind. They develop an approximate O(n) al-
gorithm based on matrix compression techniques. The method has been recently generalised
to arbitrary families of Gegenbauer polynomials in [24] but the connection to semisepara-
ble matrices established in this work is not revealed. It is, however, asymptotically faster.
Potts, Steidl, and Tasche [37] and Potts [36] treat the evaluation of orthogonal polynomial
expansions at Chebyshev- as well as at arbitrary nodes. Driscoll, Healy, Moore, and Rock-
more [30, 9] earlier considered the ‘transposed’ transformation, but at Chebyshev nodes only.
The algorithms are exact, need O(n log2 n) arithmetic operations, and solely depend on the
related three-term recurrence relation. However, they can suffer from severe numerical insta-
bilities unless stabilisation techniques are employed. Improved versions used in the context
of fast spherical harmonics transforms appear in [8, 21] for special nodes and [27, 26] for
arbitrary nodes. Suda and Takami [39] use similar concepts but a new stabilisation technique
based on a nearly-optimal choice of interpolation nodes. Several other papers in the general
context of structured matrices and orthogonal polynomials include Higham [22], Pan [35],
Olshevsky and Pan [33], and many others.

In [38], Rokhlin and Tygert describe a new technique for converting between expansions
in associated Legendre functions of different orders. Based on related differential equations,
they discover that the linear mapping for coefficient conversion appears as the eigenvector
matrix of an explicitly known symmetric diagonal plus semiseparable matrix. This allows for
applying a well-known efficient algorithm by Chandrasekaran and Gu from [5] for comput-
ing the eigendecomposition of such a matrix. In combination with a variant of Greengard’s
and Rokhlin’s fast multipole method [17] this yields a fast algorithm for computing spherical
harmonics transforms. Our method is somewhat similar but focuses on Gegenbauer polyno-
mials.

Semiseparable matrices themselves also appear in a range of fields in applied mathemat-
ics, such as physical problems that give rise to so-called oscillation matrices (Gantmakher
and Krein [13]), statistical analysis with covariance matrices that turn out to be specially
structured (Graybill [16]), and the discretisation of certain integral equations (Kailath [23]).
In most cases, it is desirable to solve linear systems of equations involving a semiseparable
matrix or to obtain its eigendecomposition. In [42], Vandebril gives a general introduction
to semiseparable matrices with focus on the symmetric eigenvalue problem. Bella, Eidel-
man, Gohberg, Olshevsky, and Tyrtyshnikov have considered even more general classes of
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so-called quasiseparable matrices and give explicit and recursive formulae for eigenvectors,
characteristic polynomials and other related quantities; see [11, 3]. They also derive fast
algorithms exploiting structural properties and introduce new classes of orthogonal polyno-
mials. This is done by generalising the concept of tridiagonal Jacoby matrices for classical
orthogonal polynomials to quasiseparable matrices of order one. Instead, we use well-known
properties of Gegenbauer polynomials and the structure of the eigendecomposition of a par-
ticular class of semiseparable matrices to establish a new connection to coefficient conversion
between different families of Gegenbauer polynomials.

In [5], Chandrasekaran and Gu develop an efficient divide-and-conquer algorithm for
computing the eigendecomposition of a symmetric block-diagonal plus semiseparable ma-
trix. For an n X n matrix, they obtain an exact O (n2) algorithm for computing only the
eigenvalues and an exact O (n3) algorithm for computing in addition also the eigenvectors.
Using fast summation techniques, the algorithms can be accelerated to yield an O(nlogn)
algorithm for computing only the eigenvalues, an O (n2) algorithm for computing also the
eigenvectors, and, moreover, an O (n logn) algorithm for applying the eigenvector matrix, or
optionally its inverse, to a vector. The accelerated algorithms are accurate up to a prefixed ac-
curacy €. The essential ingredient is a recursive splitting of the matrix in question into smaller
matrices of the same type until the problem can be solved directly for each small matrix. The
results are then efficiently combined to obtain the eigendecomposition of the whole matrix.
This is a classical divide-and-conquer strategy. Mastronardi, Van Camp, and Van Barel de-
vise similar algorithms in [29]. We develop a new efficient algorithm for computing the
eigendecomposition of diagonal plus upper or lower triangular semiseparable matrices. They
distinguish from the symmetric semiseparable case by that either their upper or their lower
triangular part is zero. The procedure resembles the symmetric case but allows for some sim-
plifications. To be applicable to the problem of coefficient conversion between expansions in
Gegenbauer polynomials, we show that the corresponding linear mapping is the eigenvector
matrix of an explicitly known diagonal plus upper triangular semiseparable matrix.

The structure of this paper is as follows: In Section 2, we introduce basic notation and
definitions. In Section 3, we briefly survey Chandrasekaran’s and Gu’s divide-and conquer
algorithm for computing the eigendecomposition of symmetric block-diagonal plus semisep-
arable matrices from [5] and develop a new strategy for diagonal plus upper or lower tri-
angular semiseparable matrices. We comment briefly on accelerating the algorithms by fast
summation techniques. In Section 4, we show that the linear mapping that converts between
expansions in different families of Gegenbauer polynomials is the eigenvector matrix of an
explicitly known upper triangular semiseparable matrix. We complement the theoretical find-
ings by numerical results in Section 5.

2. Notational conventions and preliminaries. In this section, we introduce basic no-
tation and definitions. Scalars are displayed in normal face while vectors and matrices are
displayed in boldface. We use capital letters to denote matrices and lower case letters for
scalars or vectors. We denote by d; ; the usual Kronecker delta. Throughout this paper, all
matrices have real entries and real eigenvalues. For a vector x, we let diag (x) be the diagonal
matrix with the entries of x on its diagonal. If x has length n and 0 < k < n, then x; denotes
the subvector containing the first & elements of x and x5 is the subvector consisting of the
last n — k elements of x. For a matrix A, we define diag(A) to be the vector containing
the diagonal entries of A. Furthermore, triu (A) denotes the matrix that coincides with A
strictly above the main diagonal while being zero elsewhere. Similarly, tril (A) is identical
to A strictly below the main diagonal and zero elsewhere.
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DEFINITION 2.1. A matrix A € R"*" is called symmetric diagonal plus semiseparable’
or S-matrix if it has the form

2.1) A = diag (d) + triu (uv™) + tril (vu®) (d,u,v € R").

A generic example for an S-matrix is

dy pive  pav3 ... Hilp

H1v2 do M2V3 ... M2Vp

A= |mvs pavs dz ... psvy,
MiVn  H2Vp  U3Vnp ... dn

It consists of diagonal elements d; and off-diagonal elements ;v which are part of rank-one
matrices u v’ and v u”, respectively. The elements y,, and vy can be chosen arbitrarily since
not referenced. A particular class of unsymmetric but similarly structured matrices is obtained
by discarding either the lower or the upper triangular part from the defining equation (2.1).

DEFINITION 2.2. A matrix A € R"*™ is called diagonal plus upper triangular semisep-
arable or U-matrix if it has the form

A = diag (d) + triu (u vT) (d,u,v e R*).

A matrix B € R"™™ is called diagonal plus lower triangular semiseparable or £-matrix if it
can be represented as

B = diag (d) + tril (vu") (d,u,v € R").

Both, U- and £-matrices, reveal their eigenvalues immediately which are just their respective
diagonal entries d;.

2.1. Eigenvalues and eigenvectors. While being similar in structure, S-, Y-, and L-
matrices differ with respect to the eigendecomposition. For an S-matrix A, the Spectral The-
orem for symmetric matrices (see [15, Theorem 8.1.1, p. 393]) asserts an eigendecomposition
A = QA QT with an orthogonal eigenvector matrix Q and a real diagonal eigenvalue ma-
trix A. The eigenvectors of A, i.e., the columns of Q, are mutually orthogonal and therefore
linearly independent. This holds even in the presence of multiple eigenvalues. Divide-and-
conquer algorithms for computing the eigendecomposition of S-matrices have been devel-
oped by Chandrasekaran and Gu in [5] and Mastronardi, Van Camp, and Van Barel in [29].
A deflation procedure from Bunch, Nielsen, and Sorensen in [4] allows for handling the case
of multiple eigenvalues. Therefore, no further assumptions on the matrix have to be made
beforehand.

Similar arguments for {/- and £-matrices A do not hold. In general, unsymmetric matri-
ces, even with real components, have complex eigenvalues. In our case, however, the eigen-
values coincide with the real entries dy, ds, . . ., d, on the main diagonal of A and hence are
always real. But in the case of multiple eigenvalues, it might happen that A has degenerate
eigenspaces. That is, the eigenspaces can have strictly lower dimension than the algebraic
multiplicity of the corresponding eigenvalue. Eidelman, Gohberg, and Olshevsky ([11]) es-
tablish necessary conditions under which the eigenvalues are simple. A similar deflation

"Here and throughout the paper the term semiseparable is used as a convenient abbreviation to generator rep-
resentable semiseparable of semiseparability rank one. Historically, the definition of semiseparability has been
sometimes ambiguous; see [43].
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procedure as for S-matrices seems to be unknown yet. In the following, we therefore assume
that all eigenvalues are distinct, i.e., d; # di whenever j # K, such that the eigenvectors
are guaranteed to be linearly independent. The assumption will always be fulfilled in our
application in Section 4.

3. Spectral divide-and-conquer algorithms. This section surveys Chandrasekaran’s
and Gu’s spectral divide-and-conquer method from [5] for computing the eigendecomposi-
tion of S-matrices. It is based on a dyadic decomposition strategy. In the divide phase, the
problem is recursively split into smaller sub-problems of the same type until each smaller
problem can be solved directly. In the conquer phase, solutions of smaller problems are suc-
cessively combined to solutions for the next bigger problems, following the decomposition
tree, until the sought solution of the original problem is obtained. We extend this concept to
U- and L-matrices with the additional assumption on the simplicity of the eigenvalues.

3.1. Symmetric diagonal plus semiseparable matrices. The problem of computing
the eigendecomposition of an S-matrix A = diag (d) + triu (u VT) + tril (v uT) € R” has
been studied in [5]. We sketch the basic strategy here.

3.1.1. Divide phase. The main idea for a divide-and-conquer approach is the fact that
an S-matrix A admits the recursive representation

A, 0 T
A= "
( 0 A2)+pww,

where p = =£1 is a free chosen scalar, w € R” is a vector, and Al and Ag are S-matrices
themselves. To check this, fix p and let 0 < k < n (usually, & is chosen as k = |n/2]). Then

we can write
_ Al up V2T
A o ( Vo u'lI‘ A2
with the principal sub-matrices A1 and A, of A defined by
A; = diag (d;) + triu (u; v ) + tril (v, u; ) (j=1,2).

The rank-one matrices u; vr2r and vy ulT account for the rest of the symmetric semiseparable
part of A. Finally, defining the vector w € R™ by

u
V2o
we obtain the decomposition

_( A1 —puyuf 0 T_( A O T
A-( 0 Ay — pvav] +pww = +pww'.

Here, the newly defined matrices Al and AQ with
A=A, — puyuf =diag (di — pdiag(us uf)) + triu (u1 (v — pul)T)

+ tril ((vi — pmy) ulr) ,
Ay := Ay — pvy vy =diag (d2 — pdiag(va vy)) + triu ((us — pva) vy )

+ tril (v2 (ug — pv2)T)

are S-matrices themselves. They may be decomposed recursively in the same manner.
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3.1.2. Conquer phase. Let p and k be defined as before. Suppose now that we have
computed the eigendecompositions of two smaller S-matrices A; and A, obtained from the
decomposition of a bigger S-matrix A,

A, =Q A Q] A, =Q:A:Q7,

with the diagonal eigenvalue matrices A; := diag (A1), A := diag (A2), and the orthogonal
eigenvector matrices Q; and Q2. For the matrix A, this implies the representation

_(Q o Q o0 \"
A_< 01 Q2>(A—|—pzzT)( 01 Q2)

with the matrix A := diag (\) and the vector

T
Q 0
Z = w.
(% a
To obtain the eigendecomposition of the matrix A, let the eigendecomposition of the sym-

metric rank-one modified diagonal matrix A + pzz™T be written as A + pzzT = UQUT.
Then the eigendecomposition A = Q 2 Q7T is

_ Q 0 [ Q 0\
o a (3 )a(er (3 ).

=Q —qQr

In essence, the eigenvector matrix Q of the matrix A can be written using the eigenvector
matrices Q1, Q2 of two smaller S-matrices times the eigenvector matrix U of a symmetric
rank-one modified diagonal matrix. The eigenvalues of A in the diagonal matrix €2 are the
eigenvalues of the symmetric rank-one modified diagonal system.

In the original paper, Chandrasekaran and Gu provide a more elaborated description of
the presented divide-and-conquer method showing that the explicit computation of new vec-
tors in the decomposition phase can be avoided and that the vector z in the conquer phase can
be computed on-line by using data from smaller sub-problems. The crucial part in implement-
ing the divide-and-conquer strategy is the efficient computation of the eigendecomposition of
the symmetric rank-one modified diagonal system in the conquer phase. This step is surveyed
in the next subsection.

Without further optimisations, one obtains an O (nz) algorithm for computing the eigen-
values only and an O (n3) algorithm for computing also the eigenvectors. As mentioned in
the next subsection, these algorithms can be accelerated to yield approximate O (nlogn)
and O (n2) algorithms, respectively, exploiting the matrix structure found in the symmetric
rank-one modified diagonal eigenproblem; cf. [5].

3.2. Symmetric rank-one modification of the diagonal eigenproblem. This section
briefly describes how to compute the eigendecomposition of a symmetric rank-one modified
diagonal matrix D + zzT. The problem of determining the eigendecomposition of such a
matrix was first formulated by Golub in [14]. There, the eigenvalues are obtained as zeros of
a secular equation and the computation of the eigenvectors by inverse iteration is proposed.
In [4], Bunch, Nielsen, and Sorensen establish an explicit formula for computing the eigen-
vectors without inverse iteration and introduce a deflation procedure to handle the case of
multiple eigenvalues. A perturbation analysis shows that the computation of the eigenvectors
can, under some circumstances, be subject to severe instabilities so that they are possibly far
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from being numerically orthogonal. It was not before [18] that Gu and Eisenstat showed a
stable way to compute numerically orthogonal eigenvectors close to the original ones. For the
sake of simplicity, we assume in the following that all eigenvalues, hence diagonal entries,
of D are distinct and that all entries of z are non-zero. If this is not the case, the deflation
procedure in [4] leads to a reduced problem that enjoys the assumed properties. Moreover,
we may assume that by permutations we have arranged for that the diagonal entries d; are
lined up in increasing order, i.e. d; < dy < ... < d,. The following theorem, given without
proof, restates results obtained in [14] and [4].

THEOREM 3.1. Let D be a diagonal matrix with pairwise distinct entries di < dy <
... < dy, z be a vector with non-zero entries 21,22, . . ., Zn, and p # 0 be a scalar. Then for
the symmetric rank-one modified diagonal matrix D + pzz" the following statements hold
true:

1. The eigenvalues A1, Az, . . ., Ay, have the interlacing property

32) { di <M <dy <X <...<dp<Ap<dn+pz'z, ifp>0,

di +pzlz <\ <di <A <dy <...< Ay <dp, ifp<0.

2. The eigenvalues A1, Aa, - - ., A, are solutions to the secular equation

n 2

(3.3) fO)=14p) i _—o.

3. For each eigenvalue \j, a corresponding || - ||2-normalised eigenvector u; is given
by

n 2 1/2 T

z Z1 z9 Zn
34) uj=|) —m : :
G ( (dm—Aj)2) (dl—Aj’dz—Aj’ ’dn—)\)

m=1

This theorem provides a way to compute the eigendecomposition of a symmetric rank-
one modified diagonal matrix. The eigenvalues \; are bounded by the diagonal entries d;
of D and the inner product pz*z in (3.2). Furthermore, the eigenvalues are the zeros of
a rational function f(\) in (3.3). There exist fast iterative methods finding these zeros to
machine precision; see for example [4]. The eigenvectors u; have explicit expressions in
terms of the entries of the vector z, the diagonal entries d; and the new eigenvalues \; as
shows (3.4).

REMARK 3.2. The eigenvector matrix U = (ur, us, ..., un) = (ujk); -, is a Cauchy-
like matrix with entries

n —1/2
wiymz (T _ Fm
i,j i di — )\j (dm — /\j)2 .

m=1

It is usually fully populated. Multiplying a vector by this matrix generally takes O (nz)
arithmetic operations. Using fast summation techniques, an acceleration to O(n) arithmetic
operations can be achieved; see also Section 3.5. The resulting algorithm is then approximate,
i.e. accurate up to a prefixed accuracy €.

REMARK 3.3. The acceleration of matrix-vector multiplications involving Cauchy-like
matrices allows for computing all eigenvalues of an S-matrix with O (nlogn) arithmetic
operations and for computing also the eigenvectors with O (nz) arithmetic operations. This
follows directly from the method described in Section 3.1. It is understood that the algorithms
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then also become approximate. By using that the eigenvector matrix Q in the eigendecom-
position (3.1) is recursively made up of Cauchy-like matrices U, one also obtains an efficient
way to apply Q and QT = Q! to an arbitrary vector. In view of Theorem 3.1, only the
entries of the vectors z and d, and the eigenvalues A; which together fully determine each
matrix U need to be stored. Since a single application of a matrix U or U7 takes linear
time O(n), this yields an O (nlogn) algorithm for applying either Q or Q™ to an arbitrary
vector.

3.3. Diagonal plus upper or lower triangular semiseparable matrices. In [11], Ei-
delman, Gohberg and Olshevsky give recursive expressions for characteristic polynomials
and eigenvectors for quasiseparable matrices of order one which include {/- and L-matrices.
But as far as we know, the problem of computing the eigendecomposition of /- and L-
matrices

A = diag (d) + triu (u VT) , A = diag (d) + tril (v uT)

by divide-and-conquer methods has yet not been studied in the literature. It turns out that the
special structure of &/- and L-matrices allows for adopting an analogous divide-and-conquer
strategy as for S-matrices in Section 3.1. Moreover, the eigenvector matrices to be computed
are also instantly inverted and the whole method is even easier: First, the decomposition into
smaller sub-problems is done only by taking principal sub-matrices, i.e. avoiding explicit
computations of new quantities right from the beginning. Second, the eigenvalues of all
appearing matrices are known a priori, since they are triangular. We recall that we assume
that all eigenvalues are distinct. In the following, we will restrict ourselves to the treatment
of U-matrices. In the case of L-matrices a simple transpose reduces everything to applying
the results for Z/-matrices.

3.3.1. Divide phase. For the decomposition, we start again with a representation of a
U-matrix A = diag (d) + triu (u VT) € R” by two smaller matrices of the same type, plus,
new in this case, a particular unsymmetric rank-one modification,

(A1 O - ~T
A—( 0 A2)—|—uv.

As before we let 0 < k < n and define the principal submatrices A; and A» by
A; = diag (d;) + triu (u; v} ) (j=1,2).

The vectors 1 € R™ and v € R™ account for the upper right block of A and are given by

(3 ()

It is not difficult to see that the matrices A, and A, are {/-matrices. They can be decomposed
recursively in the same style. Note that the entries of d are the eigenvalues of A and that the
elements of d; and dj are the eigenvalues of the submatrices A; and Aa, respectively. That
is, the eigenvalues of A are the disjoint union of the eigenvalues of A; and A,. In comparison
to S-matrices, the additional rank-one modification @ ¥T is unsymmetric, but of a particular
type, since it modifies only the upper right & x (n — k) block of A. The decomposition is
almost trivial and does not require the computation of any new quantity.
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3.3.2. Conquer phase. Let k be defined as before. Suppose that the eigendecomposi-
tion of two smaller matrices A; and A has already been computed. Since both matrices are
upper triangular and have real eigenvalues, this reads

A =Q: D Q' A =Q:D:Q; ',

with D, := diag (d;) and D, := diag (d3). Notice that owing to the argument above, the
eigenvalues contained in d; and d» are known a priori. Notice further that the eigenvector
matrices QQ; and Q2 are not orthogonal but upper triangular. As we will see later, we can ob-
tain the inverse matrices Ql_1 and Q5 ! without any extra computation directly from Q; and
Q. Using the eigendecomposition of A; and A2, we now obtain for A the representation

0 0o \ '
A= (F g )ewa (3 Q)

with the vectors

(3.5)

(@ 0\ [ Q'w _(Q o \'. [ o0
v (3 ) () = (T 8) (g )

The eigendecomposition of the unsymmetric rank-one modified diagonal matrix D + w z™

can be written as
(3.6) D+wzl =UDU L

The eigenvalues are the a priori known elements of the diagonal matrix D := diag (d). Using
this representation, we finally obtain the eigendecomposition of A as

(3 a)9r((38))

'

=:Q =Q-!

Let us check if the described conquer strategy can be carried out efficiently. To this
end, fix a single conquer step that obtains the eigendecomposition of a matrix A using the
eigendecompositions A; = Q; Dy Ql_1 and Ay = Q2 D2 Q5 L of two smaller matrices A
and A, obtained in the divide phase. Let us also assume that A itself has been obtained as
the upper left principal submatrix A; or the lower right principal submatrix A, of a bigger
U-matrix A = diag ((_i) + triu (ﬁ VT).

The conquer procedure consists of two parts: the computation of the vectors w and z as
in the defining equation (3.5), and second, the computation of the eigenvector matrix U of the
modified diagonal system in the eigendecomposition (3.6). The latter problem will be dealt
with in the next subsection. The former problem can be much simplified by using data from
previous conquer steps. We apply an inductive idea and therefore have to distinguish between
conquer steps using data from the bottom of the divide phase, and the remaining steps above.
We can avoid explicitly computing the vectors w and z by formula (3.5) in every conquer
step and are able to use an on-line updating technique instead.

Assume first that the eigenvector matrices Qq and Q> and also their inverses Q; L and
Q> ! appearing in the conquer step have been computed explicitly by solving the smaller
eigenproblems directly. In this case, we can use formula (3.5) to compute the vectors w and z
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directly. Let us also assume that we have solved the unsymmetric rank-one modified diagonal
eigenproblemin (3.6). Then we also have U and U~} in the equation D+wzT = UD U™,
Now, in addition, we compute also the vectors

==(%a) (w)-(ah)
= (3 a) (3)= (%),

If now A = A, with respect to the bigger matrix A, we can write

-1
creane (3 4) (2)-a0n

u

T
UT(z+i):UT< %1 (32 ) ( :; ) =Qlv,.
Similarly, if we have A = A,, computing the same quantities yields U™} (w + W) =
Q, !4y and UT (z+%) = QI V5. This means that by performing the conquer steps for
A = A; and A = A, in the manner just described, we have already computed the data
needed in the conquer step for A which would otherwise have to be computed by for-
mula (3.5).

Suppose now that with respect to A, the eigendecompositions of the submatrices A1, Ao
have been obtained and that the matrices Qq, Qo, Qfl, and Q5 ! have not been computed
explicitly. But we assume that the vectors Q7 g, Q5 L, Q;F vi,and Q;F vy have already
been computed. This means nothing else than that we know the vectors w, W, z, and Z. Now
we can immediately proceed to solving the unsymmetric modified diagonal eigenproblem
and obtain the eigenvector matrix U and its inverse U™' in D + wz' = UDU™!. Once
solved this problem, we again compute the vectors U~! (w + W) and U™ (z + Z) which can
be used in the conquer step for A. This inductive idea can be used until we compute the
eigendecomposition of the initial matrix where we can stop after solving the unsymmetric
rank-one modified diagonal eigenproblem.

In essence, this procedure shows that in each conquer step, one only needs to solve the
unsymmetric rank-one modified diagonal eigenproblem, and to multiply two vectors by the
newly obtained matrices U~ and UT. Algorithms 1 and 2 provide a MATLAB implemen-
tation of this method where Algorithm 1 references Algorithm 2 to solve the unsymmetric
modified diagonal eigenproblem. We summarise the whole divide-and-conquer method in
the following theorem.

THEOREM 3.4. Let A = diag (d) +triu (uvT) € R"™" be ald-matrixand 0 < k < n.
Then A can be written as

A= ( 1?)1 :2 ) +a v, Aj = diag (d;) + triu (u; vj),

(1), (1)

for j = 1,2. Given the eigendecompositions A1 = Q1 Dy Ql_1 and Ay = Q3 Dy Q;l, and
the matrix U from the unsymmetric rank-one modified diagonal eigenproblem

“la 0
D+wz' =UDU', D=diag(d), w= Qi m , z= N ,
0 Q2V2
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the eigendecomposition of A is

0
3.7 A=QDQ™, (X )U.
(3.7) QDQ Q ( e Q

REMARK 3.5. Since the eigenvalues of a {{/-matrix are known a priori, one is only
interested in computing its eigenvectors. For an n X m matrix, Algorithm 1 computes all
eigenvectors with O (n3) arithmetic operations if in each conquer step all products involving
matrices are computed directly. Explicit computation can be avoided, if one is only interested
in applying the eigenvector matrix or its inverse to a vector. For a matrix A as in Theorem
3.4, it suffices to store all diagonal entries from d and the vectors w and Z appearing in each
conguer step. Then one can apply either the eigenvector matrix Q or its inverse Q ~! by using
the recursive definition (3.7) and computing the entries of each matrix U and U~! on the fly.
In the next subsection, we show that the particular structure found in the eigenvector matrix
U from the particular unsymmetric rank-one modified diagonal eigenproblem allows for ac-
celerating the algorithms. This will yield an O(n?) algorithm for computing the eigenvectors
explicitly and an O (nlogn) algorithm for applying the eigenvector matrix to an arbitrary
vector. Again, these algorithms will be approximate up to a prefixed accuracy ¢.

3.4. Particular unsymmetric rank-one modification of the diagonal eigenproblem.
In this section, we study the eigendecomposition of a particular unsymmetric rank-one mod-
ified diagonal matrix D + wzT € R™ with D = diag (d) a diagonal matrix and vectors

d:: (dl,dQ,---ad’n)v

T

w = (wy,ws,...,w,0,0,...,0) |
T
z = (0)07' "707zk+lazk+27' "7Zn) .
We assume that the entries of d are distinct. As before, we let 0 < k£ < n. The problem is
different from the symmetric one treated in Section 3.2 since the rank-one modification w z T
to the diagonal matrix D is now unsymmetric. On the other hand, the special structure, i.e.
the last n — k entries of w and the first k entries in z being zero, yields a modification only in
the upper right part of D. This leaves everything on and below the main diagonal unchanged.
The matrix D + w zT has the form

d1 0 .e 0 V1Wg+1 V1Wg42 ... V1Wp
0 dz . : VoWg+4+1  V2Wg42 VoWnp
0
dr vpw VW ce. VW
D-‘rWZT: k kWk+1 k'WEk+2 k'Wn
i1 0 ... 0
dy+2
: . . 0
0 ... ... ... 0 dn

The facts about the eigendecomposition of D + w zT

rem.
THEOREM 3.6. Let D € R"*™ be a diagonal matrix with pairwise distinct diagonal
entries dy,ds, . .. ,d, and vectors

are summarised in the following theo-

T T
w = (w1, wa,...,w,0,0,...,0) € R*, z:=(0,0,...,0, 2541, 2kt2,..-,2n) € R".
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Then for the unsymmetric rank-one modified diagonal matrix A = D + w z¥, the following
statements hold true:

1. The eigenvalues of D and A are dy,ds, . . . ,d,.

2. The matrix A has the eigendecomposition A = UD U™, The eigenvector matrix

U, containing || - ||2-normalised eigenvectors of A and its inverse U~' have the
form

(1 CD . (1 -C
3.8) U_(O D ), U —(0 D-t |
where 1 is the k x k identity matrix, ~]ﬁj = diag~((~i) is an (n — k) x (n — k) diagonal
matrix with non-zero entries dyy1,dgy2, .. .,dn and Cis a k x (n — k) matrix.

3. The components of the diagonal matrix D from (ii) are

) Eoog2z \
di=|1+) — >0 G=k+1,k+2,...,n),
o (di—dj)
and the matrix C is a Cauchy-like matrix C = (ci,j)f:; =kl whose components
are
cij = —A2 (i=1,2,... kj=k+1,k+2,...,n).
’ d; — d;
Proof.
1. The matrix D is diagonal so that its entries dy,dz, - .., d, coincide with its eigen-

values. Since A = D + wz7 is an upper triangular matrix with the same diagonal

elements as D, this also holds for A.

2. The matrix A is unsymmetric but has real eigenvalues as a consequence of (1).
Therefore, the eigendecomposition of A reads A = UDU~! with U being the
eigenvector matrix of A. To show that U has the form

I CD
U= -
( 0 D ) ’
we first show that the first k£ unit vectors e; € R™ are eigenvectors u; := e; of A

which correspond to the eigenvalues d;. We have

Ae; = (D+sz) e;=De;+wz'e;
=diei—}—uEO,O,...,0,zk+1,zk+2,...,zn)ei=diei (1:= 1,2,...,]{)).

=0

This implies that the first & columns of U, in MATLAB notation U (:,1 : k), have

the form
I
U(:,1:k)=(ug,uy,...,u;) = E
It remains to prove that for the rest of the eigenvectors ugy1, Ugy2, ..., u, corre-
sponding to the eigenvalues dy1,dg+2, . . ., dy, one has

cb
U(:’k+1:n):(uk+17uk+27"'7un):( ]“j )
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It suffices to show that for the jth component of the eigenvector u;, denoted (u;) B
we have (u;); = Jjém fori,j = k+ 1,k + 2,...,n and constants Jj # 0. If
we fix 7, we have on one hand A u; = d; u;, and on the other, the structure of A

gives A u; = (D + wzT) u;. Combining these equations and using that wz™ is
a matrix with zeros in rows k + 1,k + 2,...,n, we get for the jth component the
equations

d,-(ui)j:dj (ui)j G=k+1,k+2,...,n).

Since d; # d; while ¢ # j by assumption, this gives the desired property by taking
into account that d; := (u;), itself cannot be zero since this would render the matrix
U singular. Finally, it is not difficult to verify the form of the inverse matrix U1,

. We first show that the upper right block of the eigenvector matrix U has the represen-

tation C D with C a Cauchy-like matrix C = (Ci,j)fi ikt

are

whose components

P wizj
)
d; — d;

(i=1,2,....kj=k+1,k+2,...,n).

For fixed j, the eigenvector u; and the eigenvalue d; form an eigenpair of A, i.e.
Au; = djuj, or equivalently, (D + wz") u; = dju; forj = 1,2,...,n. By
subtracting d; u; and w zT u; on both sides and rearranging terms, we obtain

(D—-d;I)u; = —wu;Fz.

For the ¢th component in this equation, 1 < ¢ < k, we have
((D - dJI) uj)i = (dz - d]) (uJ)z = — (WUJTZ)Z, -

As a consequence of the fact that the first k¥ components of z are zero, and that u;’s
last (n — k) components, except (u;); = d; # 0, are zero, we have u;rz =d;z;.

This gives (d; — d;) (uy), = w;d;z; and finally

w; 25 =~
(u5); = ﬁd,-.

We have now obtained the desired representation U(1 : k,k+1:n) = C D for the
upper right block of U. To get an explicit expression for the values d;, recall that
each eigenvector u; is normalised so that

k 2 k 2
w; z5 5 > w; 2; ~
ol =3 (252) 4 = (Z () +1> 2ot

i=1 i=1

This implies
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REMARK 3.7. In some cases, it might be favourable to use a different normalisation of
the eigenvectors by setting d; = 1, j = k + 1,...,n. In this case, all diagonal elements of
U are equal to one and the matrices take the simple form

(1 cC L (1 -C
U‘(o I)’ U —(0 | )

A MATLAB implementation which computes U as above is given in Algorithm 2. With
respect to Algorithm 1 from Section 3.3, this ensures that in a conquer step (3.7), the diagonal
elements of Q coincide with the diagonal elements of the smaller eigenvector matrices Qy
and Q2. Choosing the scaling in the initially and explicitly computed eigenvector matrices
such that their diagonal elements are all equal to one, this forces the resulting matrices Q and
Q! for the whole problem to contain only ones on their respective main diagonal. One might
then apply a normalisation in Q and Q! based on the diagonal elements by an appropriate
eigenvector scaling. This corresponds to a multiplication of the eigenvector matrix Q by
a diagonal matrix D from the right and a multiplication of the inverse matrix Q! by the
inverse diagonal matrix D~! from the left.

REMARK 3.8. Similarly to S-matrices, the particular structure of the matrices U and
U~ in (3.8) allows for using fast summation techniques. This directly yields an O (n2)
algorithm for computing all eigenvectors of a /-matrix A explicitly. If one, however, is only
interested in applying the eigenvector matrix to a vector, their explicit computation can be
avoided. It suffices to compute and store all the vectors w, W, z, and z as well as the eigen-
values dy,ds, . ..,d,. Then one can apply the matrices Q and Q! of A with O (nlogn)
arithmetic operations. The accelerated algorithms are approximate up to a prefixed accuracy
E.

3.5. Acceleration by fast summation techniques. As mentioned in previous sections,
Cauchy-like matrices allow for an accelerated matrix-vector multiplication. For an n X n
Cauchy-like matrix C, the cost can be reduced from O (n?) to typically O(n) or O (nlogn).
This is based on algorithms which were developed for fast evaluation of sums of the form

N
Zj = ZaiK(xian) (x;,y; € R*; M,N € N)
i=1

involving a multivariate kernel function K : R” x R® — R. In most cases, the depen-
dence on the two variables x and y is such that the value of K (x,y) is a function of the
distance d(x,y) given by some metric d : R® x R* — R* on R™. Sums of this form arise
in many fields in applied mathematics and gave rise to the Fast Multipole Method (FMM)
introduced in [17]. Since then, many improved and alternative algorithms have been pro-
posed; see for example [10, 44]. The concept of hierarchical or H-matrices (Hackbusch [19]
and Hackbusch, Khoromskij, and Sauter [20]) also resembles this technique. Recently, new
kernel-independent fast multipole methods have been proposed in [28, 45] which rely entirely
on numerical linear algebra. A second aspect that has to be taken into account when using fast
summation techniques is that the arithmetic cost strongly depends on the distribution of the
nodes x; and y ;. Under some assumptions on the distribution of the nodes, one is usually able
to prove that the algorithm yields the desired linear arithmetic complexity bound O(n). A
modification to the scheme that makes it retain linear complexity also for other unfavourable
node distributions is given by Nabors, Korsmeyer, Leighton, and White in [31]. For our tests
in Section 5, we implemented the method from [28] in MATLAB.
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Algorithm 1 Divide-and-Conquer Algorithm for the Eigendecomposition of {/-Matrices
I: function Q = eigu(d,u,v,w)

% Eigenvectors of U-matrices
d=d(:); u=u(:); v=v(:);
if (length(d) == 1)

Q = w(l); return;
end

% Divide phase
= length(d) t = ceil(log2(n)); ns = zeros(l,pow2(t));
ns (1 n;
10: for i = 1:t
for j = 2”(i71)-71-1

n

R A A T o

—
—_

12: ns(2*j) = floor( )/2); ns(2*j-1) = ceil( )/ 2)
13 end

14: end

15 $ Conquer phase

16: wt = zeros(n,1l); zt = zeros(n,1l); Q = zeros(n);

17: for i = t:-1:1
18: offset = 1;
19: for j = 1:27(i-1)

20: jl = 2*j-1; j2 = 2*7; 11 = ns(jl); 12 = ns(j2);

21: nl = offset + 11 - 1; n2 = nl + 12; il = offset:nl;
22: i2 = (nl+1l):n2; ind = [il,12];

23: if 1 ==t

24: Al = umatrix(d(il),u(il),v(il));

25: A2 = umatrix(d(iZ),u(lZ) v(i2));

26: [Q(i1,i1),Dt] = eig(Al); [Q(i2,1i2),Dt] = eig(A2);
27: wt (ind) = [Q(11,11)\u(il);Q(i2,i2)\u(i2)1];

28: zt (ind) = [Q(411,il)’*v(il);Q(i2,12)"'*v(i2)];

29: end

30: len = 11 +12; C = eigdpwz (d(ind),wt(il),zt(i2));

31: Q(il,12) = Q(il,il)*

32: if (i > 1 && 11 > 0 && 12 > 0)

33: wt(il) = wt(il) - C*wt(i2); zt(i2) = C’*zt (il) + zt(i2);
34: end

35: offset = offset + len; ns(j) = len;

36: end

37: end

38: $ Normalisation

39: if (exist('w’, 'var’)==false)

40: for i=1:n Q(:,1) = Q(:,1)./norm(Q(:,1)); end
41: else

42: for i=1:n Q(:,1) = w(i)*Q(:,1); end

43: end
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Algorithm 2 Algorithm for the Particular Unsymmetric Modified Diagonal Eigenproblem
I: function [C] = eigdpwz(d,w, z)

Eigenvectors of diagonal matrix plus upper right
rank-one modification.

=d(:); w=w(:); z =2z(:);

= length(d); n2 = length(w); il = 1:n2; i2 = (n2+1):n;
D1,D2] = meshgrid(d(i2),d(il)); [W,Z] = meshgrid(z,w);

= (W.*z)./(D1-D2);

o\

o

N Ry
Q— 5 Q

4. Fast Gegenbauer polynomial transforms. In this section, we show that the conver-
sion between different expansions in terms of Gegenbauer polynomials corresponds to the
eigenvector matrix of an explicitly known ¢/-matrix. The connection is new and is a direct
consequence of well-known properties of Gegenbauer polynomials. It should be noted that
the concept is so general that it admits generalisations to other classes of orthogonal polyno-
mials and functions if the same or similar properties are available. Sections 4.1 to 4.3 restate
basic definitions and properties of orthogonal polynomials found in the standard references
[6, 40, 1]. In Section 4.4, we first show that the sought transformation can be represented as
the eigenvector matrix to a certain matrix which is constructed from the differential equations
of the two involved families of Gegenbauer polynomials. Explicit expressions for the entries
of this matrix reveal that it is actually a {{/-matrix. We also show how to scale the eigenvectors
correctly.

4.1. Orthogonal polynomials. All polynomials in this work are defined on a finite real
domain and have real coefficients. A sequence of orthogonal polynomials fg, f1,... on a
finite real domain [a, b] C R is a sequence in which each polynomial f,, = k,z" + kL2 ! +
... has precisely degree n, i.e. k,, # 0, and is orthogonal in the Hilbert space of polynomials
P equipped with inner product ( -, - } and induced norm || - ||,

b b 1/2
(fg) = / f@g(@) w(z) dz, ||f]l:= <f,f>=</ <f<x>>2w<x>dx) .

We write (fr, fm) = hn0n,m With the usual Kronecker delta and

oy i= {frs fn) = I fal® > 0.

The restriction of P to the space of polynomials of degree at most n is denoted PP,,. The
function w(z) in the integrals is a suitable weight function which is strictly positive inside
the interval, possibly zero or singular at the endpoints and for which the integral against any
polynomial is finite. If the sequence fo, f1, ... is infinite, it comprises a basis for the infinite
dimensional space P and is uniquely determined up to a constant factor in each polynomial.
For the sake of concise notation, we add f_;(z) := 0 with h_; := 1 to the sequence of
polynomials. Every sequence of orthogonal polynomials has a three-term recurrence formula

frt1(z) = (@nz + i’n) fn(@) =& fa1(z) (0 >0, an #0).

After rearranging terms, one verifies the equivalent expression

4.1 Tfn(®) = an fa-1(®) — by fu(®) + cnfrya(z)
with the coefficients a,, := &, /an, by = bn [@n, and ¢, := 1/a,. It is not difficult to see
that the leading coefficient k,, of the polynomial f,, is ky, = @p—1-...-dg - ko forn > 1,

where kg is given by ko = (hL0 f:w(m) dz) 172,
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4.2. Orthogonal polynomials from hypergeometric differential equations. The fam-
ily of classical orthogonal polynomials arises from the differential equation of hypergeometric

type,
4.2) o(z)y" (z) + T()y' (z) + Ay(z) =0,

where 0 € Py, 7 € Py, and A € R We define an associated differential operator D by

D(y) := —oy" =1y’

which implies that the solutions y of (4.2) are eigenfunctions of D to the eigenvalues A,
i.e.,, D(y) = Ay. The differential equation has singular solutions unless the parameter \
takes certain values. For a sequence of values Ag, A1, . .. there exist non-singular solutions
constituting an infinite sequence of orthogonal polynomials f,, if certain conditions are met.
In particular, if the polynomial ¢ is quadratic and has distinct roots that enclose the root of the
linear polynomial 7 and if the leading terms of ¢ and 7 have the same sign, the polynomials
fn are the Jacobi-like polynomials. They have a closed interval of orthogonality.

4.3. Gegenbauer polynomials. By an affine linear transformation in the domain and
an appropriate normalisation, Jacobi-like polynomials are standardised into the Jacobi poly-

nomials PT(LO"B). They carry two parameters «, 5 > —1 and are orthogonal on the interval

[—1, 1]. Gegenbauer polynomials s with a single parameter & > —1/2 distinct from zero
are Jacobi polynomials with a different normalisation,

Lla+ 3)0(n+20) _(a—1a-1)

21=227T(n + 2a)
P, , hp =
T(20)T(n +a+ 1) (=)

(n+ a)(T(a))2T(n +1)°

i (z) =

The associated inner product is denoted (-, - ) (4). Gegenbauer polynomials are solutions to
the Gegenbauer differential equation

4.3) (1-2%)y"(z) — 2a+ Dzy'(z) +n(n + 2a)y(z) =0

with the corresponding differential operator D (y) := — (1 — 22) y" + (2a + 1)zy’ which
has eigenvalues /\%a) := n(n + 2a). The three-term recurrence formulae read

(4.4) C%)\ (@) = (@na + bn) C (2) — E,CLY, (2),

witha, =2(n+a)/(n+1),b, =0,and ¢y =0, ¢, = (n +2a —1)/(n + 1), and
4.5) mC,(la) =an C,(loi)l (z) + by, CT(L"‘)(x) + ¢n C,(lc_?l (z),

where ap = 0, a, = 1/2+ (@ — 1)/(2n + 2a), b, = 0, and ¢, = (n + 1)/(2n + 2a).
A consequence of the coefficients b, being zero is that the polynomial 07(10‘) (z) is an even
function if n is even, and that it is odd otherwise. For n > 1, the Gegenbauer polynomials
satisfy the derivative identity

d

A @)y — o () d

which by repetitive application implies
L(n-1)/2]

d o _
(4.7) EC};’) @)= Y 202k+x+a)Ci) (2) (x:=[niseven]).
k=0
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Here, an expression of the form [expr] evaluates to one if expr is true, and to zero otherwise.
The last equality allows to express the derivative of a Gegenbauer polynomial through a sum
of Gegenbauer polynomials of smaller degree.

REMARK 4.1. The fact that Gegenbauer polynomials are not defined for a = 0 is due
to the particular normalisation. Nevertheless, the limit lim,_,o C¢(z)/a = 2T, (z) exists
for all z and n > 0, where T}, (z) := cos(n arccos ) are the Chebyshev polynomials of first
kind. This motivates the definition

m, ifn =0,

2
() =1, CO (z) := ZT,(x), hy, =
o (@) n (@) (=) 2r/n?, ifn>0.

n

The differential equation (4.3) and the subsequent definition of D(®) and )\(na) remain valid
for a = 0. The constants in the three-term recurrence formulae (4.4) and (4.5) change to

. 0 ifn=0
. 2 fn=0, = - ’ . ’
a":{Q;L/(n—}—l) ;fz>(1) bp=0, é=4¢ 1, ifn=1,
’ =7 (n—=1)/(n+1), ifn>2,
0, ifn =0, 1/2, ifn =0,
ap, = 1, ifn=1, b,=0, ¢, = .
(n—1)/(2n), ifn>2. (n+1)/(2n), ifn>1.

The derivative identities (4.6) and (4.7), now for general @ > —1/2, remain valid with a
slight modification,

d (@) () d () 2 & @
(4.8) Ecgl) (@) =71 Cp 21 (2) + ECn—2(x) = Z 72k+xc2k+x($)a
k=0

where we let 7£La) :=2(n 4+ @+ 84,00n,0)-

REMARK 4.2. The most important constants for Gegenbauer polynomials are sum-
marised in Table 5.2 in the Appendix. In the following, we use a superscript of the form
(@) or 8 for the quantities hy, An, an, and ¢, whenever necessary for clarity.

4.4. Expansions in different families of Gegenbauer polynomials. We are now ready
to turn to the conversion of expansion coefficients between different families of Gegenbauer

polynomials. Let e, 8 > —1/2 be distinct and fixed throughout this section and let C,(La) and

C’,(Lﬁ ) be the corresponding Gegenbauer polynomials. We assume that a polynomial f € Py
with N a natural number has been expanded into the orthogonal sum

N
f=2 mC
n=0
with known coefficients u,,. We want to compute the coefficients v, in the expansion
N
F=3 wop
n=0

involving the Gegenbauer polynomials for 5. To begin, we define the linear mapping that
realises the sought linear transformation from p,, to v, by the associated matrix.
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DEFINITION 4.3. Let N € Nand Ny := |[N/2|, Ny := |(N —1)/2]. Form,n > 0,
we define the coefficients ¢n m € R by

fnm = (O, CP [} s).
They are the components of the (N + 1) x (N + 1) Gram matrix

@ = (¢n,m)ﬁm_0 e RIV+HDX(N+1)

Furthermore, we define the matrices
N N N N. N. N.
ée = (¢2n,2m)n,11n:0 € R( 1+ 1+1): é0 = (¢2n+1,2m+1)nfm:0 € ]R( 2+1)x(Nat1)

containing only the components in mutually even rows and columns, and mutually odd rows
and columns of ®, respectively.

The following two lemmas show that the matrices ®, ®., and ®, can be used to trans-
form the coefficients p,, into the coefficients v,.

LEMMA 4.4. Let N € Nand Ny := |N/2|, Ny := [(N —1)/2|. The coefficients
vy, can be obtained from the coefficients [, by the matrix-vector product v = ® p with the

_ T _ T N+1

vectors = (fio, fi1, - - -, un) v = (Vo,v1,...,vn)" € RVFL

Proof. The nth component (® ), of the vector ® p is

N N N
(‘} “)n = Z ¢n,mﬂm = Z <Cr(r?)7 Cgﬁ)/hgbﬂ))(ﬁ),um = <Z Mmcr(:) , Cy(,,ﬁ)/hsq,ﬁ))(ﬁ)
m=0 m=0 m=0
= <fa C’&B)/h’gﬁ))(ﬁ) =v,. 0O
LEMMA 4.5. Let N € Nand Ny := |N/2|, N2 := [(N —1)/2|. The coefficients vy,
can be obtained from the coefficients ., by computing the matrix-vector productsv, = ®, p,
andv, = ®, u,, with the vectors

te = (po, iy - piany) T € RN = (s, pangg1) ' € RNTL
VvV, = (1/()71127 ceay I/QNl)T S RN1+1, v, = (Ul, v3,... ,1/2N2+1)T € RN2+1.

Proof. This follows by invoking Lemma 4.4 and by taking into account that ¢, , = 0
holds when n is even and m is odd and vice versa. [

We have now reduced the problem of determining the coefficients v,, from the coeffi-
cients p,, to the computation of matrix-vector products. For this method to be efficient, we
need a fast way to apply the matrices ®., ®, to a vector. For this purpose, we introduce three
new matrices related to ®, ®., and P,.

DEFINITION 4.6. Let N € N and Ny := |[N/2|, Ny := [(N —1)/2|. We define the
matrix G = (gn,m)} o by its components

gn,m = (D (CP),C nP)) 5).

Furthermore, we let

N1 0 € R(Nl—‘rl))((Nl—‘rl),

n,m=

0 € R(N2 +1) X (N2+1)

G. = (g2n,2m) G, = (92n+1,2m+1)ﬁ2;n=

be the matrices containing only the components in mutually even rows and columns, and
mutually odd rows and columns of G, respectively.
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We are now in a position to show that the matrices ® and ®., ®, contain the eigenvectors
of the matrices G and G, G,, respectively.

LEMMA 4.7. Let N € N, 0 < m < N, and the matrices ® and G be defined as
in Definitions 4.3 and 4.6. Moreover; let ¢,, = (Po.m, P1,my---, dn,m)L € RVFL be
the (m + 1)th column of the matrix ®. Then the vector ¢,, is an eigenvector of G to the
eigenvalue )\sﬁ).

Proof. We recall that cle) = 25:0 ¢n,m0£6 ) and write (G ¢,,),, for the nth compo-
nent of the matrix-vector product G ¢,,,. We obtain the result by a straightforward computa-
tion,

N N
(G &)= Gnjbjim =S (D), P 10D 5y jm
j=0 j=0

J

N
= (D@ (Z ¢j’mcj(ﬂ))7 Cr(lﬁ)/hszﬁ))(ﬂ) = (D) (Cl), C‘r(Lﬂ)/h’Elﬂ))(ﬁ)

=0
N
= (AR, 0P B () =AD" 6 ;0. CP [0 )
j=0
N
= )‘53) Z(CJ(B)’ C’!(Lﬂ) /h(nﬁ)>(6) ¢j,m = )\gﬁf) ¢n,m
7=0

The foilqﬁéﬁgé%%lgrﬂbreaks the result down to the matrices ®., ®,. It is a immediate
consequence of the preceding theorem and the fact that ¢, ,, = 0 holds when n is even and
m is odd and vice versa.

COROLLARY 4.8. Let N € N Ny := |N/2|, Ny := [(N — 1)/2|, and the matrices
D, ®, and G, G, be defined as in Definitions 4.3 and 4.6, respectively. For 0 < mqy < Ny,
we write

¢:nl = (¢0,2m1 ) ¢)2,2m1 3y ¢2N1,2m1)T € RNI +1

for the (my + 1)th column of ®,, and for 0 < ms < Ny we let

D0y = (B1,2mat15 P3.2mat 1, - - - > P2Ns+1,2mp41) - € RV T

be the (my + 1)th column of ®,. Then ¢y, is an eigenvector of G, to the eigenvalue A

2m1
and ¢, is an eigenvector of G, to the eigenvalue Agﬁzﬂ'

REMARK 4.9. It is clear that the matrix G, and consequently G. and G, as well, has
simple eigenvalues ,\£,i‘ ) = m(m + 2a) which is a requirement for the application of Algo-
rithm | from Section 3.

Knowing that the columns of the matrices ®. and ®, are the eigenvectors of the matrices
G. and G, yet does not yield a fast method to apply ®. and ¥, to a vector. But we are now
ready to show that G. and G, are actually //-matrices. We are also able to give explicit
expressions for the entries. This is established in the following theorem.

THEOREM 4.10. Let N € N, Ny := | N/2|, Ny := | (N — 1)/2|, and the matrices and
G,, G, be defined as in Definition 4.6. Then the matrices G, and G, are U-matrices.

Proof. We will treat the matrices G and G, separately. The main idea of the proof is to
use the similarity of the differential operators D(®) and D(®). This resemblance is reflected
in the differential operator

d
DA =D —DF =2(a-p)r—
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which differentiates its argument once and then multiplies the result by = and the constant
2(a—p).

Let us first turn to the matrix G. Our first goal is to split G, into a sum of two matrices
each of which we will examine separately. Let now 0 < n,m < Nj. For an entry gay, 2pm oOf
G, we can write

G2nzm = (D (CE), ) D) )
= (DD (CE), ) hE)y 5y + (DA (CE)), O 1) )

which lets us define the two matrices D, := (d2n,2m)g’1m:0 and S = (szn,gm)ﬁ;}zo with
entries

donam = (DO(CEN), O 1hSY 5y, sanom = (DA(CE)), O Iy ()

It is clear that G, = D, + S.. First, we establish that D, is a diagonal matrix. To check this,

note that C (ﬁ ) is an eigenfunction of the differential operator D% to the eigenvalue )\92

which we obtaln

donom = (DPD(CEN, O 105) (5 = AWECE), O 1) (5) = M) Sarm 2.

2m

for

With the definition d. (A(fg)ﬁl o0- We can write D, = diag(d.).
Now for the harder part: We show that the matrix S, is a /{/-matrix. We invoke the

differentiation formula (4.8) and the recurrence relation (4.1) (cf. Table 5.2) to study the

effect of the differential operator D2 on a Gegenbauer polynomial C, ('6 ). In a first step this
yields

DA(C)) = 2(a — Bz - }:751J§@4 ()
m—1
=2(a—-p)- '72(3521-1 (x 02(51-1 (x))
k=0

~1
B B B B B
=2(a—f)- Z Koot (841 O @) + S O () -
Using this result, we are now ready to write down an explicit expression for the entries 2y, 2,

of the matrix S.. It remains to take the results of the previous display and use them to obtain
a simple and explicit expression for s25, 2,,,. We arrive at

S3m2m = ('DA(C('H)) C(ﬁ)/h(ﬁ))(ﬁ)

2 Wit (a8 O @) + e (@) . O 1)) o)

20— p)- S AP, (alihs (C50, CE2 1hED) ) + s (O, O 1))

(0, ifm =0,
yfﬁ)agﬁ), ifm>0andn =0,
=2(a-p8)-¢ 0, ifm > 0and m < n,
V(i) 1Cgi) 1 if m > 0and m =n,
\ ’Yéﬁ)ﬂagi)ﬂ + ’Yéi) 105? 1, ifm>0andm > n.
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This was the crucial step. We finish the proof for S. by writing the matrix in a more
convenient form revealing that it belongs to the class of U/-matrices. Define the vectors

u = (u"’")glo € RVi+l v, .= (”2n)glo € RM+L and d. := (don)):, € RMHL
by
nal?, ifn =0,
vn =N =B o e e e
Yont192n+1 T Yon—1€2p—1, 11 >0,
o 0, ifn = 0,
Vo = 1 ifn>0,

- 0 ifn=0
don = 2(a — . ’
2 =2 —f) {véi? L itn > 0.

Then we can write S, as a U-matrix by S, = diag(d.) + triu(u. vJ ). As as consequence,
we obtain

G. = diag(d. + d.) + triu(u. vJ).

Note that by Lemma 4.11 we already know that the entries of diag(d. + ae) are the distinct

values )\g‘,? forn = 0,...,Ni. The matrix entries are proportional to the difference a — 8
but otherwise not dependent on .

For the rest of the proof, it remains to repeat the whole procedure for the matrix G,. As
before, we first establish that G, can be written as the sum of two matrices. In view of the
entries gon41,2m+1 of Go,

92n+1,2m+1 = (D(a) (02(7671)-1—1) 02(n+1/h’gfl)+1) ﬁ)

= (D) (05,24-1) 02('Z+1/h’2n+1) B+ (D (CQ(fn)-H) éfbl—l/hgﬁ)-i-l) (8)

we define the matrices D, := (d2n+152m4—1)n2m=0 and S, = (82"+172m+1)n2m=0 with
entries

dant1,2my1 1= (D(B) (05524-1) Cz(ﬁzi-l/hgi)-l-l)(ﬁ)’
Sont1,2m41 1= (DA (Céfn)_;_l),cg(ﬁl_l/hgi)-u)(ﬁ)-
Again, it is straightforward to show that D, is a diagonal matrix since
dont1,2m41 = <D(ﬂ)(C§ff+1) Cé?zzi-l/h‘gi)-i-l)(ﬂ <)‘g?n),+102m+1’C§g+1/h‘g€b)+1)(ﬂ)
= /\gm+15zm+1 2n+1-

With the definition d, := ()\éﬁz 1)z, we can write D, = diag(d,). The more involved
part is again the treatment of the matrix S,. With the same ideas as before, we use the
differentiation formula (4.8) to get

D(A) (CQ(B)-H) IE Z WZk)C(ﬂ)
k=0

3

=20a=8)- 39 (¢ @)
k

0

3

=2(a—p) - 75’2) <a2k) Cég) () + c2k) 02(,211( ))
k=0
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This now allows to obtain an explicit expression for the entries sap41,2m+1 0f S, i.€.
A
S$2n+1,2m+1 = (D (Cz(fn+1) Céfbl-l/hgi)—H)(ﬂ)

8) -Zvéﬁ) (af? CR2L1@) + 2 O @), Cha IS Do

2(a—p)- Z'Yéi) (ag'z) Céfllacéﬁzi-l/hgi)-l—l)(ﬁ)

(s O 1))
0, if m < n,

=20-8)-{ W, ifm =n,

X R,
Finally, with the definition of the vectors u, := (u2n+1)ﬁio e RV v = (vgn“)ﬁio € RN2+1,
and d, := (dany1))2, € RM>11 by

Ugnt1 = 2(a— f) - (’Yéi)-kzagi)-i-z + ’Yéﬁ)c%)) )

Vapg1 1= 1,

dant1 :=2(a— f) - (’an)cgi)) )
we can write S, as a U/-matrix by S, = diag(d,) + triu(u, vi ). In the end, we obtain
G, = diag(d, + d,) + triu(u, v}).

As before, the diagonal entries of the matrix diag(d,) are the values )\gi)_i_l for
n=0,...,Np.0O

Now we are almost ready to use the algorithm developed in Section 3.3 to apply the
eigenvector matrices of the {/-matrices G. and G, to an arbitrary vector. Since these are the
matrices ®. and ®,, respectively, we then obtain a fast method for realising the conversion
between different families of Gegenbauer polynomials. The last missing part is the correct
scaling of the eigenvectors. As we have explained in Remark 3.7, it is possible to set up
Algorithm 1 for computing the eigendecomposition of a &/-matrix so that the eigenvectors are
scaled properly based on known diagonal elements of the eigenvector matrix. The following
lemma gives an explicit expression for these diagonal entries.

LEMMA 4.11. Let N € N Ny := |[N/2], Ny := [(N —1)/2], and the matrices ®,
and ®, be defined as in Definitions 4.3. Then the diagonal entries ¢, p, forn = 0,1,..., N
are

i
¢n,n - @ .

Proof. By Definition 4.3, we have ¢, ,, = (C,(f‘) , cP / B ))(B)" Since the polynomial ol

takes the form Cﬁa) = k%a) - 2™ + ... and since the polynomial C,(Lﬂ ) is orthogonal to every
polynomial of strictly smaller degree, we have

a n o/ kgla) k%a)
P = k) (2", CP [1P)) (5) = @(Céﬁ),cﬁﬁ)/h%m)(m =@ D
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5. Numerical tests. We present brief numerical tests of the conversion principle ex-
plained in Section 4.4. All tests have been conducted on an Intel Pentium 4 computer with
3.2 GHz. As reference we used MATHEMATICA 5.2 to compute the entries of the matrices ®
explicitly and to evaluate matrix-vector products v = ® p to 32 decimal digits of accuracy.
The entries of the input vectors g were drawn from a uniform random distribution in the
complex square [—3, 2] +i[— 3, 3].

The polynomial transform scheme has been implemented in MATLAB in double preci-
sion following Algorithms 1 and 2 but split into a precomputation and an evaluation part.
In the former, the entries of the vectors d, u, and v for the matrices G. and G, and all
quantities necessary to apply the corresponding eigenvector matrices are computed. In the
evaluation part, these matrices are used to realise the coefficient conversion. We have imple-
mented three variants of the algorithm: In the first, all Cauchy-like matrices are computed
and stored explicitly. In the second, only the vectors to form these matrices are computed and
stored while matrix-vector multiplication is realised by computing the entries online. The last
variant differs from the second in that it additionally uses the fast multipole method to apply
the Cauchy-like matrices — during precomputation as well as for evaluation . To achieve nu-
merical stability, it was necessary to add the possibility, to split transformations for |a — f|
greater than a certain maximum stepsize s into multiple transformations with smaller step-
sizes at most s. The algorithm retains the proposed complexity but the constant hiding in the

O notation now grows linearly with @ — 3|. As error measure, we used the relative || - ||2
error
o =7l
vl

where v denotes the reference coefficients from MATHEMATICA 5.2 and & are the quantities
computed by the MATLAB implementation.

5.1. The influence of the stepsize s. We study the influence of the maximum stepsize s
on the accuracy of the algorithm. Figure 5.1 shows the error E for a transformation of length
n = 4096 with ¢ = 0 and 8 = 10 for increasing threshold s. The value s = 2 means, for
example, that 5 single transformations are actually computed, namely a =0 =+ 2 = 4 —
6 — 8 — 10 = . The figure shows that for values of s larger than 2 the accuracy quickly
drops regardless which variant of the algorithm is used. For moderate values, however, the
transformation can be computed to machine precision in the error measure £. To see why
this happens, one has to take analytical properties of the coefficient mapping into account.
As explicit expressions for the entries of the transform matrix ® exist (see [40] or [24]), one
verifies that for large values | — f|, the mapping is no longer smooth in the sense that the
entries of the involved matrices do no longer vary smoothly among rows and columns. Our
conjecture is that this structural property does not allow for accurate algorithms that do not
depend on | — | in any way.

5.2. Errors and timings. To allow for accurate computations, we fix s = 1.0 and com-
pute transforms for sizes n = 128,256, 512,1024, 2048, 4096 and a range of different com-
binations for @ and 8. We include several special cases, for example o = 1, § = 0, as well
as transforms between non-integer o and 3. We compare the accuracy and runtimes of the
three variants of the algorithm. The results are averaged over a number of transforms for
each combination of parameters. Table 5.1 shows the results. The following points should be
noted here:
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FIG. 5.1. Influence of the stepsize s. The figure shows the error E for o = 0, § = 10, transform length
n = 4096 and increasing values of s using the three variants of the algorithm (solid = precomputed matrices, dash-
dotted = direct computation of matrix-vector products, dashed = FMM accelerated computation of matrix-vector
products). The curves are virtually indistinguishable. The results were averaged over 10 transforms.

e The variant accelerated by the fast multipole method uses a MATLAB implementa-
tion of the method described in [28] while the slower variant with online evaluation
of matrix entries makes use of a direct matrix-vector multiplication compiled as an
external Fortran routine. A compiled version of the fast multipole method would
certainly lead to a speedup for the accelerated algorithm which would lower the
break-even point with respect to computation time significantly. Our method is yet
faster than the direct method in our examples.

e The accelerated algorithm does not yet beat the algorithm with precomputed matri-
ces. Again, more sophistication in the implementation would make the asymptotic
advantage of the accelerated algorithm appear earlier. For large transforms or mul-
tiple transforms with different combinations of & and /3, another aspect in favour
of the accelerated algorithm is that precomputation of all matrices could otherwise
exhaust memory resources quickly.

e In terms of arithmetic complexity, the method developed in this paper has been re-
cently superseded by a generalisation of the O(n) method in [2], which only worked
for Legendre polynomials and Chebyshev polynomials of first kind, to Gegenbauer
polynomials in [24]. Also, the C implementation tested there is much more efficient
than our MATLAB code. On the other hand, that method does not reveal the link to
semiseparable matrices in the context of Gegenbauer polynomials.

Conclusion. This paper combines a new algorithm for computing the eigendecomposi-
tion of upper and lower triangular diagonal plus semiseparable matrices with a new method to
develop fast algorithms for transformations between different families of Gegenbauer poly-
nomials. The former algorithm resembles existing algorithms for symmetric diagonal plus
semiseparable matrices and extends the concepts to triangular matrices. The new approach to
transforms between different systems of Gegenbauer polynomials presented in Section 4 re-
lies only on very basic and well-known properties of these orthogonal polynomials. We have
shown that coefficient conversion is intimately connected to an eigenproblem for upper trian-
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TABLE 5.1

Error and computation time comparison. The table shows the error E and the computation time t in seconds
for a range of different combinations o and B and different transform lengths n. Superscripts indicate the algorithm
used, namely, fully precomputed matrices (e), direct evaluation of matrix-vector products (d) and FMM-accelerated
evaluation of matrix-vector products (f). For the accelerated algorithm, we chose the parameters of our FMM imple-
mentation so as to keep the error smaller than roughly 1010, All results were averaged over m transformations.
Similar errors for the direct and the FMM-accelerated algorithm at small transform sizes show that the matrix-vector
multiplication is still dominated by direct evaluation of matrix entries in the FMM-accelerated version.

«a B n m E5 ES Ef t° td tf

1024 50 6.2E—16 6.9E—16 6.9E—16 1.5E—02 2.5E—02 2.0E—02
0.0 0.5 2048 25 7.1E—-16 T7.8E—16 7.8E—16 2.8E—02 9.4E—-02 8.1E—02
4096 10 7.9E—16 8.5E—16 1.0E—12 7.0E—02 3.8E—01 1.5E—01
1024 50 24E-16 3.7TE—16 3.7E—16 2.4E—02 4.3E—02 3.5E—02
0.0 1.5 2048 25 2.0E-16 4.3E—16 4.3E—16 5.5E—02 1.8E—01 1.2E—01
4096 10 2.1E-16 2.9E-16 5.8E—15 1.3E—01 7.5E—01 2.4E—01
1024 50 3.0E-16 2.1E—-16 2.1E-16 6.1E—02 1.0E—01 7.2E—-02
0.0 5.0 2048 25 3.3E—16 2.8E—16 2.8E—16 14E—01 4.3E—01 2.1E-01
4096 10 2.6E—-16 2.2E—-16 2.2E—16 3.5E—01 1.8E4+00 4.5E—01
1024 50 8.2E—16 4.5E—16 4.5E—16 1.2E—01 2.0E—-01 14E-01
0.0 10.0 2048 25 3.2E-16 2.4E-16 24E—-16 2.7TE—01 8.7E—01 4.3E-01
4096 10 3.8E—-16 3.7E—16 2.9E—16 7.1E—01 3.6E4+00 9.2E-01
1024 50 54E—-16 6.3E—16 6.3E—16 1.2E—02 2.2E—02 2.0E—02
0.5 0.0 2048 25 3.9E—-15 3.9E-15 3.9E—15 2.7E—02 9.4E—02 8.1E—02
4096 10 54E—-15 5.5E—15 1.1E-11 7.1E—01 3.8E—01 1.5E—01
1024 50 3.6E—15 3.5E—15 3.5E—15 2.4E—02 4.4E—02 4.1E—02
1.5 0.0 2048 25 3.5E—-15 3.4E-15 3.4E—15 5.5E—02 1.8E—01 1.6E—01
4096 10 5.6E—-15 5.3E—15 1.1E-10 1.4E—-01 7.8E—01 3.0E—01
1024 50 2.1E—-15 1.9E-15 1.9E-15 6.1E—02 1.0E-01 9.0E—02
0.5 0.0 2048 25 2.1E—-15 2.1E-15 2.1E-15 1.3E—01 4.6E-01 3.7E-01
4096 10 2.6E—15 2.3E-15 1.3E—11 3.5E—01 1.9E4+00 7.9E—01
1024 50 3.6E—16 4.1E—-16 4.1E—16 8.6E—02 1.5E—01 1.3E—01
s w2 2048 25 4.2E-16 3.8E—16 3.6E—16 1.9E—01 6.4E—01 4.8E-01
4096 10 4.3E-16 5.1E—-16 5.1E—-16 4.9E—01 2.6E400 1.0E400
1024 50 9.6E—-16 1.2E—15 1.2E-15 6.1E—02 1.1E-01 1.0E-01
5.0 0.0 2048 25 6.4E—15 6.5E—15 6.5E—15 1.3E—01 4.7E—01 4.1E—01
4096 10 2.3E—15 2.0E-15 2.7E-11 3.5E—01 1.9E400 7.7E-01
1024 50 5.8E—13 5.8E—13 5.8E—13 6.1E—02 1.1E-01 1.0E-01
6.9 24 2048 25 1.3E—12 1.3E-12 1.3E-12 13E—01 4.7E—-01 4.1E-01
4096 10 44E—-12 44E-12 5.6E—11 3.5E—01 1.9E400 8.2E—-01
1024 50 2.3E—14 24E-14 2.4E-14 8.6E—02 1.5E-01 1.4E-01
m? s 2048 25 5.7E—14 5.7TE—14 5.7E—14 1.9E—01 6.5E—01 5.8E—01
4096 10 4.1E-14 4.1E-14 18E—-13 4.9E-01 2.7E400 1.1E400
1024 50 1.5E—-15 1.3E-15 1.3E-15 1.2E—01 2.2E—-01 2.1E-01
10.0 0.0 2048 25 2.3E-15 2.3E-15 2.2E-15 2.7TE—01 9.4E—-01 8.3E—01
4096 10 2.1E-15 2.7E—15 2.0E-12 T7.0E—01 3.8E400 1.5E400

gular diagonal plus semiseparable matrices. The concept might allow for generalisations to
other types of orthogonal polynomials, like the entirety of Jacobi polynomials or Hermite and
Laguerre polynomials. We have shown that the proposed algorithm can be implemented in a
way such that high accuracy (in the error measure we used) is achieved. Specific implemen-
tations issues like the split into multiple transforms, the FMM acceleration of the precompu-
tation part or the benefit from specifically tailored FMM implementations have only briefly
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been addressed. As said before, implementation-wise, the method described and tested in
[24] is now to be considered more efficient. But that does not render the theoretical findings
in this paper any less interesting.

Appendix. Explicit expressions for constants needed to set up the matrices G. and G,
are given below in Table 5.2.

TABLE 5.2
Values of the most important constants for Gegenbauer polynomials.

a=0 a>-1/2,a#0
b w, ifn =0, 21=227T(n + 2a)
" 2r/n?, ifn>0. (n + a)(T(a))2T(n + 1)
An n(n + 2a) n(n + 2a)
T e e
(n—1)/(2n), ifn > 2 1/24 (a—1)/(2n+2a), ifn>1.
bn 0 0
1/2, ifn =0,
¢ (n+1)/(2n), ifn> 1. (n+1)/(2n + 2a)
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