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THE STRUCTURED DISTANCE TO NORMALITY OF AN IRREDUCIBLE REAL
TRIDIAGONAL MATRIX *
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Dedicated to Gene Golub on the occasion of his 75th birthday

Abstract. The problem of computing the distance in the Frobenius ndrengiven real irreducible tridiagonal
matrix 7" to the algebraic variety of real normal irreducible tridiagl matrices is solved. Simple formulas for
computing the distance and a normal tridiagonal matrixiatdistance are presented. The special case of tridiagonal
Toeplitz matrices also is considered.
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1. Introduction. Matrix nearness problems have received considerabletiatten the
literature; see, e.g.3[4, 12, 13, 19] and references therein. It is the purpose of the present
paper to investigate the structured distance of a realuaigie tridiagonal matrix to the alge-
braic variety of real normal irreducible tridiagonal maé&s, which we denote hy. We
present a simple formula for determining this distance measin the Frobenius norm.
Moreover, given a real irreducible tridiagonal matfikof distanced from the setZ, we
provide formulas for computing a real normal tridiagonatmixeof distanced to T'. The lat-
ter formulas are easy to evaluate. The special case whendlagbnal matrix is of Toeplitz
form also is considered. The simplicity of our formulas casts with the rather cumber-
some task of determining the closest normal matrix of a gérsguare matrix; a Jacobi-type
algorithm for the latter endeavor has been described by Rifje

Many authors have contributed to our understanding of teadce to normality; see,
e.g., b, 7,12 14,15, 16, 19, 20]. A large number of characteristic properties of normal ma-
trices can be found irb| 11]. The distance to normality is of interest because the eigjer
problem s perfectly conditioned for normal matrices; a Biatance to normality may make
it feasible to replace the given matrix by a closest real raditnidiagonal matrix and com-
pute the eigenvalues of the latter. This replacement carnttsctive because in the setting
of the present paper, the closest normal matrices are symeroeshifted skew-symmetric,
and fast reliable algorithms are available for the compartatf eigenvalues of these types of
matrices.

Gene Golub has made many significant contributions to magarness problems and
to the development of algorithms for structured eigenvaludblems, including the Golub-
Kahan and Golub-Welsch algorithms; see, e.2[ 8, 9, 10, 22].

This paper is organized as follows. Sectditroduces notation used throughout the
paper, sectiorB presents an upper bound for the distance in the Frobenius nba real
tridiagonal matrix to the algebraic variety of real nornradiagonal matrices. A character-
ization of the real normal tridiagonal matrices is given @ct®on4, and a formula for the
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distance in the Frobenius norm of a tridiagonal matrix to gheof symmetric tridiagonal
matrices or the set of shifted skew-symmetric tridiagonatrioes is provided in sectioh
The latter formula is a key result of the paper, since we shogection6 that this formula
also yields the distance to the set of real normal irrededitiliagonal matrices. Sectioh
considers the special case of tridiagonal Toeplitz matrisectiorB8 reviews eigenvalue con-
ditioning, and sectio® presents a few computed examples. The examples indicdtotha
interesting classes of real irreducible matrigéslose to the algebraic variety of real normal
irreducible tridiagonal matrices, the eigenvalue probfem” is well conditioned. Finally,
section10 contains concluding remarks.

TABLE 2.1
Definitions of sets used in the paper.

N the algebraic variety of the normal real matriceRif™*"

S the subspace of formed by the symmetric matrices

A the subspace of formed by the antisymmetric matrices

AT the subspace of formed by the shifted antisymmetric matrices
T the subspace d@"*" formed by the real tridiagonal matrices
Nr NNT

St SNT

Ar ANT

AL ATNT

7 the subset a7 formed by the irreducible matrices

2. Notation. This section defines notation used in the sequel. W&'let (n; 0,9, 7)
denote the real tridiagonal matrix

_51 T1 O ]

o1 0 T
oy 03

Tn—2
On—2 57171 Tn—1

O On—1 571

and introduce the inner product
(A, B) = trace(BTA), A, BeR"™",
which induces the Frobenius norm
|AlF = (A, AV, AeR™™

Let X denote a subset of the set of real normal matrices. We defndiskance of a matrix
A to this subset by

dp(A,X) = inf{|E||p: A+ E € X}.

Further notation used in the paper is summarized in TaldleWe use the terminology anti-
symmetric synonymously with skew-symmetric.
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3. An upper bound for dr (T, N7). We first present some auxiliary results used to
determine the desired bound. The following result is wethikn and easy to prove.

PROPOSITION3.1. Let S be the subspace &"*" formed by the symmetric matrices
and let A be the subspace &"*"™ formed by the antisymmetric matrices. Tik®eand.A are
orthogonal.

It is worth noticing that the matriceS(A + A”) and$(A — AT) are the projections of
A ontoS alongA, and of A onto A alongsS, respectively.

THEOREM 3.2.

1
V2
wheredg = A — %trace (A)I, andI denotes the identity matrix.

Proof. We first note thati(A,N) = dr(A + cI,N) for anyc € R. In particular,
dp(A,N) = dp(A4o,N). The inequality

dF(Ao,N) < min {dF(AQ,S), dF(Ao,.A)}

(3.1) dp(A,N) < min{dp(Ay,S),dr(Ag, A} < —||Ao||p, VA€ R™",

follows from the possibility of the existence of normal miegss closer to4, than the projec-
tions of 4y onto S and.A. SinceS and.A are orthogonal, a geometric argument shows the
right-hand side inequality ir3(1). O

REMARK 3.1. The inequalities3(1) also hold withA replaced byA everywhere. The
matrix Ay satisfies

| Aol = min || A + eI .
ceER

REMARK 3.2. A simple argument shows that equality in the right-hsidé inequality
in (3.1) is achieved if and only if4q = [al(-?)] satisfies

(3.2) Xn: Xn: 00 — .

COROLLARY 3.3.

. 1
(3.3) dp(T,N7) <min{dr(Ty,S7),dr(To, Ar)} < EHTOHF, VT eT,
where
(3.4) To=T— ltrace (THI.
n

Proof. The result follows immediately from TheoreBa2 and the observation that the
projections of a tridiagonal matrix ont® and.4 also are tridiagonal matrices. 0O

ReMARK 3.3. For real tridiagonal matric&s = (n; o, d, 7), the condition 8.2) simpli-
fies to

n

n—1
(35) Z((gl — 5)2 + 2 Z 0;T; = O,

1=1 1=1
wheres = %Z};l d;, i.e., we obtain equality in the right-hand side inequadity3.3) if
and only if 3.5) holds. Equality in the left-hand side bound B13) also can be achieved; see
Example 9.1 of sectiofl below.
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4. Real normal tridiagonal matrices.

THEOREM 4.1. A real tridiagonal matrix is normal if and only if it is a dirésum of
symmetric and shifted skew-symmetric matrices.

Proof. The statement of the theorem can be expressed in the fotra tkal tridiagonal
matrixT = (n; 0,9, 7) is normal if and only if it is block diagonal, with each blockresr a
diagonal block or an irreducible tridiagonal blogk= (v;0, 5, 7), whose entries satisfy one
of the following conditions:

I) &hz 7A'h, th:V—l, . R R
II) op=—-7n, h=1:v-1 and 61 =0y =...=9,.

We first note that tridiagonal matric&sthat satisfy the above conditions are normal. Con-
versely, assume thdtis normal. Then

(4.1) 7T =1T7.

Both the right-hand side and left-hand side matrices artgoégonal and symmetric. There-
fore (4.1) is equivalent to the conditions

(TTT)hyh = (TTT)hyh, h=1: n,
(TTT)}H,L}I = (TTT)}H,L}I, h=1:n-— 1,
(TTT)h+27h = (TTT)h+27h7 h=1:n-—2.

These conditions imply, in order,

(4.2) = o}, h=1:n-1,
(4.3) Th§h+0h5h+l :Th§h+l+0h§ha h=1:n-1,
(4.4) Th4+10h = ThOh+1, h=1:n-2.

If T'is irreducible, then4.2) and @.4) lead to either

on = Th, h=1:n-1,
or
(4.5) Op = —Th, h=1:n-1.
When @.5) holds, equation4.3) yieldsd; = 6o = ... = 4,.

If T"is reducible, therf” may have diagonal blocks, which are diagonal and therefore
normal. The above discussion on irreducible matrices apyb the remaining tridiagonal
blocks on the diagonal (if any). This concludes the proof. [0

COROLLARY 4.2. A real normal tridiagonal matrix can be partitioned into djanal
blocks that are either diagonal or tridiagonal and normal.

5. The distances toS7 and At. It is easy to see that, given a real tridiagonal ma-
trix T = (n;o,d,7), the closest matrix it in the Frobenius norm is the matrik(*) =
(n; o), 6() ()} with entries
U}(IS) T,(IS):LL;M, h=1:n-1,
5 = 5y, h=1:n.
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It follows that the distance in the Frobenius norm betw&eandsS is given by

Similarly, the closest matrix t@” in A% in the Frobenius norm is the matrig(®*) =
(n; 0@, §(®) (@) with entries

U}(Ia) _ _T}Ea):?’ h=1:n-1,
a 1 =

It follows that the distance in the Frobenius norm betw&é&n and At is given by

_ n n 2
dp(T,AT) = EZ (04 +T')2+Z 6-—7Z'j:16j
2 : (2 K2 Z:1 K2 n .

Let M = S U AF. Then
(5.1) dp(T,M) = min {dp(T,S7),dr (T, A¥)} .

The following theorem provides upper and lower bounds $of)(
THEOREM5.1. For every real tridiagonal matriX<’ = (n; o, d, 7), one has

(5.2) dr(T,N) < dp(T,N1) <dp(T, M) = dr(To, M)

' = min{dF(TQ,ST),dF(To,AT)} < %”TO”FW

whereTy is defined by3.4). The upper bound fod (T, M) is attained when3.5) holds.
Then

dp(T,M) 1

©2) ITle V2

Proof. The first two inequalities ofH.2) follow from the inclusions\' > N > M.
The distance toM is invariant under addition of a multiple of the identity mat This
gives the first equality. It follows fronirace (7) = 0 that the matriXFé“) has a vanishing
diagonal and therefore lives id7. The second equality follows from the definition.of.
The last inequality off.2) follows from (3.3). This inequality is achieved whef.§) holds;
cf. Remark3.3. This shows%.3). O

6. The distancedr(T,Z). We are in a position to discuss the computation of the dis-
tance of a matriX” € 7 to the sefZ of real normal irreducible tridiagonal matrices. The fol-
lowing theorem reduces this problem to the determinatiathefdistancel (7', M), which
already has been discussed.

THEOREM®G6.1.

dF(T,I):dF(T,M), vTI'eT.
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Proof. We first note that the se! is closed, because it is the union of the closed Sets
andAT. By Theoremd.1, a real irreducible normal tridiagonal matrix belongsit6. Thus,
7 C M. Moreover, in every neighborhood of any matiixin Sr [in .AX] there is a real
normal irreducible tridiagonal matrik* # 7'in Sz [in A%]. Thus, M is the closure of,
and 6.1) follows. O

REMARK 6.1. LetT = (n;o,6,7). Wheno? # 72,i = 1 : n — 1, the closest matrix to
T in M, T®) or T(®) is irreducible. Otherwise, at least one of the matric€s and7'(®) is
reducible and, hence, the closest matrigto M may be reducible.

REMARK 6.2. Theoren6.1is applicable to any matrif’ € 7, also reducible ones.
However, note thai(7,Z) = 0 does not imply thaf" is irreducible; it just indicates that
there is a real irreducible normal tridiagonal matrix in gvepen neighborhood df'. For
instancedr(T,7) = 0 whenT is the zero matrix.

REMARK 6.3. There are matriceés € 7, such thaidp(7,Z) > dp(T,N). Indeed,
there are matrice® € 7, such thadz(7T,Z) > dp(T,N7); see Example 9.2 in sectich
below.

7. Tridiagonal Toeplitz matrices. This section is concerned with real tridiagonal Toeplitz
matricesl" = (n;0,6,7), i.€.,

» 0

SYRS

(ST

(7.1) T= e RV,

0 o s

THEOREM 7.1. The real tridiagonal Toeplitz matrix7(1) is normal if and only if its
entries satisfyr = 7 oro = —7.

Proof. The result follows from Theorewh. L d

REMARK 7.1. Notice that Theorem.1limplies that a real normal tridiagonal Toeplitz
matrix is reducible if and only if it is diagonal.

The following results are consequences Bfl) and the discussion leading up to that
result.

THEOREM7.2. LetT be a real tridiagonal Toeplitz matrix7(1). The closest real tridi-
agonal matrixZ'(*) to T' in the setS7 is a Toeplitz matrix with diagonal entrie and sub-
and super-diagonal entrie$(o + 7). The closest real tridiagonal matrix(® to 7" in the
set AT is a Toeplitz matrix with sub-diagonal entridii(o— — 1), diagonal entries), and
super-diagonal entries-1 (o — 7). Moreover,

(T, M) = /"5 min{lo —7l, o + 71},

COROLLARY 7.3. Let T be a real irreducible tridiagonal Toeplitz matrix. Then the
closest matrix inM is irreducible. Moreover,

(7.2) dp(T, M) = dp(T,Nr).
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Proof. LetT* = (n;o*,0*,7*) denote the closest matrix iM to T. SinceT is
assumed to be irreducible, it follows from Theorén2 that 7* is an irreducible normal
Toeplitz matrix. Thus, it suffices to show that there is nonmalrreducible tridiagonal matrix
T = (n;0',¢',7") closer toT thanT™. SinceT is a Toeplitz matrix;I” must belong toM.
Any pair of vanishing entries;, = 7, = 0 gives a contribution to the distan{& — 7" ||  that
is larger than the contribution of the pair of entr{es’, 7* } of T* to the distancdT — T™|| .
This completes the proof. 0

We finally consider the situation when the given real tridiagl matrix is not Toeplitz,
and we wish to determine the closest real normal Toeplitziraat

THEOREM 7.4. LetT = (n;o0,d,7) be a real tridiagonal matrix Z.1). The closest
tridiagonal Toeplitz matrixI'*) to 7' in the setS; has diagonal entrie$, and sub- and
super-diagonal entries and r, respectively, given by

n—1

i(ai + 7).

i=1

1 1
(73) §:—Zéi, UZT:m

The closest tridiagonal Toeplitz matriX®) to T in the setAt has diagonal entries given
by (7.3, and sub- and super-diagonal entriesand , respectively, given by

1 n—1
o=—T= =1 ;(Ui - 7).

Proof. It follows from Theoremé.1 that the desired matrix belongs ot and is of
Toeplitz form. This yields the equations for the entides, andr. O

8. Eigenvalue condition numbers. We define the eigenvalue condition number for
nondefective irreducible tridiagonal matrices. LBte R™*™ be such a matrix, and let
x; andy; denote right and left eigenvectors of unit length, respebtj associated with the
eigenvalue\;. Following [10, 21], we define the condition number for the eigenvalydoy

k(N) = lyjz;| 7,

where the superscriptdenotes transposition and complex conjugation. The eaeawcon-
dition number forT" is defined by

(8.1) K(T) = max k()j).

1<j<n

9. Examples. This section presents a few examples that illustrate sooyepties of the
structured distance to normality.
Example 9.1. Consider the quasi-Jordan block

A opo0 0 0
0 A pu O 0 0
00 A .. 0 0
J=1 1 oo eR™T with p#0.
00 0 A op 0
00 0 P
L0 0 0 A
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Thus,J is an upper bidiagonal Toeplitz matrix. The circulant matri

oA =y 0 e 0 ]
0 Aoty 0 0 0
0 0 Aoy 0 0
0 0 0 Aoy oo
0 0 0 ALy
[ 000 A
is normal. An easy computation yields
dr(J J—N 1
9.1) r(LN) |l lr x
1Jol[ 7 1Jol[ 7 vn
whereJy = J — Al
The following irreducibler x n matrices,
Aoop/2 0 L. 0 0 ]
w/2 A p/2 0 0 0
0 p/2 X pu/2 0 0
J6) = : : . . . : :
0 0 0 w2 X p2 0
0 0 0 w2 A /2
. O 0 0 w/2 A
X w2 0 L. 0 0 ]
—/2 A /2 0 0 0
0 —n/2 N /2 0 0
J(a) = . . '._ '._ .. . . y
0 0 0 —u/2 A /2 0
0 0 0 —u/2 A /2
|0 0 0 —p/2 A

are the closest matrices bin S and A%, respectively. They are equidistant.fpand we
obtain from 6.1) and Theoren®.1that

ol I Jollr V2

The eigenvalues of a Jordan block are sensitive to periorisabf the matrix, while
eigenvalues of normal matrices are not. We would like oursueaof the distance to nor-
mality to reflect this fact, i.e., Jordan blocks should beadisfrom the set of normal matrices
considered. Indeed, the normalized structured distéhgi¢ maximal; cf. Theorerd.2 We
also note that the normalized unstructured distaAch (s not; the latter distance decreases
to zero as the size of the Jordan block increases. The normalized unstructdistence
therefore is a poor indicator of the conditioning of the eiggdue problem.

We conclude this example by noting that

(9.2)

(93) dF(JaNT) :dF(J?I)v
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from which it follows that
dF(J,NT) - 1

IJollz V2

The equality 9.3 can be shown similarly ag (2. Thus, we need to show that there is no
real normal reducible tridiagonal matrik = (n; 0,4, 7) closer to.J than.J(*) and.J(®), If
there were such a matrix, then, according to Theoteinthe conditiors;, = 7, = 0 would
necessarily hold for at least one value/of However, such a pair of entries would give a
larger contribution to the distance @fto N7 than the paif oy, 7, } = {£u/2, 1/2}.

Example 9.2. The above example illustrates What7, N7) = dp(T, M) for certain
T € 7. This example shows that when a tridiagonal maffix= (n;o,d,7) has a pair
of “tiny” off-diagonal entriess;, andr,, thendr (T, N7) andd (T, M) may differ signifi-
cantly. Thus, let

1 0 0
-1 0 ¢ O
= 0 g 0 1]’
0 0 1 0
with ¢ > 0 a tiny parameter. Then
dF(T,M) - 1 dF(T,NT) < 3
[ Toll V2 +e?’ Tollr — V242’

where we obtain the inequality by settiag= 0 in 7. Thus, the normalized distance to the
set M is close to maximal foe > 0 small, while the normalized distanceAér is small in
this situation. This example indicates that the computedhatized distances to the sét
may be most useful for tridiagonal matrices with no tiny di&gonal pairs.

The following numerical examples have been carried out inTMAB with about 16
significant decimal digits.

Example 9.3. We consider tridiagonal matri@ésvhose eigenvalues are zeros of gener-
alized Bessel polynomials. These polynomials depend orpavametera andb # 0. The
entries ofT" are given by

a 51
51——5, T = —01, =T
and, forj > 2,
a—?2

5; = —b
! (2 +a—2)(2j +a—4)
oy jH+a—2
T Vi ta—-2)2j+ta—3)

b J :
2j+a—1)2j+a—2)

g = —

see [Lg] for a recent discussion on generalized Bessel polynontfe# applications, and the
computation of their zeros.
For the tridiagonal matrif” of order30 with « = —17/2 andb = 2, we obtain

dp(T,N)

) < 0.6835,
[ Tol

dp(T,T)

o) 0,707,
[ Tol|



ETNA

Kent State University
etna@mcs.kent.edu

74 S. NOSCHESE, L. PASQUINI, AND L. REICHEL

0.2 b

o
[
T
+
+
O O
-
+

+
h
0051 + g
&
Iy
T
oF + ok x + * PR
1
005 + B
0051 ¥ |
o F
+ 8 +
"
01l + +0 ]
o

L L L L L L
-0.2 -0.1 0 0.1 0.2 0.3

F1G. 9.1.Example 9.3: The computed zeros of a generalized Besselgmoigl of degreg0 close to the origin
(black+), eigenvalues of’(*) close to the origin (blue:), and eigenvalues &F(%) close to the origin (red).

30

201

101

of * * KR MR R R kbR

e e ok kBB e K b HbEbE

—10F

o O OOOOOOOOOG@B@OOOOOOOOO o O

FiG. 9.2. Example 9.4: The eigenvalues of the tridiagonal maffixc R3°%30 defined by 9.4) (black +),
eigenvalues of’(*) (blue ), and eigenvalues &F(%) (red o).

whereTj is given by @.4). Thus, the normalized structured distance to normalityeis/
close to its maximal valué/+/2. An upper bounds for the unstructured distardg€’, \)
in this and the following examples is computed by the methestdbed by Ruhe2); for
many matrices this method yields (7', V). In the present example, the computed bound for
the normalized unstructured distance is nearly as largeeaisdrmalized structured distance.
The eigenvalue condition numbed.{) is very large; we have(T) = 1.4 - 10'3. Thus,
in this example the unstructured and structured distammcesrmality are large, and so is the
eigenvalue condition number. Figugel shows the computed eigenvaluesTaf (), and
T(%) closest to the origin.
Example 9.4. Consider the tridiagonal matfix= (30; o, ¢, 7) defined by

. . 1 .
(94) (Sj:—?)—z], Tj :]—i—l, U‘j:m’ ]21
This matrix is discussed irl[/]. We obtain
dF(T7 N) dF(Ta I)
) <(.23, ———=) — (.50,
[ Toll | 7ol
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andx(T) = 6.7 - 107, whereTy, is given by 8.4). The unstructured distance to normality is
fairly small, but the eigenvalue condition number is largkis example illustrates, similarly
as Example 9.1, that the unstructured distance to normaditybe a poor measure of the
conditioning of the eigenvalue problem. The structurethdise to normality is large enough
to indicate that the eigenvalues may be sensitive. Fi§Lshows the eigenvalues @f 7(*),
and7(@),

Example 9.5. We compute the structured and unstructurédndiss to normality for
three Toeplitz matrices. The tridiagonal Toeplitz maffix= (30; 0, 4, 7), defined by

(9.5) 0 =0, T:%, o=1,
yields
dF(Ta N) dF(Tv I)
——= < 0.17, —— =0.51.
1 Toll [ Toll

The eigenvalue condition number is given§l’) = 3.7 - 107. Figure9.3shows the eigen-
values ofT", ), andT(®). The spectrum of" is seen to be real.
The tridiagonal Toeplitz matrif’ = (30; o, d, 7) determined by

9 1
(96) 6_11 T_Ea 0—__E7
satisfies
dF(Ta N) dF(Tv I)
———= <0.18, —= =0.62,
7ol [ Toll

and has the eigenvalue condition numkgF) = 4.5-1012, Figure9.4shows the eigenvalues
of T, T, andT(®). All eigenvalues ofl” andT(® have real part one.

The unstructured distances to normality for the matrié&S) @nd ©.6) are small, but
the structured distances to normality are fairly large, aacare the eigenvalue condition
numbers. Moreover, the structured distance to normalitarger for the matrix with the
largest eigenvalue condition number.

For the tridiagonal Toeplitz matriX’ = (30; o, §, 7) defined by

9 11
(97) 6_11 T_Ea 0—__E7
we obtain the distances
dr (T dr(T,T
M §8.3-1072, le_o.lofl’
7ol 175l

and the eigenvalue condition numbgfl’) = 3.6. Figure9.5 shows the eigenvalues @f,
T), andT(®), The eigenvalues df are real and difficult to distinguish from the eigenvalues
of T(*). In some applications, it therefore may suffice to computedtyenvalues of the
symmetric tridiagonal matrig’(*) instead of the eigenvalues of the nonnormal matFix
This can be attractive since there are fast accurate algasitivailable for the computation
of the eigenvalues df'(*).

10. Conclusion. The structured distance to normality for real irreducibldiagonal
matrices is easy to compute. Numerous computed examplgssiupat for many matrices
a small structured distance to normality implies a small mderate eigenvalue condition
number. If the matrix does not have pairs of tiny off-diagamdries, such as in Example 9.2,
then a large structured distance to normality generallicatés that the eigenvalue condition
number is large. Further analysis that sheds light on thiesergations is required.
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FiG. 9.3. Example 9.5: The eigenvalues of the tridiagonal Toeplitzrim&” € R39%30 defined by .5

(black+), eigenvalues of'(s) (blue ), and eigenvalues aF(*) (red o).
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FiG. 9.4. Example 9.5: The eigenvalues of the tridiagonal Toeplitzrim&” € R39%30 defined by 4.6)

(black+), eigenvalues df'(*) (blue ), and eigenvalues aF(*) by (redo).
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