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LANGENHOP’S INEQUALITY AND APPLICATIONS
FOR DYNAMIC EQUATIONS

�
B. KAYMAKÇALAN

�
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�
Abstract. A Langenhop-type inequality is given for dynamic equations on time scales. This result is further

employed to obtain lower bounds for solutions of certain dynamic equations. As an application, usage of the derived
Langenhop’s inequality in determining the oscillatory behavior of a damped second order delay dynamic equation is
illustrated. The results obtained are important in the qualitative sense.
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1. Introduction. There is no doubt that the Gronwall inequality and its generalization,
the Bihari inequality in continuous and discrete cases, have been very powerful tools in
studying the qualitative behavior of differential and difference equations. These inequalities
have been applied very successfully to investigate the global existence, uniqueness, stability,
boundedness and other properties of solutions of various nonlinear differential and difference
equations. Langenhop-type inequalities have also been used quite successfully in studying
the qualitative behavior of differential equations [9, 10] and difference equations [11, 12].

2. Preliminaries. Time scale calculus which unifies continuous and discrete analysis
was first introduced by Stefan Hilger [3]. Later, the theory developed very rapidly, see the
monographs [2, 6] and the references cited therein. Here we shall only provide some basic
facts on time scales extracted from [2].

A time scale � is an arbitrary nonempty closed subset of the real numbers � . The most
well-known examples are ����� and ����	 . An interval 
 ������ in � is defined to be the set����� ������� � ����� . Other types of intervals are defined similarly. To define a continuity
on a time scale we need the concept of forward and backward jump operators, ��� �!�"�$#%�
given by �'& � ( ��)+*-, �/.�� �$� .102� � and �& � ( ��)4365 �/.�� �7� .182� �
together with the convention that )+*-,:9;�<)=365>� and )43/5?9@�A)=*-,B� . A point

�C� � is
called right-scattered, right-dense, left-scattered, left-dense, if �'& � (D0E�

, �'& � ( � �
, ��& � (F0E�

,�& � ( � �
is satisfied, respectively. The graininess at

�
is then defined by GH& � ( �E�'& � (JIK�

. The
set �ML is defined as �MN ��O � if � has a left-scattered maximum

O
, and as � otherwise.

DEFINITION 2.1. A function PE�Q�R#S� is called T -differentiable at a point
�=� �>L

if there exists a real number U and for a given V there is a neighborhood W of
�

such thatX PY&Z�'& � ([(\I PY& .](�I UF&^�'& � (�I�.�(�X8 V X �'& � (�ID._X
for all

.1� W . The number U is denoted by Pa`�& � ( .
As usual, P is said to be differentiable on &^���� ( if it is differentiable at every point

�>� &^���� ( L .
It can be shown that Pb`�& � ( �cP�dZ& � ( if ���e� , and P�`D& � ( �cT=PY& � ( �f�ePY& �'gih�(MI PY& � ( if�;�j	 . In fact, it is possible to show that

P ` & � ( �ik-*-)lnm�o PY& .](JI PY& � (.?I�� if GH& � ( �Epq� P ` & � ( � PY&^�'& � ( (YI PY& � (�'& � (YI�� if GH& � (r0 pq�
s
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72 B. KAYMAKÇALAN AND A. ZAFER

and if P� tE�H�u#v� are T -differentiable, then so are P g t , P I t , Pwt , Pax�t . Moreover,PY&^�'& � ( ( �yPY& � (ag GH& � ( P�`�& � ( holds on any arbitrary time scale.
DEFINITION 2.2. A function P��a�i#z� is called rd-continuous, if it is continuous at

every right-dense point and if the left-sided limit exists at every left-dense point. A functiontb& � � { ( �|�$}~�E#�� is called rd-continuous if tb& � �[{Q& � ( ( �|��#�� is so.
The set of all rd-continuous functions defined on � is denoted by ������&Z� (

. The space of
functions that are differentiable with rd-continuous derivatives is denoted by �>���� &^� (

. It is
noteworthy to mention that every rd-continuous function P has an antiderivative � . As in the
continuous case, a function � is called an antiderivative of P on � if ��`�& � ( �yPY& � ( holds for
all

�M� ��L��
DEFINITION 2.3. A function Pj�Q��#�� is called regressive if

hFg GH& � ( PY& � (!��cp for
all

�D� �ML . The set of all rd-continuous and regressive functions defined on � is denoted by� � � &Z� (
.

In this study, we also employ a notion of a generalized exponential function on an arbi-
trary time scale. The definition below is extracted from [2].

DEFINITION 2.4 (Exponential function). Let � � �
and

� �!� � . The unique solution
of the initial value problem {�`<���Q& � ( { , {J& ���/( � h

is called the generalized exponential
function and is denoted by ���"& ��� ����( . Let � � � . It turns out that if �2�i� , then �6��& � � ����( �� �|� o��wo��[�

, and if ����	 and � �� I1h
, then �6�& � � ���]( ��& hMg � ( o��o��

.
For an extensive list of properties and detailed discussion on ���q&n�-� ���/( we refer to [2].
Another useful tool is a variation of parameters formula for first order linear nonhomo-

geneous dynamic equations which can be stated as follows.
THEOREM 2.5 (Theorem 2.77, [2]). Suppose that � � �

and P � �'���&^� (
. Let

���4� �
and � � � � . Then the unique solution of �q`$���Q& � ( � g PY& � ( , �b& � � ( ��� � is given by

�b& � ( �E�\�"& � � ���/( 
 � �Mg$  oo � �\�"& ��� �[�'&^¡ ( ( PY&�¡ ( T�¡_���
In this set up,

� � �E� � & � � � � (   oo�� � � & � � �[�'&^¡ ( ( PY&^¡ ( T�¡
is becomes a particular solution of the dynamic equation� ` ���Q& � ( � g PY& � ( �

In case �Q& � ( ��� and PY& � ( ��� � & � � � � ( , it follows that � � �i� � & � � � � (   oo � hhMg �qGH&^¡ ( T�¡q�
As special cases, this expression results in the well-known particular solutions �¢�£� � � � o if���E� and �/�¤� � & hMg � ( o

if ���E	 .

3. Langenhop inequality. In 1960, C. E. Langenhop [8] proved a version of the fol-
lowing theorem when �j�u� . Recently, the same theorem was proved by Zafer [12] in the
case when �2�R	 . It is also noteworthy to mention that in [11], Theorem 2.3.2 is given as a
discrete version of Langenhop’s inequality. Here we unify the previous results by use of time
scale methods.

THEOREM 3.1. Let
� � � � . Suppose that t��H�¥#v� is nondecreasing, tb&�¦ (

is rd-
continuous, and tb&�¦ (§0 p for ¦ 0 p . Let ¦��a��#¨� and ©��a��#¨�'ª be rd-continuous.
If

¦Y& � (>« ¦Y& .](YI�  ol ©&^¬ ( tb&�¦Y&�¬ ( ( T�¬/� � � .1� 
 ��� �[?�®�(3.1)
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then

¦Y& � (>«2¯ & � � .�( � � � .¤� 
 ��� � ?�
where

¯
is the maximal solution of¯ ` � I ©& � ( tb& ¯F( � ¯ & . � .]( ��¦Y& .]( �(3.2)

If tb&�¦ ( ��¦ , then

¦J& � (>« ¦Y& .]( � ��° & � � .]( � � � .1� 
 ��� �[?�®�
Proof. Fix

�>� & � � � ?� and for
.1� 
 � � � � � define

�b& .]( �E¦J& � (ag   ol ©&^¬ ( t�&^¦J&^¬ ( ( T�¬/�(3.3)

It is clear that

� ` & .](ag ©�& .]( t�&^¦J& .�([( �Ep(3.4)

and

�b& � ( �E¦Y& � ( �
Moreover, from (3.1) and (3.3) we have

�b& .](>« ¦J& .�( � .1� 
 ��� � � ���(3.5)

Using (3.5) in (3.4), we obtain

� ` & � (>«iI ©�& � ( tb&��b& � ( ( �
In view of the theory developed in [5] for maximal-minimal solutions on time scales and by
comparison with (3.2), (see also [4, 7]), we have

�b& � (>«2¯ & � � .]( � � � .�� 
 � � � ?���(3.6)

Employing (3.5) and (3.6), we obtain the desired conclusion.
It is remarkable that the conclusion of the theorem remains valid in the limit as

.
tends

to
���

, but if
.

is fixed as
�n�

in (3.1), then as was shown by Langenhop for the case ���j� the
estimate is no longer true.

4. Bounds on the norm of solutions. Let ±4�|��#��'² and PY& � �[±& � ([( be rd-continuous.
We shall consider the first order system

± ` �jPY& � �[± ( � �>«$���
(4.1)

Let us assume that for some norm in ³1² , which we shall denote by
X � X , the function P

satisfies X PY& � �[± (\X �2©& � ( tb& X ± X ( � �>«2��� �´± � � ² �(4.2)

where
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(a) ©C�|��#��Yª is rd-continuous,
h?I GH& � ( © 0 p ;

(b) t�&^¦ (
is rd-continuous and nondecreasing for ¦ « p , and strictly positive for ¦ 0 p .

It follows from (4.1) and (4.2) thatX ±w& � (\X � X ±& .](�X�g   ol ©&^¬ ( tb& X ±w&^¬ (�X ( T§¬(4.3)

and X ±w& � (\X_«�X ±& .](�X/I�  ol ©&^¬ ( tb& X ±w&^¬ (�X ( T§¬(4.4)

for all
. � �>� 
 ��� ��µ (

.
The main results of this section are as follows.
THEOREM 4.1. If ±& � ( is solution of (4.1) such that ±& �n��( �j¶ , thenX ±w& � (\X � ¯ � & � ((4.5)

and X ±w& � (\X_«2¯?· & � ((4.6)

for all
�>«$���

, where
¯ � is a minimal solution of¯ ` ��©�& � ( t�& ¯ & � ([( � ¯ & � � ( � X ¶ X

and
¯ ·

is a maximal solution of¯ ` � I ©�& � ( t�& ¯ & � ([( � ¯ & ���/( � X ¶ X �
THEOREM 4.2. Let tb&�¦ ( ��¦ . If ±& � ( is solution of (4.1), then for all

�>«$�n�
,X ¶ X � �° & � � � � ( � X ±w& � (\X � X ¶ X � ° & � � � � ( �(4.7)

Upper bounds in (4.5) and (4.7) are obtained from (4.3) by applying Bihari and Gronwall
type inequalities on time Scales, (see [2, 7]), respectively. Lower bounds in (4.6) and (4.7),
however, are new and follow from (4.4) on using Theorem 3.1.

5. Oscillation of damped second order delay dynamic equations. We shall consider
the oscillatory behavior of solutions of second order delay equations of the form

{ `'` & � (¸g7¹ & � ( 
 { ` & � ( � ·
 { ` & � (¸g { ` &^�'& � ( ( � g �Q& � ( 
 {Q&ºtb& � ([( �º»D�Epq�(5.1)

We restrict our attention to solutions of (5.1) which exist on some ray 
 �n� ��µ (
, the interval

being understood in time scale sense. A solution {Q& � ( is called oscillatory if it is neither
eventually positive nor eventually negative.

With regards to (5.1) the following conditions are assumed to hold:
(a) t¼�|��#�� ª is differentiable, nondecreasing, tb& � ( � �

and k-*�) o^m¤½ tb& � ( �iµ ;
(b) �����j#¾� ª and

¹ �w�j#¿� are rd-continuous, there is an rd-continuous functionO �|��#À� ª such that
h?I G OÁ0 p and

¹ & � ( � O & � ( for all
�>� 
 pq�Âµ (

.
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(c) k�*-) o^m¤½�Ã & � �  (M8 µ for any fixed  � 
 pq�Âµ (
, where

Ã & � �[ ( �   oÄ�Å � � ² & . �  ( T .¢Æ
(d) The inequality

� ` & � (¸g7¹ & � ( 
 �b& � ( � ·
 �b& � (¸g �b&^�'& � ( ( � 8 p(5.2)

has no oscillatory solution.
Note that if �<�Ç� then (d) holds without imposing any condition at all. Indeed, if�b& � � ( �Èp , then �qdZ& � � (!8�IB¹ & � � ( ��& � � ( x6É7�Áp which means that �b& � ( cannot have a zero

larger than
� � .

LEMMA 5.1. Let (a)–(d) hold, and {J& � ( be an eventually positive solution of (5.1). Then
there is a  «$���

such that {`D& � ( is of constant sign for
�M� 
 :��µ (

and{Q& � (r«jI Ã &®µE� � ( { ` & � ( � �M� 
 :��µ ( �(5.3)

Proof. Suppose that {Q& � ( is eventually positive. Clearly, there exist
� � � � such that{Q& � (r0 p and {Q&ºtb& � ([(r0 p on 
 � � ��µ (

. Furthermore, {`�& � ( is not oscillatory; since, otherwise,�=��{w`�& � ( is an oscillatory solution of (5.2), contradicting (d). We may assume that {b`D& � (>8p , {`D&Z�'& � ([(18 p on 
 :��µ (
. The case where {`�& � ( is eventually positive can be handled in

a similar manner. Multiplying (5.1) by {w`�& � (Yg {w`�&Z�'& � ( ( and integrating over 
 B� � � we see
that   oÄ 
 { ` & .](¸g { ` &^�'& .]([( �Ê{ `'` & .]( T .rg$  oÄ ¹ & .]( 
 { ` & .�( � · T .10 pq�
from which we get


 { ` & � ( � · « 
 { ` &� ( � · I�  oÄ O & .]( 
 { ` & .]( � · T . �
Hence, by the Langenhop inequality,
 { ` & � ( � · « 
 { ` &^ ( � · � � ² & � �[ ( �
Clearly, this inequality results in

{ ` & � ( �${ ` &^ ( Å � � ² & � �  ( �
Integrating the above inequality over 
 B� � � , we have{Q& � ( �${J&� (Qg { ` &^ ( Ã & � �  (
and hence {Q& � (?«yI { ` & � ( Ã &�µ��[ ( �

THEOREM 5.2. In addition to (a)–(d) assume thath?I GH& � ( ¹ & � ( Ã &�µ����'& � ( (Ã &®µE� � (Jg Ã &�µ����'& � ([( 0 p��(5.4)
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and   ½ �Q& � ( Ã &�µ�� � ( Ã &�µ����'& � ([(¬_& � ( Ë Ã &®µE� � (¬"& � ( g Ã &�µ����'& � ( (¬_&Z�'& � ([(�Ì T � �yµE�(5.6)

where ¬ is a solution of

¬ ` � ¹ & � ( Ã &®µE�[�'& � ( (Ã &®µE� � (¸g Ã &®µE�[�'& � ( ( ¬/Í��(5.7)

Then every solution of (5.1) is oscillatory.

Proof. We may assume that {Q& � ( is eventually positive, since a similar argument holds
when {J& � ( is eventually negative. By (d) { ` & � ( is either eventually positive or eventually
negative.

Case 1. {w`�& � (r0 p on 
 � � ��µ (
for some large

� � . From (5.1) we have{ `'` & � (¸g �J& � ( 
 {J&ºtb& � ( ( �Ê»§�$p��(5.8)

Integrating (5.8) over 
 � � � � � we see that for some constant Î 0 p ,

{ ` & � (YI { ` & � � (¸g Î   ooZÏ �Q& .]( T . ��pq�
which clearly contradicts (5.5).

Case 2. { ` & � (�8 p on 
 � � �Âµ (
for some large

� � . Let ¬ be a solution of (5.7) satisfying¬"& � � ( � h
. In view of (5.4) we see that the function ¬ is positive for all

�?«�� � . In fact, it can
be expressed in terms of the exponential function. It follows from (5.1) that

&�¬]{ ` ( ` �E{ ` Ë ¬ ` I ¬ Í ¹ {w`{ ` g { ` Í Ì I ¬ Í �Q
 {Q&�t�& � ( ( � » �
Employing (5.3) leads to

&�¬]{ ` ( ` �2{ ` Ë ¬ ` I ¬ Í ¹ { Í x Ã{�x Ã g { Í x Ã Í Ì I ¬ Í �Q
 {Q&ºtb& � ([( � » �
from which, on using the nonincreasing nature of {Q& � ( as well as (5.7), we have

&�¬]{ ` ( ` �2{ ` Ë ¬ ` I ¬ Í ¹ h x Ãh x Ã g�h x Ã Í Ì I ¬ Í �Q
 {Q&�t�& � ( ( � » � I ¬ Í �B{ » �
and so

& I &�¬]{ ` ( � · ( ` � &�¬]{w` ( `¬]{ ` ¬ Í { ` Í Ë h
¬]{ ` g h

¬ Í { ` Í Ì
«iI �B{ »¬]{ ` { ` Í Ë h¬]{ ` g h¬ Í { ` Í Ì �

Employing (5.3), it is not difficult to see from the last inequality that

& I &�¬]{ ` ( � · ( ` « � Ã · Ã Í¬ · g � Ã 
 Ã Í � ·¬]¬ Í �(5.9)
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Integrating (5.9) from
� · «2� � to

�
and using

I &�¬"& � ( {`1& � ([( � · 8 p , we have

  oo�Ð Ë � Ã · Ã Í¬ · g � Ã 
 Ã Í � ·¬]¬ Í Ì T �r8 &�¬"& � · ( { ` & � · ( ( � · �
which obviously contradicts (5.6).

It is possible to prove a similar theorem when the term 
 {Q&ºtb& � ([( � » in (5.1) is replaced
by

X {Q&�t�& � ( (\X Ñ � �\{Q&�t�& � ( ( , where Ò 0eh
. In this situation, one has to be careful though, with

tedious calculations coming into picture that arise from the complicated nature of the time
scale calculus. Since our focus was to illustrate an application of the Langenhop inequality
on time scales, for simplicity we have only considered a particular case, namely Ò��EÓ .
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