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AN AUGMENTED MIXED FINITE ELEMENT METHOD FOR LINEAR
ELASTICITY WITH NON-HOMOGENEOUS DIRICHLET CONDITIONS

�
GABRIEL N. GATICA

�
Abstract. We have recently developed a new augmented mixed finite element method for plane linear elasticity,

which is based on the introduction of suitable Galerkin least-squares type terms. The corresponding analysis makes
use of the first Korn inequality, and hence only null Dirichlet conditions, either on the whole boundary or on part of
it, are considered. In the present paper we extend these results to the case of non-homogeneous Dirichlet boundary
conditions. To this end, we incorporate additional consistent terms and then apply a slight extension of the classical
Korn inequality. We show that the resulting augmented formulation and the associated Galerkin scheme are well
posed. Finally, several numerical examples illustrating the good performance of the method are provided.
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1. Introduction. In [8] we present and analyze a new augmented mixed finite element
method for plane linear elasticity. Our approach is based on the introduction of the Galerkin
least-squares type terms arising from the constitutive and equilibrium equations, and from
the relation defining the rotation in terms of the displacement. We show there that the con-
tinuous and discrete versions of the augmented variational formulation are well posed, and
that the latter becomes locking-free and asymptotically locking-free for Dirichlet and mixed
boundary conditions, respectively. In the case of pure Dirichlet conditions, the augmented
formulation becomes strongly coercive, and hence arbitrary finite element subspaces can be
employed in the associated discrete scheme, which constitutes one of its main advantages with
respect to other methods. In particular, a non-feasible choice of subspaces for the Galerkin
scheme of the usual mixed formulation, namely Raviart-Thomas spaces of lowest order for
the stress tensor, piecewise linear elements for the displacement, and piecewise constants for
the rotation, can be used in our augmented method. Moreover, these subspaces yield a to-
tal number of unknowns behaving asymptotically as � times the number of triangles of the
triangulation, whereas this factor becomes ����� when the well known �	�
�
�	� from [1] is
employed. In other words, the discrete system using �	�
�
�	� introduces at large ��
�� more
degrees of freedom than our approach at each mesh, and therefore the augmented method
becomes a much cheaper alternative. Similarly the augmented scheme also becomes more
economical than ����� ; see, e.g., [6]. On the other hand, a residual based a posteriori error
analysis yielding a reliable and efficient estimator for the augmented method from [8], is pro-
vided in the recent work [4]. Nevertheless, we remark that the analysis in [8], and hence in
[4], requires the application of the first Korn inequality (see, e.g., [10, Theorem 10.1] or [5,
Corollaries 9.2.22 and 9.2.25]), and therefore only null Dirichlet boundary conditions can be
considered.

According to the above, the purpose of this paper is to extend the results from [8] to the
plane linear elasticity problem with non-homogeneous Dirichlet boundary conditions, while
keeping the same advantages from [8] in the resulting augmented formulation. The devel-
opment of the corresponding a posteriori error analysis, as done in [4], will be reported in a
separate work. The remainder of this paper is organized as follow. In Section 2 we establish�
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the dual-mixed variational formulation of our boundary value problem. Then, in Sections 3
and 4 we introduce the continuous and discrete augmented formulations, respectively, and
show that they are well posed. In particular, we prove a slight extension of the classical Korn
inequality, which is used to conclude, similarly as in [8], that the associated bilinear form
becomes strongly coercive. Finally, several numerical results are provided in Section 5.

We end this section by introducing some notation to be used throughout the paper. For
each Hilbert space � , we let �
� and �	����� be, respectively, the space of vectors and square
matrices of order � with entries in � . In addition, given � ��!#"%$�&�'�( , )*��!#",+-&.'�(0/213�4�5� , we
define the transpose tensor �367�.!8"%$9':&;(=< the trace >:?@"%�A(B��!DC �&FEHG $I&F&�< , the tensor product�J�K)L��!MC �&ON ':EHG $ &.' + &.' , and the deviator �QPR�.!S�UT G� >:?�"%�A(5V , where V is the identity matrix
of 13����� . Also, in what follows we utilize the standard terminology for Sobolev spaces and
norms, and use W , with or without subscripts, bars, tildes or hats, to denote generic constants
independent of the discretization parameters, which may take different values at different
places.

2. The dual-mixed variational formulation. Let X be a simply connected domain in13� with polygonal boundary YZ��!\[]X . Since we are interested in the mixed method of
Hellinger and Reissner, our goal is to determine the displacement ^ and stress tensor _ of
a linear elastic material occupying the region X . In other words, given a volume force `a/b c �d"eXf(hgi� and a Dirichlet datum jk/ b l Gnm �o"OYH(;gp� , we seek a symmetric tensor field _ and a
vector field ^ such that_q!qrts="O^3(=<vuHwOxA"O_0(y!zT{` in X|< and ^}!~j on YQ�(2.1)

Hereafter, s="O^3(��.! G� ",��^2�}",��^3(h6�( is the strain tensor of small deformations, uHwOx is the
usual divergence operator ����� acting along each row of the tensor, and r is the elasticity
tensor determined by Hooke’s law, that isrR)���!v��>:?�"O)�(5V��Z�3�	) �R) / b c � ",Xf(;g �4�5� <(2.2)

where ��<��}�q
 denote the corresponding Lamé constants. It is easy to see from (2.2) that r
is invertible and the tensor r�� G reduces tor � G ) �.! ���� )�T �� �y"e���B��( >:?�"O)�(5V �R)�/ b c � "eXf(hg ����� �(2.3)

We now follow the classical stress-displacement-rotation formulation (see [1] and [11])
and impose weakly the symmetry of _ through the introduction of the rotation� ��! G� "e��^�T�"e��^�(;6�( as a further unknown. In this way, multiplying by test functions
and then integrating the equilibrium equation u�w%xA",_�(*!�T{` and the constitutive equationr � G _q!�s="O^3(�!M��^{T � , we end up with the following dual-mixed variational formulation
of (2.1): Find "O_t<@"O^�< � (:(�/ l �a¡ such that¢ "O_t<:�Q(
�#£4"O��<@"O^�< � (n(¤! ¥%��¦�<:j]§ �R�B/ l <£�"O_t<�"OxQ<n¨�(n(¤! T ©�ª `¬«­x ��"%xQ<:¨3(�/ ¡ <(2.4)

where ¥n«�<�« § stands for the duality pairing of
b l � Gnm �o"OYH(;gp� and

b l Gnm �o"OYH(;gp� , with respect to theb c �d",YH(;gp� -inner product,l ! l "Ou�w%xQ®�Xf(��.!°¯d��/ b c � ",Xf(hg �4�5� �±u�w%xA"O�A(�/ b c � ",Xf(hg ��² <
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AUGMENTED MIXED-FEM FOR LINEAR ELASTICITY 423¡ ��! b c � ",Xf(;g � �*b c � "eXf(hg �����³e´:µh¶ < b c � ",Xf(hg �4�5�³e´:µ;¶ �.! ¯ ¨J/ b c � ",Xf(hg �4�5� �·¨¸�B¨ 6 !~
 ² <
and the bilinear forms ¢ � l �¸lM¹ 1 and £0� l �a¡º¹ 1 are defined by¢ "O)�<n�A(»�.! © ª r � G ){���¼! ��3� © ª ){���}T �� ��",�½�B��( © ª >:?�",)�(�>:?�"%�A((2.5)

and £4"%��<�"OxQ<n¨Q(:(¸��! © ª xa«Iu�w%x�"O�Q(
� © ª ¨B�d�f<(2.6)

for all )¾<��~/ l and for all "OxQ<n¨Q(a/ ¡ . It follows easily from (2.5) and (2.6) that for any"%�f<@"%xQ<:¨3(­<:¿I(�/ b c �d"eXf(hgi����� �a¡}� 1 there holds¢ "O¿]V�<n�A(S! ¿�f",���À��( ©�ª >Á?@"O�A( and £4",¿]V4<�"OxQ<n¨�(n(�!8
Â�(2.7)

Also, it is important to remark that ¢ can be rewritten as¢ ",)¾<n�A(�! ���� © ª ) P ��� P � �� ",���À��( © ª >:?�"O)=(K>:?�"%�Q(-<
which implies that¢ "%��<n�Q(�Ã ��4�kÄ � P Ä � Å Æ�Ç9È ªÂÉpÊ Ç9Ë�Ç �0�Ì/ b c � "eXf(hg ����� �
We now define

l�Í ��!ÏÎ3�J/ l � © ª >:?�"%�A(�!�
]Ð and note that
l ! lyÍ|Ñ 1�V , that

is for any �~/ l there exist unique � Í / l�Í and ÒÓ�.! ��ÂÔ X	Ô ©�ª >Á?@"O�A(U/}1 such that�*!7� Í �BÒ�V . In particular, we obtain from (2.1) and (2.2) that>Á?@",_�(¤!~�f"e�½�J��(K>:?Âs=",^�(¤!~��",���B��(5�5�F�¾"O^3(-<
which yields_S!�_ Í �J¿]V3< with _ Í / l Í and ¿U�.! ��ÕÔ X	Ô © ª >:?�"O_�(�! ",�y�B��(Ô X	Ô ©KÖ j�«�¦��(2.8)

Hence, replacing _ by the expression _ Í �×¿]V in (2.4), applying the identities given in (2.7),
and denoting from now on the unknown _ Í / l Í simply by _ , we find that the dual-mixed
variational formulation of (2.1) reduces to: Find ",_t<�",^A< � (n(�/ l�Í	�a¡ such that¢ ",_t<n�Q(
�#£4"O��<�"O^�< � (:(¤! ¥%��¦�<:j]§ �0�B/ l�Í <£4"O_t<@"%xQ<:¨3(:(¤! T © ª `�«­x ��"OxQ<n¨�(�/ ¡ �(2.9)

In addition, taking into account the new meaning of _ , we deduce from (2.8) and (2.3) that
the constitutive equation in (2.1) now becomess=",^�(�T�r � G "O_�(�!ØÎ ���Ô X	Ô © Ö j»«I¦ÙÐkV in XR<(2.10)
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whereas the equilibrium equation remains the same, that is u�w%x¤"O_0(y!zT{` in X .
We remark that the well-posedness of (2.9), whose proof follows from the classical

Babuška-Brezzi theory (see, e.g., [6]), yields a continuous dependence result independently
of the Lamé constant � . We refer to [1] or [3] for details; see also [8, Section 2.1]. At this
point we only recall for later use the following result concerning

l Í
, which plays a key role

in that proof.
LEMMA 2.1. There exists ¿@G0��
 , depending only on X , such that¿�G Ä � Ä � Å Æ Ç È ªÕÉpÊ ÇÁË�ÇÛÚ Ä � P Ä � Å Æ Ç È ªÂÉpÊ Ç9Ë�Ç � Ä u�w%x�"%�A( Ä � Å Æ Ç È ªÕÉpÊ Ç �0�J/ l Í �(2.11)

Proof. See[2, Lemma 3.1] or [6, Chapter IV, Proposition 3.1].
In other words, the inequality (2.11), being valid only in

l Í
, explains the need of replac-

ing (2.4) by the variational formulation (2.9). Moreover, the fact that (2.9) is posed in the
product space

l Í �|¡
, instead of

lÜ�2¡
, will also be crucial below in the analysis of the

corresponding augmented formulation; see, e.g., inequality (3.4).

3. The augmented dual-mixed variational formulation. We now follow the approach
from [8] and enrich the dual-mixed variational formulation (2.9) with Galerkin least squares
type terms arising from the constitutive and equilibrium equations, and from the relation
defining the rotation as a function of the displacement. Note that the constitutive equation
is given now by (2.10). In addition, we also include a suitable boundary term to deal with
the non-homogeneous Dirichlet boundary condition. More precisely, we first substract the
second from the first equation of (2.9) and then addÝ G © ªaÞ s=",^�(3T|r � G _�ß	� Þ s="OxH(��Br � G �Qß×! Ý G Î ���Ô X	Ô ©KÖ j�«�¦ Ð © ª VR� Þ s�"OxH(��Àr � G �Qß�<

Ý � ©�ª u�w%xA",_�(3«Iu�w%x�"O�Q(�!àT Ý � ©�ª `�«Iu�w%x�"%�Q(-<
ÝÕá © ªkâ � T �� "e��^UTS",��^�( 6 (;ã×� â ¨¸� �� ",��xaTS",��xH( 6 (;ãä!8
�<

and Ý�å © Ö ^U«Ixæ! ÝÂå © Ö j¤«IxA<
for all "%��<nxA<n¨Q(�/ l Í �½b l G ",Xf(hg � �½b c � "eXf(hg �����³e´:µh¶ , where " Ý G�< Ý � < Ý á < Ý å ( is a vector of positive
parameters to be specified later, independently of the Lamé constant � . It is important to
observe here that the above terms require now the displacement ^ to live in

b l G ",Xf(hgi� . In
addition, it follows easily from (2.3) that>:? Þ r � G � ß ! ���",���B��( >Á?@"O��( �0�J/ l <
and hence for each �ç/ l Í there holds©�ª VR� Þ s�"OxH(H�Àr � G � ß ! ©5ª >:? Þ s="%xH(��*r � G � ß ! ©�ª �5�F�¾"%x�(¤! © Ö xa«I¦»�
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In this way, instead of (2.9) we propose the following augmented dual-mixed variational
formulation: Find "O_t<Á^A< � (»/ºè Í �.! l�Í
�*b l G ",Xf(;gp� �2b c �o",Xf(hg �4�5�³e´:µ;¶ such thaté "n",_	<:^�< � (-<@"%�f<:xQ<n¨�(n(S!�ê�"%��<:xQ<n¨Q( ��"%��<nxA<n¨�(�/¸è Í <(3.1)

where the bilinear form
é �oè Í	� è Í0¹ 1 and the functional ê}�dè Í0¹ 1 are defined byé ":"O_	<Á^A< � (­<�"O�f<nxQ<:¨3(:(���! ©5ª r � G _��d��� ©Kª ^�«.u�w%x�"%�Q(-� ©�ª � ���¬T ©Kª x�«.u�w%x�"O_�(�T ©Kª ¨J�d_

� Ý G ©�ªUÞ s=",^�(3T|r � G _ ß � Þ s="%xH(H�*r � G � ß � Ý � ©�ª u�w%x�",_�(3«Iu�w%xA"O�A(
� ÝÕá © ªÌâ � T �� ",��^ÙT�"e��^3( 6 (;ãº� â ¨a� �� "e��xUT�"e��xH( 6 (ëãZ� Ý�å © Ö ^U«­x�<(3.2)

and ê�"O�f<nxQ<:¨3(��.! ©5ª `¬«o"OxaT Ý � u�w%xA"O�A(n(���¥%��¦�<:j]§�� Ý å © Ö j¤«�x�� Ý G]¿-ì © Ö xa«I¦�<(3.3)

with ¿ ì �.!íÎ ���Ô X	Ô © Ö j¤«@¦aÐ��
As in [8], the idea is to choose " Ý G�< Ý � < Ý á < Ý å ( so that

é
becomes strongly coercive and

bounded in è Í , with constants independent of � , with respect to the norm Ä « Ä@î�ï defined by

Ä "O��<nxQ<:¨3( Ä î ï �.!°ð Ä � Ä �ñ¬Èóòoô�õ�ö ªÂÉ � Ä x Ä � Å ñ�÷-È ªÂÉiÊ Ç � Ä ¨ Ä � Å Æ Ç È ªÕÉpÊ ÇÁË�Ç�ø Gnm �
for all "%�f<:xQ<n¨�(�/aè Í . Indeed, proceeding as in [8], using (2.5) and the inverse relation (2.3),
and performing some algebraic manipulations, we find thaté "n"O��<nxA<n¨�(-<�"O�f<nxQ<:¨3(:(

! ���� â � T Ý G�3� ã Ä � P Ä � Å Æ Ç È ªÂÉpÊ Ç9Ë�Ç � �� "e���B��( â � T Ý G�Â",���À��( ã ©5ª >:? � "%�A(� Ý � Ä u�w%x�"%�Q( Ä � Å ÆÂÇ-È ªÕÉpÊ Ç �8" Ý GQ� Ý á ( Ä s�"OxH( Ä � Å Æ Ç È ªÕÉpÊ ÇÁË�Ç T Ý á Ô x�Ô � Å ñf÷­È ªÂÉpÊ Ç� Ý å Ä x Ä � Å Æ Ç È Ö ÉpÊ Ç � Ý á Ä ¨ Ä � Å Æ�Ç9È ªÂÉpÊ Ç9Ë�Ç ��"O��<:xQ<n¨Q(»/ è Í �
Hence, choosing Ý G so that 
çù Ý G}ùú�3� , which guarantees that

� T Ý G�3� �û
 and� T Ý G�Â",�½�J��( ��
 , and applying the estimate (2.11) (cf. Lemma 2.1), we deduce thaté ":"%��<:xQ<n¨�(-<@"%�f<:xQ<n¨�(n(¸Ãçü � Ä � Ä �ñ�È�òoô�õKö ªÕÉ ��" Ý G�� Ý á ( Ä s="%xH( Ä � Å Æ Ç È ªÂÉpÊ Ç9Ë�Ç T Ý á Ô x�Ô � Å ñ�÷­È ªÕÉpÊ Ç� Ý å Ä x Ä � Å Æ Ç È Ö ÉpÊ Ç � Ý á Ä ¨ Ä � Å Æ Ç È ªÂÉiÊ Ç9Ë�Ç ��"%��<nxQ<:¨Q(�/Lè Í �
(3.4)
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where ü � ��!~ýy��þ�ð�ü�G]¿�G4< Ý �� ø and ü�G0��!7ýy��þ Î ��3� â � T Ý G�3� ã < Ý �� Ð �
We observe here that the only restriction on Ý � and Ý å is that both be positive. In particular,

as in [8], we can take Ý � ! �� â � T Ý G�3� ã , whence ü G ! Ý �� and ü � ! Ý �� ýy�Fþ¾ÿ@¿ G < ��� .
In order to determine a suitable choice of Ý á , we need a slight extension of the classical

Korn inequality; cf. [5, Theorem 9.2.16]. To this end, we first introduce the space of rigid
body motions in X , that is

1��×"eXf(à��! ��� �oX ¹ 1 � � � "���(�! â ¢ £ ã �Ì¿ â
	 �T 	 G ã
���|�.! â�	 G	 � ãº/UXÙ< ¢ <Õ£�<�¿|/ 1�
¬�

It is easy to show (see, e.g., [5, Chapter 9]) that
b l G ",Xf(;gp�Ù!�� Ñ 1��×",Xf( , where����! Î�� / b l G "eXf(hg � � ©�ª � !�� and

©�ª���� ?��o" � (¤!�
 Ð �
Also, there exists W �Ì
 such that for each xÓ! � � � / b l G ",Xf(hgi� , with � /�� and� /L1���",Xf( , there holds (cf. [5, eq. (9.2.19)])

Ä � Ä Å ñf÷9È ªÂÉpÊ Ç � Ä � Ä Å ñf÷9È ªÂÉpÊ Ç Ú W Ä x Ä Å ñf÷9È ªÕÉpÊ Ç �(3.5)

In addition, the second Korn inequality (cf. Theorem 9.2.12 in [5]) establishes the existence
of W��S
 such that

Ä s=" � ( Ä Å Æ�Ç­È ªÂÉpÊ Ç9Ë�Ç ÃúW Ä � Ä Å ñ ÷ È ªÕÉpÊ Ç � � /��*�(3.6)

In this way, we are able to prove now the following result.
LEMMA 3.1. Let �a� b l G ",Xf(;gp� ¹ 1 be a continuous mapping such that

a) �H"OxH(¸Ãç
 for each x¼/ b l G ",Xf(;gp� ,
b) �H",ü
xH(¤!Mü��H"OxH( for each üÀ�S
 , and
c) ÿ � / 1��×",Xf(��
�H" � (�!~
 � !�ÿ�� � .

Then, there exists Ý �S
 such that

Ä s="OxH( Ä Å Æ Ç È ªÕÉpÊ ÇÁË�Ç � �H"OxH( Ã Ý Ä x Ä Å ñ�÷-È ªÂÉiÊ Ç �0xÛ/ b l G "eXf(hg � �
Proof. We employ analogue arguments to those given in the proof of [5, Theorem 9.2.16].

Indeed, we assume by contradiction that such a constant Ý does not exist. Hence, we can
construct a sequence ÿ@x"! � !$#&%�' b l G ",Xf(hgi� such that

Ä x(! Ä Å ñf÷9È ªÕÉpÊ Ç ! �(3.7)

and

Ä s�"Ox(!�( Ä Å ÆÂÇ-È ªÕÉpÊ ÇÁË�Ç �)�H"Ox(!Â(7ù �* �(3.8)
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Note that the hypothesis b) is used here. Next, we let ÿ � ! � !+#&% ',� and ÿ � ! � !+#&% '1��º"eXf( be such that x ! ! � ! � � ! for each * /.- . It follows that s="%x ! (U!Üs�" � ! ( , and
then, thanks to the inequalities (3.6) and (3.8), and the hypothesis a), we obtainW Ä � ! Ä Å ñf÷-È ªÂÉpÊ Ç Ú Ä s="%x(!�( Ä Å Æ Ç È ªÂÉpÊ Ç9Ë�Ç ù �* <
which shows that ÿ � ! � !+#&% converges to the null function in

b l G ",Xf(;gp� . Now, it is clear from
(3.5) and (3.7) that ÿ � ! � !$#&% is bounded, and hence there exist a subsequence ÿ � È G É! � !+#&%/'ÿ � ! � !$#&% and

� /q1���",Xf( such that ÿ � È G É! � !+#&% converges to

�
in
b l G ",Xf(;gp� . Thus, the

subsequence ÿ�x È G É! � !+#&% �.! ÿ � È G É! � � È G É! � !+#&% also converges to

�
, whence (3.7), (3.8), and

the continuity of � imply Ä � Ä ! � and �H" � (�!8
f�
The above certainly contradicts hypothesis c), which ends the proof.

Next, we consider in particular �Ù� b l G ",Xf(;gp� ¹ 1 defined by �H"OxH(�! Ä x Ä Å Æ�Ç­È Ö ÉpÊ Ç . It is
easy to see that � satisfies the hypotheses a), b), and c) of Lemma 3.1. In addition, applying
the trace theorem in

b l G "eXf(hgi� we obtainÔ0��"%xH(�T1��"�2x�(�ÔQ!433 Ä x Ä Å Æ�Ç9È Ö ÉpÊ Ç T Ä 2x Ä Å Æ�Ç9È Ö ÉpÊ Ç 33 Ú Ä xÀT52x Ä Å Æ�Ç9È Ö ÉiÊ Ç Ú W Ä xÀT62x Ä Å ñ�÷9È ªÂÉiÊ Ç
for all x¤<72xk/ b l G ",Xf(;gp� , which guarantees the continuity of � . Therefore, a straightforward
application of Lemma 3.1 yields the existence of Ý Í �S
 such thatÄ s="OxH( Ä Å ÆÂÇ-È ªÕÉpÊ ÇÁË�Ç � Ä x Ä Å Æ Ç È Ö ÉpÊ Ç Ã Ý Í Ä x Ä Å ñ ÷ È ªÂÉpÊ Ç �0xÛ/ b l G ",Xf(;g � �(3.9)

Alternatively, though Lemma 3.1 is certainly more general than (3.9), in what follows we
show that this inequality can also be obtained as a direct application of Peetre-Tartar Lemma
(see, e.g., [9, Chapter I, Theorem 2.1]), which reads as follows.

LEMMA 3.2. Let "O�RG�< Ä « Ä GI( , ",� � < Ä « Ä � ( , and "O� á < Ä « Ä á ( be Banach spaces, and leté �A�0G ¹ � � and �Ø���RG ¹ � á be bounded linear operators such that � is compact.
Assume that there exists W}��
 such thatÄ98]Ä G Ú WS¯ Ä é " 8 ( Ä � � Ä ��" 8 ( Ä á ² � 8 /¸�0G��(3.10)

Then there holds:
1) the null space :B" é ( of

é
is finite dimensional,

é
is an isomorphism from � G<; :B" é (

onto the range �y" é ( of
é

, and �y" é ( is a closed subspace of � � , that is there existsWfGR��
 such thatÒ�=?><@­" 8 <A:J" é (:(¸��! �Fþ$BC #�D ÈFE É Ä98 THG Ä G Ú W G Ä é " 8 ( Ä � � 8 /¸� G �(3.11)

2) if "O� å < Ä « Ä å ( is a Banach space and
c �o�RG ¹ � å is a bounded linear operator that

vanishes on :B" é ( , then there exists W � ��
 such thatÄ c " 8 ( Ä å Ú W � Ä c ÄQÄ é " 8 ( Ä � � 8 /{� G �
3) if "O�JI�< Ä « Ä I�( is a Banach space and � �]�RG ¹ �JI is a bounded linear operator

that satisfies �k" 8 (LK!×
 for each 8 /6:B" é (ATSÿ@
 � , then there exists W á �L
 such
that Ä98]Ä G Ú W á ¯ Ä é " 8 ( Ä � � Ä �k" 8 ( Ä I ² � 8 /a�0G��(3.12)
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Actually, we prove next that (3.9) follows by applying either 1) or 3) from Lemma 3.2.
In fact, we first let � G �.! b l G "eXf(hgi� , � � �.! b c �d",Xf(hgi�4�5� �Bb c �d",YH(hgi� , � á ��!z1���"eXf( , and
define the bounded linear operators

é �d�tG ¹ � � and �k�d�RG ¹ � á asé "OxH(¸�.!æ"Os="OxH(-<:x�Ô Ö ( and �»"%xH(¸�.! � �0x�! � � � / b l G ",Xf(;g � !)� Ñ 1��×",Xf(-�
The boundedness of � follows from (3.5) and it is clear that this operator is compact. Then,
using triangle inequality, (3.6), and the fact that s="OxH(A!�s�" � ( , we find that

Ä x Ä Å ñ�÷9È ªÂÉpÊ Ç Ú Ä � Ä Å ñf÷9È ªÂÉpÊ Ç � Ä � Ä Å ñf÷ÁÈ ªÂÉpÊ Ç Ú W�ð Ä s="OxH( Ä Å Æ Ç È ªÕÉpÊ ÇÁË�Ç � Ä � Ä Å ñ�÷9È ªÂÉpÊ Ç ø <
(3.13)
which yields hypothesis (3.10). In this way, noting that :B" é (t!çÿ@
 � , the inequality (3.11)
becomes (3.9).

On the other hand, in order to apply 3) we let �tG �.! b l G ",Xf(hgi� , � � ��! b c ��",Xf(;gp�4�5� ,� á �.!~1��×",Xf( , ��I2��! b c �d"OY�(hgi� , and define the bounded linear operators
é �d�tG ¹ � � and�\�d�0G ¹ ��I asé "%xH(¸�.!~s="OxH( and �k"OxH(¸�.!qx�Ô Ö �0xÛ/ b l G ",Xf(;g � �

In addition, we let �#�d�RG ¹ � á be as before. Then, the estimate (3.13) corresponds exactly
to hypothesis (3.10) and � does not vanish in :J" é (QT�ÿ@
 � !º1��×",Xf(�T�ÿ�
 � . Therefore, it
is easy to see that in this case (3.12) is nothing but (3.9).

It is interesting to observe here that the contradiction argument used in the proof of
Lemma 3.1, which is adapted from [5, Theorem 9.2.16], resembles the arguments employed
to prove the statements 1) and 3) of Lemma 3.2; see [9, Chap. I, Theorem 2.1].

We now go back to the process of choosing parameters that yield a strongly coercive
bilinear form

é
. It follows from (3.4) and (3.9) thaté "n"%�¬<nxQ<:¨3(­<�"%�f<:xQ<n¨�(n(fÃ�ü � Ä � Ä �ñ�È�òoô�õKö ªÕÉ "Oü á Ý Í T Ý á ( Ä x Ä � Å ñ ÷ È ªÕÉpÊ Ç � Ý á Ä ¨ Ä � Å Æ�Ç-È ªÕÉpÊ ÇÁË�Ç(3.14)

for all "O��<:xQ<n¨Q(»/ºè Í , where ü á ��!�ý��Fþ¾ÿ Ý G�� Ý á < Ý å � . Hence, we just take for simplicityÝ å Ã Ý GÕ� Ý á so that ü á becomes Ý GÕ� Ý á and, in this way, the choice of Ý á is determined
by the value of Ý Í . More precisely, if Ý Í Ã � it suffices to take any Ý á �D
 , whereas ifÝ Í ù � we choose Ý á so that 
�ù Ý á ù â Ý Í� T Ý Í ã Ý G .

At this point we remark that the introduction of the equationÝ å © Ö ^U«Ix�! Ý å © Ö j»«­x �0xÛ/ b l G ",Xf(;g � <
in the augmented formulation (3.1), allows us to employ the inequality (3.9), which yields the
term Ä x Ä � Å ñf÷-È ªÂÉpÊ Ç in the estimate (3.14).

On the other hand, applying the Cauchy-Schwarz inequality to each term on the right

hand side of (3.2), and noting from (2.3) that Ä r � G � Ä Å Æ Ç È ªÂÉpÊ Ç9Ë�Ç Ú ��3�ÀÄ � Ä Å Æ Ç È ªÂÉpÊ Ç9Ë�Ç for

all �7/ b c ��",Xf(;gp�4�5� , we find that
é

is bounded with a constant depending only on � and the
parameters Ý G , Ý � , ÝÂá , and ÝÂå .

We have thus proved the following main result.
THEOREM 3.3. Assume that " Ý G < Ý � < ÝÂá < ÝÂå ( is independent of � and such that
�ù Ý G ù��3� , 
�ù Ý � , 
�ù ÝÂá ù â Ý Í� T Ý Í ã Ý G (if Ý Í ù � ) or ÝÕá �ç
 (if Ý Í Ã � ),

and ÝÂå Ã Ý G � ÝÂá . Then, there exist positive constants �L<�ü , independent of � , such thatÔ é ":"O_t<Á^A< � (-<�"O��<nxQ<:¨�(:(¾Ô Ú � Ä "O_R<:^�< � ( Ä­î�ïQÄ "O��<:xQ<n¨Q( Ä­î�ï <
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and é "n"%�f<:xQ<n¨Q(­<�"%�f<:xQ<n¨�(n(�Ãûü Ä "%��<nxA<n¨�( Ä �î ï
for all "O_t<Á^A< � (­<�"%�f<:xQ<n¨�(J/ è Í . In particular, taking Ý G !ØW G � , with any W G /0gi
�<9� b ,Ý � ! �� â � T Ý G�3� ã , ÝÕá !MW á�Ý G , with any W á /Rgp
Â<NM ïG � M ï b if Ý Í ù � , or ÝÕá ! Ý G if Ý Í Ã � ,
and Ý�å ! Ý G � ÝÂá , yields � and ü depending only on � ,

�� , Ý Í , and ¿ G .
In addition, the well posedness of (3.1) is now easily established.
THEOREM 3.4. Assume the same hypotheses of Theorem 3.3. Then the augmented vari-

ational formulation (3.1) has a unique solution ",_t<:^�< � (2/Ûè Í , and there exists a positive
constant W , independent of � , such that

Ä ",_t<:^�< � ( Ä î ï Ú W Ä ê Ä Ú W ¯ Ä ` Ä Å Æ�Ç9È ªÕÉpÊ Ç � Ä j Ä Å ñf÷PO;Ç-È Ö ÉiÊ Ç ² �
Proof. The linear functional ê (see (3.3)) is certainly bounded as indicated with a con-

stant W depending only on Ý G , Ý � , and ÝÂå . Therefore, the present proof is a simple conse-
quence of Theorem 3.3 and the well known Lax-Milgram Lemma.

4. The augmented mixed finite element method. Let Ý G , Ý � , Ý á , and Ý å be the pa-
rameters employed in the formulation (3.1), which satisfy the assumptions of Theorem 3.3.
Then, given a finite element subspace è1Q N Í '8è Í , the Galerkin scheme associated with
(3.1) reads: Find "O_JQ�<Á^�QÂ< � Q (�/ºèRQ N Í such thaté "n"O_ Q <Á^ Q < � Q (-<@"%� Q <:x Q <n¨ Q (:(�!8ê�"O� Q <:x Q <:¨ Q ( �y"%� Q <:x Q <:¨ Q (�/aè Q N Í <(4.1)

where
é

and ê are defined by (3.2) and (3.3), respectively. Since
é

is bounded and strongly
coercive on the whole space è Í (cf. Theorem 3.3), the well-posedness of (4.1) is guaranteed
with any arbitrary choice of the subspace è1Q N Í . More precisely, we have the following main
result.

THEOREM 4.1. Assume that the parameters Ý G , Ý � , Ý á , and Ý å satisfy the assumptions
of Theorem 3.3 and let ÿHè Q N Í � Q�S Í be a family of finite element subspaces of è Í . Then, for
each T{��
 the Galerkin scheme (4.1) has a unique solution ",_ Q <:^ Q < � Q (�/aè Q N Í , and there
exist positive constants WR< 2W , independent of � and T , such thatÄ ",_�Q�<Á^�QÂ< � Q ( Ä î ïÚ W U �WVX ��Y�Z [9Y&Z ¨ Y]\0^<_ Y Z ïÈ � Y N õ Y N ¨ Y ÉA`E Í Ôëê�"O� Q <:x Q <:¨ Q (¾ÔÄ "O�aQ�<:x"Q�<:¨ Q ( Ä î ï Ú W ¯ Ä ` Ä Å Æ Ç È

ªÂÉpÊ Ç � Ä j Ä Å ñ�÷bOhÇ9È Ö ÉpÊ Ç ² <
and

Ä "O_t<Á^A< � (3T�",_�Q�<Á^�QÂ< � Q ( Ä î ï Ú 2W �Fþ$BÈ � Y N õ Y N ¨ Y É # î Y Z ï Ä ",_t<:^�< � (3TS"%��QÂ<nx"QÂ<n¨ Q ( Ä î ï �(4.2)

Proof. It follows straightforwardly from Theorem 3.3 and the Lax-Milgram Lemma.
As usual, the Cea estimate (4.2) and the approximation properties of the subspaces in-

volved are the key ingredients to derive the corresponding rate of convergence of the Galerkin
scheme. In order to introduce a specific è Q N Í , we now let ÿ�c Q � Q�S Í be a regular family
of triangulations of the polygonal region dX by triangles e of diameter Tgf with mesh sizeTU�.!Lýih&j�ÿ�TkfB�le�/mc Q � , and such that there holds dX ��! n�ÿ"e×� e×/1c Q � . Also, given
an integer otÃ�
 and eº/Rc Q , we denote by p"q�"�e0( the space of polynomials in two variables
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defined in e of total degree at most o . In addition, we let 1sr Í "te0( be the local Raviart-Thomas
space of order zero, that is1sr Í "te0(���!uU V h�þ Î â �
 ã < â 
 � ã < âN	 G	 � ãSÐ ' b p3G4"te0(;g � <
where

âN	 G	 � ã is a generic vector of 1 � . Then, we define the finite element subspacesl _Q �.! ¯ � Q / l "Ou�w%xQ®�Xf(�� � Q Ô fÛ/ b 1sr Í "teR( 6 g � �veÓ/�c Q ² <l _Q N Í ��! Î � Q / l _Q � ©�ª >:?�"%� Q (¤!�
 Ð <lRwQ ��!æ¯Qx Q / b Wy" dX¬(hg � � x Q Ô f¼/ b p3G�"�e0(hg � �veM//c Q ² <
and l �Q �.!æ¯�¨ Q / b c � ",Xf(hg �4�5�³e´:µ;¶ �±¨ Q Ô f¼/ b p Í "�e0(hg �4�5� �veM//c Q ² �
The corresponding approximation properties are as follows (see [6, 7, 8]):

(AP _ Q N Í ) For each ��/ b l G "eXf(hg ������x l Í with u�w%xA"O�A(�/ b l G ",Xf(;g � there exists � Q / l _Q N Í
such thatÄ �|T2�aQ Ä ñ¬Èóòoô.õKö ªÂÉ Ú W.T ¯ Ä � Ä Å ñ ÷ È ªÂÉpÊ Ç9Ë�Ç � Ä u�w%x�"%�Q( Ä Å ñ ÷ È ªÂÉpÊ Ç ² �

(AP
w Q ) For each xÀ/ b l �o",Xf(;gp� there exists x�Qy/ l wQ such thatÄ xaT|x"Q Ä Å ñf÷9È ªÂÉpÊ Ç Ú W.T Ä x Ä Å ñ�Ç­È ªÂÉpÊ Ç �

(AP
� Q ) For each ¨B/ b l G ",Xf(hg �4�5�³e´:µ;¶ there exists ¨ Q / l �Q such thatÄ ¨ÙT|¨ Q Ä Å Æ Ç È ªÕÉpÊ ÇÁË�Ç Ú W.T Ä ¨ Ä Å ñ ÷ È ªÕÉpÊ ÇÁË�Ç �

Consequently, we are able to establish the following result.
THEOREM 4.2. Let èmQ N Í ��! l _Q N Í �ºl wQ �Ll �Q and let ",_t<:^�< � (Ù/Ûè Í and"O_�QÂ<:^sQÂ< � Q (�/�èRQ N Í be the unique solutions of the continuous and discrete augmented mixed

formulations (3.1) and (4.1), respectively. Assume that _ / b l1y ",Xf(;gp�4�5� ,u�w%xA",_¬(¤/ b lRy ",Xf(hgi� , ^Û/ b lRy�z G ",Xf(hgi� , and � / b lmy "eXf(hgi����� , for some {À/Û"O
Â< � g . Then
there exists W}��
 , independent of � and T , such thatÄ "O_t<Á^A< � (3T�",_�QÕ<:^sQ5< � Q ( Ä î ïÚ W.T y ¯ Ä _ Ä Å ñl|IÈ ªÂÉpÊ Ç9Ë�Ç � Ä uHwOxA"O_�( Ä Å ñ | È ªÕÉpÊ Ç � Ä ^ Ä Å ñ}|�~�÷ÁÈ ªÕÉpÊ Ç � Ä � Ä Å ñ}|IÈ ªÂÉiÊ Ç9Ë�Ç ² �

Proof. It is a consequence of Cea’s estimate, approximation properties (AP _ Q N Í ), (AP
w Q ),

and (AP
� Q ), and suitable interpolation theorems in the corresponding function spaces.

On the other hand, in order to deal with the mean value condition required by the traces
of the elements in

l _Q N Í , we proceed as in [8] and consider, instead of (4.1), the modified
discrete scheme: Find "O_JQÂ<:^sQÂ< � Q <A�+QK(»/ l _Q �{l wQ �¸l �Q � 1 such thaté ":"O_ Q <:^ Q < � Q (­<�"%� Q <nx Q <n¨ Q (n(
��� Q ©�ª >Á?�"O� Q ( !8ê�"%� Q <nx Q <n¨ Q (]<� Q ©�ª >Á?@",_ Q ( !8
f<(4.3)
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for all "%��QÂ<nx"QÂ<n¨ Q < � QK(»/ l _Q �Rl wQ �Rl �Q � 1 . In this way, the Lagrange multiplier ��Qy/{1
and the corresponding test constants � Q|/�1 take care of the above mentioned mean value
condition, whence (4.1) and (4.3) become equivalent, as it is established in the following
theorem.

THEOREM 4.3. Let "O_ Q <:^ Q < � Q (»/ è Q N Í be the solution of (4.1) and define�$Q��.! ���Ô X	Ô Î ©KÖ j¤«@¦×T Ý G��",�½�B��( ©KÖ ^�Q
«I¦ÙÐ7�(4.4)

Then "O_ Q <:^ Q < � Q <A� Q ( is a solution of the system (4.3). Conversely, if "O_ Q <Á^ Q < � Q <�� Q (
/l _Q �2l wQ N Í �Àl �Q � 1 is a solution of (4.3), then � Q is given by (4.4) and "O_ Q <:^ Q < � Q (
becomes the solution of (4.1).

Proof. According to the definitions of
é

and ê (cf. (3.2) and (3.3)) we easily find thaté "n"O��<nxQ<:¨3(­<�",V4<:
Â<:
o(:(�! ���"e���B��( â � T Ý G�Â",���À��( ã © ª >:?�"%�A(	� Ý G�Â",���B��( © Ö xa«�¦
for all "%�f<:xQ<n¨�(�/ l��*b l G "eXf(hgi� �*b c ��",Xf(;g �4�5�³h´:µh¶ , andê�",V4<:
Â<:
o(y! ©5Ö j�«�¦��
The rest of the proof, being based on the above identities and the fact that V belongs to

l _Q ,
is similar to the proof of [8, Theorem 4.3], and hence we omit further details.

5. Numerical results. In this section we provide numerical results illustrating the per-
formance of the augmented mixed finite element scheme (4.3) on a finite sequence of uniform
triangulations of the domain. We begin with some notations. In what follows, : stands for
the total number of degrees of freedom (unknowns) of (4.3), which behaves asymptotically as
5 times the number of triangles of each triangulation; see [8] for details. Also, the individual
and total errors are denoted by� "O_�(»��! Ä _RT�_ Q Ä ñ¬Èóòoô�õ�ö ªÂÉ < � ",^�(»�.! Ä ^�T�^ Q Ä Å ñ ÷ È ªÕÉpÊ Ç < � " � (»��! Ä � T � Q Ä Å ÆÂÇ-È ªÕÉpÊ ÇÁË�Ç <
and � "O_t<Á^A< � (��.!°¯ b � ",_�(hg � � b � ",^�(;g � � b � " � (;g ��² G:m � �
Next, we recall that given the Young modulus � and the poisson ratio � of a linear elastic
material, the corresponding Lamé constants are defined as�}�.! ��Â" � ����( and �L��! ���" � ����(]" � T*����( �
In the examples we fix �í! � and take �M!v
Â� ��� 
o
 and �M!\
�� ������� , which give the
following values of � and � : � � �

0.4900 0.3356 16.4430
0.4999 0.3333 1666.4444

In addition, according to Theorem 3.3, we consider the parametersÝ G !q�y< Ý � ! ��3� < ÝÂá ! �� Ý G and ÝÂå ! Ý G � ÝÂá <(5.1)
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which corresponds to choosing W G ! � and W á ! G� . Certainly, since Ý Í is unknown, we
have assumed here that G� ù M ïG � M ï . As we observe in the tables and figures below, the present
choice of Ý á works fine. Otherwise, we would have to decrease the value of W á .

We now specify the two examples to be presented here. We take X as the square domaingi
�< � b�� gi
�< � b and chose the data ` and j so that the exact solution ^k�.!æ"t�HG4<�� � ( 6 is given as
follows:

EXAMPLE �]G�" 	 G4< 	 � (�!�� � " 	 G�< 	 � (
1 " 	 � G � � (]" 	 �� � � ( �]� ÷ z � Ç
2 �d
�U:�Fþ�" 	 GQ� 	 � (H� 	 á G �J� 	 G 	 � � 	 �� � � 


The numerical results given below were obtained in a Compaq Alpha ES40 Parallel Computer
using a fortran code. The Galerkin scheme (4.3) is implemented in this code following [8,
Section 4.3], and it is solved by a direct method. The individual errors are computed on each
triangle using a Gaussian quadrature rule.

In Tables 5.1 – 5.4 we present the individual and total errors of each example for a
sequence of uniform meshes going up to :M! ��
 � � � � . Then, in Figures 5.1 – 5.4 we display
the log-log curves of the number of unknowns : versus the meshsize T and the errors. We
observe there that the rate of convergence �y"PT�( predicted by Theorem 4.2 (when {»! � ) is
attained in both examples. We also notice from these figures that the convergence of � "O^3( is
even faster than �y"bTÕ( , specially for Example 2, which, however, is just a special behaviour
of these particular solutions ^ . In addition, we deduce from the tables that the dominant
component of the total error is given by � "O_f( , which is actually a quite frequent fact in
many mixed finite element schemes. This feature is also evident from the figures, where
one sees that the curves corresponding to � "O_t<:^�< � ( and � "O_�( do not distinguish from each
other. Finally, in Figures 5.5 – 5.8 we display some components of the approximate and exact
solutions of both examples for :�! � � � ��� .

Summarizing, the numerical results presented here constitute enough support to consider
our augmented mixed finite element scheme as a valid and competive alternative to solve the
linear elasticity problem with non-homogeneous Dirichlet boundary conditions.

Acknowledgments. The author is thankful to Antonio Márquez for performing the com-
putational code and running the numerical examples. Also, the author expresses his gratitude
to one of the referees for pointing out the application of Peetre-Tartar Lemma to prove the
modified Korn inequality (3.9).
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TABLE 5.1
Degrees of freedom, meshsizes, and errors (EXAMPLE 1, �����]� ���9�9� ): T � "O_�( � "O^3( � " � ( � "O_t<Á^A< � (

2691 0.06250 0.4838E+02 0.4377E+01 0.2889E+01 0.4866E+02
4163 0.05000 0.3870E+02 0.3117E+01 0.2433E+01 0.3890E+02
5955 0.04167 0.3225E+02 0.2353E+01 0.2108E+01 0.3241E+02
8067 0.03571 0.2765E+02 0.1851E+01 0.1862E+01 0.2777E+02

10499 0.03125 0.2419E+02 0.1502E+01 0.1667E+01 0.2430E+02
13251 0.02778 0.2150E+02 0.1249E+01 0.1509E+01 0.2159E+02
16323 0.02500 0.1935E+02 0.1059E+01 0.1378E+01 0.1943E+02
23427 0.02083 0.1613E+02 0.7958E+00 0.1173E+01 0.1619E+02
31811 0.01786 0.1382E+02 0.6262E+00 0.1020E+01 0.1388E+02
41475 0.01562 0.1210E+02 0.5097E+00 0.9020E+00 0.1214E+02
64643 0.01250 0.9677E+01 0.3633E+00 0.7317E+00 0.9711E+01
92931 0.01042 0.8064E+01 0.2774E+00 0.6150E+00 0.8092E+01

126339 0.00892 0.6912E+01 0.2220E+00 0.5301E+00 0.6936E+01
164867 0.00781 0.6048E+01 0.1838E+00 0.4657E+00 0.6069E+01
208515 0.00694 0.5376E+01 0.1563E+00 0.4151E+00 0.5394E+01

TABLE 5.2
Degrees of freedom, meshsizes, and errors (EXAMPLE 1, �l���]� ���9�9� ): T � "O_�( � "O^3( � " � ( � "O_t<Á^A< � (

2691 0.06250 0.4738E+04 0.4286E+03 0.2817E+03 0.4766E+04
4163 0.05000 0.3791E+04 0.3033E+03 0.2341E+03 0.3810E+04
5955 0.04167 0.3159E+04 0.2274E+03 0.2014E+03 0.3174E+04
8067 0.03571 0.2708E+04 0.1775E+03 0.1772E+03 0.2719E+04

10499 0.03125 0.2369E+04 0.1429E+03 0.1583E+03 0.2379E+04
13251 0.02778 0.2106E+04 0.1178E+03 0.1431E+03 0.2114E+04
16323 0.02500 0.1895E+04 0.9896E+02 0.1305E+03 0.1903E+04
23427 0.02083 0.1580E+04 0.7299E+02 0.1110E+03 0.1585E+04
31811 0.01786 0.1354E+04 0.5630E+02 0.9649E+02 0.1359E+04
41475 0.01562 0.1185E+04 0.4488E+02 0.8531E+02 0.1189E+04
64643 0.01250 0.9477E+03 0.3065E+02 0.6919E+02 0.9508E+03
92931 0.01042 0.7898E+03 0.2240E+02 0.5816E+02 0.7922E+03

126339 0.00892 0.6770E+03 0.1715E+02 0.5013E+02 0.6790E+03
164867 0.00781 0.5923E+03 0.1361E+02 0.4404E+02 0.5941E+03
208515 0.00694 0.5265E+03 0.1108E+02 0.3926E+02 0.5281E+03

[8] G.N. GATICA, Analysis of a new augmented mixed finite element method for linear elasticity allowing ���k�+���  � � � approximations, M2AN Math. Model. Numer. Anal., 40 (2006), pp. 1–28.
[9] V. GIRAULT AND P.-A. RAVIART, Finite Element Methods for Navier-Stokes Equations: Theory and Algo-

rithms, Springer Series in Computational Mathematics, Vol. 5, Springer, New York, 1986.
[10] W. MCLEAN, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cam-

bridge, UK, 2000.
[11] R. STENBERG, A family of mixed finite elements for the elasticity problem, Numer. Math., 53 (1988), pp. 513–

538.
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TABLE 5.3
Degrees of freedom, meshsizes, and errors (EXAMPLE 2, �����]� ���9�9� ): T � ",_�( � ",^�( � " � ( � ",_t<:^�< � (

2691 0.06250 0.1443E+02 0.2299E+01 0.3582E+01 0.1504E+02
4163 0.05000 0.1154E+02 0.1644E+01 0.3028E+01 0.1204E+02
5955 0.04167 0.9615E+01 0.1249E+01 0.2615E+01 0.1004E+02
8067 0.03571 0.8241E+01 0.9896E+00 0.2296E+01 0.8611E+01

10499 0.03125 0.7210E+01 0.8092E+00 0.2043E+01 0.7537E+01
13251 0.02778 0.6408E+01 0.6778E+00 0.1839E+01 0.6701E+01
16323 0.02500 0.5767E+01 0.5787E+00 0.1671E+01 0.6032E+01
23427 0.02083 0.4806E+01 0.4406E+00 0.1411E+01 0.5028E+01
31811 0.01786 0.4119E+01 0.3504E+00 0.1220E+01 0.4310E+01
41475 0.01562 0.3604E+01 0.2877E+00 0.1074E+01 0.3772E+01
64643 0.01250 0.2883E+01 0.2077E+00 0.8661E+00 0.3017E+01
92931 0.01042 0.2402E+01 0.1597E+00 0.7250E+00 0.2514E+01

126339 0.00892 0.2059E+01 0.1283E+00 0.6233E+00 0.2155E+01
164867 0.00781 0.1802E+01 0.1064E+00 0.5465E+00 0.1886E+01
208515 0.00694 0.1601E+01 0.9046E-01 0.4864E+00 0.1676E+01

TABLE 5.4
Degrees of freedom, meshsizes, and errors (EXAMPLE 2, �����]� ���9�9� ): T � ",_�( � ",^�( � " � ( � ",_t<:^�< � (

2691 0.06250 0.1424E+04 0.2207E+03 0.3373E+03 0.1480E+04
4163 0.05000 0.1139E+04 0.1566E+03 0.2853E+03 0.1185E+04
5955 0.04167 0.9494E+03 0.1181E+03 0.2465E+03 0.9880E+03
8067 0.03571 0.8137E+03 0.9286E+02 0.2165E+03 0.8472E+03

10499 0.03125 0.7120E+03 0.7536E+02 0.1928E+03 0.7414E+03
13251 0.02778 0.6328E+03 0.6265E+02 0.1736E+03 0.6592E+03
16323 0.02500 0.5695E+03 0.5308E+02 0.1578E+03 0.5933E+03
23427 0.02083 0.4745E+03 0.3980E+02 0.1333E+03 0.4945E+03
31811 0.01786 0.4067E+03 0.3118E+02 0.1153E+03 0.4239E+03
41475 0.01562 0.3559E+03 0.2522E+02 0.1015E+03 0.3709E+03
64643 0.01250 0.2847E+03 0.1766E+02 0.8189E+02 0.2967E+03
92931 0.01042 0.2372E+03 0.1319E+02 0.6856E+02 0.2473E+03

126339 0.00892 0.2033E+03 0.1029E+02 0.5895E+02 0.2119E+03
164867 0.00781 0.1779E+03 0.8298E+01 0.5168E+02 0.1854E+03
208515 0.00694 0.1581E+03 0.6859E+01 0.4601E+02 0.1648E+03
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FIG. 5.1. Meshsizes and errors vs. degrees of freedom (EXAMPLE 1, �¤���]� ���9�9� )
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FIG. 5.2. Meshsizes and errors vs. degrees of freedom (EXAMPLE 1, �¤���]� ���9�9� )
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FIG. 5.3. Meshsizes and errors vs. degrees of freedom (EXAMPLE 2, �l���]� ���9�9� )
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FIG. 5.4. Meshsizes and errors vs. degrees of freedom (EXAMPLE 2, �l���]� ���9�9� )
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FIG. 5.5. Approximate (left) and exact ¥ � (EXAMPLE 1, �¤���]� ���9�9� , ¦�����§?�©¨«ª )
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FIG. 5.6. Approximate (left) and exact ¬  �  (EXAMPLE 1, �¤���]� ���9�9� , ¦�����§?�©¨«ª )
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FIG. 5.7. Approximate (left) and exact ¥   (EXAMPLE 2, �¤���]� ���9�9� , ¦�����§?�©¨«ª )
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FIG. 5.8. Approximate (left) and exact ¬ �;� (EXAMPLE 2, �¤���]� ���9�9� , ¦­�®��§?�©¨«ª )


