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THE DIFFERENCE EQUATION RELATED TO THE PROBLEM OF THE
HYDROGEN ATOM IN A STRONG MAGNETIC FIELD

�
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�
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�
Abstract. We study the Schrödinger equation for the hydrogen atom in an arbitrarily strong magnetic field

in two dimensions, which is an integrable and separable system. The energy spectrum is very interesting as it has
infinitely many accumulation points located at the values of the Landau energy levels of a free electron in the uniform
magnetic field. In the polar coordinates the canonical (not kinetic!) angular momentum has a precise eigenvalue and
we have the one dimensional radial Schrödinger equation which is an ordinary second order differential equation
whose analytic exact solution is unknown. The problem is reduced to a linear three-term recurrence difference
equation whose solution is unknown. We describe the qualitative properties of the energy spectrum and propose a
semi-analytic method to numerically calculate the eigenenergies.
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1. Introduction. The problem of the hydrogen atom (or hydrogen-like atoms, or highly
excited atoms - Rydberg atoms; also called planetary atoms; in the sequel we shall simply
speak of the hydrogen atom) in a strong magnetic field is an important and fascinating prob-
lem [2, 4, 8, 16, 17, 21]. A first motivation comes from experimental physics, namely atomic
spectroscopy, where one would like to understand the spectrum of a highly excited hydrogen
atom in the strong(est) magnetic fields available in the laboratory (up to about 10 Tesla =�������

). The earliest measurements have been performed by the group of Professor Welge
[9] and the group of Professor Kleppner [10], although the oldest outline and suggestion for
such experiments goes back to Mueller and Hughes [14]. Another phenomenon known for
a long time are the quasi-Landau resonances [7]. A second motivation, perhaps even older
than the laboratory experiments, comes from astrophysics, where the spectrum of the hy-
drogen atom in a strong magnetic field has been known since at least about 1970, e.g. in
the strongly magnetic white dwarf stars (the polar magnetic field strength can be as large as
up to about 	�
 ������ ) whose hydrogen covered surface is still radiating while slowly cooling
down, sometimes with additional accreted hydrogen from the interstellar space. The so-called
Minkowski absorption bands, known since the 1970s, have been finally explained in terms
of the so-called stationary lines spectroscopy [24]. Theoretically it has been shown (see [21]
and the references therein) that the energy spectrum and thus the wavelengths of the spectral
lines are extremely sensitive to the strength � of the magnetic field, so they vary wildly with� . Since � in the emission region is highly nonuniform ( � of a star typically is a dipole
field, so it decreases inversely cubically with the distance), the line spectrum is expected to
be quite blurred, easily confused with a continuous spectrum. However, the stationary spec-
tral lines, i.e., those lines at certain ������� where the second derivative with respect to �
at � � vanishes (having a maximum, a minimum or an inflection there) are easily recognized.
In this way it has been possible to explain the Minkowski bands in terms of the stationary
lines dominated by the emission in that � where the stationarity condition is satisfied, and
thus the estimate of the magnetic field strength in that emission region could be deduced. In
a certain particular case [24] this result agreed with the determination of � through the mea-�
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surement of the circular polarization of the optical continuum by Kemp et al. [11], and was
quite a success of the theory of atomic spectra in strong magnetic fields. The neutron stars
can have polar magnetic field strengths up to

���������
, there is no hydrogen, but we can have,

e.g., the almost completely ionized (and possibly highly excited) iron FeXXVI, in a variety
of accretion scenarios, in binary systems rather than in isolated neutron stars (pulsars).

On the theoretical side the problem of the hydrogen atom in strong (actually arbitrary) �
is fascinating, because it is a paradigm of a classical and quantal Hamiltonian nonintegrable
and chaotic system [3, 4, 8, 16, 17, 22] in the 3D case. It is the example of quantum chaos
par excellence. Indeed, the simple classical system described by the Lagrange function� � ������ �"!$# %& '�( ��) * %+-,(1.1)

where ' � ��/.1032
is the vector potential of a homogeneous magnetic field . , and � the velocity vector of the
point charge % , moving in the magnetic field . and in the Coulomb electrostatic field of the
central point charge

*
, is generally a nonintegrable Hamiltonian dynamical system of the

mixed type, that is exhibiting a chaotic motion for certain initial conditions in the classical
phase space and a regular motion on invariant tori for other initial conditions, depending
on the energy, strength of the magnetic field, and on the particular initial conditions [16].
Generally, it is predominantly regular at low energies and chaotic at high energies. The
chaos-regularity border is qualitatively defined by comparing and equating the strengths of
the Coulomb force with the magnetic force acting on the moving point charge % with mass� � . Here & is the velocity of light and + �54 2 4 . To be more precise, in the case of an electron
attracted by a 6 -fold positively charged nucleus we have % � ) %87 , and

* �96 %:7 , where %:7
is the elementary charge and 6 is the number of protons.

Let us now specialize to the 2D case ;<� �
by rewriting the Lagrange function (1.1) in

polar coordinates =?> ,A@�B , � � �C�� =ED>F! # >G!HDI ! B # % �� & >G!JDI ) * %> 
(1.2)

After introducing the standard notation for canonical moments,KEL � M �M D> � � � D> , K�N � M �M DI � � � > ! DI # % �� & > ! ,
and performing the standard procedure to construct the Hamiltonian function O for the sys-
tem (1.2), OP� K L D> # K N DI ) � ,
we get

OP� K !L� � � # K ! N� � � > ! ) % � KQN� � � & # % ! � ! > !R � � & ! # * %> 
(1.3)
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Here I is a cyclic variable, so again we see immediately that K N is a constant of the motion,
because

DK�N � ) M OM I � � ,
and, therefore, DI � M OM KQN � KQN� � > ! ) % �� � � & 

Consequently, I =?S B � TVUU?W = K N� � > ! ) % �� � � &XBZY S # I =[S 7 B(1.4)

can be immediately integrated once >�=?S B�, as a function of time S , is known. The latter is of
course obtained as a solution of the ordinary second order differential equation for > , which
follows from the Hamilton equations generated by O in (1.3), namely

� �E\>]� ) M OM > � K ! N��� > � ) % ! � !^ �C� & ! > # * %> ! 

If we choose the coordinate system rotating at Larmor rotation frequency _a`-�b_dc � (one
half cyclotron frequency!), we can eliminate in (1.2) and thus in (1.3) the paramagnetic term
(linear in � ), which is also clear in (1.4), getting the most simple (2-dim) form of the Hamil-
tonian as was proposed and studied in [16], namely

OP� K !L� � � # K ! N� � � > ! # % ! � ! > !R � � & ! # * %> 

The canonical angular momentum e is different from the kinetic angular momentum f ,
namely we have the definition f"� 2g0 � � �(1.5)

and, thus, f"�he ) %� & 2i0 = .b0<2 B 
(1.6)

The ; -component (parallel to . ) is equal tojlk �hm k ) % �� & > ! 
(1.7)

When going over to the quantum mechanics of our problem we apply the canonical quantiza-
tion rule in the ordinary coordinate space, thus replace the momentum n by the operator
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onp� )rqZs MM 2 
(1.8)

As can be verified quantum mechanically, for the angular momenta, we have precisely equa-
tion (1.6), o f"� oe ) %� & 2g0 = .1032 B 
(1.9)

In particular, the ; -component is given byoj k � om k ) % �� & > !
and has the expected value t ojlk�u �hm k ) % �� & t > ! u 
(1.10)

Here
om k

can be expressed in terms of polar coordinates with the polar angle I in the formom k � )rqvs MM I � oKQN 
(1.11)

This is a conserved quantity with eigenvalue m k
and commutes with the Hamilton operatorow � on !� ��� ) % �� ��� & om k # % ! � !R �C� & ! > ! # * %> 
(1.12)

Using (1.8) and the polar coordinates =?> , I B , we get the Schrödinger equationowCx �zy x ,
which can be written as) s !� � �E{ �> MM > =?> M xM > B # �> ! M ! xM I !"| #}qZs % �� � � & M xM I # % ! � !R � � & ! > ! x # * %> x �-y x 


The 3D hydrogen atom in a magnetic field is a nonintegrable and chaotic system [16],
while the 2D hydrogen atom is separable (in polar coordinates) and therefore integrable. We
now set up the corresponding Schrödinger equation for the 2D problem, for the separated
wave function

x =[> B�~���� = q�� I B in polar coordinates =?> , I B , where we use the fact that
om k x �)rqZs��� N x � �Cs x . We obtain for the radial wave function

x
,�> MM > =[> M xM > B #h� � ��� ys ! ) � �C� * %s ! > ) = � > ) % �� s & > B !�� x � � 


Let us now introduce the natural units in a way that yields the Schrödinger equation in a nice
dimensionless form. We specify the point charges as % � ) %87 and

* �56 %�7 . The length is
measured in units of the Bohr radius ��� ,>]�z�G�a� , �G��� s !�C� % !7 
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Another quantity with the dimension of length is the Landau radius� �9� s &% 7 4 �<4 

The unit of energy is one Rydberg, equal to % !7 c�= � �G� B , so that the dimensionless energy is�� � � �G��y% !7 
(1.13)

Finally, the unit of magnetic field strength is� �5= �G�� B ! �z��c�� 7 , � 7 � � ! � % �7 &s � 
(1.14)

For % 7 and ��� being the elementary charge and the electron’s mass, respectively, we obtain� 7 � � ! � % �7 &s � � � 
 ��	 ��� 0 �����r���8�X�A� � � 
 �F	 ��� 0 ��� ��� ~ ����� 

This is indeed a very strong magnetic field, which is not available in a laboratory, but in the as-
trophysical context mentioned in the introduction. Thus,

�
is a linear measure of the strength

of the magnetic field, such that
� � �

corresponds to �P�5� 7 . With these conventions, we
obtain the dimensionless fundamental equationxd� � # �� x$� #h� �� #}� � �¡ £¢�¤ = % � B # � 6� ) � !� ! ) � !^ � !�� x � � ,
and after introducing the reduced energy � ,� � �� #}� � �� ¥¢¦¤ = % � B§,
we get x � � # �� x � #h� � # � 6� ) � !� ! ) � !^ �Q! � x � � 
(1.15)

This is the fundamental ordinary second order differential equation for the radial wave func-
tion

x
as a function of the dimensionless polar radius � , which we are going to study.

2. The unresolved difference equation. We discuss the central difficulty in solving
equation (1.15). Factoring the functionx =?� B �¨�ª© «H© ~���� = ) � � !^ BZ¬ =?� B§,
where

�� �
, we get from (1.15) the differential equation for ¬ =[� B ,
¬ � � # ¬ � = � 4 � 4 # �� ) � � B # ¬ � �� # � = �b) 4 � 4 ) � B # � 6� � � � 
(2.1)
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Substituting the power expansion ¬ =[� B �¯®°±§² 7 � ± � ±
into (2.1) with � � � ) � � 7 c�= � # � 4 � 4 B , we obtain the three-term recursion relation� ± � ) � 6³ = ³ # � 4 � 4 B � ±�´ � # �Q³ ) �� ) � = �P) 4 � 4 # � B³ = ³ # � 4 � 4 B � ±�´ ! 

We are looking for solutions at discrete values of the eigenenergies

�� that satisfy the Schrödinger
integrability condition �8µ T ®7 � ! © «�© ~��� = ) � � !� B 4 ¬ =?� B 4 ! � Y � tz¶ 

It is not known how to determine such solutions and we raise the following question: Will¬ =[� B be a polynomial or some other function?

3. The representation of the Hamilton operator in the Landau basis. In spite of our
incapability to solve the problem of the previous section, we can deduce some important
analytic results. From now on, the quantum number � (the canonical angular momentum
number) will be considered fixed unless stated otherwise in a explicit way. We are going
to determine a solution of our problem (1.15) by finding the eigenvalues of the Hamilton
operatorow = x B�· ) xd� � =?� B ) x � =?� B� #1¸ � !� ! ) � 6� # � ! � !^º¹ x =?� B � �w = x B ) � 6� x =?� B�,(3.1)

where �w = x B�· ) xd� � =[� B ) x � =?� B� # ¸ � !� ! # � ! � !^º¹ x =[� B 

Then w ± �r� ��µ T ®7 � x ± =[� B ow = x � BZY �3� � � » ± � ) ^ µ 6 T ®7 x ± =?� B x �8=[� BZY �"
(3.2)

Here � � are the eigenvalues of the operator
�w

. In fact they are exactly the Landau levels, now
in a dimensionless form, where ¼J�¨½ L � � , � , � , 
�

 . Specifically,� � � � = � ¼ # � # 4 � 4 B§,(3.3)

where the full energy
�� is equal to�� � � � � )¾� � �¡ ¥¢¦¤ = % � B � � = � ¼ # � # 4 � 4 #V� B§,(3.4)

because we choose
�¡ £¢�¤ = % � B � ) �

, as % � ) %:7 and � u �
. Here

x � =[� B is the ¼ -th (Landau)
eigenfunction of

�w
, where ¼ is exactly the number of its nodes. Therefore to complete our

task we need to diagonalize the operator
ow

, i.e., its matrix
w ± � . This consists of three steps:
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1. Show the completeness of the Landau basis of the eigenfunctions of the operator
�w

in the Hilbert space of all
x

radial functions. This is done below.
2. Calculate the elements of

w ± � . This is done analytically below.
3. Diagonalize the matrix

w ± � . This can not be done analytically, only numerically.
It is important to stress that the functional dependence of

w ± � on
�

, and of course on 6 , will
be exactly known, namely the integral in the second term of (3.2) is exactly proportional to¿ �

, as it will be shown in below. This is very important, because it means that the matrixw ± � must be calculated analytically only once, see the equations (3.12) and (3.16), and con-
sequently the energy spectrum can be obtained for any

�
and 6 by a diagonalization of (3.2).

This is one of the major contributions of this paper.
We proceed by constructing the orthonormal Landau eigenbasis

x �:=[� B , i.e., the normal-
ized solutions of�w = x � B�· ) xd� �� =[� B ) x �� =?� B� #1¸ � !� ! # � ! � !^º¹ x � =[� B � � � x � 
(3.5)

The substitution À��bÁ! � ! in equation (3.5) yields¸/) � !^ À ) À ^ # �� � ¹ x =[À B # x � =[À B # À x � � =?À B � � 

This equation has a solution% ´dÂ Ã ÀdÄ ÅÆÄÃ �§ÇÆ� = ) � # � # 4 � 4 �� � , � # 4 � 4 , À B
with Ç =È� , � , ; BÊÉ �ZË� ��ÇÊ�]Ì ��ÎÍ ;¦Ï
being the confluent hypergeometric function, which becomes a polynomial if) � # � # 4 � 4 �� � , � ) ¼
where ¼��Ð½ L is a non-negative integer equal to the number of the nodes ½ L of the radial
eigenfunction.

Therefore the spectrum of the equation (3.5) is precisely (3.3), where ¼Ñ� � , � , � , 
�

 ,
and the corresponding wave functions arex � =?� B �z� � % ´dÒÓ�Ô Ã �ª© «H© �§ÇÆ� = ) ¼ , � # 4 � 4 , � � � ! B 
(3.6)

Using the relation between the confluent hypergeometric function and the generalized La-
guerre polynomials m © «�©Õ =È; B ,mÖ© «�©Õ =[; B � =[½ # 4 � 4 B§×½ × 4 � 4 × Ç = ) ½ , 4 � 4 # � , ; B§,(3.7)

we can write (3.6) in the formx �:=?� B �-�G� 4 � 4 × ¼ ×=A4 � 4 # ¼ B§× % ´�ÒÓ�Ô Ã � © «�© m © «�©� = � � � ! B 
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The normalizing condition ��µ T ®7 � x !� =[� B�Y ��� �
and the orthogonality relation for Laguerre polynomialsTÙØ ®7 % ´QÚ�Û © «�© m © «�©Õ = Û B m © «�©± = Û BZY Û �ÝÜ � ,  ßÞ ½�à� ³ ,á =A4 � 4 # � B¦â Õ Ø © «�©Õäã  ßÞ ½�� ³ ,(3.8)

yield

� � � åææç � © «�© Ø � =A4 � 4 # ¼ B§× !� © «H© Ø � µ â © «�© Ø �� ã 4 � 4 × ! ¼ × ! á = � # 4 � 4 B 

Therefore x � =?� B � � � % ´ Ò ÓFÔ Ã �ª© «�©¡mJ© «H©� = � � � ! B§,
where � �d� � � © «�© Ø �� © «�© Ø � µ â © «H© Ø �� ã 4 � 4 × 


Now let us show that the orthonormal system
x � =?� B§, ¼è� � , � , 

�
 , is a complete basis

of the Hilbert space m ! = � , # ¶ B . To this end it is sufficient to prove that the seté % ´ Ò ÓFÔ Ã ��ê��Q! Õªë ®Õ ² 7
is dense in m ! = � , # ¶ B . Here ì is a real number ì u ) � c � . Indeed, an arbitrary functioní =?� B from m ! = � , # ¶ B we can write in the formí =[� B � % ´�ÒÓ�Ô Ã � êQî = ¿ � � B 

We need to show that for any � u �

there exists a polynomial S�=?� ! B such thatï = í Ba· T}Ø ®7 = % ´dÒÓ�Ô Ã � ê � î = ¿ � � B ) S�=?� ! B � B ! Y � t � 

After the substitution Àð� � � ! we getï = í B � &�ñ ½"¼�S T}Ø ®7 = % ´Qòó !�À�ê ó ! ´ � ó¡ô � î = ¿ À B ) S�=?ÀXc � B � B ! Y À� &�ñ ½"¼�S T}Ø ®7 = % ´Qò ÀFõ � î = ¿ À B ) �S�=?À B � B ! Y À t � ,(3.9)

where ö÷�5= � ì ) � B c � and
�S�=[À B �hS�=?ÀXc � B . Note that

í =[� B�ø m ! = � , # ¶ B yields % ´Qò�ó ! À ê ó ! ´ � ó¡ôî = ¿ À Bdø m ! = � , # ¶ B . Therefore, according to Szegő [23, Chapter 5.7], there is a polynomial
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for any

�
.

Now we calculate the matrix elements (3.2). One can verify thatm © «�©± = � � �Q! B m © «�©� = � � �E! B � ± Ø �°Ú:² 7�ùú Ú°û ² 7 = ) � B Ú â ± Ø © «H©±�´ û ã â � Ø © «�©� ´QÚ Ø û ãü × = Û ) ü B§× ýþ ¸ � � ¹ Ú �Q! Ú 
(3.10)

Note thatT�Ø ®7 � ! © «�© Ø ! Ú Ø ÿ % ´ Ò Ã8Ô Ã Y �<� � ´ �Ã Ø © «�© Ø Ú Ø�� Ã � ´ �Ã¦´ © «�© ´QÚ�´ � Ã á = ��è# 4 � 4 # Û # � � B 
(3.11)

Then, using (3.10) and (3.11) with � � �
, we obtain

� ± � � T ®7 x ± =[� B x � =[� B�Y ��� � ± � � ± Ø �°Ú:² 7�ùú Ú°û ² 7 = ) � B Ú â ± Ø © «�©±�´ û ã â � Ø © «�©� ´QÚ Ø û ãü × = Û ) ü B§× ýþ 0(3.12)

¸ � � ¹ Ú � ´ �Ã Ø © «�© Ø Ú � ´ �Ã�´ © «H© ´�Ú á = �� # 4 � 4 # Û B
� � � ó ! � ³ × ¼ × = ³ # 4 � 4 B§× =È¼ # 4 � 4 B�×� © «�© Ø � ¿ �8µ ± Ø �°Ú:² 7 = ) � B Ú = � 4 � 4 # � Û ) � B§×¥×� Ú 0Ú°û ² 7 �=A4 � 4 # ü B§× = ³ ) ü B�× =A4 � 4 # Û ) ü B§× =È¼ ) Û # ü B§× ü × = Û ) ü B�× 


To simplify the above expression, we rewrite the sum in the form� Ø ±°Ú:² 7 = ) � B Ú = � 4 � 4 # � Û ) � B§×¥×� Ú 0Ú°û ² 7 �=A4 � 4 # ü B§× = ³ ) ü B§× =¡4 � 4 # Û ) ü B§× =È¼ ) Û # ü B§× ü × = Û ) ü B�× ��� � # � ! ,
where

� � � �°Ú:² 7 = ) � B Ú = � 4 � 4 # � Û ) � B§×¥×� Ú 0Ú°û ² 7 �=¡4 � 4 # ü B§× = ³ ) ü B§× =¡4 � 4 # Û ) ü B§× =È¼ ) Û # ü B�× ü × = Û ) ü B§×
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and

� ! � ± Ø �°Ú:² � Ø � = ) � B Ú = � 4 � 4 # � Û ) � B�×£×� Ú 0Ú°û ² 7 �=¡4 � 4 # ü B�× = ³ ) ü B§× =¡4 � 4 # Û ) ü B�× = ¼ ) Û # ü B�× ü × = Û ) ü B§×
� ±�´ �°
	�² 7 = ) � B 	 Ø � Ø � = � 4 � 4 # � í # � ¼ # � B§×¥×� 	 Ø � Ø � 0�°ÿ ² 7 = � × B ´ �=¡4 � 4 # � # í # � B�× = ³ ) � ) í ) � B�× =A4 � 4 # ¼ ) � B§× = � # í # � B�× = ¼ ) � B�× ,

where to get this expression for � ! one can set
Û � í # ¼ # � , ü � � # í # �

and note
that it suffices to consider only

ü
between

í # �
and

í # ¼ # �
, because

�
 ´�	¦´ � Ø û��� � �
forü t í # �

.
To compute the inner sum in � � , we write it as®°û ² 7 S û ,

where S û � �=¡4 � 4 # ü B§× = ³ ) ü B§× =¡4 � 4 # Û ) ü B§× =È¼ ) Û # ü B�× ü × = Û ) ü B§× 

Here we may replace the finite sum by the infinite sum because

�
 Ú�´ û��� � �
for

ü u Û
.

A straightforward computation yieldsS û Ø �S û � ) = ü ) ³ B = ü ) 4 � 4 ) Û B = ü ) Û B= ü # 4 � 4 # � B = ü # ¼ ) Û # � B = ü # � B 

Hence, using the algorithm from [15, p. 36] (which, actually, follows from the definition of
hypergeometric functions), we conclude thatÚ°û ² 7 S û � ®°û ² 7 S û � �4 � 4 × ³ × =A4 � 4 # Û B§× =È¼ ) Û B§× Û × � Ç ! Ì ) ³ ) 4 � 4 ) Û ) Û4 � 4 # � ¼ ) Û # � Í ) � Ï
and, therefore,

� � � �°Ú:² 7 = ) � B Ú = � 4 � 4 # � Û ) � B�×£×� Ú 4 � 4 × ³ × =¡4 � 4 # Û B§× =È¼ ) Û B§× Û × � Ç ! Ì ) ³ ) 4 � 4 ) Û ) Û4 � 4 # � ¼ ) Û # � Í ) � Ï 
(3.13)

Similarly,

� ! � ±�´ �°
	�² 7 = ) � B 	 Ø � Ø � = � 4 � 4 # � í # � ¼ # � B�×£×� 	 Ø � Ø � =¡4 � 4 # í # � B§× = ³ ) í ) � B§× =¡4 � 4 # ¼ B�× = í # � B§× ¼ ×0 � Ç ! Ì í # � ) ³ ) 4 � 4 ) ¼ ) ¼í # � 4 � 4 # í # � Í ) � ÏÖ
(3.14)
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As a consequence, we obtain w ± � � � � » ± � ) ^ µ 6 � ± � ,(3.15)

where

� ± �r� � � ó ! � ³ × ¼ × = ³ # 4 � 4 B�× = ¼ # 4 � 4 B§×� © «H© Ø � ¿ ��µ =�� � # � ! B�,(3.16)

and � � , � ! are given by (3.13), (3.14), respectively.
Note that we have to split the sum in (3.12) into the two parts, � � and � ! , because

otherwise, using the algorithm of [15, p. 36], we encounter the indeterminacy
� ( ¶

during
the calculations.

This completes our calculation of the matrix
w ± � representing

ow
from (3.1) in the

�
-

Landau basis, as given in (3.15) - (3.16). Note that the matrix is known analytically and
computable. Also the dependencies on

�
and 6 are explicitly known. Therefore it suffices to

compute the matrix only once and then
w ± � can be diagonalized for any

�
and 6 . This ob-

servation is important, because the computation of the matrix is quite CPU-time demanding.
For the diagonal elements, we get from (3.16),

� ±�± � � � ó ! á = � c � # 4 � 4 B� ¿ �ªµ 4 � 4 × ��Ç ! Ì � c � � c � ) ³� � # 4 � 4 Í � Ï ,(3.17)

where
³ � � , � , � , 


 . In the asymptotic limit for large 4 � 4 , using the Wallis’s formula [1,

p. 258], we obtain

� ±�±�� � � ó !��µ � � 4 � 4�� � ~ ¤ 4 � 4�� # ¶ 
(3.18)

To see this, notice that in equation (3.17) we have

�Ç ! Ì � c � � c � ) ³� � # 4 � 4 Í � Ï � � # ±° � ² � ìÊ�� � =A4 � 4 B ,
where ì � à� �

is a constant, � � =A4 � 4 B �5= � # 4 � 4 B � is a polynomial in 4 � 4 of the degree ¼ , and=[� B � �-��=[� # � B =È� # � B 

�
§=[� # ¼ ) � B denotes, as usual, the Pochhammer symbol. Therefore
the expression

��Ç ! Ì � c � � c � ) ³� � # 4 � 4 Í � Ï
goes to 1 for all fixed

³
when 4 � 4�� ¶

.
It is easily verified that

� � !�� � �8µ T}Ø ®7 4 x Õ =?� B 4 ! � � Y �3� � = � # 4 � 4 # � ½ B� 
(3.19)
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Indeed,

� � ! � � ��µ � !Õ T ®7 � � % ´ Ò Ã¦Ô Ã � ! © «�© ¸ m © «�©Õ = � � � ! B ¹ ! Y � 

Using the substitution Á ! � ! � À , the orthogonality relation (3.8), and the recurrence relation
for the Laguerre polynomials [1, p. 783],m ê ´ �Õ =[� B �-m êÕ =?� B ) m êÕ ´ � =?� B�,
we obtain

� �E! � � µ � !Õ � © «�© Ø ! � ´ © «�© ´ !¦=¡4 � 4 # � B§× ¸r¸ ½ # 4 � 4 # �½ ¹ # ¸ ½ # 4 � 4½ ) � ¹ ¹V

Thus, (3.19) follows.

The diagonal elements
� ±�± given in (3.17) are important, because they are the first order

perturbation estimate of the perturbation problem (3.1) - (3.2), where the Coulomb potential
energy ) � 6dc:� is treated as a small perturbation of the Landau eigenstates, and this will be a
good approximation if

�
is sufficiently small, and/or 4 � 4 sufficiently large. We haveyÖ�r� � � ) ^ µ 6 � �Z� ,

which in the asymptotic limit 4 � 4�� �
becomes a quite simple expression, due to (3.18),yÖ��� � � ) 6�� � �4 � 4 


Here y � denotes the ¼ -th reduced dimensionless eigenvalue, so that the total dimensionless
energy,

�y � , is given (approximated) by�y � � � = � ¼ # 4 � 4 #V� # � B ) 6i� � �4 � 4 ,(3.20)

where we have chosen
�� ¥¢¦¤ = % � B � ) �

, as % � ) %�7 , and � u �
, and of course ¼¨�� , � , � , 
�

 . This is a very nice and transparent result, as it shows that upon switching on the

Coulomb interaction, from 6 � �
to 6 u �

, we observe instead of infinitely discretely de-
generate Landau levels, clusters of levels, each of which has an accumulation point precisely
at the Landau level. When � is negative, with 4 � 4 large, these levels approach the accumu-
lation point as predicted by (3.20). Clearly, for large 4 � 4 , when � t �

, the Landau energy
reamins unchanged, and the physical meaning is, because of (3.19), that we have a charge %
at a large distance from the Coulomb central charge

*
in a magnetic field � , such that the

(average) kinetic angular momentum
j[k

is also small, while the canonical angular momen-
tum m k

is large. In this sense we understand the structure of clusters of Coulomb perturbed
Landau levels either at large distances or large magnetic fields.

We make the following important physical observation: The energy spectrum of (3.1)
is purely discrete for any

� à� �
. This follows from the shape of the potential well, which

increases indefinitely for
� à� �

as ���
¶

, even for small values of
�

. For
� � �

, i.e., in the
pure Coulomb case without a magnetic field, the spectrum is discrete for all negative energies� t �

, has the ionization limit when � � �
, and the continuum limit when � u �

.
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We turn to the ionization limit in a non-vanishing magnetic field with
� à� �

. Intuitively,
one would expect this limit to be the first, lowest, accumulation point. This is of course not
strictly true, because for

� à� �
, the spectrum is everywhere discrete. Nevertheless, an escape

to infinity is possible. Namely, within any Landau cluster with the main quantum number
fixed, according to (3.4), at negative � , but with large 4 � 4 , the system stays within the same
cluster energetically, but with increasing 4 � 4 the average radius

t � ! u
is increasing linearly

as given by equation (3.19). This is in fact nothing but almost radiationless escape to infinity,
and that is what we mean by ionization. The photon energy needed for such an escape is
smaller the larger 4 � 4 is. It is in this sense that we can call the lowest Landau energy -
according to (3.4) it is equal to

�
- the ionization limit ���! Õ . The situation is similar in any

higher lying Landau cluster. There, ionization is also possible by emission of radiation, while
ionization from below � �! Õ is possible by absorption of radiation, but in each case the quantum
number � must change. Thus, the ionization limit is equal to� �! Õ � � 

In real physical units this means, using (1.13), that the ionization limit is equal to

y �! Õ � % !7� � � 0 �� 7 �5=[��c�� 7 B 0#"%$'&'( ~*) ¢ � =È�]c�� 7 B 0 � ��
 	,+ R ~*-],(3.21)

where, according to (1.14), � 7 � « Ã . �0/W213 / � � 
 �F	 �¦� 0 ��� � ���8�X�A� � � 
 �F	 ��� 0 ��� � � ~ �¡�¥� . As
the 3D situation does not change anything in this regard, the statement about the ionization
limit (3.21) for a 3D hydrogen atom in a magnetic field still holds true.

4. Discussion and conclusions. The 3D hydrogen atom in a strong magnetic field is a
nonintegrable and chaotic system [16, 17] undergoing a transition from complete integrability
(pure Coulomb case) to ergodicity (at sufficiently high energies), being a generic system, hav-
ing the mixed type classical phase space [18], and it is an example of classical (Hamiltonian)
and quantum chaos par excellence.

The 2D hydrogen atom in a strong magnetic field is integrable and even separable, being
effectively a one-dimensional system. However, its radial Schrödinger equation cannot be
solved exactly. The essence of the problem is described in Section 2, and it boils down to a
solution of a three-term recurrence relation. Nevertheless a lot of analytic work can be done.
We have calculated analytically the matrix elements of the Hamilton operator in the Landau
basis, which is a complete basis in the Hilbert space, and carried out its numerical diago-
nalization, and also described analytically the (asymptotic) structure of the Landau clusters
of levels, which are created when the Coulomb interaction of an electron in a magnetic field
is switched on. (If there is no Coulomb interaction, we have infinitely discretely degener-
ate Landau levels.) The size (spread) of the clusters scales as

¿ �
with the magnetic field

strength
� �-�]c8� 7 , where � 7 � � 
 �F	 ��� 0 ��� � ���8�X�A�

, and the levels in the cluster for fixed�
approach the accumulation point (=Landau level) as

� c � 4 � 4 when the modulus 4 � 4 of the
canonical angular momentum quantum number ( � � � ,54 � ,54 � , 

�
 ) goes to infinity (and the
electron is receding to infinity). It is important to notice that the dependence of the represen-
tation matrix (3.15) in terms of the magnetic field strength

�
and the charge 6 is known, so

that it must be calculated only once. Then the eigenenergies can be obtained by a numerical
diagonalization of the matrix for any desired values of

�
and 6 . Some further results and

more details are published in [20].
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