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ON DIFFERENCE SCHEMES FOR QUASILINEAR EVOLUTION PROBLEMS
�

RITA MEYER-SPASCHE
�

Abstract. We review several methods leading to variable-coefficient schemes and/or to exact difference schemes
for ordinary differential equations (error elimination; functional fitting; Principle of Coherence). Necessary and
suffient conditions are given for � -independence of fitted RK coefficients. Conditions for � -independence are inves-
tigated, � the time-step. The theory is illustrated by examples. In particular, examples are given for non-uniqueness
of exact schemes and for efficient difference schemes based on exact schemes and well suited for highly oscillatory
ordinary differential systems or for parabolic equations with blow-up solutions.

Key words. difference schemes, time stepping, nonstandard schemes, exact schemes, exponential fitting, func-
tional fitting, Runge-Kutta, collocation methods, review

AMS subject classifications. 65L05, 65M06, 65P99

1. Introduction. Time discretization for the numerical solution of initial value prob-
lems means that we approximate a continuous dynamical system by a family of discrete
dynamical systems. We introduce the additional parameter

������	�

and require �� 
���� -

convergence for

����

, ����� . If the dynamics of the discrete and continuous systems are
very different for larger



, then the step-size



must be small for satisfactory results. If the

dynamics of the systems are very similar,



may be larger, computations are more efficient.
In the ideal case, the step-size of the computations is determined by the solution to be com-
puted: by its structure and by the accuracy required. In many applications, for instance in
equilibrium computations and turbulence computations in plasma physics, the bounds for the
step-size have to be determined by properties of the numerical method instead.

Let us look at a very simple example:�� � ���! �  �"�#� ��$&% �  (1.1)

with solution �  �'�#� ��$�)( � � $+*(1.2)

This solution ceases to exist when the denominator vanishes, i.e. at its blow-up time , ��.- � $ . We take � $ �0/ $ and compute discrete solutions 1 /3254.62!798 .
If we discretize eq. (1.1) with the explicit forward Euler scheme, we obtain/ 2!:98 ( / 2
 �;/ �2  or

/ 2<:98 �;/ 2>= 
?/ �2  
and the iterates exist for all times, independent of the value of

/ $ . Moreover, the step-size



must be small enough to prohibit instability of the scheme.
If we discretize eq. (1.1) with the implicit backward Euler scheme, we obtain/@2!:98 ( /@2
 �A/ �2!:98  or

/CB2!:98 � �D 
 '�FEHG �)(�I 
?/�J2 � *
A choice in favor of the value

/KJ2<:98 has to be made in each time step: this ensures that we
get convergence to a continuous function in the limit


L�M�
, and it enforces uniqueness ofN
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the solution. It does not prohibit though that the iterates on the two branches meet and turn
complex at a time O,C 
5�QP ,R �?$ � . Real iterates thus cease to exist, but the non-existence
happens in a way which is different from blow-up. Moreover, implicit difference schemes
have a tendency to turn superstable and thus to produce qualitatively wrong solutions for
step-sizes



which are not small enough.

If we discretize eq. (1.1) with the ‘nonstandard scheme’/ 2!:S8 ( / 2
 �A/@2T/@2<:98  or
/@2<:98)� / 2�)( 
?/@2  (1.3)

we find that this scheme is exact, i.e. for any step-size



it reproduces the solution (1.2)
without discretization error, as long as UWV 
QP ,R �X$ �Y� �.- �?$ .

Given any individual differential equation, how to find an optimal scheme for it? How
should nonlinear terms in differential equations be discretized? Attempts are made for devel-
oping a theory of nonstandard schemes ‘optimal for individual differential equations’ [16]. In
the case of eq. (1.1) and Z[ � �#� � � , however, we notice that/@2!:98 ( /@2
 �A/ 2 / 2!:S8 � Z[ / 2 � = ZX\] / 2 � /@2!:98 ( /@2D  
and this is a linearly implicit standard scheme, a so-called Rosenbrock-Wanner scheme. Lin-
early implicit schemes were introduced by Rosenbrock in 1963. Today they are standard in
the numerical treatment of stiff differential equations and of differential-algebraic equations
[7]. Also other ‘nonstandard’ schemes found in the literature turned out to be standard [15].

In the following we shall have a ‘nonstandard’ view on standard schemes. We shall
discuss on which functions given, well-known schemes are exact (on which Z[ � � , on which�  �'� ?) and we shall discuss several methods for finding schemes which are exact on given� -dimensional function spaces. Depending on the chosen function space, the schemes have
constant coefficients, or coefficients depending on time

�
and/or time-step



. Necessary and

sufficient conditions for
�
-independence are given,



-independence is discussed.

These investigations mostly lead to results for simple quasilinear equations. Exact schemes
for simple equations have been used successfully for designing efficient schemes relevant to
applications. As examples, Denk-Bulirsch schemes and LeRoux schemes are discussed in
this text. Kojouharov-Chen schemes for advection-diffusion-convection equations [8] and
structure-preserving schemes for canonical and non-canonical Hamiltonian systems [4] must
at least be mentioned. This is an updated, enlarged version of [13].

2. Exact schemes. We start by considering non-autonomous systems�� � Z[ �  '� �  �  �^�#� � $  (2.1)

with smooth functions Z 	  � 8  � � �`_�a b&cR�da b&c  Ye �f� * We assume g �  ,)h3ij � 8  � � � i a b
and consider one-step schemes/ 2!:S8 �lk mZ �  / 2  
5�  / $ � ��$< (2.2)

for the numerical solution of system (2.1) on the interval g �  ,)h . Here

n�o�R�

is the time
step,

/@2
is an approximation to the exact solution �  �p2T� at time

�q2r� U 
  U �f�  �  D  *s*�*  
and

k tZ � denotes the evolution map given by the numerical scheme. Note that for implicit
methods, the evolution map

k tZ � requires a non-linear solve. In this text we assume that the
explicit form (2.2) can always be obtained uniquely in exact arithmetic and we neglect the
presence of rounding errors. We also allow numerical methods for which the evolution mapk tZ � involves derivatives of Z with respect to � .
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We define the truncation error ,� �X$! 
  Z � of scheme (2.2) by,R ��$! 
  Z �F	u� �
  �  
5� ( / 8 �#� �
  �  
5� ( k tZ �  ��$^ 
5�'� *
Scheme (2.2) is
* of order v on eq. (2.1), if v is the largest integer such thatwyx{z|.} $>~y~ ,R � $  
  Z � ~y~
T� PH�
for all smooth Z and arbitrary ��$ ;
* exact on the solution �  ��� � $ � of eq. (2.1) for given Z , if ,R � $  
  Z � vanishes for arbitrary
step-size


Q��
 $&� g �  ,)h , 
 $ % � small enough;
* exact on eq. (2.1) for given Z , if ,R � $  
  Z � vanishes for arbitrary initial value � $�� a b&c
and arbitrary step-size


W��
 $&� g �  ,�h .
2.1. Error expansions for constant-coefficient schemes. We now confine to autonomous

scalar initial value problems �� � Z[ � �  �  �^�@� ��$ � a b *(2.3)

For the analysis we expand ,R �X$! 
  Z � in a Taylor series in



,,R � $  
  Z �[����� 7 $+� � mZ ��
 � *(2.4)

Scheme (2.2) is of order v on eq. (2.3), if � � mZ ����� for all � P v , arbitrary � $ and all
smooth functions Z . Scheme (2.2) is exact on eq. (2.3) for a given function Z , if � � mZ �����
for arbitrary ��$ � a b and for all ��� � .

LEMMA 2.1. The trapezoidal rule/ 2!:S8 ( / 2
 � Z[ / 2!:98 � = Z[ / 2 �D(2.5)

is exact on equation (2.3) for those functions Z 	^a bA��a b
satisfyingZX\ \{Z = mZX\ � � �0�  (2.6)

i.e. for Z[ � �>� E&� � 8 � = � � , � 8  � � constant, � 8 � = � � � � . It follows that it is exact for
solutions �  �'� satisfying �  �'� � span 1"�  �  � � 4 .

The proof was already given in [14] and [4]. We thus only sketch it here. For the
truncation error we obtain the expansion (2.4) with

� � mZ �#���� � � � P D  � �y� = � ��� ( �D � �m��� � Z[ �  �'�'�� � � ����   7 $ �¡� D *(2.7)

For general smooth Z we thus obtain � $ � � 8��l� and

� � tZ �#� ( �� D g ZX\ \t � � Z �  � � = tZX\m � �'� � Z[ � � h ~ ¢ 7 ¢.£K¤�H� *
The method is second order in general. For those Z which satisfy eq. (2.6), we obtain� � tZ ���¥�

, and moreover � � tZ �)�A� for all � . Thus the trapezoidal rule is exact for those
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Special solutions of eq. (2.3) with this Z are �  �'��� O� � � = � $ and �  �'���¨§ O� 8©� - D = � 8p¦ �$«ª � .
More general we obtain from the differential equation that�R� � � Z[ �  �'�'�� � � � �^¬ �  �'�� � ¬ *
Thus the solution space is

/�
span 1^�  �  � � 4 . ®

In a similar way the following lemma was proved as well:
LEMMA 2.2. The implicit midpoint rule/@2<:98 ( /#2
 � Z[ /#2!:98 = /@2D �

is exact on equation (2.3) for those functions Z 	<a b��a b
satisfyingZX\ \¯Z¡( D mZX\ � � �l�  (2.8)

i.e. for Z[ � �3� � � t� ¬ (°� 8 � � J 8 , � 8  � �  � ¬ constants, � ¬ (°� 8 �  �'� ¤�;� for all
�
. Solutions �

of eq. (2.3) then satisfy �  �'�3� � � � = ��$ for � 8 �H�  � ¬ � �  
or �  �'�3� � ¬ E G ]� ¬ (L� 8 � $ � � ( D � 8±�� 8 for � 8 ¤�l�  � ¬ (L� 8 ��$ ¤�H�  � � � � *(2.9)

Note that this time the solutions form a nonlinear manifold, not a linear space like in the
previous case. In particular, �  �'�#� � � does not belong to the solution manifold for

� $ �l� .
In general, the solutions of eq. (2.3) should not be expected to form a linear space for

nonlinear Z . If �  �'� solves
�� � Z[ � �  9�  �"�#� �X$ , then ²R �'��	³� � 8 �  �'� = � � , � 8 ¤�0� , solves�² � � 8 Z[pg ²l(L� � h]-´� 8 �  ²� �^�Y� � 8 ��$ = � � . That’s all we can say for general Z .

Also, uniqueness of exact schemes should not be expected: already in [4] it was shown
that both the second-order Taylor method/#2!:98)�A/@2 = 
 Z[ /@25� = 
 D � ZX\t /@2T� Z[ /@2T�  (2.10)

and the trapezoidal rule (2.5) are exact on the same set of differential equations (2.3), i.e. on
those with a r.h.s.-function Z satisfying (2.6). They are clearly different difference schemes,
one explicit, one implicit, and also their error expansions are different: expansion (2.4) for
scheme (2.10) has the coefficients

� � tZ �#� �� � � � P D  �y� = � ��� � � Z[ �  �'�'�� � � ����   7 $ �¡� D *
So all � �  �¡� D , are different from those in (2.7), but vanish for the same Z s.

This non-uniqueness should not surprise: difference schemes are equations to be satisfied
by the approximate solutions of the differential equations under consideration. So there is not
the exact difference scheme, there might be many of them, differing by terms which vanish
for those differential equations on which they are exact. What we have to require, of course,
is the unique solvability of the difference scheme for given initial value and sufficiently small
step-size



.

The trapezoidal rule and the implicit midpoint rule both are Runge-Kutta methods. We
thus look at exact schemes within the framework of RK methods now.
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2.2. Constant coefficient RK methods as exact schemes. In this subsection we collect
some facts on RK methods to be used lateron. We consider here non-autonomous differential
equations (2.1) again, and we will always assume

/ $ � � $ for the discrete iteration.

2.2.1. Constant coefficient RK methods. Let µ�¶  �·¶ � ¹¸  � � �  *s*�*  � � be real numbers
and let º ¶ � ��� 798 � ¶ �  ¸ � �  *�*s*  � *(2.11)

The method defined by» ¶ � Z[ �q2 = º ¶ 
  /@2 = 
 ��� 798 �·¶ �
» � �  ¸ � �  *�*�*  �/ 2!:98 �0/ 2C= 
 �� ¶ 798 µ ¶

» ¶  
is called an � -stage Runge-Kutta scheme (RK scheme). An alternative definition is¼ ¶ �A/ 2&= 
 ��� 798 � ¶ � Z[ � 2>=

º � 
  ¼ � �  ¸ � �  *s*�*  �  (2.12) /#2!:98)�A/@2 = 
 �� ¶ 798 µ�¶½Z[ �q2 =
º ¶ 
  ¼ ¶ � *(2.13)

The connection between both is given by
» ¶ � Z[ � 2C= º ¶ 
  ¼ ¶ �  ¼ ¶ �;/ 2>= 
 ��� 7S8 � ¶ �

» �  ¸ � �  *�*s*  � *
There is a certain redundancy: formally different schemes can define the same numerical
integration method, even when they have different stage numbers � 8 and � � . In the following
we consider Runge-Kutta methods, assuming that the resulting numerical integration method
is at least of first order, and that the scheme representing it has minimal stage number � and
satisfies

º ¶ ¤�
º � for ¸ ¤� � .

2.2.2. Collocation methods. Remember the following facts [3, p.58], [6, p.211f]:
* If an RK method satisfies the simplifying conditions

� ¹¾ ��	 �� ¶ 798 µ�¶
º�¿ J 8¶ � �.- »  � � » � ¾  (2.14)

and is used for integrating �À � Z[ �'�  À  � 2 �#�H�  (2.15)

on the interval  �'2  �q2!:98Á� , then eq. (2.13) is an integration method of order ¾ . Equation (2.13)
is then exact on Z � span 1^�  �  *s*�*  �qÂ J 8 4 . Trivial consequence: all consistent RK schemes
are exact on

�� �HÃ�Ä<Å5Æ'Ç .
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* If an RK method satisfies the simplifying conditionsÈ ¹¾ �)	 ��� 798 �·¶ �
ºs¿ J 8� � �» º ¿¶  � � » � ¾  � � ¸ � �  (2.16)

then the stage equations (2.12) define integration methods of order ¾ for eq. (2.15) on the
intervals  �q2  �q2 = º ¶ 
5� . Thus they are exact there for Z � span 1^�  �  *s*�*  �'Â J 8 4 . Note that the
validity of

È q� � is ensured by eq. (2.11).

* If an s-stage RK method satisfies � t� � and
È t� � , it is called a collocation method (after

Burrage 1978).

* Apply a collocation method (2.12), (2.13) to the differential equation (2.1). The collocation
polynomial, i.e. the polynomial É9 �'� interpolating the numerical solution of (2.12), (2.13) in
the points

�'2
and

�q2 ¶ 	u�l�q2 = º ¶ 
  ¸ � �  *�*s*  �  then has degree � . Its derivative
�É has degree�@(�� and is integrated exactly by the stage equations (2.12) on the intervals g � 2  � 2 ¶ h . We thus

obtain É9 �q2 = º ¶ 
5�3� ÉS �q25� = 
 ��� 798 �"¶ � �É+ �q2 =
º � 
5�  ¸ � �  *s*�*  �  

ÉS � 2C= 
5�3� ÉS � 2 � = 
 �� ¶ 798 µ ¶ �É9 � 2C=
º ¶ 
5� *

Put ÉS �q2T�)� � 2 , where � 2Q� �  �q2T� and �  �'� is the solution of eq. (2.1) to be approximated.
Then the collocation polynomial satisfies eq. (2.1) at the internal abscissas

�'2 ¶ �n�q2 = º ¶ 
  ¸ ��  *�*�*  �  �É9 �q2 = º ¶ 
5�3� Z[ �q2 = º ¶ 
  ÉS �q2 = º ¶ 
5�p�  ¸ � �  *�*s*  � *
* Given a positive integer � and numbers

º 8  *�*s*  º � � a b ,
�Ê� º ¶ � �  ¸ � �  *s*�*  � , º ¶ ¤�

º �
for ¸ ¤� � . The collocation method satisfyingÉS �q25�R�¨/#2�É+ �q2 = º ¶ 
5��� Z[ �q2 = º ¶ 
  ÉS �q2 = º ¶ 
5�p�  ¸ � �  *�*s*  �  É9 �q2 = 
5�3��	"/#2!:98
is equivalent to the s-stage RK method (2.12), (2.13) with coefficients�·¶ � 	u�AËÍÌ½Î$dÏ �  �'� � �  µ � 	³�AË 8$;Ï �  �'� � �  ¸  � � �  *�*�*  �  (2.17)

where the Ï �  �'� are the Lagrange polynomials

Ï �  �'�#�«Ð�CÑ7 �  � (
º � � º � ( º � � *

Note that

º ¶ ¤�
º � for ¸ ¤� � is essential here.



ETNA
Kent State University 
etna@mcs.kent.edu

84 RITA MEYER-SPASCHE

2.2.3. RK methods as exact schemes. The trapezoidal rule can be written as a Runge-
Kutta method, ¼ 8 �0/ 2  ¼ � �0/@2 = 
 tZ[ �q2  ¼ 8Á� = Z[ �q2 = 
  ¼ � �p� - D  /@2!:S8)�0/@2 = 
 tZ[ �q2  ¼ 8Á� = Z[ �q2 = 
  ¼ � �p� - D *
It is a second-order 2-stage method and it satisfies the simplifying conditions � 

» �
and

È  » �
for

» � D
, but not for

» �;Ò
. It thus is a collocation method and integrates eq. (2.15) exactly

for Z � span 1^�  �©4 . As we have seen earlier, it is also exact on autonomous eqs. (2.3) if Z
satisfies eq. (2.6), which implies that �  �'� � span 1^�  �  � � 4 .

The implicit midpoint rule can also be written as a Runge-Kutta method,¼ 8`�0/@2 = 
 Z[ �q2 = 
 - D  ¼ 8�� - D  /@2!:S8)�0/@2 = 
 Z[ �q2 = 
 - D  ¼ 8�� *
It is a second-order 1-stage method satisfying �  D � and

È '� � . It thus is a collocation method
and integrates eq. (2.15) exactly for Z � span 1^�  �©4 . As we have seen earlier, it is also exact
on autonomous eqs. (2.3) if Z satisfies eq. (2.8).

The question thus arises if every RK method is exact on some nontrivial differential
equation. As the following example shows, the answer is no. Consider the Ó -dependent
family of second-order 2-stage schemes for autonomous Z ,¼ 8 �0/ 2  ¼ � �0/ 2&= 
 ¹Ó+Z[ ¼ 8 � = q�)(�Ó � Z[ ¼ � �'�  (2.18) / 2<:98 �0/ 2&= 
 tZ[ ¼ 8 � = Z[ ¼ � �p� - D *
For Ó � �.- D this is the trapezoidal rule. For the counterexample we choose Ó � D - Ò . ForÓ � D - Ò we obtain � $ � � 8 �0� and� � tZ �#�  �D V � V<� = �D V �Ò V<�)( �Ô � Z�ZX\ � =  �D V �D V!�)( �Ô � Z � ZX\ \ � �� D Z � ZX\ \ *
Hence the scheme is second order in general. � � tZ � vanishes if either Z �0� or Z \ \ �0� . This
means Z[ � �#� � 8 � = � � for arbitrary constants � 8 and � � . Thus for the differential equation�� � � 8 � = � �(2.19)

the scheme is at least third order. With Z \ \ �0� we find� ¬ mZ �#� �Õ D Z�Z \ ¬ = �D I Z \ \ \ Z ¬ = �� D Z � Z \ Z \ \ � �Õ D Z�Z \ ¬ *
Hence � ¬ does not vanish when � � does. Thus the 2nd order scheme (2.18) with Ó � D - Ò is
only third order for eq. (2.19) and not an exact scheme.

Thus some RK schemes are exact for larger classes of autonomous differential equations,
others only for the trivial case where Z is constant. The vanishing of the first non-zero term in
the error expansion by particular choice of the r.h.s. function Z does not guarantee exactness
as one might have hoped for from the analysis of the classical schemes at the beginning of
this section.

We now turn to different approaches which do allow to find exact schemes for equation
(2.19) and for linear systems of type (2.19). It turns out, however, that the coefficients of the
schemes must be allowed to depend on the step-size. Examples are given in eqs. (2.26) and
(3.2).
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2.3. Functional fitting: variable-coefficient RK schemes. In recent years much re-
search has been performed for finding efficient numerical methods for system (2.1) with os-
cillatory solutions. If a good estimate of the frequency is known in advance, exact integration
of the linear part of system (2.1) leads to very useful integration methods which are called
‘exponentially-fitted’ integration methods. For a list of references we refer to [17] and [18]
and the references therein. Here we take a closer look at two different methods in this family:
the application of the Principle of Coherence by Denk [1, 2] and the ‘functional-fitting RK
methods’ as introduced by Ozawa [17].

2.3.1. Invariant spaces. Functional fitting methods approach exactness from the solu-
tion side. They do not look at the r.h.s. function Z to find conditions under which a given
scheme becomes exact, but they construct schemes which allow given functions �  �'� to be
represented exactly. To formulate the following existence theorem without inconvenient re-
strictions, we consider non-autonomous systems (2.1) again and allow variable coefficients
in the RK schemes, i.e. we consider schemes whose coefficients �5¶ �  µ�¶ depend on the inde-
pendent variable

�
and on the step-size



. Ozawa [17] proved the following results, which we

repeat here in the formulation of [4]:
LEMMA 2.3. Let 1 º ¶ 4 �¶ 7S8 � a b be given,

º ¶ ¤�
º � for ¸ ¤� � . Let 1sÖ �  �'�©4 �� 798 � È � g �  ,)h

be linearly independent functions, sufficiently smooth such that each of them satisfies�Ö �  � = º ¶ 
5�3� ��� 798 
º ¶ 
5� � J 8y�C(�� ��� Ö?× �pØ�  �'� = �� 
 � �  (2.20)

and suppose that they solve in g �  ,)h a homogeneous linear differential equation��� 7 $ É �  �'� Ö × � Ø  �'�#�0� with É �  �'�3Ù �  É $  �'� ¤�0�  (2.21)

with continuous coefficients É � � È g �  ,)h . Then the linear systemÖ �  � = º ¶ 
5�Ú� Ö �  �'� = 
�Û �� 798 � ¶ �  �  
5� �Ö �  � = º � 
5�Ö �  � = 
5�Ú� Ö �  �'� = 
 Û �¶ 798 µ�¶p �  
5� �Ö �  � = º ¶ 
5�(2.22)

is uniquely solvable for � ¶ �  �  
5� and µ ¶  �  
5� , with
� � g �  ,)h and

��PÜ
ÍPÝ
 $ for

 $ small

enough.
Note that the assumptions on the functions Ö �  �'� exclude the constant �  �'��Ù ºÁÞ U+� �

from the set 1sÖ � 4.�� 798 . Nevertheless, the constant function will be contained in any linear
space spanned by functions satisfying system (2.22): it satisfies system (2.22) for any set of
coefficients �ß¶ �  �  
5� and µ�¶p �  
5� and thus for any set of functions Ö 8  �'�  *�*s*  Ö �  �'� .

The idea of the proof given by Ozawa is the following: For fixed
�

and



, system (2.22)
is a collection of � = � linear systems of order � with matrix �Ö �  � = º � 
5�'� �`à � 7S8 à³á³á³á � ��	�â/  �  
5�  (2.23)

inhomogeneities �  Ö �  � =
º ¶ 
5� (rÖ �  �'�
 � � � ¶ and  Ö �  � = 
5� (�Ö �  �'�
 � �  

and � � = � unknowns �·¶ �  �  
5�  µ�¶' �  
5� . These systems are uniquely solvable if the matrixâ/  �  
5� is nonsingular. To prove that
â/  �  
5� is nonsingular for all

� � g �  ,�h and small enough
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, conditions (2.20) and (2.21) are used. Condition (2.21) ensures that the Wronskian matrix

of the linearly independent functions 1sÖ 8  *�*s*  Ö � 4 is nonsingular [6, p. 64ff]. ®
Now we consider the performance of a scheme obtained via Lemma 2.3. Assume that a

function � � /¨	³�
span 1^�  Ö 8  *{*{*y* Ö � 4 satisfies the non-autonomous system (2.1). Then we

expect that the RK scheme with coefficients attained according to Lemma 2.3 will be exact
on �  �'� . We get more: from this exactness on the linear space

/
it follows that the scheme

has order � :
LEMMA 2.4. Let the coefficients of the variable-coefficient s-stage RK scheme¼ ¶ � /@2 = 
 Û �� 798 �·¶ �  �q2  
5� Z[ �q2 = º � 
  ¼ � �/@2!:S8ã� /@2 = 
`Û �¶ 798 µ�¶± �q2  
5� Z[ �q2 = º ¶ 
  ¼ ¶ �¸ � �  *�*s*  � �q2¡�n� $ = U 
  / $ � � $  

be obtained according to Lemma 2.3. Then the order of the scheme is at least � . If the
abscissae

º ¶  ¸ � �  *�*�*  � , are taken to satisfyË 8$ � c J 8 �Ð¶ 798  � (
º ¶ � � �#�H�  e � �  *�*�*  ±äT � � ä � �  (2.24)

then the order of accuracy is � = ä . The maximum attainable order is
D � .

The proof of these statements uses results on RK collocation methods with constant
coefficients and can be found in Ozawa [17]. It is shown there that the first terms � × $ Ø¶ � andµ × $ Ø¶ in the power expansions of �ß¶ �  �  
5� and µÁ¶' �  
5� with respect to



satisfy the simplifying

conditions � t� � and
È m� � and depend only on 1 º ¶ 4.�¶ 798 , but not on the generating functions1sÖ � 4.�� 798 . They thus agree with the coefficients of the corresponding collocation scheme. If

the abscissae

º ¶ satisfy the additional condition (2.24), both the RK collocation scheme and
the scheme obtained according to (2.22) have order É � � = ä � D � . ®

The s-stage RK scheme obtained with the linearly independent functions 1sÖ � 4.�¶ 798 is
exact on the solution �  �'� whenever �  �'� � /¥�

span 1^�  Ö 8  *y*{*y* Ö � 4 . If all solutions of
(2.1) happen to belong to

/
in the full time interval g �  ,�h , the scheme is exact on (2.1), no

matter how nonlinear Z is, because we can first construct the linear combination of the basis
functions and afterwards we replace

�� by Z[ �  p� � . It is thus of interest to use functional fitting
RK-schemes whenever there is some knowledge about the solution in advance. If the scheme
is not exact, the remaining part of the solution is captured by the order of the RK-scheme;
and the constants in the error expansion will be small as long as the scheme is in a small
neighborhood of an exact scheme.

Given an s-stage RK scheme which is exact on
/��

span 1^�  Ö 8  *�*s*  Ö � 4 , it is a member
of a family of nonconfluent schemes which depend on � parameters

º 8  *s*�* º � . All these
schemes are exact on the same function space

/
. Though all these schemes are equivalent

when the scheme is used as an exact scheme, they differ in their numerical performance when
the scheme is used on a problem where it is not exact. This follows from the second statement
in Lemma 2.4.

2.3.2. Examples for schemes obtained with Lemma 2.3. When we apply Lemma 2.3,
the resulting scheme might have constant or variable coefficients, depending on the gener-
ating functions. This is illustrated by the following examples. RK schemes with variable
coefficients are nonstandard. Time-dependent coefficients are very unusual and would be
inconvenient in computations. In å 2.3.3 we will show how to avoid them. Coefficients de-
pending on the step-size



are not quite that unusual: such coefficients are always obtained

in the context of exponential fitting [18] and of evaluating the Principle of Coherence [2] and
seem to be unavoidable in certain situations.
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For constant-coefficient schemes for non-autonomous differential equations, it is a con-
vention to satisfy eq. (2.11) when designing new schemes. Because condition (2.11) implies
that

�q2 = º ¶ 
��;/#2 = º ¶ 
 for �  �'�3�l� [3, p. 56]. In the case of Lemma 2.3, condition (2.11)
is satisfied if �  �'�Y�n� is one of the generating functions.

Example 1 (constant coefficients): We chose � � D , Ö 8  �'�3�H� , Ö �  �'�3�n� � and use

º 8  º �
as parameters. Solving system (2.22) we find the coefficients�·¶ 8ã� º �¶ ( D º ¶ º �D  º 8 ( º � �  �·¶ � � º ¶�(L�·¶ 8  ¸ � �  Dµ 8ã� �)( D º �D  º 8 ( º � �  µ � � �)(Lµ 8 *(2.25)

For varying

º 8  º � with

º 8 ¤�
º � this is a 2–parameter family of RK schemes. For

º 8���  º � � � we obtain the coefficients of the trapezoidal rule, as expected. We obtain the
trapezoidal rule also for

º 8 � �  º � �H� . Though all these schemes are equivalent when exact,
they differ in their order and numerical performance when not exact.

These schemes are equivalent to the collocation schemes obtained for 1 º 8  º � 4 via eq.
(2.17). This was to be expected because of the remark on � × $ Ø¶ �  µ × $ Ø¶ . Moreover, if É9 �'� is
the collocation polynomial introduced earlier, we find ÉS �'� � span 1"�  �  � � 4 . We see that the
coefficients are undefined in the degenerate case

º 8 � º � , i.e. when the collocation approach
of å 2.2.2 is not applicable. ®

Example 2 (



-dependent coefficients): With � � D , º 8 ���  º � � � and Ö 8  �'�Ê�æ� ,Ö �  �'�3�lç�èßé)ê5� , �´- ê ¤� g �  ,�h , we obtain the coefficients� 8±8 �ë� � 8 � �ë�� � 8  
5�� �)(nq�)( êT
5�·ç�èßéìêT

5ê  çÁèßéìê5
 (�� �  � �p�  
5��� (&��( ê5
 = çÁèßé`êT

5ê  ç�è·éíêT
 (�� �µ 8  
5�� �)(nq�)( êT
5�·ç�èßéìêT

5ê  çÁèßéìê5
 (�� �  µ �  
5��� (&��( ê5
 = çÁèßé`êT

5ê  ç�è·éíêT
 (�� � *(2.26)

These coefficients have an apparent singularity in the limit

��î�

. The limiting values of� � 8  
5�  � �p�  
5�  µ 8  
5� and µ �  
5� computed by L’Hopital’s rule all are equal to �.- D . This was
to be expected because the scheme becomes the related collocation scheme for


����
. Ozawa

thus recommends to use



-expanded coefficients in practical computations. ®
Example 3 (

�
and



dependent coefficients): With � � D

, parameters

º 8 ¤�
º � andÖ 8  �'�3�l� , Ö �  �'�Y�  � = � � J 8 , we obtain with � 

º ��	u�  � = � = º 
5� J 8 , � 
º � � � � 

º � V � 
º �

,� ¶ 8  �  
5�Ú� � 
º ¶ � ( �  �^� = 


º ¶ � 
º � � � � 

º � � � ( � 
º 8�� � ��
  � ¶ � � º ¶ (�� ¶ 8  ¸ � �  D

µ 8  �  
5�Ú� � q� � ( �  �^� = 
 � 
º � � � � 

º � � � ( � 
º 8�� � �q
  µ � � �)(°µ 8 *(2.27)

This example shows that quite simple functions 1sÖ � 4 can lead to complicated coefficients
which depend on

�
and



. ®

2.3.3. Conditions for obtaining constant coefficients. We now ask for general condi-
tions such that the coefficients are constant, i.e. independent of time

�
and/or step-size



.

THEOREM 2.5. Let the assumptions of Lemma 2.3 be satisfied. Then the coefficients
computed according to Lemma 2.3 are independent of

�
iff the linear spaceO/Ü	³� span 1^�  Ö 8  �'�  *�*s*  Ö �  �'�©4
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is closed with respect to differentiation.
Proof. 1. necessary: Time-independent coefficients satisfy�� ¶ �  �  
5��	³��ïï � � ¶ �  �  
5�3�0�  �µ ¶  �  
5�)	u�dïï � µ ¶  �  
5�3�H�(2.28)

for all
�
. Computing the time derivative of every equation of system (2.22) and using relations

(2.28) we obtain �Ö �  � = º ¶ 
5�Ú� �Ö �  �'� = 
�Û �� 798 � ¶ �  �  
5�.ðÖ �  � = º � 
5�  �Ö �  � = 
5�Ú� �Ö �  �'� = 
�Û �¶ 798 µ ¶  �  
5�.ðÖ �  � = º ¶ 
5� *(2.29)

Formally, this is the same as system (2.22), with Ö �  �'� replaced by
�Ö �  �'� . Time-independent

coefficients have to satisfy both this system and system (2.22). Since system (2.22) already
determines the coefficients uniquely, this is possible only if system (2.29) does not add new
conditions but consists of linear combinations of equations contained in system (2.22), possi-
bly adding the trivial equation for the constant. This means that span 1 �Ö 8  *s*�*  �Ö � 4 is a subset
of span 1^�  Ö 8  *s*�*  Ö � 4 . Thus the linear space O/ is closed with respect to differentiation.
2. sufficient: If the linear space O/ is closed with respect to differentiation, there are coeffi-
cients ñ �)ò such that

�Ö �  �'�3�0Û �ò 7 $ ñ �)ò Ö ò  �'�  v � �  *s*�*  �  Ö $  �'�#Ù � . Inserting this into
the time derivative of every equation of system (2.22) and using the fact that the functions Ö ò
solve system (2.22), we obtain��� 798 ��·¶ �  �  
5� ��ò 7 $ ñ ��ò Ö ò  � =

º � 
5�3�ì�"� ��� 7S8 ��"¶ �  �  
5� �Ö �  � =
º � 
5�  �� ¶ 798 �µ ¶  �  
5� ��ò 7 $ ñ �)ò Ö ò  � =

º ¶ 
5�3�ì�"� �� ¶ 798 �µ ¶  �  
5� �Ö �  � =
º ¶ 
5� *

This is equivalent to the � = � linear systemsâ/  �  
5�Róô �� ¶ 8...�� ¶ �
õö �H�  ¸ � �  *s*�*  �  â/  �  
5�Cóô �µ 8...�µ �

õö �0�  
where

â/  �  
5� is the Wronskian matrix of the generating functions introduced in eq. (2.23).
Nonsingularity of this matrix was essential for the proof of Lemma 2.3. From this follows
that

��·¶ �  �  
5�YÙl�  �µ�¶p �  
5�YÙH�  ¸  � � �  *�*s*  � .
Examples: Each of the spaces span 1ø÷´ù   4  span 1ø÷ J ù   4 and span 1 Æ x ÅFú#�  Ã�Ä^Æ·ú#�©4 is closed
with respect to differentiation. The linear spaces span 1 �±�  �'� J 8  *�*s*  �  � 4 , � � a û , and
span 1"�  �  ÷ ù   4 are also closed with respect to differentiation. This agrees with the time-
independence of the coefficients given in (2.25) and (2.26).

There is no finite-dimensional linear space containing span 1" � = º � J 8 4 , º � a b , and
closed with respect to differentiation. This is in agreement with the time-dependence of
coefficients (2.27).

There is no finite-dimensional linear space containing span 1"'� = �'� 8p¦ � 4 and closed with
respect to differentiation. We thus get (quite complicated) coefficients which depend both on�

and



. As we have seen earlier, however, there is a 1-stage constant-coefficient RK scheme
exact on �  �'�#�  � = � � 8p¦ � , when applied to differential equation (2.3) with (2.8): the implicit
midpoint rule (put � $ � �  � 8R� ( D  � ¬ �Ý� in eq. (2.9)). This example confirms that the
properties of the nonlinearities Z play an important role for the results of å 2.1. ®
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If we procede analogously for finding general conditions on generating functions that
allow



-independent coefficients, we find that the generating functions have to satisfy both

system (2.22) and�Ö �  � = º ¶ 
5� º ¶ � Û �� 798 � ¶ �  �  
5� �Ö �  � = º � 
5� = 
`Û �� 798 � ¶ �  �  
5�.ðÖ �  � = º � 
5� º �  �Ö �  � = 
5�Ú� Û �¶ 7S8 µ�¶± �  
5� �Ö �  � = º ¶ 
5� = 
 Û �¶ 798 µ�¶' �  
5�.ðÖ �  � = º ¶ 
5� º ¶ *(2.30)

From å 2.2.2 we know that the collocation schemes must satisfy these two systems. When we
check how they do so, we find that the equations for

� �
in system (2.30), v � �  *s*�*  � , are

equivalent to the v th level of the simplifying conditions � t� � and
È m� � introduced in eqs.

(2.14) and (2.16).

2.4. The Principle of Coherence. Exact schemes for linear differential equations with
constant coefficients and for systems of such equations were derived by many authors, some-
times by using the known continuous solution. A straight-forward procedure for deriving
equations to be satisfied by the coefficients of exact schemes is the Principle of Coherence
introduced by Hersch in 1958.

The basic idea of the Principle of Coherence was formulated by Hersch [5] as Successive
approximations should not contradict each other. We explain this by the following example:
consider ðü  �'� = ê � ü  �'�#�0�  ê % � *(2.31)

Using central finite differences at
�

with step-size



we obtainü  � ( 
5� (� D ( ê5
 � � ü  �'� = ü  � = 
5�3�0� *(2.32)

We write instead ü  � ( 
5� (�ý� 
5� ü  �'� = ü  � = 
5�3�0�  (2.33)

where the coefficient ýR 
5� is to be determined. With step-size
D 


we obtain similarlyü  � ( D 
5� (LýR D 
5� ü  �'� = ü  � = D 
5�#�H� *(2.34)

By linear combination of three difference equations of type (2.33) centered at
� ( 
 ,

�
and� = 


we obtain on the other handü  � ( D 
5� (�týR 
5� � ( D � ü  �'� = ü  � = D 
5�3�H� *(2.35)

For a coherent numerical approximation of eq. (2.31), eqs. (2.34) and (2.35) should coincide.
This means ý� D 
5�3� ý� 
5� � ( D . This is satisfied for ý� 
5�F� D Ã�Ä^Æ5þ5
 ,

þ � a b . Moreover, the
resulting difference scheme has to be consistent with eq. (2.31), i.e. the first-order truncation
error has to vanish for


¡�«�
. Thus we obtain

þ��0ê
. The coherent scheme therefore isü  � ( 
5� ( D ÃÁÄ"Æ  ê5
�� ü  �'� = ü  � = 
5�Y�H� *(2.36)

Comparison shows that scheme (2.36) is exact on eq. (2.31), while the second-order central
difference formula (2.32) uses the first two terms of the Taylor expansion of ýR 
5� . We re-
quired coherence using three grid points, and we obtained exactness. For equations of higher
order or larger systems, the derivation of exact schemes by the Principle of Coherence can
become quite envolved. Denk employed the calculus of distributions and obtained schemes
that are very useful in applications [1].
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3. Applications. We conclude by showing that exact schemes are of practical relevance
in scientific computing. We give two examples where exact schemes for simpler equations
led to efficient schemes for more complicated equations.

3.1. Denk-Bulirsch schemes. Denk used the Principle of Coherence explained in å 2.4
for designing a numerical integration method which is capable of simulating highly oscilla-
tory circuits efficiently and reliably. He treated first order systems�� = ý � � Z[ �  p� �  (3.1)

where the matrix ý represents the linear elements of the circuit and Z[ �  '� � assembles the
nonlinear terms. Applying the Principle of Coherence with the step-sizes



and

D 

to
�ü =ý ü �l� leads to ÿ  �p8Á�3���  
5� ÿ  � $ = 
5�3���  
5� � ÿ  � $ �  (3.2) ���  D 
5� ÿ  � $ �  

and thus to
�  
5�3�lç�èßé q(�ý 
5� , as expected. For approximation of eq. (3.1), Denk combined

this with a multistep approach (explicit or implicit). Explicit:/  � = v 
5� ( çÁèßé q(�ý 
5�p/  � = ]væ(�� ��
5�Y�
 �� ¶ 7 $ � ¶  
5� ZÊ � = ¹væ(�� �q
  /  � = ]væ(�� ��
5�p�  
where

� ¶  
5� are matrix coefficients of the multistep scheme. In the case v � � this leads to� 8  
5�3� (�� a (n a ( çÁèßé '(�ý 
5�p� ]ý 
5� J 8�� ]ý 
5� J 8  � $  
5�3�  a ( çÁèßé '(�ý 
5�'� ]ý 
5� J 8 ( ��8 *
Note that the coefficients

� ¶± 
5� have an apparent singularity for

��«�

, similar to the coeffi-
cients given in (2.26). This seems to be unavoidable.

The resulting scheme is consistent of order v , ýR �"� -stable and convergent. It is ý -stable
without order restrictions. This is no contradiction to Dahlquist’s order barriers because those
barriers were shown to hold for constant-coefficient schemes. Tests with a system of five
equations in a time interval corresponding to about 250 000 oscillations showed that the
scheme is more efficient and more reliable than the standard code LSODE for this type of
problems [2]. The code HERSCH developed using these ideas for equations more general
than eq. (3.1) was tested in numerical experiments on equations modeling electric circuits.
It proved to be more efficient than the codes LSODE, DOPRI5 and RADAU5 on highly
oscillatory problems [1].

3.2. LeRoux schemes. Consider the parabolic problemÖ   ( � Ö � � ñ9Ö � for � �	� i a b�
  � % �  Ö���  �'�3�H� for � � ï �  � % �  (3.3) Ö���  �"�#� Ö $ � � % � for � ���  
where � is a smooth bounded domain, ñÍ� � real and v % � an integer. Let  ê 8  '� 8 � be the
principal eigenpair of ( � � �0ê �9 � ~ ��� �H�  
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satisfying � 8 �� � % � in � and ~{~ � 8 ~{~ ��� × � Ø � � * Let Ö 8 be a real smooth function satisfyingÖ �8 � �R� � 8 �� � in � . Then �!Ö 8  � % � , is a steady-state solution of (3.3) for ñ ��ê 8 . A
steady-state solution for all ñ is ÖX�  �'�FÙH� . The time-dependent solutions of (3.3) for given
initial function Ö $ � � % � were investigated by Sacks and others, and the results are [10]:

(i) If
�W� ñ PAêX8 and Ö $���� c  � �  3e�% � , problem (3.3) has a solution existing for

all times and decaying to zero for
�@� �

.
(ii) If ñ ��êX8 and Ö $���� c  � �  �e % � , problem (3.3) has a solution existing for all

times and tending to �<Ö 8C� � � 8p¦ �8 for
�`�¥�

. The factor � depends on the initial functionÖ $ .
(iii) If ñ % êX8 there exists , % � such that problem (3.3) has for given Ö $ a unique

weak solution Ö on g �  ,)h with
wyx{z   }���� ~{~ Ö�'V  �'� ~{~ ��� × � Ø � = �

. Such solutions are called
blow-up solutions. The only nonnegative solution of problem (3.3) which exists for all times
is ÖX�  �'�3Ù0� .

To construct a numerical scheme whose solution has similar properties as the solution of
the continuous problem, Le Roux [10] used the exact scheme (1.3) for� ² �� � � � ]² � � �< ²R �^�3� ² $&% �  � � a b  
to derive the approximate semi-discrete scheme�væ(�� ��� 8 J �2 � �2<:98 ( � 2<:98 � ( 
5� � �2!:98 � ñ 
 � �2!:98(3.4)

for eq. (3.3). Here



is the time step and � 2 � � �  U 
5� approximates ÖX�  �'� at
�#� U 
 . Note

that solving eq. (3.4) for � 2!:S8 with given � 2 means solving a quasilinear elliptic boundary
value problem with � 2!:S8 � ��� �H� , and this has to be done at each time step. WithÉ 	³� �v  îe 	u� �)(WÉ  / 2 	³� � �2
and

/#2 � a � 	u�"! 8$  � �$# È �  â� � where all elements satisfy the given boundary condition,
(3.4) becomes 
5��/@2!:98�� É e  /#2!:98s/ J c2 ( /&%2!:S8 � (Lñ 
?/#2!:98(3.5) ��	 Z[ /@2<:98.��/@2T�  
which is a standard quasilinear elliptic problem for

/32<:98
. Le Roux [10] proved existence and

uniqueness of the solution of scheme (3.5) for�q2�� U 
�P , 8ì	³� Éñ e ~{~ / $ ~{~ J c� � �ñF¹v�(�� � ~{~ Ö �$ ~y~ × 8 J � Ø ¦ ��  
and formulated conditions on

¼ $ under which the iterative scheme� ¼ � :S8�� �
 Z[ ¼ � �©/@2ß�  ¼ $ given  
converges for � � �

(monotonic) to
/ 2!:98

. She proved stability and convergence of the time
discretization for a wide class of initial conditions, gave for fixed


¡�0���
the estimates

~{~ /#2 ~y~ � �('
º � J 8'¦ c2

if ñ P�êX8º  � J 8p¦ c2 = ~{~ / $ ~{~ % :S8Á� if ñ �HêX8  (3.6)

where

º
is a constant,

º � º  �  É  ñ  / $ � , and showed:
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(i) If ñ �lê 8 , then there exists a constant
��� $&% � depending only on �  É  ñ  / $ such

that the numerical solution
/ 2

exists for all U � �
for every time step

���YPl��� $ . From the
estimate (3.6) it then follows that ~y~ /#2 ~{~ ���

if ñ Pnê�8 , as desired. We also see that the norm
of the initial function

/ $ specifies the numerical value of � in the case ñ �Hê 8 .
(ii) If ñ % êX8 then there exists , � depending on the time step

���
and on

/ $ such that
the numerical solution

/32
exists for U ���CP , � and becomes infinite at , � . The following

estimate is valid:

~{~ /#2 ~y~ % :98ì� � , �, � ( �q2[� 8p¦ c ~y~ / $ ~y~ % :98  
and this estimate has also been obtained for the exact solution.

Thus we see that, for sufficiently small
���>PÝ��� $ , scheme (3.5) produces qualitatively

correct numerical solutions which satisfy the estimates known for the exact solutions.
In further work this scheme and its mathematical analysis were extended to the more

general case Ö   ( � Ö 8':*) � ñ+Ö % for � �	� i a b�
  � % �  ÖX�  �'�3�0� for � � ï �  � % �  Ö���  �^�#� Ö $ �� � % � for � ���  
where � i a b 
 is a smooth bounded domain, + is a parameter describing diffusion, + �q(&�  �"� for fast diffusion and + % � for slow diffusion, ñj� � real and ÉA� � = + . This
mathematical work is reviewed in [9].

The usefulness of scheme (3.5) for Computational Plasma Physics is reported. In inves-
tigations of fusion plasmas, diffusion equations with slow diffusion (e.g. + � D ) are used for
the density of particles, and equations with fast diffusion (e.g. + � (&�.- D ) for their temper-
ature. In reference [11] a coupled system for density and temperature of ions is solved for
various parameter values, while in reference [12] the two equations are solved separately for
various cases (decay of the solution, evolution to a constant profile, blow-up case).
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