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OPTIMAL DISCRETIZATION OF PML FOR ELASTICITY PROBLEMS
�

VADIM LISITSA
�

Abstract. This paper presents a generalization of the optimal finite-difference perfectly matched layer (PML)
approach to isotropic elasticity. It allows the use of methods of rational approximation theory for a clever choice
of discretization parameters in order to essentially reduce reflection coefficients for a wide range of incident angles
while using a small number of grid points.
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1. Introduction. Numerical modeling of seismic wave propagation is a very impor-
tant tool providing unique possibilities in such areas as survey design for complicated me-
dia, finite-difference reverse-time migration, and so on. The key constituent of any efficient
implementation of finite-difference simulation is a procedure which makes possible the per-
formance of computations within some bounded spatial domain (target area) and avoids any
significant artificial reflections.

There are two main approaches to provide this:� Absorbing boundary conditions (ABCs) which were first proposed and developed
in [6]. These conditions are based on rational approximation of a square root which
appears when one writes down exact transparent conditions in a phase space.� Perfectly matched layer (PML) presented in the paper [2]. Under this approach,
one should introduce some special layer surrounding the target area. The interface
between this layer and the target area does not provide any significant reflections
while the layer itself attenuates waves. The discrete model of the PML can contain up
to 50 points in width and sometimes is rather time-consuming in its finite-difference
implementation; computations inside the PML can demand up to a quarter of the
total computational time.

There are a variety of alternative ways to provide efficient truncation of a target area with
low reflecting artificial boundary conditions. One of them, e.g., is based on exact boundary
conditions proposed in [8]. The other one is optimal PML. This method for the scalar wave
equation was proposed in [1] and is a combination of ideas presented in [5, 7]. The differen-
tial model of this method was obtained by a particular change of variables, which is actually
a special case of the standard PML. Implementation of the optimal grids [4] permits a re-
duction of the number of points in the discrete model of the optimal PML. In this paper, we
present the expansion of this approach to isotropic elasticity problems and provide numerical
experiments illustrating the efficiency of the approach. Throughout the paper, we will refer to
the original approach for the scalar wave equation presented in [4] and call it, for simplicity,
“the scalar problem”.

The paper has the following structure. In Section 1.1, we describe the artificial bound-
ary conditions in more detail and explain the main ideas of the optimal PML for the wave
equation. Section 2 contains the construction of the optimal PML for elasticity problems. A�
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finite-difference scheme in physical space for PML is presented and studied in Section 3. The
numerical experiments are described and discussed in Section 4.

1.1. Artificial boundary conditions for wave equation. Let us consider the 2D wave
equation, ������
	 ������	 ������������
in the domain, ��� ������������ "!�# . Suppose that a “reflectionless” boundary condition
is to be constructed on the boundary ���$� . We also assume that a source is placed deep
enough inside the regular domain, so that only the propagative modes can be considered on
the boundary. Artificial boundary conditions are constructed in the spectral domain, so we
need to implement the Fourier transform,�&%(')�*�
�*+�,-��.0/1 / .2/1 / ��3% � �4�5�* �,*687:9<; �(=?>��A@CB � B  ��(1.1)

and obtain the equation, ����EDGFH'JILKM	ONQP8RA�S�T���(1.2)

where NU� >; . We will also need another form of this equation,����EDGFH'WVW�X�T���
where V0�YKM	ZN P . As soon as only propagative modes are considered, V[!]\ ���AK�^ .

Let us now describe the ABC’s construction. The equation (1.2) possesses two plane
wave solutions. The first one propagates to the right, while the second moves to the left.
Therefore, the natural way to avoid reflections from the boundary �_�`� is to cancel the
second mode on the boundary. This leads to the condition,�S� 	aKFH'cb V ����d �8egfih(1.3)

In order to implement this condition in physical space, the inverse Fourier transform should
be performed. However, this results in a nonlocal operator. Use of this operator for finite-
difference simulation is complicated and computationally expensive. The main idea of ABC
[6] is to construct a rational approximation of the square root, so that the condition (1.3)
transforms to �S�Y	kjal 1gm %:V�,FH' j l %:V�, ����d �egfi�
where jnl %:V�, is a polynomial of degree o . The inverse Fourier transform of the rational
function can be easily obtained using the pole-residues theorem and provides one with local
boundary conditions. This approach is low cost and efficient. Nevertheless, it has two dis-
advantages. ABC is quite difficult for implementation at the corners of the target area and
becomes complicated for elasticity problems where more than one propagative mode exists.

The second type of reflectionless condition considered in the paper is PML. Assume the
equation (1.2) is stated for �Y�p� . Following [2], one can introduce an artificial layer for� � � and implement the complex change of variables inside the layer,BB � �rq�stDvuFH'aw BB
x� h(1.4)
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This change of variables transforms propagative modes to evanescent ones if upy�r� . The
PML is simpler for implementation than ABC, but sometimes it needs as much as 50 points
in � direction, which makes it computationally expansive.

Let us consider the optimal PML proposed in [1]. On the one hand, the Neumann-to-
Dirichlet (NtD) problem can be stated for standard PML. That is, one must find a solution�3%:���*')�*+�, of the problem,q�stDvuFH'aw 1gm BB �{z q�stD|uFH'aw 1?m B �B �~} D]' P V~�S�����q�stD uFH'aw 1gm B �B ������ �egf �Y	aKQ���d �8e / �T��h
The solution of the NtD problem can be represented as

(1.5) �&%����*')�*+��4s~� u ,-���Q���?%�')�4+�,�����%:�C,��
where �Q���5%(')�*+�, is an NtD map, or impedance function. On the other hand, one can consider
the discrete problem on a grid. Assume � is defined at points � 7 , and ��� is assigned to points�� 7 , on a grid. Defining the steps � 7 ��� 7 1gm 	�� 7 and

�� 7 � �� 7 	 �� 7 1gm , one can write down the
finite-difference (f-d) NtD problem,q stDvuFH'aw 1gm ��_� q s�D�uFH'aw 1gm � � 7�� D]' P V~� 7 �����q�stD uFH'aw 1gm �� � m ��	aKi��g��= m �T���
where

� � 7 ���L����� 1 �L�� � and
�� ���*� 1 �*���C��� � . Solution � m of the f-d NtD problem can also be

presented in terms of the NtD map,� m %�')�*+���sW� u ,W��� ���� I ')�*+�� � 7 � �� 7 R �� � m h(1.6)

The approximation error, in this case, is � �3%:�i,�	�� m ���_� � � � 	k� �� � �i� � � %:�C, � �T¡ ��� � � � %��i, � .
So the discrepancy of the solution is defined by the error of the NtD map. As was proved
in [1], the inequality, ¡ ���t¢ ¡ f4� �
holds for any parameters s and u , where u is any real positive number. The f-d operator
depends on the product of the grid steps and stretching factor u , so without loss of generality
we assume that the latter is 1 and we vary the former to minimize the reflection. In this case,
the NtD map of the differential problem becomes �3%�V£%(')�*+�,*,-�YK¥¤�b V . The finite-difference
NtD map is the rational function coinciding with the one appearing in the description of
ABC. The principal difference between optimal PML and ABC resides in the conversion of
the rational function to the operator in the physical domain. The optimal PML allows one to
represent the function in terms of spatial steps instead of high-order difference operators on
the boundary as they appear for ABC. Below, we present the extension of this approach to
elasticity problems.
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2. Optimal PML for elasticity.

2.1. Statement of the problem. First, let us recall the system of isotropic elasticity,¦ I �� � R � � I �§ �8� R � D I �§ �8� R � �¦ I �� � R � � I �§ �8� R � D I �§ ��� R � �I �§ ��CR � �Y%H¨UD0©�ª5, I �� �QR � D0¨ I �� ��R � �I �§ �A� R � �T¨ I �� � R � DT%�¨UD0©�ª5, I �� � R � �I �§ �8� R � �[ª I �� � R � DGª I �� � R � �
(2.1)

where
�� � and

�� � are the components of the velocity vector. Functions
�§ �8� , �§ ��� , and

�§ �� are
the components of the stress tensor. Parameter ¦ is a density of the medium and ¨ � � , ª � �
are the Lame parameters characterizing the medium properties. All the functions are defined
inside the domain � ¢ ���?� � ���? k!�# . We will later use this particular representation of the
system to write down the finite-difference scheme in a spatial domain. In order to construct
the optimal PML, it is convenient to rewrite the system as� � «« � � �¬¬ � � �® m�® P � D �J¯ m �� ¯ P �°¬¬  � �® m�® P �	 �U± m �� ± P �"¬¬ � � �® m�® P � �T���(2.2)

where the matrices are«��³²´ Kµ�� K�¶�G·¸ � ¯ m �¹²´ �º�¶��º� K� Kµ�G·¸ � ¯ P � � � KKµ� � �
± m � ²´�» m � »�¼� ¦ �»�¼ � » m ·¸ � ± P � � ¦ �� » P � �

with » m � ¨JD0©�ª½ ª-%�¨�D]ª5, � » P � Kª � » ¼ � 	E¨½ ª-%�¨JD0©�ª5, �
and vectors

�® m ��% �§ �8��� ������ �§ ��� ,L¾ ,
�® P �Y% ������ �§ �� ,*¾ .

Following [1], assume the PML should be constructed in the � direction. Let us perform
the Fourier transform (1.1) and pure imaginary change of variables for � � � ,x��� KFH' �
h
This leads to the system of equations,FH' � � «« � � � BB � � ® m® P � D]FH' �J¿ m �� ¿ P � � ® m® P � �[���(2.3)

where ¿ m �³²´ 	 » m � 	 »�¼� 	M¦ N	 »�¼ N 	 » m ·¸ � ¿ P � � 	M¦ NN 	 » P � �
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262 V. LISITSANJ� >; . We also need to introduce additional spectral parameters, VcÀa� mÁ�ÂÃ 	EN P , V�Ä�� mÁ�ÂÅ 	EN P .
Let us state the NtD problem for the PML. As one can see from (2.3), the variables are

decoupled as two sets ® m and ® P . It is convenient to consider the first set of variables as
Dirichlet data and the second as Neumann data. Throughout this paper, we will consider ® m
as Neumann data and ® P as Dirichlet data. The dual problem has no principal difference;
therefore, we omit it. Consider the NtD problem

(2.4)

FH' � � «« � � � BB � � ® m® P � DGFH' � ¿ m �� ¿ P � � ® m® P � �����FH'W« � ® m �� �egf �Y	MFH'-® fm �Æ® P ���Ç�8e / �T���where ® f m is assumed to be given Neumann data. The solution ® P %����L')�4+�, should be found.

2.2. Construction of NtD map. The solution of the problem (2.4) can be represented
as an action of the NtD map on Neumann data. In this section, the explicit form of the NtD
map is constructed. In order to simplify the representation, let us rewrite the first boundary
condition of (2.4) as F�' � ���§ �� � �egf �Y	MFH' � � f§ f � h
Let us also recall the notation ® P �°%(� � � § �� ,*¾ .

THEOREM 2.1. The solution of the problem (2.4) can be represented as� ����%:���*')�*+�,§ ���%����L')�4+�, � �ÉÈËÊ Ä %�')�4+�,4�3%:V Ä ,?D2Ê À %�')�4+�,*�3%:V À ,ÍÌ � � f§ f � �
where � I V�Î R � KÏ V-Î �ÑÐU�]Ò5�ÔÓQ�
are exact NtD maps corresponding to the scalar problem, for each scalar wave equation with
velocities Õ À�Ö Ä . Matrices Ê Î have size ©�×Ø© and are bounded functions of the parameters '
and + , so � Ê Î � ��Ù .

Proof. Construction of the solution will be performed in the original terms of problem
(2.4). In order to construct the solution of the problem, it is convenient to reformulate it in
terms of generalized functions. Continue the functions for �Ú�Û� and assume that ® P is
even and ® m is odd. The jumps of « � ® m ought to be equal to ©�® f m . In this case, the problem
becomes � � «« � � � BB � � ® m® P � D � ¿ m �� ¿ P � � ® m® P � � � �	E© ® fm � h
Implementing the Fourier transform,Ü�3%:ÝQ,W�T.0/1 / �3%(��,*6¥7<Þ �WB �5�
one comes to the system of linear algebraic equations,

(2.5)

²ßßßß´
	 » m � 	 » ¼ FÍÝ �� 	M¦ N � FÍÝ	 »C¼ N 	 » m � �FÍÝ � � 	M¦ N� FÍÝ � N 	 » P

·<àààà¸ �
Ü® mÜ® P � � � �	E© ® fm � h
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This system can be resolved analytically,Ü® m %:���L')�4+�,-� � Ê Ä %�')�*+�, 	aKÝ P DGV Ä DGÊ À %�')�*+�, 	aKÝ P DGV À � ® fm h
The exact representations of the matrices Ê Î %(')�*+�, are required neither for construction of the
optimal discretization, nor for computation of the wavefield. Nevertheless, their boundedness
should be proved. In order to do this, let us present the matrices

(2.6)

Ê Ä � ²ßßß´ 	 Õ 1 PÄ DGV Ä¦ 	ká 	 Õ PÀ Õ 1 PÄ 	]© V�Ä Õ PÄ% Õ PÀ 	 Õ PÄ , Õ PÄ N	ká 	 Õ PÀ Õ 1 PÄ 	â©QVcÄ Õ PÄ% Õ PÀ 	 Õ PÄ , Õ PÄ N ª-%*K~D Õ PÄ V Ä 	 ÕCãÄ V P Ä ,Õ PÄ ·<ààà¸ �
Ê À � ²ßßß´ 	)V À¦ 	 © V Ä Õ PÄ 	]© Õ PÄ Õ 1 PÀ% Õ PÀ 	 Õ PÄ , Õ PÄ N	 © V Ä Õ PÄ 	]© Õ PÄ Õ 1 PÀ% Õ PÀ 	 Õ PÄ , Õ PÄ N ªgN�% Õ PÀ 	 Õ PÄ 	 Õ PÀ Õ PÄ V Ä ,Õ PÀ ·<ààà¸ �

where N�� >; and V Î � Õ 1 PÎ 	TN P . As soon as only propagative modes are considered,

parameters V-ÎO!ä\ ��� Õ 1 PÎ ^ and N are bounded. Velocities of the P-wave Õ À �vå æ = P�çè and

the S-wave Õ Ä � å ç è are not equal. These two facts are enough to prove boundedness of
the matrices. Applying the inverse Fourier transform and performing the change of variableséJ��	MÝ P , one has® P %:�C,-� � Ê Ä . f1 / B éê b 	)é�%�V�À�	Oé�, D2Ê À . f1 / B éê b 	)é�%�VcÄ~	âéC, � ® fm h
Let us draw attention to the equality. f1 / B éê b 	)é�%�V]	âéC, � Kb V �T� I V£%(')�*+�, R
for V � � .The function �3%�Vc, is the NtD map corresponding to the optimal PML for the scalar
wave equation. Finally, the key equality is® P %:�C,-� È Ê Ä %(')�*+�,*� I VcÄ R DGÊ À %�')�4+�,4� I V-À R Ì ® f m
which is equivalent to� ���ë%:���L')�*+�,§ ���%����*')�*+�, � � È Ê Ä %�')�4+�,*��IHV Ä RcDGÊ À %�')�*+�,4��I�V À R Ì � � f§ f �
up to a change of notation.

2.3. Construction of finite-difference NtD map. In order to construct the finite-differ-
ence impedance, let us state the f-d NtD problem first. Introduce a staggered grid with two
sets of points. The first one contains so-called “primary” points � 7 , Fc�ìKQ�hAhAhA��íJD�K , where
the vector ® P is defined. The second set of points holds the “dual” ones

�� 7 , FU�É���AhAhh���í ,
where ® P is stored. Let us assume, in addition, � m � ���fn�T� and define the steps by the rule� 7 �Ú� 7 = m 	"� 7 , �� 7 � �� 7 	 �� 7 1?m , Fn�rKi�AhAhh���í . In order to simplify the representation of
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the finite-difference scheme, let us come back to the original notation of the variables, i.e.,® m �î% § �� �*� � � § ��� ,L¾ , ® P �î%(� � � § �� ,*¾ , and « � ® m �ï% § �8� �4� � ,L¾ , so that the condition at
the interface becomes ® f m �Y% § f �*� f ,*¾ . We will use both notations to perform the construction
of the f-d NtD map. In terms of the introduced grid, the finite-difference scheme for PML can
be represented as²ßßßß´

� � �¶ð �� � � � ð� � � � �ñ � � � �� ñ � � � ·<àààà¸
²ßßßß´
ò§ ��ò� �ò§ ���ò� �ò§ �8� ·<àààà¸

D ²ßßßß´
	 » m�ó � 	 »�¼ ó � �� 	M¦ ó N ó � �	 »�¼ ó N ó 	 » mÔó � �� � � 	M¦ ó N ó� � � N ó 	 » P ó

· àààà¸
²ßßßß´
ò§ ��ò���ò§ ���ò���ò§ �8� · àààà¸ �

²ßßßß´
����� 1?mm�ô m § f�� 1gmm ô m � f · àààà¸ �

(2.7)

where the elements of the matrices are matrices themselves and their size is ít×Øí . The first
component of the vector ô m is equal to one and all the rest are zeroes. The elements of the
vectors are vector-columns with lengths equal to í . Matrices

ñ
and ð are

ñ � ²ßßßß´
�� m � hAhh �	 �� P �� P ...� . . . . . . �� 	 �� � �� � ·<àààà¸ � ð°� ²ßßßß´

	 � m � m �� . . . . . . �
... 	 � � 1?m � � 1?m� hAhAh � 	 � � ·<àààà¸ h

The finite-difference solution at the interface �t��� is %4%(� � , m �% § �8� , m ,L¾O�%:® P , m . Just as for
the differential problem, the solution of the f-d can be constructed explicitly. Moreover, the
following theorem holds.

THEOREM 2.2. The solution of the problem (2.7) can be represented asõ I � � R mI § �8� R m�ö � È Ê Ä %�')�4+�,4� � I VcÄ R D2Ê À %(')�*+�,*� � I V-À R Ì � � f§ f � �
where matrices Ê Ä and Ê À coincide with the ones from Theorem 2.1, and functions � � %H¨ Î , ,Ð��pÒ5�ÔÓ , are finite-difference NtD maps corresponding to the scalar wave equation with
velocities Õ Î .

Proof. In order to solve the problem (2.7), it is convenient to symmetrize it. Let us intro-
duce the matrix «$� ± m4÷ P ð ¯ 1?m*÷ P �Û	n% ¯ m4÷ P ñ ± 1?m*÷ P ,*¾ , where ¯ �pø�ùûúQüë% �� m �AhhAh�� �� �Q,
and ± �Ñø�ùýú ü�% � m �hAhh�� � � , . Implementation of the diagonal transform ø�ùýú üë% ± m4÷ P � ± m4÷ P �± m4÷ P � ¯ m*÷ P � ¯ m4÷ P , allows one to obtain the system

²ßßßß´
	 » m�ó � 	 »�¼ ó « �� 	M¦ ó N ó � «	 » ¼ ó N ó 	 » m ó � �	)«£¾ � � 	M¦ ó N ó� 	)« ¾ � N ó 	 » P ó

· àààà¸
²ßßßß´
þ§ ��þ���þ§ ���þ� �þ§ �8� · àààà¸ �

²ßßßßßß´
���å �� 1gmm ô m § få �� 1?mm ô m � f

· àààààà¸ h
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With the help of the singular value decomposition of matrix « , one can simplify the system
as follows:²ßßßß´

	 » m ó � 	 » ¼ ó � �� 	M¦ ó N ó � �	 »C¼ ó N ó 	 » m�ó � �	 � � � 	M¦ ó N ó� 	 � � N ó 	 » P ó
·<àààà¸
²ßßßß´
ÿ§ �8�ÿ���ÿ§ ���ÿ���ÿ§ �8� ·<àààà¸ �

²ßßßßßß´
���å �� 1?mm�� m § få �� 1gmm � m � f

·<àààààà¸ �
where � m is the vector consisting of the first components of the right singular vectors of the
matrix « . One can see that the matrix of the system can be split into í independent matrices
of the form²ßßßß´

	 » m � 	 »�¼ B 7 �� 	M¦ N � B 7	 »�¼ N 	 » m � �	 B 7 � � 	M¦ N� 	 B 7 � N 	 » P
·<àààà¸
²ßßßßßß´
I ÿ§ �8�iR 7I ÿ� � R 7I ÿ§ ��� R 7I ÿ��� R 7I ÿ§ �� R 7

·<àààààà¸ �
²ßßßßßß´

���å �� 1gmm Ó m 7 § få �� 1gmm Ó m 7 � f
·<àààààà¸ h

The system obtained is equivalent to (2.5) up to a change of variables, leaving % ÿ�g�C, 7 and% ÿ§ �� , 7 the same. So we can write down the solution %*% ÿ�?�i, 7 �8% ÿ§ �� , 7 ,*¾ asõ I ÿ��� R 7I ÿ§ �8� R 7 ö �¹²´ Ê Ä %�')�4+�, å �� 1?mm Ó m 7B P7 D2VcÄ DGÊ À %�')�*+�, å �� 1gmm Ó m 7B P7 DGV-À ·¸ � � f§ f � h
Due to the equivalence of the system considered and the system which appeared in the proof
of Theorem 2.1, matrices Ê Ä and Ê À are given by the formulas (2.6). Performing the inverse
transforms, one can derive the solution %(�?�Q, m and % § �� , m of the formõ I � � R mI § �� R m�ö � õ Ê Ä %�')�4+�, �� 7 e m  7V Ä 	�� 7 DGÊ À %�')�*+�, �� 7 e m  7V Ä 	�� 7 ö � � f§ f � �
where  7 ��Ó P m 7 ¤ �� m and � 7 ��	 B P7 . Let us now establish now the finite-difference NtD map� � %:V�,-� �� 7 e m  7V]	�� 7 �Új � 1gm %:V�,j � %�Vc, h
Following [1], the rational function obtained coincides with the f-d NtD map for the PML for
the scalar wave equation.

Let us introduce a shorter notation for the f-d NtD map that will be useful for further
investigations, I ® P R m �ïÈ<Ê Ä %�')�4+�,*� � I V Ä R DGÊ À %�')�4+�,4� � I V À R Ì�® fm h

2.4. Order of convergence. Let us define the discrepancy of the solution as¡�� � ® P %��i,&	 %(® P , m � �������

õ ����%:�i,§ �� %��i, ö 	 õ I � � R mI�§ �� R mtö ����� h
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We have the estimate,¡�� ��
È �3%:V�Ä�,3	]� � %:V�Ä�, Ì Ê Ä %�')�4+�,L® fm D È �3%:V-À ,&	G� � %�V�ÀQ, Ì Ê À %(')�*+�,�® fm ��� ��
� I V Ä R 	]� � I V Ä R �� �� Ê Ä ® fm �� D ��

� I V À R 	G� � I V À R �� �� Ê À ® f m �� h
Due to the boundedness of the matrices Ê Ä and Ê À and the input data, the terms Ê Î ® f m are
bounded. So in order to investigate convergence, one should consider

��
� I V Î8R 	]� � I V Î8R �� �������

KÏ V-Î 	 �� 7 e m  7V-Î)	�� 7 ����� h
Following [1], let us use the norm of functions,

��
��I:V-Î8RM	]� � I�V-Î8R �� � 	�ú�
���� f Ö � ��� �� ��I:V-Î8R�	]� � I�V-ÎR �� �

where V m is defined by the problem. As it was shown above, the functions �3%:VcÎ, , Ðt��Ò
��Ó ,
are the NtD maps of the scalar problem with velocities Õ À and Õ Ä , correspondingly. Let us
consider the spectral parameters VWÎ in more detail. As soon as VWÎ{� Õ 1 PÎ 	0N P , it is easy
to show that for propagative modes V~Î0!ï\ ��� Õ 1 PÎ ^ . All isotropic elastic media satisfy the
inequality Õ À �2Õ Ä , so that V�Î�! È ��� Õ 1 PÎ Ì��ÚÈ<��� Õ 1 PÄ Ì�h
We can also assume that Õ Ä �îK . Otherwise, the problem can be remeasured to archive this
property. Exploiting this embedding, we can derive the inequality

��
� I V�À R 	]� � I V-À R �� � 	�ú�
���� f Ö Á � ÂÃ � �� �3%:V�,&	â� � %�Vc, ��� 	�ú�
���� f Ö m � �� �3%�Vc,&	]� � %:V�, �� � ��

� I VcÄ R 	â� � I V�Ä R �� h
Therefore, one can conclude that¡ � 	�ú�
���� f Ö m � �� �3%�Vc,&	]� � %:V�, �� I �� Ê Ä %(')�*+�,�® fm �� D ��

Ê À %(')�*+�,�® fm �� R� 	�ú�
���� f Ö m � d �3%�Vc,3	]� � %:V�,AdA% � Ê Ä %(')�*+�, � D � Ê À %�')�4+�, � , ���� � � � %��i,§ �8� %:�C, � ���� h
As was proven in [5], use of optimal rational approximation of the inverted square root allows
one to satisfy estimate

	�ú�
����� f Ö m � ����� Kb V 	
�� 7 e m  7V]	�� 7 ����� � ± m 6 1�� ��� Â �where ± m and ± P are constants given in [4]. Finally, one can derive the error estimate for

optimal discretization of the PML for elasticity,¡ � ± 6 1�� ��� Â �
where ± is a bounded constant due to the limited nature of the Neumann data and the matricesÊ Ä and Ê À . Thus, implementation of optimal grids for the PML provides one with exponen-
tial order of convergence with respect to the number of grid points. For the artificial boundary
conditions to be most effective, they need to be able to absorb not only the propagative modes
of the solution, but also the evanescent ones. The proposed PML is optimal in terms of ab-
sorption of the propagative part. However, the evanescent part was left untreated. The obvious
solution to this problem is to place these boundary conditions at a distance to receivers; this
will ensure that the evanescent modes of the solution get absorbed.
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2.5. Reconstruction of grid steps. The existence of the optimal discretization of PML
for elasticity was proved above. This section presents the algorithm of the grid step computa-
tion when the rational approximation has been achieved already.

Suppose one already knows the rational function� � %�Vc,W� �� 7 e m  7V]	�� 7 �
where, following the proof of Theorem 2.2, parameters  7 are the first components of the
right singular vectors of matrix « normalized over the first dual step. Variables � 7 are equal
minus squared singular values of the matrix. In order to recover the grid steps, one should
reconstruct the matrix from the singular data. This problem can be reduced to the inverse
spectral problem for symmetric tridiagonal matrices. It is easy to see that parameters  7 are
normalized eigenvectors and � 7 are eigenvalues of matrix � �	)«�¾5« , which is tridiagonal
and symmetric. The inverse spectral problem for these matrices is well studied; see, e.g., [3]
for review.

Assume the matrix is already constructed. Let us write it down as

� � ²ßßßßßßß´
s m u m � hAhh �u m s P u P ...� . . .

. . .
. . . �

... u � 1 P s � 1gm u � 1gm� hhAh � u � 1?m s �
·<ààààààà¸ �

where s m � K� m �� m � u 7 � K� 7 å �� 7 �� 7 = m � F&��Ki�AhhAh��ÔíJ	"KQ�
s 7 � K�� 7 q K� 7 D K� 7 1?m w � F&��©��hAhh���í�h

In order to recover the grid, steps one should invert these formulas and the initial condition�� 7 e m  7 � �� 7 e m Ó P m 7�� m � K�� m h
Finally, one gets the recursive algorithm to construct the steps�� m � K

� �7 e m  7 � �� 7 � Ku P7 1gm � P7 1?m �� 7 1?m � F&��©��hAhAhA��í��� m ��	 K�� m s m � � 7 �Y	 Ks 7 �� 7 D[K�¤ � 7 1?m � F&��©��hAhAhA��í�h
The properties of the algorithm are discussed in [4]. The examples of the grid steps for spec-
tral interval Vä!�\ ���K�^ for different numbers of the points inside the PML are (provided by
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L. Knizhnerman)í���©� m ��©�h á �"! ½"#�$�% % ! © �Qá KiK©�� �� m � � h�K # � áiá %"# #&$�½"%"# % ½�$(' K� 1gm �� P � ! ©�h ½ � $ á © $ $ á ½�$ á ½ K ! ��� �� P � $ h ½&# � � � $�%&$ $�½"%"%&$�# á �í�� á� m �YKQh �"! á © á % á"! % ! � K K8� � � �� m � ½ h # � # � © $ K � K ½�$ © á � � ' K� 1gm �� P � % h á # © ½ ! % �Qá # % ! á ! K # � �� P � á h $�# � ! �Qá $ á"! K á � % K á �� ¼ ��©Q©Q©�h � K $ K ½ á © á © % K $ � � �� ¼ � á ��h ! © á ©�K ½ K á&! ©�K # � �í�� !� m �YKQhûK ½"# á $ á © ! # © % � $ � ½ � �� m � á h ! � � � % á ½�$�% � � $ ! ½)' K8� 1?m �� P � ½ h ��K % ��K % ! ! K ! # K© $*# � �� P ��©�h ©i© % © $¥½�$¥½ á % � � � # % �� ¼ �YK ! hûKQK ½Q½ ©�K á #&$"$ � % !�� � �� ¼ � $ h ½&% © � � á&! á"!"! #�$¥½ K $ �� ã � # # h © #Q½ ! © # ! # � $¥½ á&!�! � �� ã � áiá h % � ! © ! � ½�$ á"! � ! $ á ��,+ ��©�K � $ h ½Q½ K # #�$ © ½ � #Q½&$ � ��,+ ��© % ! h � # � !"! K #�$ ! K� ! h
3. Finite-difference schemes. First of all let us recall the Virieux finite-difference

scheme [9] on staggered grids for isotropic elasticity. We drop the “hat” over variables inthe
time domain because we will no longer consider any equations or functions inthe spectral do-
main. In order to simplify the representation of the f-d scheme, let us introduce the operators�.- 1gm4÷ P7 Î ��� � -7 Î 	â� - 1gm7 Î/ � � -7 Î �S� � - = m4÷ P7 Î 	â� - 1gm4÷ P7 Î/ �I10 � R -7 Î ��� � -7 Î 	â� -7 1gm Î� 7 1gm � I �0 � R -7 Î �S� � -7 = m Î 	â� -7 Î�� 7 �I20 � R -7 Î ��� � -7 Î 	â� -7 Î 1gm� Î 1gm � I �0 � R -7 Î �S� � -7 Î4= m 	â� -7 Î�� Î �
where � 7 �_� 7 = m 	]� 7 , �� 7 � �� 7 = m 	 �� 7 , and the same for the second spatial direction. This
notation differs from the notation used for the grid construction, but is more natural for the
representation of the finite-difference scheme. The Virieux scheme [9] is¦ �.- 1gm4÷ P7 Î I � � R � I 0 � R - 1?m*÷ P7 Î I�§ �� R D I �0 � R - 1gm4÷ P7 Î IH§ �8� R �¦ � - 1gm4÷ P7 Î I ��� R � I �0 � R - 1?m*÷ P7 Î I § �� R D I20 � R - 1?m*÷ P7 Î I § ��� R �� -7 Î I § �8� R �Y%H¨UD0©�ª5, I �0 � R -7 Î I ��� R D2¨ I �0 � R -7 Î I ��� R �� -7 Î IH§ ��� R �T¨ I �0 � R -7 Î I � � R DT%�¨�D2© ª5, I �0 � R -7 Î I � � R �� -7 Î I § �� R �[ª I20 � R -7 Î I ��� R DGª I10 � R -7 Î I ��� R h
(3.1)

Superscripts denote the number of the time instants. Subscripts denote the numbers of
points in � and  directions, correspondingly. So � l7 Î ���3% � - �*� 7 �4 ¥Î, . If equidistant grids are
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used, then � 7 � �� 7 � � � , � Î � �� Î � � � , and � l7 Î ���3% / o �*F � � �HÐ � � , . The scheme is explicit,
conditionally stable, and provides one with the second order of approximation [9]. As soon
as wave processes are simulated, the dispersion properties of the scheme should be taken
into account. This means that the velocity of the finite-difference solution depends on the
discretization and converges to the true solution when the grid is refined. The difference be-
tween the velocities is crucial for later discussion of the reflection coefficients at the interface
between the target area and the PML.

3.1. Finite-difference scheme for PML. The pure imaginary change of variables per-
formed in spectral domain to construct the optimal PML leads one to the change in time
domain, ¬¬ �43 ¬ P¬ � ¬ � h
Using this substitution and the matching conditions,È ���¥Ìid �8egf£����� È ���8ÌQd �e?f£�����È § �� Ìid �8egf ����� È § �� ÌQd �e?f �����
one can construct the finite-difference scheme for the PML. In the present notation,\ �ë^Ld �egfJ���3%��CD�,-	]�3%���	E, means the jumps of the function. Due to the change of variables
presented above, functions �g� , § �� , and § ��� should be defined at the integer knots while all
others are defined at fractional ones. Thus, the finite-difference scheme for the PML becomes
implicit. The advantage of the scheme is the possibility of splitting it into two independent
ones. The first scheme is used to compute the solution at integer time layers. The second one
allows the update of the solution at fractional instants.

Opposite to the notation used for the construction of the optimal discretization, it is con-
venient to introduce the grid nodes by the following rule. Let both “primary” and “dual”
points � 7 and

�� 7 be correspondingly defined for FS�Û���hAhAhA��í . Moreover, due to the con-
struction of the optimal grids, let us require � f � �� f ��� . Therefore, the negative indexes
correspond to the target area where the Virieux scheme is used and the positive ones including
zero represent the PML. The finite-difference scheme inside the PML is¦ � - 1gm4÷ P7 Î %:���i,W� I �0 � R - 1gm4÷ P7 Î � - 1?m*÷ P7 Î I�§ �� RD I �0 � R - 1gm4÷ P7 Î IH§ �8� R �ÆF������AhhAh��ÔíJ	"KQ�I ��� R -�4Î �[���� - 1?m*÷ P7 Î I § ��QR ��%H¨UD0©�ª5, I20 � R - 1gm4÷ P7 Î � - 1gm4÷ P7 Î I � �CRD0¨ I �0 � R - 1gm4÷ P7 Î I � � R �ÆF3�_Ki�AhhAhA�Ôí��¦ � �/ � - 1gm4÷ PfLÎ I ��� R � � - 1gm4÷ Pf*Î IH§ �8� R D I § �8� R - 1gmfLÎ 	 I § �8� R - 1?m*÷ P1gm Î/ ¤ ©D � �/ I �0 � R - 1gm4÷ Pf*Î IH§ �8� R �� - 1gm4÷ P7 Î I § ��� R���¨~I 0 � R - 1?m*÷ P7 Î � - 1?m*÷ P7 Î I:���QRDT%�¨�D2© ª5, I �0 � R - 1?m*÷ P7 Î I ��� R �ÆF&�YKQ�hAhh���í��
(3.2)
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270 V. LISITSA� -7 Î I § �� R �[ª I �0 � R -7 Î � -7 Î I � � RDGª I20 � R -7 Î I ��� R �ÆF��[���hAhhA��íU	"KQ�IH§ �8� R - = m4÷ P��Î �����¦ � -7 Î I����¥R£��I 0 � R -7 Î � -7 Î I § �8� RD I �0 � R -7 Î IH§ ��� R �ÆF3��KQ�hAhAhA��í��� �ª / � -f*Î I § �� R � � -f*Î I ��� R D I � � R - 1gm4÷ Pf*Î 	 I � � R - 1gm Î/ ¤Q©D � �/ I10 � R -f*Î I ��� R h
(3.3)

The first system is used to update the solution at the integer time layers, and the second one
allows computation of the solution at fractional instants. In order to deal with the implicit
finite-difference scheme, the properties of the matrices should be investigated in detail. The
first of them is the singularity of the matrices. The second one is the condition number. It is
possible to prove the nonsingularity analytically, but the conditioning can only be investigated
numerically.

3.2. Properties of the matrices.

3.2.1. Nonsingularity. One can see that the systems (3.2) and (3.3) excluding the equa-
tions for the § ��� coincide up to coefficients. The nonsingularity of the matrix can be shown
for the matrix of the (3.3), and the result will hold for the other system.

Let us rewrite the system (3.3) as 5 �S��6 , where����% � -fLÎ % § �8�Q,��hAhAh� � -� 1?m Î % § �8� ,�� � -f*Î %(��� ,��hAhAh� � -�4Î %:��� ,4, ¾ �
and 5 is

5 � � ó � ¯¿ ó ��= m � h
Matrices ó � are í�×�í unitary ones,

¯ � ²ßßß´ u m 	 u m �
. . .

. . .� u � 	 u � · ààà¸ � ¿ � ²ßßßßßßß´
	)s f � hhAh �s m 	)s m ...� . . . . . . �

... s3� 1gm 	)s&� 1?m� hhAh � s&�
·<ààààààà¸ h

All the elements of the matrices are greater than zero, s f � � � ¤�% / ª5, � � , s 7 ��K�¤�% � 7 ¦�, � � ,
and u 7 �[ª
¤ �� 7 � � for F���Ki�AhhAh��Ôí .

Let us introduce two sets of matrices. The first one is� 7 � � ó � 1 7 = m ¯ 7¿ 7 ó � 1 7 = m � �
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where ó l is the unitary matrix of the size o . The other is

¿ 7 � ²ßßßß´
s 7 	)s 7 �� . . . . . .
... s � 1gm 	)s � 1?m� hAhh � s � · àààà¸ � ¯ 7 � ²ßßßß´

	 u 7 � hhAh �u 7 = m 	 u 7 = m ...
. . . . . . �� u � 	 u � · àààà¸ h

The second set consists of matricesx� 7 � õ ó � 1 7 x¯ 7x¿ 7 ó � 1 7 = m ö �
where

x¿ 7 and
x¯ 7 are obtained from ¿ and ¯ correspondingly by annihilating first the F rows

and columns. It is easy to see that the following recurrence relations and initial conditions
hold, ø�7�8 I � 7 R ��ø97�8 I x� 7 R D2s 7 u 7 ø�7�8 I � 7 = m R �ø�7�8~I x� 7 RE�Tø�7�8~I � 7 = m RWD2s 7 u 7 = m ø�7�8�I x� 7 = m RQ�ø�7�8~I � ��R��_K~D2s&� u ���ø�7�8 I x� � R ��Kih
Taking into account positivity of the properties s 7 and u 7 , one can prove that determinantsø�7�8¥% � m , and ø�7�88% x� m , are strictly positive for any í by using mathematical induction.

It is clear that the determinant of the matrix 5 can be represented, by annihilating the
( íaD�K )st column, as ø�7�88% 5 ,-�Y	�ø�7�8¥% � m ,�	 u m ø�7�8¥% x� m ,�h
If u m � � , ø�7�88% � m , � � , and ø97�88% x� m , � � , then one can conclude that ø�7�8�% 5 ,E��� for any
medium parameters and grid steps. Therefore, the matrix is not singular for any appropriate
media parameters and grid steps.

All the same argument can be used for the matrix of the system (3.2).

3.2.2. Conditioning. Due to the high complexity of the analytical investigations, the
conditioning is studied numerically. On the one hand, if one deals with nondimensional vari-
ables and media parameters, i.e., the velocities and the density are about K8� f , then the condi-
tion numbers of the matrices (3.2) and (3.3) are between K8� f and K8� m . On the other hand, if
dimensional variables are used, then the velocities and the density are about K� ¼ . This leads
one to Lame parameters ¨ and ª equal to K�&:£	�K8� m f , so the condition numbers of the ma-
trices rise up to K� m P 	 K� m<; . It is clear that the matrices become hard to invert properly and
preconditioning is required.

The preconditioning of this matrix can be done explicitly without additional cost. Let us
consider the system (3.3) written in the formõ ó � ¯¿ ó ��= m ö õ � -� Î I § �8� R� -� Î I:����R ö � õ � m� P ö �
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where vectors � -� Î I § �8� R � I � -fLÎ I § �8� R �AhAhhA� � -� 1gm Î I § �� R8R ¾ �� -� Î I � ��R � I � -fLÎ I � �¥R �AhhAh� � -�4Î I � � R8R ¾ �
and the right-hand sides � m and � P are defined by the system. Their exact representation is not
required for subsequent considerations, so we omit it. The matrices ¿ and ¯ were introduced
in the previous section. Let us consider the linear transform²´ Kb Õ Ä ó � �� b Õ Ä ó ��= m ·¸ � ó � ¯¿ ó ��= m � ²´ b Õ Ä ó � �� K¦ b Õ Ä ó ��= m ·¸ � � ó � x¯x¿ ó ��= m � h
The matrices

x¯ and
x¿ are

x¯ � ²ß´ xu m 	 xu m �
. . . . . .� xu � 	 xu � ·<à¸ � x¿ � ²ßßßßßßß´

	 xs5f � '�'�' �xs m 	 xs m ...� . . . . . . �
...

xs � 1?m 	 xs � 1gm� '�'�' � xs �
·<ààààààà¸ �

where s
fO� � �i¤�% / Õ Ä , , s 7 � Õ Ä ¤ � 7 , and u 7 � Õ Ä ¤ �� 7 , F���KQ�AhhAh��Ôí . Let us rcall that the
construction of the optimal grid was performed for the dimensionless problem, i.e., Õ Ä � K .
Denote � f 7 as the steps corresponding to this problem. In order to use the grid for the prob-
lem with physical parameters, the steps should be stretched as � 7 � Õ Ä � f 7 . The statements
presented allow one to conclude that the preconditioning described above maps the matrix to
the one corresponding to the dimensionless problem. Consequently, the condition number of
a new matrix is about K� f 	"K� m and this matrix can be inverted easily.

A slightly modified procedure can be applied to the system (3.2) after changing Õ Ä to Õ À .
In this case, the steps of the optimal discretization presented above should be multiplied by
the factor Õ ÀC¤ Õ Ä>= b á . Because the ratio is about K� f , this does not have a strong effect on
the condition number of the matrix.

Taking everything into account, one can compute the optimal discretization of the PML
for the dimensionless problem. With the help of the given steps, one is able to construct the
matrices (3.2) and (3.3) without coming back to the physical scale. One should also mention
that computations of the square roots of the velocities can be avoided, so this preconditioning
does not increase complexity of the problem.

4. Numerical experiments. In order to illustrate the approach, two types of the numer-
ical experiments were performed.

The first experiment was done to investigate the reflection coefficients connected with
the interface between the target area and the PML. Due to the difference between the f-d
velocity and the velocity introduced by differential statement, these coefficients depend on
discretizations of both the PML and the target area. The numerical investigation of the re-
flections was performed for homogenous media. The computational domain was 3000 meters
in the horizontal direction and 1500 meters in the vertical direction. The source was placed
at a distance of two wavelengths from both the lower and the right boundaries. The signal
was recorded along the horizontal line at a depth of 750 meters. This geometry allowed us to
deal with the reflections from the bottom boundary for a wide range of incident angles from
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0 to ! ê ¤�K8© . The parameters of the medium were: Õ ÀX� ½ �Q�Q�(?�¤QÓ , Õ Äa�°© á �Q�(?�¤QÓ , and the
density ¦ � © ! �Q�ií�@�¤�? ¼ . The Ricker pulse with dominant frequency of 30 Hz was used as a
source function. As soon as it is possible to emit P- and S-waves separately in the isotropic
medium, the experiments were performed for each wave independently. The discretizations
of the regular domain were 20, 35, and 70 points per wavelength (ppw). The Courant stability
ratio was 0.7. The number of points inside the PML varied from 3 to 15. Figures 4.1–4.3
represent the averaged reflection coefficients in percent for over all incident angles, i.e., for
angles between 0 and ! ê ¤�K¥© . One can see the exponential decay of the reflections when
the width of the PML increases. Nevertheless, the reflection coefficients converge to some
nonzero limit. This limit is due to difference between the true velocity which was used to
construct the PML discretization and the f-d velocity in the propagative part, and decreases
from 0.5% to 0.05% as we refine the grid from 20 ppw to 75 ppw.
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FIG. 4.1. Averaged reflection coefficients in percent as a function of PML’s depth measured in points.
The grid inside the target area has 20 ppw.

2 4 6 8 10 12 14 16
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of points inside the PML

R
ef

le
ct

io
n 

co
ef

fic
ie

nt
s 

in
 %

FIG. 4.2. Averaged reflection coefficients in percent as a function of PML’s depth measured in points.
The grid inside the target area has 35 ppw.

A similar experiment was performed for the surface wave which appears if the source is
situated close enough to the free surface. The series of experiments was done for the source
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FIG. 4.3. Averaged reflection coefficients in percent as a function of PML’s depth measured in points.
The grid inside the target area has 70 ppw.

located at the depth of one tenth of dominant wavelength. Such geometry guarantees the
existence of a strong surface wave. The incident angle for this wave is about zero, so only
the discretizations of both PML and target area varied. The result for this wave coincided
with the ones presented for the P- and S-waves. A Rayleigh wave usually has high amplitude
and short wavelength. Hence, its reflections from the PML, according to the experiments
performed, can be even stronger than the efficient signal propagated inside the target area.
This shows the restriction of the present approach. In order to perform a simulation with
near-surface sources, a fine grid with more than 70 ppw for the surface wave should be used
in horizontal direction at least in vicinity of the PML’s interface.

It is known that the classical PML is stable for isotropic acoustic problem; however, mild
instability may occur in some layered elastic media. At the same time, analytical investigation
of the PML’s stability is an individual and nontrivial problem. So here we will not attempt it
and will restrict ourselves to the numerical experiments only. The second type of experiment
was performed for numerical investigation of the PML’s stability. The first set of experiments
was performed for homogenous media. The target area used for these experiments was 1000
meters over 1000 meters. The elastic velocities were Õ À � ½ �i�Q� meters per second, Õ Ä �© á �Q� m/s, and the density ¦G�É© ! �i� kg/m ¼ . The Ricker pulse with dominant frequency 30
Hz was used as a source. It was located exactly at the center of the domain. The equidistant
discretization of the target area with 20 ppw for the S-wave was performed. This grid provided
about 35 ppw for the P-wave. The Courant stability ratio was 1 for the P-wave. The PML was
introduced at all the boundaries except one where the free-surface boundary conditions were
exploited. The elastic energy inside the domain was registered at all instants when the source
had already stopped radiating. The energy level would not have changed if no PML had
been used. In presence of PML, the energy decayed each time when a wave came into the
PML. This effect can be observed in Figure 4.4, which represents the change of energy or
energy profile depending on the time of computation. When the instability was taking place,
the energy began growing exponentially; see Figure 4.4. The figure represents the energy
profile for PML with 3 points. The experiment was performed for a long enough time for
the instability effect to be seen. Figure 4.5 represents the times when the energy achieves
its minimum. After this moment, the effect of instability begins to play the principal role on
the results. One can see that the time when instability appears increases exponentially with
respect to the number of points used inside the PML.
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FIG. 4.4. Total elastic energy inside the target area as a function of time. PML has 3 points. Horizontal axis
represents time in seconds, vertical one denotes the energy level.

3 3.5 4 4.5 5 5.5 6
0

5

10

15

20

25

30

35

40

FIG. 4.5. Time when the energy achieved its minimum (vertical axis) as a function of the number of grid points
inside the PML (horizontal axis). Experiment was performed for homogenous media.

The second set of experiments for numerical investigation of the PML’s stability was per-
formed for layered media. The model is represented in Figure 4.6. It consisted of three thick
layers with the same depth of about 333 meters whose properties vary strongly. The media
parameters inside the top one were Õ Àn� © �i�Q� m/s, Õ Ä)�°K á �Q� m/s, and ¦�� © �Q�i� kg/m ¼ ; the
parameters in the middle one were Õ ÀU� ½ �Q�i� m/s, Õ Ä)�T© á �i� m/s, and ¦��T© ! �i� kg/m ¼ , and
the bottom one had Õ ÀS� á © �i� m/s, Õ Äa�ä© �i�Q� m/s, and ¦�� á �Q�i� kg/m ¼ . The Ricker pulse
with dominant frequency 30 Hz was used as a source and it was placed at point % ! �Q���K�i�i, .
One can see that the thicknesses of the layers were much higher than the minimal wavelength.
Figure 4.7 represents the time when energy achieved its minimum with respect to the num-
ber of points inside the PML. These experiments show appropriate coincidence of the time
when instability appears with the one for homogenous media. The difference of time scales
in Figures 4.5 and 4.7 appears due to the different number of grid points used in the two
experiments and rapid exponential growth of the functions. It should be mentioned that real-
istic geophysical experiments are not performed for such long times, so the proposed PML’s
construction can be considered stable for appropriate times.
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FIG. 4.6. The model for the layered media experiment.
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FIG. 4.7. Time when the energy achieved its minimum (vertical axis) as a function of the number of grid points
inside the PML (horizontal axis). Experiment was performed for layered media containing three thick layers.

5. Conclusions. The optimal grid approach is extended to the elasticity problem. Op-
timal PML is developed for homogenous media and supported with all necessary proofs.
This PML allows one to reach suitable reduction of the reflections for all incident angles. In
the presence of no surface wave, the approach can be efficiently used for domain truncation
problems for elasticity. In case of a near-surface source, optimal PML can be used together
with grid refinement techniques in the vicinity of the interface to get rid of the surface wave.
This approach makes it possible to totally decrease the computational time because the high
precision of the solution can be reached using a small number of grid points.

According to the experiments presented, the time when instability exerts a strong influ-
ence on the solution depends on the number of grid points inside the PML zone. Moreover,
this time increases exponentially as a function of thickness of the PML’s discretization. In
spite of the fact that the experiments presented demonstrate appropriate convergence and sta-
bility properties of the PML for layered media, they do not prove its stability for arbitrary
inhomogenous media. Therefore, all necessary theoretical investigations of the optimal PML
stability should be done.
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