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Abstract. The problem of computing the distance in the Frobenius norm of a given real irreducible tridiagonal
matrix T to the algebraic variety of real normal irreducible tridiagonal matrices is solved. Simple formulas for
computing the distance and a normal tridiagonal matrix at this distance are presented. The special case of tridiagonal
Toeplitz matrices also is considered.
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1. Introduction. Matrix nearness problems have received considerable attention in the
literature; see, e.g., [3, 4, 12, 13, 19] and references therein. It is the purpose of the present
paper to investigate the structured distance of a real irreducible tridiagonal matrix to the alge-
braic variety of real normal irreducible tridiagonal matrices, which we denote byI. We
present a simple formula for determining this distance measured in the Frobenius norm.
Moreover, given a real irreducible tridiagonal matrixT of distanced from the setI, we
provide formulas for computing a real normal tridiagonal matrix of distanced to T . The lat-
ter formulas are easy to evaluate. The special case when the tridiagonal matrix is of Toeplitz
form also is considered. The simplicity of our formulas contrasts with the rather cumber-
some task of determining the closest normal matrix of a general square matrix; a Jacobi-type
algorithm for the latter endeavor has been described by Ruhe[20].

Many authors have contributed to our understanding of the distance to normality; see,
e.g., [6, 7, 12, 14, 15, 16, 19, 20]. A large number of characteristic properties of normal ma-
trices can be found in [5, 11]. The distance to normality is of interest because the eigenvalue
problem is perfectly conditioned for normal matrices; a small distance to normality may make
it feasible to replace the given matrix by a closest real normal tridiagonal matrix and com-
pute the eigenvalues of the latter. This replacement can be attractive because in the setting
of the present paper, the closest normal matrices are symmetric or shifted skew-symmetric,
and fast reliable algorithms are available for the computation of eigenvalues of these types of
matrices.

Gene Golub has made many significant contributions to matrixnearness problems and
to the development of algorithms for structured eigenvalueproblems, including the Golub-
Kahan and Golub-Welsch algorithms; see, e.g., [1, 2, 8, 9, 10, 22].

This paper is organized as follows. Section2 introduces notation used throughout the
paper, section3 presents an upper bound for the distance in the Frobenius norm of a real
tridiagonal matrix to the algebraic variety of real normal tridiagonal matrices. A character-
ization of the real normal tridiagonal matrices is given in section4, and a formula for the
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distance in the Frobenius norm of a tridiagonal matrix to theset of symmetric tridiagonal
matrices or the set of shifted skew-symmetric tridiagonal matrices is provided in section5.
The latter formula is a key result of the paper, since we show in section6 that this formula
also yields the distance to the set of real normal irreducible tridiagonal matrices. Section7
considers the special case of tridiagonal Toeplitz matrices, section8 reviews eigenvalue con-
ditioning, and section9 presents a few computed examples. The examples indicate that for
interesting classes of real irreducible matricesT close to the algebraic variety of real normal
irreducible tridiagonal matrices, the eigenvalue problemfor T is well conditioned. Finally,
section10contains concluding remarks.

TABLE 2.1
Definitions of sets used in the paper.

N the algebraic variety of the normal real matrices inR
n×n

S the subspace ofN formed by the symmetric matrices
A the subspace ofN formed by the antisymmetric matrices
A+ the subspace ofN formed by the shifted antisymmetric matrices
T the subspace ofRn×n formed by the real tridiagonal matrices
NT N ∩ T
ST S ∩ T
AT A ∩ T
A+

T A+ ∩ T
I the subset ofNT formed by the irreducible matrices

2. Notation. This section defines notation used in the sequel. We letT = (n; σ, δ, τ)
denote the real tridiagonal matrix

T =





























δ1 τ1 0
σ1 δ2 τ2

σ2 δ3

. . .
. ..

. . . τn−2

σn−2 δn−1 τn−1

0 σn−1 δn





























∈ R
n×n(2.1)

and introduce the inner product

(A, B) = trace(BT A), A, B ∈ R
n×n,

which induces the Frobenius norm

‖A‖F = (A, A)1/2, A ∈ R
n×n.

Let X denote a subset of the set of real normal matrices. We define the distance of a matrix
A to this subset by

dF (A,X ) = inf{‖E‖F : A + E ∈ X}.

Further notation used in the paper is summarized in Table2.1. We use the terminology anti-
symmetric synonymously with skew-symmetric.
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3. An upper bound for dF (T,NT ). We first present some auxiliary results used to
determine the desired bound. The following result is well known and easy to prove.

PROPOSITION3.1. Let S be the subspace ofRn×n formed by the symmetric matrices
and letA be the subspace ofRn×n formed by the antisymmetric matrices. ThenS andA are
orthogonal.

It is worth noticing that the matrices12 (A + AT ) and 1
2 (A − AT ) are the projections of

A ontoS alongA, and ofA ontoA alongS, respectively.
THEOREM 3.2.

dF (A,N ) ≤ min {dF (A0,S), dF (A0,A)} ≤ 1√
2
‖A0‖F , ∀A ∈ R

n×n,(3.1)

whereA0 = A − 1
n trace (A)I, andI denotes the identity matrix.

Proof. We first note thatdF (A,N ) = dF (A + cI,N ) for any c ∈ R. In particular,
dF (A,N ) = dF (A0,N ). The inequality

dF (A0,N ) ≤ min {dF (A0,S), dF (A0,A)}

follows from the possibility of the existence of normal matrices closer toA0 than the projec-
tions ofA0 ontoS andA. SinceS andA are orthogonal, a geometric argument shows the
right-hand side inequality in (3.1).

REMARK 3.1. The inequalities (3.1) also hold withA0 replaced byA everywhere. The
matrixA0 satisfies

‖A0‖F = min
c∈R

‖A + cI‖F .

REMARK 3.2. A simple argument shows that equality in the right-handside inequality
in (3.1) is achieved if and only ifA0 = [a

(0)
ij ] satisfies

n
∑

i=1

n
∑

j=1

a
(0)
ij a

(0)
ji = 0.(3.2)

COROLLARY 3.3.

dF (T,NT ) ≤ min {dF (T0,ST ), dF (T0,AT )} ≤ 1√
2
‖T0‖F , ∀T ∈ T ,(3.3)

where

T0 = T − 1

n
trace (T )I.(3.4)

Proof. The result follows immediately from Theorem3.2 and the observation that the
projections of a tridiagonal matrix ontoS andA also are tridiagonal matrices.

REMARK 3.3. For real tridiagonal matricesT = (n; σ, δ, τ), the condition (3.2) simpli-
fies to

n
∑

i=1

(δi − s)2 + 2

n−1
∑

i=1

σiτi = 0,(3.5)

wheres = 1
n

∑n
j=1 δj, i.e., we obtain equality in the right-hand side inequalityof (3.3) if

and only if (3.5) holds. Equality in the left-hand side bound in (3.3) also can be achieved; see
Example 9.1 of section9 below.
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4. Real normal tridiagonal matrices.
THEOREM 4.1. A real tridiagonal matrix is normal if and only if it is a direct sum of

symmetric and shifted skew-symmetric matrices.
Proof. The statement of the theorem can be expressed in the form that a real tridiagonal

matrix T = (n; σ, δ, τ) is normal if and only if it is block diagonal, with each block either a
diagonal block or an irreducible tridiagonal block̂T = (ν; σ̂, δ̂, τ̂), whose entries satisfy one
of the following conditions:

i) σ̂h = τ̂h, h = 1 : ν − 1,
ii) σ̂h = −τ̂h, h = 1 : ν − 1 and δ̂1 = δ̂2 = . . . = δ̂ν .

We first note that tridiagonal matricesT that satisfy the above conditions are normal. Con-
versely, assume thatT is normal. Then

T T T = TT T .(4.1)

Both the right-hand side and left-hand side matrices are pentadiagonal and symmetric. There-
fore (4.1) is equivalent to the conditions

(T T T )h,h = (TT T )h,h, h = 1 : n,
(T T T )h+1,h = (TT T )h+1,h, h = 1 : n − 1,
(T T T )h+2,h = (TT T )h+2,h, h = 1 : n − 2.

These conditions imply, in order,

τ2
h = σ2

h, h = 1 : n − 1,(4.2)

τhδh + σhδh+1 = τhδh+1 + σhδh, h = 1 : n − 1,(4.3)

τh+1σh = τhσh+1, h = 1 : n − 2.(4.4)

If T is irreducible, then (4.2) and (4.4) lead to either

σh = τh, h = 1 : n − 1,

or

σh = −τh, h = 1 : n − 1.(4.5)

When (4.5) holds, equation (4.3) yieldsδ1 = δ2 = . . . = δn.
If T is reducible, thenT may have diagonal blocks, which are diagonal and therefore

normal. The above discussion on irreducible matrices applies to the remaining tridiagonal
blocks on the diagonal (if any). This concludes the proof.

COROLLARY 4.2. A real normal tridiagonal matrix can be partitioned into diagonal
blocks that are either diagonal or tridiagonal and normal.

5. The distances toST and A+
T . It is easy to see that, given a real tridiagonal ma-

trix T = (n; σ, δ, τ), the closest matrix inS in the Frobenius norm is the matrixT (s) =
(n; σ(s), δ(s), τ (s)) with entries

σ
(s)
h = τ

(s)
h =

σh + τh

2
, h = 1 : n − 1,

δ
(s)
h = δh, h = 1 : n.
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It follows that the distance in the Frobenius norm betweenT andS is given by

dF (T,S) =

√

√

√

√

1

2

n−1
∑

i=1

(σi − τi)
2
.

Similarly, the closest matrix toT in A+ in the Frobenius norm is the matrixT (a) =
(n; σ(a), δ(a), τ (a)) with entries

σ
(a)
h = −τ

(a)
h =

σh − τh

2
, h = 1 : n − 1,

δ
(a)
h =

1

n

n
∑

i=1

δi, h = 1 : n.

It follows that the distance in the Frobenius norm betweenT (a) andA+ is given by

dF (T,A+) =

√

√

√

√

1

2

n−1
∑

i=1

(σi + τi)
2
+

n
∑

i=1

(

δi −
∑n

j=1 δj

n

)2

.

LetM = ST ∪A+
T . Then

dF (T,M) = min
{

dF (T,ST ), dF (T,A+
T )
}

.(5.1)

The following theorem provides upper and lower bounds for (5.1).
THEOREM 5.1. For every real tridiagonal matrixT = (n; σ, δ, τ), one has

dF (T,N ) ≤ dF (T,NT ) ≤ dF (T,M) = dF (T0,M)
= min{dF (T0,ST ), dF (T0,AT )} ≤ 1√

2
‖T0‖F ,(5.2)

whereT0 is defined by (3.4). The upper bound fordF (T,M) is attained when (3.5) holds.
Then

dF (T,M)

‖T0‖F
=

1√
2
.(5.3)

Proof. The first two inequalities of (5.2) follow from the inclusionsN ⊃ NT ⊃ M.
The distance toM is invariant under addition of a multiple of the identity matrix. This
gives the first equality. It follows fromtrace (T0) = 0 that the matrixT (a)

0 has a vanishing
diagonal and therefore lives inAT . The second equality follows from the definition ofM.
The last inequality of (5.2) follows from (3.3). This inequality is achieved when (3.5) holds;
cf. Remark3.3. This shows (5.3).

6. The distancedF (T, I). We are in a position to discuss the computation of the dis-
tance of a matrixT ∈ T to the setI of real normal irreducible tridiagonal matrices. The fol-
lowing theorem reduces this problem to the determination ofthe distancedF (T,M), which
already has been discussed.

THEOREM 6.1.

dF (T, I) = dF (T,M), ∀T ∈ T .
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Proof. We first note that the setM is closed, because it is the union of the closed setsST
andA+

T . By Theorem4.1, a real irreducible normal tridiagonal matrix belongs toM. Thus,
I ⊂ M. Moreover, in every neighborhood of any matrixT in ST [in A+

T ] there is a real
normal irreducible tridiagonal matrixT ∗ 6= T in ST [in A+

T ]. Thus,M is the closure ofI,
and (6.1) follows.

REMARK 6.1. LetT = (n; σ, δ, τ). Whenσ2
i 6= τ2

i , i = 1 : n − 1, the closest matrix to
T in M, T (s) or T (a), is irreducible. Otherwise, at least one of the matricesT (s) andT (a) is
reducible and, hence, the closest matrix toT in M may be reducible.

REMARK 6.2. Theorem6.1 is applicable to any matrixT ∈ T , also reducible ones.
However, note thatdF (T, I) = 0 does not imply thatT is irreducible; it just indicates that
there is a real irreducible normal tridiagonal matrix in every open neighborhood ofT . For
instance,dF (T, I) = 0 whenT is the zero matrix.

REMARK 6.3. There are matricesT ∈ T , such thatdF (T, I) ≫ dF (T,N ). Indeed,
there are matricesT ∈ T , such thatdF (T, I) ≫ dF (T,NT ); see Example 9.2 in section9
below.

7. Tridiagonal Toeplitz matrices. This section is concerned with real tridiagonal Toeplitz
matricesT = (n; σ, δ, τ), i.e.,

T =





























δ τ 0
σ δ τ

σ δ
. . .

. . .
. . . τ
σ δ τ

0 σ δ





























∈ R
n×n.(7.1)

THEOREM 7.1. The real tridiagonal Toeplitz matrix (7.1) is normal if and only if its
entries satisfyσ = τ or σ = −τ .

Proof. The result follows from Theorem4.1.
REMARK 7.1. Notice that Theorem7.1 implies that a real normal tridiagonal Toeplitz

matrix is reducible if and only if it is diagonal.
The following results are consequences of (5.1) and the discussion leading up to that

result.
THEOREM 7.2. LetT be a real tridiagonal Toeplitz matrix (7.1). The closest real tridi-

agonal matrixT (s) to T in the setST is a Toeplitz matrix with diagonal entriesδ, and sub-
and super-diagonal entries12 (σ + τ). The closest real tridiagonal matrixT (a) to T in the
setA+

T is a Toeplitz matrix with sub-diagonal entries12 (σ − τ), diagonal entriesδ, and
super-diagonal entries− 1

2 (σ − τ). Moreover,

dF (T,M) =

√

n − 1

2
min{|σ − τ |, |σ + τ |}.

COROLLARY 7.3. Let T be a real irreducible tridiagonal Toeplitz matrix. Then the
closest matrix inM is irreducible. Moreover,

dF (T,M) = dF (T,NT ).(7.2)
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Proof. Let T ∗ = (n; σ∗, δ∗, τ∗) denote the closest matrix inM to T . SinceT is
assumed to be irreducible, it follows from Theorem7.2 that T ∗ is an irreducible normal
Toeplitz matrix. Thus, it suffices to show that there is no normal reducible tridiagonal matrix
T ′ = (n; σ′, δ′, τ ′) closer toT thanT ∗. SinceT is a Toeplitz matrix,T ′ must belong toM.
Any pair of vanishing entriesσ′

h = τ ′
h = 0 gives a contribution to the distance‖T−T ′‖F that

is larger than the contribution of the pair of entries{σ∗, τ∗} of T ∗ to the distance‖T −T ∗‖F .
This completes the proof.

We finally consider the situation when the given real tridiagonal matrix is not Toeplitz,
and we wish to determine the closest real normal Toeplitz matrix.

THEOREM 7.4. Let T = (n; σ, δ, τ) be a real tridiagonal matrix (2.1). The closest
tridiagonal Toeplitz matrixT (s) to T in the setST has diagonal entriesδ, and sub- and
super-diagonal entriesσ andτ , respectively, given by

δ =
1

n

n
∑

i=1

δi, σ = τ =
1

2(n − 1)

n−1
∑

i=1

(σi + τi).(7.3)

The closest tridiagonal Toeplitz matrixT (a) to T in the setA+
T has diagonal entriesδ given

by (7.3), and sub- and super-diagonal entriesσ andτ , respectively, given by

σ = −τ =
1

2(n − 1)

n−1
∑

i=1

(σi − τi).

Proof. It follows from Theorem4.1 that the desired matrix belongs toM and is of
Toeplitz form. This yields the equations for the entriesδ, σ, andτ .

8. Eigenvalue condition numbers. We define the eigenvalue condition number for
nondefective irreducible tridiagonal matrices. LetT ∈ R

n×n be such a matrix, and let
xj andyj denote right and left eigenvectors of unit length, respectively, associated with the
eigenvalueλj . Following [10, 21], we define the condition number for the eigenvalueλj by

κ(λj) = |y∗
j xj |−1,

where the superscript∗ denotes transposition and complex conjugation. The eigenvalue con-
dition number forT is defined by

κ(T ) = max
1≤j≤n

κ(λj).(8.1)

9. Examples. This section presents a few examples that illustrate some properties of the
structured distance to normality.

Example 9.1. Consider the quasi-Jordan block

J =























λ µ 0 . . . . . . 0 0
0 λ µ 0 . . . 0 0
0 0 λ µ . . . 0 0
...

...
...

. . .
. . .

...
...

0 0 0 . . . λ µ 0
0 0 0 . . . . . . λ µ
0 0 0 . . . . . . . . . λ























∈ R
n×n, with µ 6= 0.
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Thus,J is an upper bidiagonal Toeplitz matrix. The circulant matrix

N =























λ n−1
n µ 0 . . . . . . 0 0

0 λ n−1
n µ 0 . . . 0 0

0 0 λ n−1
n µ . . . 0 0

...
...

...
. . .

. . .
...

...
0 0 0 . . . λ n−1

n µ 0
0 0 0 . . . . . . λ n−1

n µ
n−1

n µ 0 0 . . . . . . . . . λ























∈ R
n×n

is normal. An easy computation yields

dF (J,N )

‖J0‖F
≤ ‖J − N‖F

‖J0‖F
=

1√
n

,(9.1)

whereJ0 = J − λI.
The following irreduciblen × n matrices,

J (s) =























λ µ/2 0 . . . . . . 0 0
µ/2 λ µ/2 0 . . . 0 0
0 µ/2 λ µ/2 . . . 0 0
...

...
. . .

. . .
. . .

...
...

0 0 0 µ/2 λ µ/2 0
0 0 0 . . . µ/2 λ µ/2
0 0 0 . . . . . . µ/2 λ























,

J (a) =























λ µ/2 0 . . . . . . 0 0
−µ/2 λ µ/2 0 . . . 0 0

0 −µ/2 λ µ/2 . . . 0 0
...

...
. . .

. . .
. . .

...
...

0 0 0 −µ/2 λ µ/2 0
0 0 0 . . . −µ/2 λ µ/2
0 0 0 . . . . . . −µ/2 λ























,

are the closest matrices toJ in ST andA+
T , respectively. They are equidistant toJ , and we

obtain from (5.1) and Theorem6.1that

dF (J, I)

‖J0‖F
=

dF (J,M)

‖J0‖F
=

1√
2
.(9.2)

The eigenvalues of a Jordan block are sensitive to perturbations of the matrix, while
eigenvalues of normal matrices are not. We would like our measure of the distance to nor-
mality to reflect this fact, i.e., Jordan blocks should be distant from the set of normal matrices
considered. Indeed, the normalized structured distance (9.2) is maximal; cf. Theorem3.2. We
also note that the normalized unstructured distance (9.1) is not; the latter distance decreases
to zero as the sizen of the Jordan block increases. The normalized unstructureddistance
therefore is a poor indicator of the conditioning of the eigenvalue problem.

We conclude this example by noting that

dF (J,NT ) = dF (J, I),(9.3)
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from which it follows that

dF (J,NT )

‖J0‖F
=

1√
2
.

The equality (9.3) can be shown similarly as (7.2). Thus, we need to show that there is no
real normal reducible tridiagonal matrixT = (n; σ, δ, τ) closer toJ thanJ (s) andJ (a). If
there were such a matrix, then, according to Theorem4.1, the conditionσh = τh = 0 would
necessarily hold for at least one value ofh. However, such a pair of entries would give a
larger contribution to the distance ofJ toNT than the pair{σh, τh} = {±µ/2, µ/2}.

Example 9.2. The above example illustrates thatdF (T,NT ) = dF (T,M) for certain
T ∈ T . This example shows that when a tridiagonal matrixT = (n; σ, δ, τ) has a pair
of “tiny” off-diagonal entriesσh andτh, thendF (T,NT ) anddF (T,M) may differ signifi-
cantly. Thus, let

T =









0 1 0 0
−1 0 ε 0

0 ε 0 1
0 0 1 0









,

with ε > 0 a tiny parameter. Then

dF (T,M)

||T0||F
=

1√
2 + ε2

,
dF (T,NT )

||T0||F
≤ ε√

2 + ε2
,

where we obtain the inequality by settingε = 0 in T . Thus, the normalized distance to the
setM is close to maximal forε > 0 small, while the normalized distance toNT is small in
this situation. This example indicates that the computed normalized distances to the setM
may be most useful for tridiagonal matrices with no tiny off-diagonal pairs.

The following numerical examples have been carried out in MATLAB with about 16
significant decimal digits.

Example 9.3. We consider tridiagonal matricesT , whose eigenvalues are zeros of gener-
alized Bessel polynomials. These polynomials depend on twoparametersa andb 6= 0. The
entries ofT are given by

δ1 = −a

b
, τ1 = −δ1, σ1 =

δ1

a + 1
,

and, forj ≥ 2,

δj = −b
a − 2

(2j + a − 2)(2j + a − 4)
,

τj = b
j + a − 2

(2j + a − 2)(2j + a − 3)
,

σj = −b
j

(2j + a − 1)(2j + a − 2)
;

see [18] for a recent discussion on generalized Bessel polynomials, their applications, and the
computation of their zeros.

For the tridiagonal matrixT of order30 with a = −17/2 andb = 2, we obtain

dF (T,N )

‖T0‖
≤ 0.6835,

dF (T, I)

‖T0‖
= 0.7071,
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−0.2 −0.1 0 0.1 0.2 0.3

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

FIG. 9.1.Example 9.3: The computed zeros of a generalized Bessel polynomial of degree30 close to the origin
(black+), eigenvalues ofT (s) close to the origin (blue∗), and eigenvalues ofT (a) close to the origin (redo).

−80 −70 −60 −50 −40 −30 −20 −10
−30

−20

−10

0

10

20

30

FIG. 9.2. Example 9.4: The eigenvalues of the tridiagonal matrixT ∈ R
30×30 defined by (9.4) (black+),

eigenvalues ofT (s) (blue∗), and eigenvalues ofT (a) (redo).

whereT0 is given by (3.4). Thus, the normalized structured distance to normality isvery
close to its maximal value1/

√
2. An upper bounds for the unstructured distancedF (T,N )

in this and the following examples is computed by the method described by Ruhe [20]; for
many matrices this method yieldsdF (T,N ). In the present example, the computed bound for
the normalized unstructured distance is nearly as large as the normalized structured distance.

The eigenvalue condition number (8.1) is very large; we haveκ(T ) = 1.4 · 1013. Thus,
in this example the unstructured and structured distances to normality are large, and so is the
eigenvalue condition number. Figure9.1 shows the computed eigenvalues ofT , T (s), and
T (a) closest to the origin.

Example 9.4. Consider the tridiagonal matrixT = (30; σ, δ, τ) defined by

δj = −3 − 2j, τj = j + 1, σj =
1

j + 1
, j ≥ 1.(9.4)

This matrix is discussed in [17]. We obtain

dF (T,N )

‖T0‖
≤ 0.23,

dF (T, I)

‖T0‖
= 0.50,
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andκ(T ) = 6.7 · 107, whereT0 is given by (3.4). The unstructured distance to normality is
fairly small, but the eigenvalue condition number is large.This example illustrates, similarly
as Example 9.1, that the unstructured distance to normalitycan be a poor measure of the
conditioning of the eigenvalue problem. The structured distance to normality is large enough
to indicate that the eigenvalues may be sensitive. Figure9.2shows the eigenvalues ofT , T (s),
andT (a).

Example 9.5. We compute the structured and unstructured distances to normality for
three Toeplitz matrices. The tridiagonal Toeplitz matrixT = (30; σ, δ, τ), defined by

δ = 0, τ =
1

4
, σ = 1,(9.5)

yields

dF (T,N )

‖T0‖
≤ 0.17,

dF (T, I)

‖T0‖
= 0.51.

The eigenvalue condition number is given byκ(T ) = 3.7 · 107. Figure9.3shows the eigen-
values ofT , T (s), andT (a). The spectrum ofT is seen to be real.

The tridiagonal Toeplitz matrixT = (30; σ, δ, τ) determined by

δ = 1, τ =
9

10
, σ = − 1

10
,(9.6)

satisfies

dF (T,N )

‖T0‖
≤ 0.18,

dF (T, I)

‖T0‖
= 0.62,

and has the eigenvalue condition numberκ(T ) = 4.5 ·1012. Figure9.4shows the eigenvalues
of T , T (s), andT (a). All eigenvalues ofT andT (a) have real part one.

The unstructured distances to normality for the matrices (9.5) and (9.6) are small, but
the structured distances to normality are fairly large, andso are the eigenvalue condition
numbers. Moreover, the structured distance to normality islarger for the matrix with the
largest eigenvalue condition number.

For the tridiagonal Toeplitz matrixT = (30; σ, δ, τ) defined by

δ = 1, τ =
9

10
, σ = −11

10
,(9.7)

we obtain the distances

dF (T,N )

‖T0‖
≤ 8.3 · 10−2,

dF (T, I)

‖T0‖
= 1.0 · 10−1,

and the eigenvalue condition numberκ(T ) = 3.6. Figure9.5 shows the eigenvalues ofT ,
T (s), andT (a). The eigenvalues ofT are real and difficult to distinguish from the eigenvalues
of T (s). In some applications, it therefore may suffice to compute the eigenvalues of the
symmetric tridiagonal matrixT (s) instead of the eigenvalues of the nonnormal matrixT .
This can be attractive since there are fast accurate algorithms available for the computation
of the eigenvalues ofT (s).

10. Conclusion. The structured distance to normality for real irreducible tridiagonal
matrices is easy to compute. Numerous computed examples suggest that for many matrices
a small structured distance to normality implies a small to moderate eigenvalue condition
number. If the matrix does not have pairs of tiny off-diagonal entries, such as in Example 9.2,
then a large structured distance to normality generally indicates that the eigenvalue condition
number is large. Further analysis that sheds light on these observations is required.
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FIG. 9.3. Example 9.5: The eigenvalues of the tridiagonal Toeplitz matrix T ∈ R30×30 defined by (9.5)
(black+), eigenvalues ofT (s) (blue∗), and eigenvalues ofT (a) (redo).
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FIG. 9.4. Example 9.5: The eigenvalues of the tridiagonal Toeplitz matrix T ∈ R30×30 defined by (9.6)
(black+), eigenvalues ofT (s) (blue∗), and eigenvalues ofT (a) by (redo).
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FIG. 9.5. Example 9.5: The eigenvalues of the tridiagonal Toeplitz matrix T ∈ R30×30 defined by (9.7)
(black+), eigenvalues ofT (s) (blue∗), and eigenvalues ofT (a) by (redo). The eigenvalues ofT andT

(s) are too
close to distinguish.
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