LEFT-DEFINITE VARIATIONS OF THE CLASSICAL FOURIER EXPANSION THEOREM*

L. L. LITTLEJOHN ${ }^{\dagger}$ AND A. ZETTL ${ }^{\ddagger}$

Abstract

In a recent paper, Littlejohn and Wellman developed a general left-definite theory for arbitrary selfadjoint operators in a Hilbert space that are bounded below by a positive constant. We apply this theory and construct the sequences of left-definite Hilbert spaces $\left\{H_{n}\right\}_{n \in \mathbb{N}}$ and left-definite self-adjoint operators $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ associated with the classical, regular self-adjoint boundary value problem consisting of the Fourier equation with periodic boundary conditions. As a particular consequence of our analysis, we obtain a Fourier expansion theorem in each left-definite space H_{n} as well as an explicit representation of the domain of $A^{n / 2}$ for each positive integer n.

Key words. self-adjoint operator, Hilbert space, left-definite Hilbert space, left-definite operator, regular selfadjoint boundary value problem, Fourier series

AMS subject classification. 34B24, 33B10

1. Introduction. For a self-adjoint operator A in a Hilbert space H, which is bounded below by a positive constant, Littlejohn and Wellman [8] construct a continuum of unique Hilbert spaces $\left\{H_{r}\right\}_{r>0}$ and a continuum of self-adjoint operators $\left\{A_{r}\right\}_{r>0}$ from the pair (H, A). For each $r>0, H_{r}$ is called the $r^{t h}$ left-definite Hilbert space associated with (H, A) and A_{r} is called the $r^{t h}$ left-definite operator associated with (H, A). Some information of this theory and the constructions of these spaces and operators are given below in Section 2.

This general theory has been applied to several classical singular second-order differential equations, including the Jacobi [2], Hermite [3], Legendre [4], and Laguerre [8] equations. In these papers, the authors construct sequences - but not the full continua - of leftdefinite spaces and left-definite operators associated with the special self-adjoint operator A that has the corresponding classical orthogonal polynomials (Jacobi, Hermite, Legendre, and Laguerre, respectively) as eigenfunctions.

In this paper, we determine the sequences of left-definite spaces $\left\{H_{n} \mid n \in \mathbb{N}\right\}$ and left-definite operators $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ associated with the regular self-adjoint operator A in $H=$ $L^{2}[a, b]$ obtained from the Fourier boundary value problem

$$
\left\{\begin{array}{c}
\ell[y](x)=-y^{\prime \prime}(x)+k y(x)=\lambda y(x) \tag{1.1}\\
y(a)=y(b) ; y^{\prime}(a)=y^{\prime}(b),
\end{array}(x \in[a, b])\right.
$$

where $[a, b]$ is a compact interval of the real line and k is a fixed, positive constant. This boundary value problem is both well-known and important; indeed, the eigenfunction expansion in this case produces the classical Fourier series expansion for $f \in H$. We extend this expansion result to each of the left-definite spaces associated with this self-adjoint boundary value problem. As a consequence of this analysis, for each positive integer n, we obtain explicit characterizations of the domains $\mathcal{D}\left(A^{n / 2}\right)$ of $A^{n / 2}$ and of the domains $\mathcal{D}\left(A_{n}\right)$ for each of the left-definite operators A_{n} associated with (H, A). Each of these domains is in the space in which the operator acts; in particular, we emphasize that this analysis produces new results for the original operator A.

The terminology left-definite is due to Schäfke and Schneider [12] but the origins of left-definite theory go back to at least the work of Hermann Weyl [13] in the early 1900's.

[^0]The interest in left-definite theory originated, at least in part, in the study of classical SturmLiouville equations with a weight function that changes sign. The associated operator of such a problem, when studied in the usual L^{2} spaces, is not bounded below. There is a vast literature for such problems; see Kong, Wu, and Zettl [9] for some recent work and further references.

The contents of this paper are as follows. In Section 2, we review the left-definite theory developed by Littlejohn and Wellman. Section 3 deals with the self-adjoint operator A generated from (1.1) and its properties, including information about its spectrum, its eigenfunctions and the fact that A is bounded below in $L^{2}[a, b]$ by $k I$, where k is the constant appearing in the differential expression in (1.1). The left-definite analysis of A - specifically, the construction of the sequence of left-definite spaces $\left\{H_{n}\right\}_{n \in \mathbb{N}}$ and left-definite operators $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ - is developed in Section 4. In addition, we develop a Fourier expansion theorem in each left-definite space H_{n} in Section 4. Lastly, in Section 5, some special cases of these left-definite spaces and left-definite operators are discussed. Indeed, we determine the explicit domains of the powers $A^{n / 2}$ and the domains of each of the left-definite operators A_{n} for each $n \in \mathbb{N}$.

Throughout this paper, \mathbb{R} and \mathbb{C} denotes, respectively, the fields of real and complex numbers. The natural numbers $\{1,2, \ldots\}$ are denoted by \mathbb{N} and the non-negative integers by \mathbb{N}_{0}. For a compact interval I, the terminology $A C(I)$ denotes the space of all complex valued functions $f: I \rightarrow \mathbb{C}$ that are absolutely continuous on I. If A is a linear operator, $\mathcal{D}(A)$ denotes its domain. Lastly, a word is in order regarding displayed, bracketed information. For example,

$$
f \text { has property } P \quad(x \in I)
$$

and

$$
g_{m} \text { has property } Q \quad\left(m \in \mathbb{N}_{0}\right)
$$

mean, respectively, that f has property P for all $x \in I$ and g_{m} has property Q for all $m \in \mathbb{N}_{0}$.
2. A Review of Left-Definite Theory. Let V denote a vector space (over the complex field \mathbb{C}) and suppose that (\cdot, \cdot) is an inner product with norm $\|\cdot\|$ generated from (\cdot, \cdot) such that $H=(V,(\cdot, \cdot))$ is a Hilbert space. Suppose V_{r} (the subscripts will be made clear shortly) is a linear manifold (vector subspace) of the vector space V and let $(\cdot, \cdot)_{r}$ and $\|\cdot\|_{r}$ denote an inner product and its associated norm, respectively, over V_{r} (quite possibly different from (\cdot, \cdot) and $\|\cdot\|)$. We denote the resulting inner product space by $H_{r}=\left(V_{r},(\cdot, \cdot)_{r}\right)$.

Throughout this section, we assume that $A: \mathcal{D}(A) \subset H \rightarrow H$ is a self-adjoint operator that is bounded below by $k I$ for some $k>0$; that is,

$$
(A x, x) \geq k(x, x) \quad(x \in \mathcal{D}(A))
$$

It follows that A^{r}, for each $r>0$, is a self-adjoint operator that is bounded below in H by $k^{r} I$.

We now define an $r^{t h}$ left-definite space associated with (H, A).
DEFINITION 2.1. Let $r>0$ and suppose V_{r} is a linear manifold of the Hilbert space H $=(H,(\cdot, \cdot))$ and $(\cdot, \cdot)_{r}$ is an inner product on V_{r}. Let $H_{r}=\left(V_{r},(\cdot, \cdot)_{r}\right)$. We say that H_{r} is an $r^{\text {th }}$ left-definite space associated with the pair (H, A) if each of the following conditions hold:
(i) H_{r} is a Hilbert space,
(ii) $\mathcal{D}\left(A^{r}\right)$ is a linear manifold of V_{r},
(iii) $\mathcal{D}\left(A^{r}\right)$ is dense in H_{r},
(iv) $(x, x)_{r} \geq k^{r}(x, x) \quad\left(x \in V_{r}\right)$, and
(v) $(x, y)_{r}=\left(A^{r} x, y\right) \quad\left(x \in \mathcal{D}\left(A^{r}\right), y \in V_{r}\right)$.

It is not clear, from the definition, if such a self-adjoint operator A generates a leftdefinite space for a given $r>0$. However, in [8], the authors prove the following theorem; the Hilbert space spectral theorem plays a prominent role in establishing this result. Notice that, in the case that A is a bounded operator, the left-definite theory is trivial but, when A is unbounded, the theory has substance.

TheOrem 2.2. (see [8, Theorems 3.1 and 3.4]) Suppose $A: \mathcal{D}(A) \subset H \rightarrow H$ is a self-adjoint operator that is bounded below by $k I$, for some $k>0$. Let $r>0$. Define $H_{r}=\left(V_{r},(\cdot, \cdot)_{r}\right)$ by

$$
\begin{equation*}
V_{r}=\mathcal{D}\left(A^{r / 2}\right) \tag{2.1}
\end{equation*}
$$

and

$$
(x, y)_{r}=\left(A^{r / 2} x, A^{r / 2} y\right) \quad\left(x, y \in V_{r}\right)
$$

Then H_{r} is a left-definite space associated with the pair (H, A). Moreover, suppose $H_{r}^{\prime}:=$ $\left(V_{r}^{\prime},(\cdot, \cdot)_{r}^{\prime}\right)$ is another $r^{t h}$ left-definite space associated with the pair (H, A). Then $V_{r}=V_{r}^{\prime}$ and $(x, y)_{r}=(x, y)_{r}^{\prime}$ for all $x, y \in V_{r}=V_{r}^{\prime} ;$ i.e. $H_{r}=H_{r}^{\prime}$. That is to say, $H_{r}=\left(V_{r},(\cdot, \cdot)_{r}\right)$ is the unique left-definite space associated with (H, A). Moreover,
(a) suppose A is bounded. Then, for each $r>0$,
(i) $V=V_{r}$;
(ii) the inner products (\cdot, \cdot) and $(\cdot, \cdot)_{r}$ are equivalent.
(b) suppose A is unbounded. Then, for each $r, s>0$,
(i) V_{r} is a proper subspace of V;
(ii) V_{s} is a proper subspace of V_{r} whenever $0<r<s$;
(iii) the inner products (\cdot, \cdot) and $(\cdot, \cdot)_{r}$ are not equivalent for any $r>0$;
(iv) the inner products $(\cdot, \cdot)_{r}$ and $(\cdot, \cdot)_{s}$ are not equivalent for any $r, s>0, r \neq s$.

REMARK 2.3. Although all five conditions in Definition 2.1 are used in the proof of Theorem 2.2, the most important property, in a sense, is the one given in part (v) of the definition. Indeed, this property asserts that the $r^{t h}$ left-definite inner product is generated from the $r^{t h}$ power of A. If A is generated from a Lagrangian symmetric differential expression $\ell[\cdot]$, we see that the $r^{\text {th }}$ powers of A are then determined by the $r^{\text {th }}$ powers of $\ell[\cdot]$. Consequently, in this case, it is possible to explicitly obtain these powers only when r is a positive integer. We refer the reader to [8] where an example of a self-adjoint operator A in $\ell^{2}(\mathbb{N})$ is discussed in which the entire continuum of left-definite spaces is explicitly obtained. In this example, we note that the explicit spectral resolution of the identity associated with A is constructed; this construction allows for a complete determination of the continua of left-definite spaces and left-definite operators.

DEFINITION 2.4. For $r>0$, let $H_{r}=\left(V_{r},(\cdot, \cdot)_{r}\right)$ denote the $r^{\text {th }}$ left-definite space associated with (H, A). If there exists a self-adjoint operator $A_{r}: \mathcal{D}\left(A_{r}\right) \subset H_{r} \rightarrow H_{r}$ that is a restriction of A; that is,

$$
A_{r} f=A f \quad\left(f \in \mathcal{D}\left(A_{r}\right) \subset \mathcal{D}(A)\right)
$$

we call such an operator an $r^{\text {th }}$ left-definite operator associated with (H, A).
Again, it is not immediately clear that such an A_{r} exists for a given $r>0$; in fact, however, as the next theorem shows, A_{r} exists and is unique for each $r>0$.

THEOREM 2.5. (see [8, Theorems 3.2 and 3.4]) Suppose A is a self-adjoint operator in a Hilbert space H that is bounded below by $k I$, for some $k>0$. For any $r>0$, let
$H_{r}=\left(V_{r},(\cdot, \cdot)_{r}\right)$ be the $r^{t h}$ left-definite space associated with (H, A). Then there exists a unique left-definite operator A_{r} in H_{r} associated with (H, A); in fact,

$$
\mathcal{D}\left(A_{r}\right)=V_{r+2}
$$

Moreover, from Theorem 2.2, we have the following results.
(a) Suppose A is bounded. Then, for each $r>0, A=A_{r}$.
(b) Suppose A is unbounded. Then, for each $r, s>0$,
(i) $\mathcal{D}\left(A_{r}\right)$ is a proper subspace of $\mathcal{D}(A)$ for each $r>0$;
(ii) $\mathcal{D}\left(A_{s}\right)$ is a proper subspace of $\mathcal{D}\left(A_{r}\right)$ whenever $0<r<s$.

The last theorem that we state in this section shows that the point spectrum, continuous spectrum, and resolvent set of a self-adjoint operator A and each of its associated left-definite operators $A_{r}(r>0)$ are identical.

THEOREM 2.6. (see [8, Theorem 3.6]) For each $r>0$, let A_{r} denote the $r^{\text {th }}$ leftdefinite operator associated with the self-adjoint operator A that is bounded below by $k I$, where $k>0$. Then
(a) the point spectra of A and A_{r} coincide; i.e. $\sigma_{p}\left(A_{r}\right)=\sigma_{p}(A)$;
(b) the continuous spectra of A and A_{r} coincide; i.e. $\sigma_{c}\left(A_{r}\right)=\sigma_{c}(A)$;
(c) the resolvent sets of A and A_{r} are equal; i.e. $\rho\left(A_{r}\right)=\rho(A)$.

We refer the reader to [8] for other theorems, and examples, associated with the general left-definite theory of self-adjoint operators A that are bounded below.
3. The Fourier Operator A and its Properties. From here on, we let

$$
\begin{equation*}
H:=L^{2}[a, b] \tag{3.1}
\end{equation*}
$$

where $-\infty<a<b<\infty$, denote the classical Hilbert space of (equivalence classes of) Lebesgue measurable functions $f:[a, b] \rightarrow \mathbb{C}$ satisfying $\int_{a}^{b}|f(x)|^{2} d x<\infty$ with inner product

$$
(f, g):=\int_{a}^{b} f(x) \bar{g}(x) d x \quad(f, g \in H)
$$

and associated norm

$$
\|f\|=(f, f)^{1 / 2} \quad(f \in H)
$$

Fix $k>0$ and let $\ell[\cdot]$ denote the regular differential expression defined by

$$
\begin{equation*}
\ell[f](x):=-f^{\prime \prime}(x)+k f(x) \quad(x \in[a, b]) \tag{3.2}
\end{equation*}
$$

The operator A that we deal with in this paper is defined as

$$
\left\{\begin{array}{l}
\mathcal{D}(A)=\left\{f:[a, b] \rightarrow \mathbb{C} \mid f, f^{\prime} \in A C[a, b] ; f^{\prime \prime} \in H ; f(a)=f(b) ; f^{\prime}(a)=f^{\prime}(b)\right\} \tag{3.3}\\
A f=\ell[f] \quad(f \in \mathcal{D}(A))
\end{array}\right.
$$

It is well known (see, for example, [10] or [14]) that A is self-adjoint in H and has a discrete spectrum $\sigma(A)$. A calculation shows that the eigenvalues of A are given by

$$
\begin{equation*}
\lambda_{m}:=\left(\frac{2 m \pi}{b-a}\right)^{2}+k \quad\left(m \in \mathbb{N}_{0}\right) \tag{3.4}
\end{equation*}
$$

The eigenvalue $\lambda_{0}=k$ is simple and each nonzero constant is an eigenfunction; we let

$$
\begin{equation*}
y_{0}(x)=1 / \sqrt{2} \tag{3.5}
\end{equation*}
$$

(an explanation for this choice of non-zero constant is made clear in (3.7) below). For $m \in \mathbb{N}$, the general solution of $\ell[f](x)=\lambda_{m} f(x)$ on $[a, b]$ is

$$
f_{m}(x)=c_{m, 1} \cos \left(\frac{2 m \pi}{b-a} x\right)+c_{m, 2} \sin \left(\frac{2 m \pi}{b-a} x\right)
$$

and

$$
\begin{cases}y_{m, 1}(x)=\cos \left(\frac{2 m \pi}{b-a} x\right) & (m \in \mathbb{N}) \tag{3.6}\\ y_{m, 2}(x)=\sin \left(\frac{2 m \pi}{b-a} x\right) & (m \in \mathbb{N})\end{cases}
$$

form a basis for the eigenspace associated with λ_{m} for each $m \in \mathbb{N}$. It is well known (see [11, Chapter 4]) that the collection of eigenfunctions

$$
\left\{y_{0}\right\} \cup\left\{y_{m, 1}\right\}_{m \in \mathbb{N}} \cup\left\{y_{m, 2}\right\}_{m \in \mathbb{N}}
$$

forms a complete orthogonal set in H. In fact, a calculation shows that

$$
\begin{equation*}
\left\|y_{0}\right\|=\left\|y_{m, j}\right\|=\sqrt{\frac{b-a}{2}} \quad(m \in \mathbb{N} ; j=1,2) \tag{3.7}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
E:=\left\{z_{m, 1}\right\}_{m \in \mathbb{N}_{0}} \cup\left\{z_{m, 2}\right\}_{m \in \mathbb{N}} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{cases}z_{m, 1}= \begin{cases}1 / \sqrt{b-a} & \text { if } m=0 \\ \sqrt{\frac{2}{b-a}} \cos \left(\frac{2 m \pi}{b-a} x\right) & \text { if } m \in \mathbb{N}\end{cases} \tag{3.9}\\ z_{m, 2}=\sqrt{\frac{2}{b-a} \sin \left(\frac{2 m \pi}{b-a} x\right)} & (m \in \mathbb{N})\end{cases}
$$

is a complete orthonormal basis in $L^{2}[a, b]$. By re-ordering, for simplicity purposes, we write

$$
\begin{equation*}
E=\left\{e_{m} \mid m \in \mathbb{N}_{0}\right\}=\left\{z_{m, 1}\right\}_{m \in \mathbb{N}_{0}} \cup\left\{z_{m, 2}\right\}_{m \in \mathbb{N}} \tag{3.10}
\end{equation*}
$$

as the complete set of orthonormal eigenvectors of A given in (3.8). Furthermore, when referring to $e_{m} \in E$, we shall assume that e_{m} is an eigenfunction of A corresponding to the eigenvalue $\widetilde{\lambda}_{m} \in\left\{\lambda_{m} \mid m \in \mathbb{N}_{0}\right\}$, where λ_{m} is defined in (3.4).

For later purposes, we note that for any eigenfunction $e_{m} \in E$, we have

$$
\begin{equation*}
e_{m}^{(j)}(a)=e_{m}^{(j)}(b) \quad(j=0,1, \ldots) \tag{3.11}
\end{equation*}
$$

We remind the reader of the following classical expansion theorem (see [11, Chapter 4]) for functions $f \in L^{2}[a, b]$ in terms of the eigenfunctions of A.

THEOREM 3.1. Let $f \in L^{2}[a, b]$; for each $N \in \mathbb{N}$, define the partial sums

$$
s_{N}(f)(x)=\sum_{m=0}^{N} a_{m}(f) \cos \left(\frac{2 m \pi}{b-a} x\right)+\sum_{m=1}^{N} b_{m}(f) \sin \left(\frac{2 m \pi}{b-a} x\right) \quad(x \in[a, b])
$$

where

$$
\begin{gather*}
a_{0}(f):=\left(f, z_{0,1}\right)=\frac{1}{\sqrt{b-a}} \int_{a}^{b} f(x) d x \tag{3.12}\\
a_{m}(f):=\left(f, z_{m, 1}\right)=\sqrt{\frac{2}{b-a}} \int_{a}^{b} f(x) \cos \left(\frac{2 m \pi}{b-a} x\right) d x \quad(m \in \mathbb{N}), \tag{3.13}
\end{gather*}
$$

and

$$
\begin{equation*}
b_{m}(f):=\left(f, z_{m, 2}\right)=\sqrt{\frac{2}{b-a}} \int_{a}^{b} f(x) \sin \left(\frac{2 m \pi}{b-a} x\right) d x \quad(m \in \mathbb{N}) \tag{3.14}
\end{equation*}
$$

are the Fourier coefficients of f corresponding to the orthonormal basis E. Then

$$
\left\|f-s_{N}(f)\right\| \rightarrow 0 \text { as } N \rightarrow \infty
$$

and

$$
\|f\|^{2}=\sum_{m=0}^{\infty}\left|a_{m}(f)\right|^{2}+\sum_{m=1}^{\infty}\left|b_{m}(f)\right|^{2}
$$

For $f \in \mathcal{D}(A)$, we see from integration by parts and the boundary conditions in (3.3) that

$$
\begin{aligned}
(A f, f) & =\int_{a}^{b}\left[-f^{\prime \prime}(x)+k f(x)\right] \bar{f}(x) d x \\
& =-\left.f^{\prime}(x) \bar{f}(x)\right|_{a} ^{b}+\int_{a}^{b}\left[\left|f^{\prime}(x)\right|^{2}+k|f(x)|^{2}\right] d x \\
& =\int_{a}^{b}\left[\left|f^{\prime}(x)\right|^{2}+k|f(x)|^{2}\right] d x \\
& \geq k \int_{a}^{b}|f(x)|^{2} d x=k(f, f)
\end{aligned}
$$

that is, A is bounded below by $k I$ in H. Consequently, the left-definite theory discussed in the last section can be applied to this operator A. This analysis is made in the next section.
4. The Left-Definite Spaces and Operators Associated with (H, A). Let the Hilbert space H be given by (3.1) and let A be the self-adjoint differential operator in H defined in (3.3). In this section we use the theory given in Section 2 to explicitly construct the leftdefinite spaces H_{n} and the left-definite operators A_{n} associated with the pair (H, A), for positive integer values of n. We start with the determination of the integral powers of the differential expression $\ell[\cdot]$, defined in (3.2), given inductively by

$$
\ell^{2}[y]=\ell[\ell[y]], \ell^{n}[y]=\ell\left[\ell^{n-1}[y]\right], n \in \mathbb{N}
$$

Lemma 4.1. For each $n \in \mathbb{N}$,

$$
\begin{equation*}
\ell^{n}[y]=\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} k^{n-j} y^{(2 j)} \tag{4.1}
\end{equation*}
$$

Proof. We prove (4.1) by induction on $n \in \mathbb{N}$. This formula is evident for $n=1$ so assume that the formula holds for $n-1$. Then

$$
\begin{align*}
\ell^{n}[y] & =\ell\left[\ell^{n-1}[y]\right]=\ell\left(\sum_{j=0}^{n-1}(-1)^{j}\binom{n-1}{j} k^{n-1-j} y^{(2 j)}\right) \\
& =-\sum_{j=0}^{n-1}(-1)^{j}\binom{n-1}{j} k^{n-1-j} y^{(2 j+2)}+\sum_{j=0}^{n-1}(-1)^{j}\binom{n-1}{j} k^{n-j} y^{(2 j)} \tag{4.2}
\end{align*}
$$

Since $\binom{n-1}{j-1}+\binom{n-1}{j}=\binom{n}{j}$, we see that the coefficient of $y^{(2 j)}(0 \leq j \leq n)$ in (4.2) is

$$
(-1)^{j}\binom{n-1}{j-1} k^{n-j}+(-1)^{j}\binom{n-1}{j} k^{n-j}=(-1)^{j}\binom{n}{j} k^{n-j}
$$

this completes the proof.
For example,

$$
\begin{equation*}
\ell^{2}[y]=y^{(4)}-2 k y^{\prime \prime}+k^{2} y \tag{4.3}
\end{equation*}
$$

and

$$
\ell^{5}[y]=-y^{(10)}+5 k y^{(8)}-10 k^{2} y^{(6)}+10 k^{3} y^{(4)}-5 k^{4} y^{\prime \prime}+k^{5} y
$$

Definition 4.2. For $n \in \mathbb{N}$, define
(i) $\widetilde{V}_{n}:=\left\{f:[a, b] \rightarrow \mathbb{C} \mid f^{(j)} \in A C[a, b](j=0,1, \ldots, n-1) ; f^{(n)} \in L^{2}[a, b]\right\}$;
(ii) $V_{n}:=\left\{f \in \widetilde{V}_{n} \mid f^{(j)}(a)=f^{(j)}(b)(j=0,1, \ldots, n-1)\right\}$;
(iii) $(f, g)_{n}:=\sum_{j=0}^{n}\binom{n}{j} k^{n-j} \int_{a}^{b} f^{(j)}(x) \bar{g}^{(j)}(x) d x \quad\left(f, g \in \widetilde{V}_{n}\right)$;
(iv) $\|f\|_{n}:=(f, f)_{n}^{1 / 2}$;
(v) $\widetilde{H}_{n}:=\left(\widetilde{V}_{n},(\cdot, \cdot)_{n}\right)$;
(vi) $H_{n}:=\left(V_{n},(\cdot, \cdot)_{n}\right)$.

REMARK 4.3. We note that both V_{n} and \widetilde{V}_{n} are vector subspaces of $L^{2}[a, b]$ and $V_{n} \subset$ \widetilde{V}_{n}. Furthermore, it is clear that $(\cdot, \cdot)_{n}$ is an inner product on both $V_{n} \times V_{n}$ and $\widetilde{V}_{n} \times \widetilde{V}_{n}$.

REMARK 4.4. Notice that the inner product $(\cdot, \cdot)_{n}$ is generated by the $n^{\text {th }}$ integral power $\ell^{n}[\cdot]$ of the differential expression $\ell[\cdot]$; indeed, see (4.1) and item (v) in Definition 2.1.

REMARK 4.5. From (3.11), we see that E, the set of orthonormal eigenfunctions of A given in (3.10), is contained in H_{n} for each $n \in \mathbb{N}$. In Theorem 4.5 below we show that E is a complete orthogonal set in each space H_{n}. Theorem 4.9 shows that H_{n} is the $n^{\text {th }}$ left-definite space associated with the pair (H, A).

Theorem 4.6. For each $n \in \mathbb{N}, \widetilde{H}_{n}$ is a Hilbert space.
Proof. We show that \widetilde{H}_{n} is equivalent to the well-known (see [7]) Sobolev-Hilbert space $\left(W_{n},\langle,\rangle_{n}\right)$, where

$$
\begin{equation*}
W_{n}=\left\{f \in H \mid f^{(n-1)} \in A C[a, b], f^{(n)} \in H\right\} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle f, g\rangle_{n}=\sum_{i=0}^{n} \int_{a}^{b} f^{(i)}(x) \overline{g^{(i)}(x)} d x,\left(f, g \in W_{n}\right) \tag{4.5}
\end{equation*}
$$

Note that $\langle\cdot, \cdot\rangle$ is well defined since $f, f^{(n)} \in H$ implies ${\underset{\sim}{f}}^{(i)} \in H$ for $i=1, \ldots, n-1$ (see [6]) and it is an inner product on W_{n}. Hence the sets \widetilde{H}_{n} and W_{n} are equal. Their
equivalence as Hilbert spaces then follows from the equivalence of the inner products $\langle f, g\rangle_{n}$ and $(\cdot, \cdot)_{n}$ which is clear.

We are now in position to prove the following theorem.
TheOrem 4.7. For each $n \in \mathbb{N}$, the space H_{n}, defined in Definition 4.2, is a Hilbert space.

Proof. We need only show that V_{n} is closed in W_{n}. Suppose $\left\{f_{k}\right\} \subset V_{n}$ and

$$
f_{k} \rightarrow f \text { in } W
$$

Then

$$
f_{k}^{(i)} \rightarrow f^{(i)} \text { in } H,(i=0,1, \ldots, n)
$$

and

$$
0=f_{k}^{(i)}(b)-f_{k}^{(i)}(a)=\int_{a}^{b} f_{k}^{(i+1)}(x) d x,(i=0,1, \ldots, n-1)
$$

From the Schwarz inequality

$$
\left(\int_{a}^{b}\left|f_{k}^{(i)}(x)-f^{(i)}(x)\right| d x\right)^{2} \leq(b-a) \int_{a}^{b}\left|f_{k}^{(i)}(x)-f^{(i)}(x)\right|^{2} d x
$$

and, from the convergence of $f_{k}^{(i)} \rightarrow f^{(i)}$ in H, it follows that $\int_{a}^{b} f_{k}^{(i)}(x) d x \rightarrow \int_{a}^{b} f^{(i)}(x) d x$. However $\int_{a}^{b} f_{k}^{(i)}(x) d x=0$ so that $\int_{a}^{b} f^{(i)}(x) d x=0$ for $i=0,1, \ldots, n-1$. Hence $f \in V_{n}$ and thus V_{n} is closed in W_{n}.

Let $e_{m} \in E$, where E is the set of eigenfunctions of A, defined in (3.10), and let $f \in V_{n}$. From (3.11), (4.1), integration by parts, and the definition of V_{n}, we see that

$$
\begin{align*}
\left(A^{n} e_{m}, f\right) & =\left(\ell^{n}\left[e_{m}\right], f\right) \\
& =\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} k^{n-j} \int_{a}^{b} e_{m}^{(2 j)}(x) \bar{f}(x) d x \\
& =\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} k^{n-j}\left[\left.\sum_{s=0}^{j-1}(-1)^{s} e_{m}^{(2 j-1-s)}(x) \bar{f}^{(s)}(x)\right|_{a} ^{b}\right. \tag{4.6}\\
& \left.+(-1)^{j} \int_{a}^{b} e_{m}^{(j)}(x) \bar{f}^{(j)}(x) d x\right] \\
& =\sum_{j=0}^{n}\binom{n}{j} k^{n-j} \int_{a}^{b} e_{m}^{(j)}(x) \bar{f}^{(j)}(x) d x \\
& =\left(e_{m}, f\right)_{n} .
\end{align*}
$$

In particular, if $\tilde{\lambda}_{m} \in\left\{\left.\left(\frac{2 m \pi}{b-a}\right)^{2}+k \right\rvert\, m \in \mathbb{N}_{0}\right\}$ is the eigenvalue of A associated with the eigenfunction e_{m}, we see from (4.6) that $\tilde{\lambda}_{m}^{n}\left(e_{m}, f\right)=\left(e_{m}, f\right)_{n}$ and, in particular, from (3.7)

$$
\begin{equation*}
\left(A^{n} e_{m}, e_{r}\right)=\widetilde{\lambda}_{m}^{n}\left(e_{m}, e_{r}\right)=\widetilde{\lambda}_{m}^{n}\left(\frac{b-a}{2}\right) \delta_{m, r} \quad(m, r=0,1, \ldots) \tag{4.7}
\end{equation*}
$$

Comparing (4.6) (with $f=e_{r}$) and (4.7), we obtain the following theorem.
THEOREM 4.8. The set E of eigenfunctions of A, defined in (3.9) and (3.10), are orthogonal in each Hilbert space H_{n}. In fact

$$
\left(e_{m}, e_{r}\right)_{n}=\widetilde{\lambda}_{m}^{n}\left(\frac{b-a}{2}\right) \delta_{m, r} \quad(m, r=0,1, \ldots)
$$

where $\widetilde{\lambda}_{m} \in\left\{\left.\left(\frac{2 m \pi}{b-a}\right)^{2}+k \right\rvert\, m \in \mathbb{N}_{0}\right\}$ is the eigenvalue of A associated with the eigenfunction e_{m}. More specifically, with $y_{0}(x), y_{n, 1}(x)$, and $y_{n, 2}(x)(n \in \mathbb{N})$, defined in (3.5) and (3.6) respectively, it is the case that, for $m \in \mathbb{N}$ and $j=1,2$,

$$
\begin{equation*}
\left\|y_{0}\right\|_{n}=k^{n / 2}\left(\frac{b-a}{2}\right)^{1 / 2} ;\left\|y_{m, j}\right\|_{n}=\left(\left(\frac{2 m \pi}{b-a}\right)^{2}+k\right)^{n / 2}\left(\frac{b-a}{2}\right)^{1 / 2} \tag{4.8}
\end{equation*}
$$

Consequently, for each $n \in N$, the set

$$
\begin{equation*}
E_{n}:=\left\{Z_{m, n, 1}\right\}_{m \in \mathbb{N}_{0}} \cup\left\{Z_{m, n, 2}\right\}_{m \in \mathbb{N}} \tag{4.9}
\end{equation*}
$$

where

$$
\begin{cases}Z_{m, n, 1}(x)=\left\{\begin{array}{ll}
\frac{1}{k^{n / 2} \sqrt{b-a}} & \text { if } m=0 \\
\sqrt{\frac{2}{b-a}} \frac{1}{\sqrt{\left(\left(\frac{2 m \pi}{b-a}\right)^{2}+k\right)^{n}}} \cos \left(\frac{2 m \pi}{b-a} x\right) & \text { if } m \in \mathbb{N} \\
Z_{m, n, 2}(x)=\sqrt{\frac{2}{b-a}} \frac{1}{\sqrt{\left(\left(\frac{2 m \pi}{b-a}\right)^{2}+k\right)^{n}}} \sin \left(\frac{2 m \pi}{b-a} x\right) & \text { if } m \in \mathbb{N} \tag{4.10}
\end{array}\right. \text { }\end{cases}
$$

is an orthonormal set in H_{n}.
Later in this section (see Theorem 4.10), we prove that E_{n} is, in fact, a complete orthonormal set in H_{n} for each $n \in \mathbb{N}$.

For later purposes, we need the following equality involving finite linear combinations of eigenfunctions of A - the so-called trigonometric polynomials. Let N_{1}, M_{1}, N, and M be non-negative integers with $N_{1} \leq N$ and $M_{1} \leq M$ and let $\alpha_{m}, \beta_{r} \in \mathbb{C}\left(m=N_{1}, \ldots, N\right.$; $\left.r=M_{1}, \ldots, M\right)$. Let

$$
p(x)=\sum_{m=N_{1}}^{N} \alpha_{m} e_{m}(x), q(x)=\sum_{r=M_{1}}^{M} \beta_{r} e_{r}(x)
$$

Then $p, q \in H_{n}$ for all $n \in \mathbb{N}$ and, by (4.6) and linearity, we see that

$$
\begin{align*}
\left(A^{n} p, q\right) & =\sum_{m=N_{1}}^{N} \sum_{r=M_{1}}^{M} \alpha_{m} \bar{\beta}_{r}\left(A^{n} e_{m}, e_{r}\right) \\
& =\sum_{m=N_{1}}^{N} \sum_{r=M_{1}}^{M} \alpha_{m} \bar{\beta}_{r}\left(e_{m}, e_{r}\right)_{n} \tag{4.11}\\
& =\left(\sum_{m=N_{1}}^{N} \alpha_{m} e_{m}, \sum_{r=M_{1}}^{M} \beta_{r} e_{r}\right)_{n} \\
& =(p, q)_{n} .
\end{align*}
$$

We are now in position to prove the following main theorem; we remind the reader of the definitions of $V_{n},(\cdot, \cdot)_{n}$, and H_{n}, given in Definition 4.2.

Theorem 4.9. For each $n \in \mathbb{N}$, let

$$
\begin{equation*}
H_{n}=\left(V_{n},(\cdot, \cdot)_{n}\right) \tag{4.12}
\end{equation*}
$$

be defined by
(4.13) $\quad V_{n}:=\left\{f:[a, b] \rightarrow \mathbb{C} \mid f^{(j)} \in A C[a, b], f^{(j)}(a)=f^{(j)}(b)(j=0,1, \ldots, n-1)\right.$;

$$
\left.f^{(n)} \in L^{2}[a, b]\right\}
$$

and

$$
\begin{equation*}
(f, g)_{n}:=\sum_{j=0}^{n}\binom{n}{j} k^{n-j} \int_{a}^{b} f^{(j)}(x) \bar{g}^{(j)}(x) d x \quad\left(f, g \in V_{n}\right) \tag{4.14}
\end{equation*}
$$

Then H_{n} is the $n^{\text {th }}$ left-definite space associated with the pair (H, A).
Proof. Let $n \in \mathbb{N}$. We are required to establish properties (i)-(v) in Definition 2.1.
(i) H_{n} is a Hilbert space

This is proved in Theorem 4.7.
(ii) $\mathcal{D}\left(A^{n}\right) \subset V_{n}$

Let $\overline{f \in \mathcal{D}\left(A^{n}\right)}$. Since the set $E=\left\{e_{m} \mid m \in \mathbb{N}_{0}\right\}$ of eigenfunctions of A is a complete orthonormal set in $L^{2}[a, b]$, we see that

$$
\begin{equation*}
p_{j}:=\sum_{m=0}^{j} c_{m} e_{m} \rightarrow f \text { as } j \rightarrow \infty \text { in } L^{2}[a, b] \tag{4.15}
\end{equation*}
$$

where $\left\{c_{m}\right\}$ are the Fourier coefficients of f in $L^{2}[a, b]$, defined by

$$
c_{m}:=\int_{a}^{b} f(t) e_{m}(t) d t=\left(f, e_{m}\right) \quad\left(m \in \mathbb{N}_{0}\right)
$$

Since $A^{n} f \in L^{2}[a, b]$, we also have

$$
\begin{equation*}
\sum_{m=0}^{j} d_{m} e_{m} \rightarrow A^{n} f \text { as } j \rightarrow \infty \text { in } L^{2}[a, b] \tag{4.16}
\end{equation*}
$$

where

$$
d_{m}=\left(A^{n} f, e_{m}\right) \quad\left(m \in \mathbb{N}_{0}\right)
$$

With $\widetilde{\lambda}_{m}$ denoting the eigenvalue of A associated with e_{m}, we see from the self-adjointness of A that

$$
d_{m}=\left(A^{n} f, e_{m}\right)=\left(f, A^{n} e_{m}\right)=\tilde{\lambda}_{m}^{n}\left(f, e_{m}\right)=\tilde{\lambda}_{m}^{n} c_{m}
$$

Substituting this identity into (4.16), and using the linearity of A^{n}, we obtain

$$
\begin{equation*}
A^{n} p_{j} \rightarrow A^{n} f \text { as } j \rightarrow \infty \text { in } L^{2}[a, b] \tag{4.17}
\end{equation*}
$$

where p_{j} is defined in (4.15). From (4.11), (4.15), and (4.17), it follows that

$$
\begin{aligned}
\left\|p_{j}-p_{r}\right\|_{n}^{2} & =\left(A^{n}\left(p_{j}-p_{r}\right), p_{j}-p_{r}\right) \\
& \rightarrow 0 \text { as } j, r \rightarrow \infty
\end{aligned}
$$

that is to say, $\left\{p_{j}\right\}_{j \in \mathbb{N}}$ is Cauchy in H_{n}. From the completeness of H_{n}, there exists $g \in V_{n} \subset$ $L^{2}[a, b]$ such that

$$
p_{j} \rightarrow g \text { in } H_{n}
$$

From the inequality

$$
\left\|p_{j}-g\right\|_{n}^{2} \geq k^{n}\left\|p_{j}-g\right\|^{2}
$$

we see that

$$
\begin{equation*}
p_{j} \rightarrow g \text { as } j \rightarrow \infty \text { in } L^{2}[a, b] . \tag{4.18}
\end{equation*}
$$

Comparing (4.15) and (4.18), we see that $f=g \in V_{n}$; consequently, $\mathcal{D}\left(A^{n}\right) \subset V_{n}$ as required.
(iii) $\mathcal{D}\left(A^{n}\right)$ is dense in H_{n}

Since E, defined in (3.10), is contained in $\mathcal{D}\left(A^{n}\right)$, it suffices to show that E is a complete orthogonal set in H_{n}. From this, it will follow that the vector subspace $T \subset \mathcal{D}\left(A^{n}\right)$ of all trigonometric polynomials (that is, all finite linear combinations of elements from the set E defined in (3.10)) is dense in H_{n} and, consequently, $\mathcal{D}\left(A^{n}\right)$ is dense in H_{n}. To this end, suppose

$$
\left(e_{m}, f\right)_{n}=0 \quad\left(m \in \mathbb{N}_{0}\right)
$$

for some $f \in H_{n}$. From (4.6), we see that

$$
0=\left(e_{m}, f\right)_{n}=\left(A^{n} e_{m}, f\right)=\tilde{\lambda}_{m}^{n}\left(e_{m}, f\right)
$$

where $\widetilde{\lambda}_{m}$ is the eigenvalue associated with e_{m}. Since $\widetilde{\lambda}_{m}>0$, we see that

$$
\begin{equation*}
\left(e_{m}, f\right)=0 \quad\left(m \in \mathbb{N}_{0}\right) \tag{4.19}
\end{equation*}
$$

As remarked in Section 3, E is a complete orthonormal set in $L^{2}[a, b]$; consequently, (4.19) implies that $f=0$ in $L^{2}[a, b]$. From this, it is clear that $f=0$ in H_{n}, thereby completing the proof that E is a complete orthogonal set in H_{n}.
(iv) $(f, f)_{n} \geq k^{n}(f, f)$ for all $f \in V_{n}$

This is clear from the definition of $(\cdot, \cdot)_{n}$:

$$
\begin{aligned}
(f, f)_{n} & =\sum_{j=0}^{n}\binom{n}{j} k^{n-j} \int_{a}^{b}\left|f^{(j)}(x)\right|^{2} d x \\
& \geq k^{n} \int_{a}^{b}\left|f^{(j)}(x)\right|^{2} d x=k^{n}(f, f)
\end{aligned}
$$

(v) $\left(A^{n} f, g\right)=(f, g)_{n}$ for all $f \in \mathcal{D}\left(A^{n}\right)$ and $g \in V_{n}$

Let $\overline{f \in \mathcal{D}\left(A^{n}\right) \text { and } g \in V_{n} \text {. From (4.11), we see that }}$

$$
\begin{equation*}
\left(A^{n} p, q\right)=(p, q)_{n} \tag{4.20}
\end{equation*}
$$

for all trigonometric polynomials

$$
p=\sum_{m=0}^{N} \alpha_{m} e_{m}, q=\sum_{m=0}^{M} \beta_{m} e_{m}
$$

From part (iii) of this proof, we see that the space T of all trigonometric polynomials is dense in H_{n}. Hence there exists $\left\{p_{j}\right\}_{j \in \mathbb{N}_{0}},\left\{q_{j}\right\}_{j \in \mathbb{N}_{0}} \subset T$ such that

$$
\begin{equation*}
p_{j} \rightarrow f, q_{j} \rightarrow g \text { as } j \rightarrow \infty \text { in } H_{n} \tag{4.21}
\end{equation*}
$$

Since convergence in H_{n} implies convergence in $L^{2}[a, b]$ (from (iv) in Definition 2.1), we see that

$$
\begin{equation*}
p_{j} \rightarrow f, q_{j} \rightarrow g \text { as } j \rightarrow \infty \text { in } L^{2}[a, b] \tag{4.22}
\end{equation*}
$$

Moreover, from part (ii) of this proof, we see that

$$
\begin{equation*}
A^{n} p_{j} \rightarrow A^{n} f \text { as } j \rightarrow \infty \text { in } L^{2}[a, b] \tag{4.23}
\end{equation*}
$$

Consequently, from (4.20), (4.21), (4.22), and (4.23), we see that

$$
\left(A^{n} f, g\right)=\lim _{j \rightarrow \infty}\left(A^{n} p_{j}, q_{j}\right)=\lim _{j \rightarrow \infty}\left(p_{j}, q_{j}\right)_{n}=(f, g)_{n}
$$

This completes the proof of (v) and finishes the proof of the theorem.
The following result, part of which is proved in step (iii) of the above theorem, is the analogous result for the classical Fourier expansion theorem in $L^{2}[a, b]$ stated in Theorem 3.1 and further strengthens Theorem 4.8 for the Hilbert-Sobolev space setting H_{n}. In particular, note the identities in (4.26) and (4.27); these formulae relate the Fourier coefficients of f relative to the orthonormal basis E_{n} of $H_{n} \subset L^{2}[a, b]$ to the Fourier coefficients of f relative to the orthonormal basis E of $L^{2}[a, b]$.

Theorem 4.10. (Fourier Expansion Theorem in Left-Definite Spaces) For each $n \in \mathbb{N}$, let

$$
E_{n}=\left\{Z_{m, n, 1}\right\}_{m \in \mathbb{N}_{0}} \cup\left\{Z_{m, n, 2}\right\}_{m \in \mathbb{N}}
$$

be as in (4.9) and (4.10). Then E_{n} is a complete orthonormal set in H_{n}. Furthermore, let $f \in H_{n} \subset L^{2}[a, b]$ and, for each $N \in \mathbb{N}$, define the partial sums

$$
S_{N, n}(f)(x)=\sum_{m=0}^{N} A_{m, n}(f) \cos \left(\frac{2 m \pi}{b-a} x\right)+\sum_{m=1}^{N} B_{m, n}(f) \sin \left(\frac{2 m \pi}{b-a} x\right) \quad(x \in[a, b])
$$

where $\left\{A_{m, n}(f)\right\}_{m \in \mathbb{N}_{0}}$ and $\left\{B_{m, n}(f)\right\}_{m \in \mathbb{N}}$ are the Fourier coefficients of f relative to E_{n} defined by

$$
\begin{equation*}
A_{m, n}(f):=\left(f, Z_{m, n, 1}\right)_{n} \quad\left(m \in \mathbb{N}_{0}\right) \tag{4.24}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{m, n}(f):=\left(f, Z_{m, n, 2}\right)_{n} \quad(m \in \mathbb{N}) \tag{4.25}
\end{equation*}
$$

Then
(a) $\left\|f-S_{N, n}(f)\right\|_{n} \rightarrow 0$ as $N \rightarrow \infty ;$
(b) $\|f\|_{n}^{2}=\sum_{m=0}^{\infty}\left|A_{m, n}(f)\right|^{2}+\sum_{m=1}^{\infty}\left|B_{m, n}(f)\right|^{2}$;
(c)

$$
\begin{array}{ll}
A_{m, n}(f)=a_{m}(f) \lambda_{m}^{n / 2} & \left(m \in \mathbb{N}_{0}\right) \\
B_{m, n}(f)=b_{m}(f) \lambda_{m}^{n / 2} & (m \in \mathbb{N}) \tag{4.27}
\end{array}
$$

where $\left\{a_{m}(f)\right\}_{m \in \mathbb{N}_{0}}$ and $\left\{b_{m}(f)\right\}_{m \in \mathbb{N}}$ are the Fourier coefficients of f, defined in (3.12), (3.13), and (3.14), relative to the orthonormal basis E, given in (3.8) and (3.9), in $L^{2}[a, b]$, and where $\left\{\lambda_{m}\right\}_{m \in \mathbb{N}_{0}}$ are the eigenvalues of A defined in (3.4).

Proof. The proofs of parts (a) and (b) are standard for any complete orthonormal set in a Hilbert space; see [11, Theorem 4.18]. With regards to (c), a calculation shows

$$
\begin{equation*}
A_{0, n}(f)=\frac{k^{n / 2}}{\sqrt{b-a}} \int_{a}^{b} f(x) d x=a_{0}(f) k^{n / 2}=a_{0}(f) \lambda_{0}^{n / 2} \tag{4.28}
\end{equation*}
$$

For $m \in \mathbb{N}$,

$$
\begin{equation*}
A_{m, n}(f)=\sqrt{\frac{2}{b-a}} \frac{1}{\sqrt{\left(\left(\frac{2 m \pi}{b-a}\right)^{2}+k\right)^{n}}} \sum_{j=0}^{n}\binom{n}{j} k^{n-j} \int_{a}^{b} f^{(j)}(x) \cos ^{(j)}\left(\frac{2 m \pi}{b-a} x\right) d x \tag{4.29}
\end{equation*}
$$

Moreover, since

$$
\begin{aligned}
& \int_{a}^{b} f^{(j)}(x) \sin ^{(j)}\left(\frac{2 m \pi}{b-a} x\right) d x=\left(\frac{2 m \pi}{b-a}\right)^{2 j} \int_{a}^{b} f(x) \sin \left(\frac{2 m \pi}{b-a} x\right) d x \quad\left(j \in \mathbb{N}_{0}\right) \\
& \int_{a}^{b} f^{(j)}(x) \cos ^{(j)}\left(\frac{2 m \pi}{b-a} x\right) d x=\left(\frac{2 m \pi}{b-a}\right)^{2 j} \int_{a}^{b} f(x) \cos \left(\frac{2 m \pi}{b-a} x\right) d x \quad\left(j \in \mathbb{N}_{0}\right)
\end{aligned}
$$

and

$$
\sum_{j=0}^{n}\binom{n}{j} k^{n-j}\left(\frac{2 m \pi}{b-a}\right)^{2 j}=\left(\left(\frac{2 m \pi}{b-a}\right)^{2}+k\right)^{n}=\lambda_{m}^{n}
$$

we see from (4.29) that

$$
\begin{equation*}
A_{m, n}(f)=\sqrt{\frac{2}{b-a}} \lambda_{m}^{n / 2} \int_{a}^{b} f(x) \cos \left(\frac{2 m \pi}{b-a} x\right) d x=a_{m}(f) \lambda_{m}^{n / 2} \quad(m \in \mathbb{N}) \tag{4.30}
\end{equation*}
$$

together, (4.28) and (4.30) establish (4.26); this completes the proof.
REMARK 4.11. From (4.26) and (4.27) it follows readily that

$$
\begin{equation*}
a_{m}(f)=o\left(m^{-n}\right) \text { as } m \rightarrow \infty \tag{4.31}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{m}(f)=o\left(m^{-n}\right) \text { as } m \rightarrow \infty \tag{4.32}
\end{equation*}
$$

for any $f \in H_{n}$. Indeed, to establish (4.31), note that since

$$
\lim _{m \rightarrow \infty} A_{m, n}(f)=0
$$

we see, from (4.26), that

$$
\begin{aligned}
0 & =\lim _{m \rightarrow \infty} a_{m}(f) \lambda_{m}^{n / 2}=\frac{1}{\left(\frac{2 \pi}{b-a}\right)^{n}} \lim _{m \rightarrow \infty} m^{n} a_{m}(f) \lambda_{m}^{n / 2} m^{-n} \\
& =\frac{1}{\left(\frac{2 \pi}{b-a}\right)^{n}} \lim _{m \rightarrow \infty} m^{n} a_{m}(f) \sqrt{\left(\left(\frac{2 \pi}{b-a}\right)^{2}+\frac{k}{m^{2}}\right)^{n}} \\
& =\lim _{m \rightarrow \infty} m^{n} a_{m}(f)
\end{aligned}
$$

We note that (4.31) and (4.32) can also be seen by n integrations by parts on (3.13) and (3.14) and an application of the Riemann-Lebesgue lemma (see [11, Section 5.14]). For general information on the order of magnitude of Fourier coefficients, see [5, Chapter I, Section 4].

Lastly, by combining Theorem 4.9 with Theorems 2.5 and 2.6, we obtain the following result concerning the sequence of left-definite operators $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ associated with the pair (H, A).

THEOREM 4.12. Let $n \in \mathbb{N}$ and let $H_{n}=\left(V_{n},(\cdot, \cdot)_{n}\right)$ be the $n^{\text {th }}$ left-definite operator associated with the pair (H, A). Define the operator $A_{n}: \mathcal{D}\left(A_{n}\right) \subset H_{n} \rightarrow H_{n}$ by

$$
\begin{aligned}
\mathcal{D}\left(A_{n}\right):=\left\{f:[a, b] \rightarrow \mathbb{C} \mid f^{(j)}\right. & \in A C[a, b], f^{(j)}(a)=f^{(j)}(b)(j=0,1, \ldots, n+1) ; \\
f^{(n+2)} & \left.\in L^{2}[a, b]\right\}
\end{aligned}
$$

and

$$
A_{n} f:=\ell[f] \quad\left(f \in \mathcal{D}\left(A_{n}\right)\right)
$$

where $\ell[\cdot]$ is the differential expression given in (3.2). Then A_{n} is the $n^{\text {th }}$ left-definite operator associated with the pair (H, A). In particular, A_{n} is self-adjoint in H_{n} and the spectrum $\sigma\left(A_{n}\right)$ is a purely discrete point spectrum given explicitly by

$$
\sigma\left(A_{n}\right)=\sigma(A)=\left\{\left.\left(\frac{2 m \pi}{b-a}\right)^{2}+k \right\rvert\, m \in \mathbb{N}_{0}\right\}
$$

5. Concluding Remarks. In this last section, we focus on some special cases concerning the operator A and the sequences of left-definite spaces $\left\{H_{n}\right\}_{n \in \mathbb{N}}$ and left-definite operators $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ obtained in the previous section.

REMARK 5.1. For an arbitrary self-adjoint operator A in a Hilbert space that is bounded below by a positive constant we see, from Theorem 2.2, that the domain $\mathcal{D}\left(A^{1 / 2}\right)$ of its positive square root $A^{1 / 2}$ is given by the first left-definite vector space V_{1}. For our specific operator A, defined in (3.3), we have the explicit characterization of this domain:

$$
\begin{equation*}
\mathcal{D}\left(A^{1 / 2}\right)=\left\{f:[a, b] \rightarrow \mathbb{C} \mid f \in A C[a, b] ; f(a)=f(b) ; f^{\prime} \in L^{2}[a, b]\right\} \tag{5.1}
\end{equation*}
$$

REMARK 5.2. From Theorem 4.12, the domain of the first left-definite operator A_{1}, which is a self-adjoint operator in the first left-definite space H_{1}, is given by

$$
\begin{aligned}
\mathcal{D}\left(A_{1}\right)=\left\{f:[a, b] \rightarrow \mathbb{C} \mid f^{(j)}\right. & \in A C[a, b] \text { and } f^{(j)}(a)=f^{(j)}(b)(j=0,1,2) ; \\
f^{(3)} & \left.\in L^{2}[a, b]\right\} .
\end{aligned}
$$

Notice that $\mathcal{D}\left(A_{1}\right)=V_{3}$ is also the domain of $A^{3 / 2}$. The domain of the second left-definite operator A_{2}, which is self-adjoint in the Hilbert space $H_{2}=\left(V_{2},(\cdot, \cdot)_{2}\right)$, defined by

$$
\begin{aligned}
V_{2}=\left\{f:[a, b] \rightarrow \mathbb{C} \mid f^{(j)}\right. & \in A C[a, b] \text { and } f^{(j)}(a)=f^{(j)}(b)(j=0,1) ; \\
f^{\prime \prime} & \left.\in L^{2}[a, b]\right\}
\end{aligned}
$$

and

$$
(f, g)_{2}=\int_{a}^{b}\left(f^{\prime \prime}(x) \bar{g}^{\prime \prime}(x)+2 k f^{\prime}(x) \bar{g}^{\prime}(x)+k^{2} f(x) \bar{g}(x)\right) d x \quad \text { (see (4.3)) }
$$

is given by

$$
\begin{aligned}
\mathcal{D}\left(A_{2}\right)=\left\{f:[a, b] \rightarrow \mathbb{C} \mid f^{(j)}\right. & \in A C[a, b] \text { and } f^{(j)}(a)=f^{(j)}(b)(j=0,1,2,3) ; \\
f^{(4)} & \left.\in L^{2}[a, b]\right\} .
\end{aligned}
$$

Observe that $V_{2}=\mathcal{D}(A)$; see (3.3). By way of another example, the domain of the third left-definite operator A_{3} is the fifth left-definite vector space V_{5}, given explicitly by

$$
\begin{aligned}
V_{5}=\left\{\left\{f:[a, b] \rightarrow \mathbb{C} \mid f^{(j)}\right.\right. & \in A C[a, b] \text { and } f^{(j)}(a)=f^{(j)}(b)(j=0,1,2,3,4) ; \\
f^{(5)} & \left.\in L^{2}[a, b]\right\} .
\end{aligned}
$$

Furthermore, $V_{5}=\mathcal{D}\left(A^{5 / 2}\right)$.
REMARK 5.3. In general, given an unbounded linear operator A, it is difficult to explicitly characterize the domains of its powers $A^{n / 2}(n \in \mathbb{N})$. However, using Theorem 2.2 together with Theorem 4.9, we quickly see that

$$
\begin{aligned}
\mathcal{D}\left(A^{n / 2}\right)=\{f:[a, b] \rightarrow \mathbb{C} \mid & f^{(j)}
\end{aligned} \in A C[a, b], f^{(j)}(a)=f^{(j)}(b)(j=0,1, \ldots, n-1) ;
$$

In particular observe that, as n increases, the number of "boundary conditions" appearing in the definition of $\mathcal{D}\left(A^{n / 2}\right)$ increases accordingly. On the other hand, observe from (5.1), that one less boundary condition is needed to describe the domain of the square root of A. Indeed, there are two boundary conditions $f(a)=f(b)$ and $f^{\prime}(a)=f^{\prime}(b)$ needed to ensure the self-adjointness of A but only $f(a)=f(b)$ is needed for $\mathcal{D}\left(A^{1 / 2}\right)$.

REFERENCES

[1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Dover, New York, 1993.
[2] W. N. Everitt, K. H. Kwon, L. L. Littlejohn, and G. J. Yoon, Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression, J. Comput. Appl. Math., to appear.
[3] W. N. Everitt, L. L. Littlejohn, and R. Wellman, The left-definite spectral theory for the classical Hermite differential equation, J. Comput. Appl. Math., 121 (2000), pp. 313-330.
[4] W. N. Everitt, L. L. Littlejohn, and R. Wellman, Legendre polynomials, Legendre-Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression, J. Comput. Appl. Math., 148 (2002), pp. 213-238.
[5] Y. KatZnElSON, An Introduction to Harmonic Analysis, Dover, New York, 1976.
[6] M. K. Kwong and A. Zettl, Norm Inequalities for Derivatives and Differences, Lecture Notes in Mathematics, 1536, Springer-Verlag, Berlin.
[7] John Locker, Functional Analysis and Two-Point Differential Operators, Pitman Research Notes in Mathematics, 144, Longmans, Harlow, Essex, 1986.
[8] L. L. Littlejohn and R. Wellman, A general left-definite theory for certain self-adjoint operators with applications to differential equations, J. Differential Equations, 181 (2002), pp. 280-339.
[9] Q. Kong, H. Wu, and A. Zettl, Left-definite Sturm-Liouville problems, J. Differential Equations, 177 (2001), pp. 1-26.
[10] M. A. NAIMARK, Linear Differential Operators II, Frederick Ungar, New York, 1968.
[11] W. Rudin, Real and Complex Analysis, 3rd edition, McGraw-Hill Series in Higher Mathematics, McGrawHill, New York, 1987.
[12] F. W. SCHÄFKE AND A. SChNEIDER, SS-Hermitesche Randeigenwertprobleme I, Math. Ann., 162 (1965), pp. 9-26.
[13] H. WEYL, Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann., 68 (1910), pp. 220-269.
[14] A. Zettl, Sturm-Liouville Problems, in Spectral Theory and Computational Methods of Sturm-Liouville Problems, D. Hinton and P. Schaefer, eds., Lecture Notes in Pure and Applied Mathematics, 191, Marcel Dekker, New York, 1997, pp. 1-104.

[^0]: *Received December 19, 2003. Accepted for publication January 10, 2005. Recommended by F. Marcellán.
 \dagger Department of Mathematics, Baylor University, One Bear Place \#97328, Waco, TX 76798-7328 (Lance_Littlejohn@baylor.edu).
 ${ }^{\ddagger}$ Department of Mathematics, Northern Illinois University, DeKalb, Illinois, 60115-2880
 (zettl@math.niu.edu).

