NON-MATCHING MORTAR DISCRETIZATION ANALYSIS FOR THE COUPLING STOKES-DARCY EQUATIONS*

JUAN GALVIS ${ }^{\dagger}$ AND MARCUS SARKIS ${ }^{\dagger \dagger}$

Abstract

We consider the coupling across an interface of fluid and porous media flows with Beavers-JosephSaffman transmission conditions. Under an adequate choice of Lagrange multipliers on the interface we analyze inf-sup conditions and optimal a priori error estimates associated with the continuous and discrete formulations of this Stokes-Darcy system. We allow the meshes of the two regions to be non-matching across the interface. Using mortar finite element analysis and appropriate scaled norms we show that the constants that appear on the a priori error bounds do not depend on the viscosity, permeability and ratio of mesh parameters. Numerical experiments are presented.

Key words. inf-sup condition, error estimates, mortar finite elements, multiphysics, porous media flow, incompressible fluid flow, Lagrange multipliers, saddle point problems, non-matching grids, discontinuous coefficients

AMS subject classifications. $65 \mathrm{~N} 30,65 \mathrm{~N} 15,65 \mathrm{~N} 12,35 \mathrm{Q} 30,35 \mathrm{Q} 35,76 \mathrm{D} 033,76 \mathrm{D} 07$

1. Introduction. We analyze the coupling across an interface of fluid and porous media flows. This problem appears in several applications like well-reservoir coupling in petroleum engineering, transport of substances across groundwater and surface water, and (bio)fluidorgan interactions. More precisely, we consider the following situation: an incompressible fluid in a region Ω_{f} can flow both ways across an interface Γ into a saturated porous medium domain Ω_{p}. The model studied here consists of Stokes equations in the fluid region Ω_{f} and Darcy law for the filtration velocity in the porous medium region Ω_{p}. The transmission conditions we consider on the interface Γ are the Beavers-Joseph-Saffman conditions [3, 19, 27] which are widely accepted by the scientific community. In this paper we study inf-sup conditions and a priori error estimates associated with the continuous and discrete formulations of this Stokes-Darcy system. There are previous works addressing such issues [8, 13, 20, 26] as well as related problems such as Stokes-Laplacian systems [10, 11, 25], Stokes-Navier Stokes [16, 24], and preconditioned iterative methods [10, 12, 13, 14], among others [2, 21].

This paper is organized as follows: in Section 2 we discuss norms and seminorms of dual spaces on subsets. The differential systems are introduced in Section 3, where velocity and normal flux are considered as the boundary data for the Stokes part $\Gamma_{f}=\partial \Omega_{f} \backslash \Gamma$ and the Darcy part $\Gamma_{p}=\partial \Omega_{p} \backslash \Gamma$, respectively; for other formulations and boundary data see [11, 12]. The transmission conditions on the interface Γ, known as Beavers-Joseph-Saffman conditions, are then introduced. In Section 4 we analyze weak formulations of the continuous model and we discuss the choice $H^{1 / 2}(\Gamma)$ as the space for Lagrange multipliers in order to couple these two systems of partial differential equations. In [20], Layton, Schieweck, and Yotov developed existence and uniqueness of the weak solution for this problem. They were able to show the inf-sup condition on the smaller space $H_{00}^{1 / 2}(\Gamma)$. Recall that $H_{00}^{1 / 2}(\Gamma)$ is the subspace of functions in $H^{1 / 2}\left(\partial \Omega_{p}\right)$ that vanish on $\partial \Omega_{p} \backslash \Gamma$. In this paper, we use tools developed in Section 2 and in [20] to present a complete analysis for the inf-sup condition with Lagrange multipliers on the space $H^{1 / 2}(\Gamma)$. We note that from the physical point of view the space $H^{1 / 2}(\Gamma)$ is the correct choice since the Lagrange multipliers are related to the Darcy pressure on the interface Γ and the value of the Darcy pressure at $\Gamma \cap \partial\left(\Omega_{f} \cup \Omega_{p}\right)$ is

[^0]not prescribed when flux boundary condition is imposed on the porous side exterior boundary Γ_{p}. We note however that in the case where the pressure is imposed as the boundary condition on the Darcy exterior boundary Γ_{p}, the space $H_{00}^{1 / 2}(\Gamma)$ would be the correct choice; see [11]. In Section 5 we derive the discrete inf-sup conditions and in Section 6 the a priori error estimates. We consider the triangular $P 2 \backslash P 1$ Taylor Hood elements space for the free flow region Ω_{f} and the lowest order Raviart-Thomas for the Darcy region Ω_{p}. In [20], Layton, Schieweck and Yotov developed a priori error estimates for the matching case, while in [26] Riviere and Yotov, and also in [8] Burman and Hansbo, considered the non-matching case using discontinuous Galerkin finite element discretizations. In this paper we consider the coupling via Lagrange multipliers and we develop an analysis based on mortar finite elements techniques [4,29] and scaled norms in order to obtain constants independent of the permeability, viscosity and ratio of mesh parameters. We pay special attention to the constants appearing in the a priori error estimates. In Appendix B we provide the construction of the Fortin interpolation for $P 2 \backslash P 1$ Taylor Hood elements. In Section 7 we test numerically the algorithms and in Section 8 we make some conclusions.
2. Preliminaries and notations. Let Ω be a bounded Lipschitz continuous domain and let $\Gamma \subset \partial \Omega$ and $\Gamma^{c}:=\partial \Omega \backslash \Gamma$ be of non-vanishing $(n-1)$-dimensional measure with respect to $\partial \Omega$. Here $n=2$ or 3 . To avoid the proliferation of constants, we will use the notation $A \preceq B$ to represent the inequality $A \leq($ constant $) \cdot B$.

Lemma 2.1. Given $\mu \in H^{1 / 2}(\Gamma)$, define $E_{\Gamma}^{1 / 2} \mu:=\gamma_{0} \varphi$ where γ_{0} is the trace on $\partial \Omega$ and φ is the weak solution of

$$
\left\{\begin{array}{cc}
-\Delta \varphi=0 & \text { in } \Omega \\
\varphi=\mu & \text { on } \Gamma \\
\partial \boldsymbol{\eta} \varphi=0 & \text { on } \Gamma^{c} .
\end{array}\right.
$$

Then $E_{\Gamma}^{1 / 2} \mu \in H^{1 / 2}(\partial \Omega)$ and $\left\|E_{\Gamma}^{1 / 2} \mu\right\|_{H^{1 / 2}(\partial \Omega)} \preceq\|\mu\|_{H^{1 / 2}(\Gamma)}$.
For $\mu \in H^{1 / 2}(\Gamma)$ let $E_{00, \Gamma}^{1 / 2} \mu$ denote the extension by zero on Γ^{c}. Remember that $E_{00, \Gamma}^{1 / 2} \mu \in H^{1 / 2}(\partial \Omega)$ if and only if $\mu \in H_{00}^{1 / 2}(\Gamma)$. We have the following result.

Lemma 2.2. For all $\mu \in H^{1 / 2}(\partial \Omega)$ there exist $\mu_{\Gamma} \in H^{1 / 2}(\Gamma)$ and $\mu_{\Gamma^{c}} \in H_{00}^{1 / 2}\left(\Gamma^{c}\right)$ such that $\mu=E_{\Gamma}^{1 / 2} \mu_{\Gamma}+E_{00, \Gamma^{c}}^{1 / 2} \mu_{\Gamma^{c}}$. This decomposition is unique.

Proof. Let $\mu \in H^{1 / 2}(\partial \Omega)$. Take $\mu_{\Gamma}=\left.\mu\right|_{\Gamma}$ and $\mu_{\Gamma^{c}}=\left.\varphi\right|_{\Gamma^{c}}$ where $\varphi=\mu-E_{\Gamma}^{1 / 2} \mu_{\Gamma}$. Observe that $\mu_{\Gamma} \in H^{1 / 2}(\Gamma)$ and

$$
\left\|E_{\Gamma}^{1 / 2} \mu_{\Gamma}\right\|_{H^{1 / 2}(\partial \Omega)} \preceq\left\|\mu_{\Gamma}\right\|_{H^{1 / 2}(\Gamma)} \leq\|\mu\|_{H^{1 / 2}(\partial \Omega)}
$$

therefore, $\varphi \in H^{1 / 2}(\partial \Omega)$. Observe also that $E_{00 \Gamma^{c}}^{1 / 2} \mu_{\Gamma^{c}}=\varphi$ because μ and $E_{\Gamma}^{1 / 2} \mu_{\Gamma}$ coincide on Γ. For the uniqueness, if $0=E_{\Gamma}^{1 / 2} \mu_{\Gamma}+E_{00, \Gamma^{c}}^{1 / 2} \mu_{\Gamma^{c}}$ then $E_{\Gamma}^{1 / 2} \mu_{\Gamma}$ is the trace of the weak solution of the problem: $-\Delta \varphi=0$ in $\Omega, \varphi=0$ on $\Gamma, \partial \boldsymbol{\eta} \varphi=0$ on Γ^{c}. Then $\mu_{\Gamma}=0$.

We have two dual spaces associated with Γ, the space $H_{00}^{-1 / 2}(\Gamma)$ (the dual of $H_{00}^{1 / 2}(\Gamma)$) and $H^{-1 / 2}(\Gamma)$ (the dual space of $H^{1 / 2}(\Gamma)$). The first space is larger than the second one.

DEfinition 2.3. If $f \in H^{-1 / 2}(\partial \Omega)$, then $\left.f\right|_{\Gamma^{c}}=0$ means by definition that

$$
\left\langle f, E_{00, \Gamma^{c}}^{1 / 2} \mu\right\rangle_{\partial \Omega}=0 \quad \text { for all } \mu \in H_{00}^{1 / 2}\left(\Gamma^{c}\right)
$$

A useful result related with this definition is the following:
LEMMA 2.4. If $f \in H^{-1 / 2}(\partial \Omega)$, there are $f_{\Gamma} \in H^{-1 / 2}(\Gamma)$ and $f_{\Gamma^{c}} \in H_{00}^{-1 / 2}\left(\Gamma^{c}\right)$ such
that, for all $\mu \in H^{1 / 2}(\partial \Omega)$, let $\mu=E_{\Gamma}^{1 / 2} \mu_{\Gamma}+E_{00, \Gamma^{c}}^{1 / 2} \mu_{\Gamma^{c}}$ as defined in Lemma 2.2, we have

$$
\begin{equation*}
\langle f, \mu\rangle_{\partial \Omega}=\left\langle f_{\Gamma}, \mu_{\Gamma}\right\rangle_{\Gamma}+\left\langle f_{\Gamma^{c}}, \mu_{\Gamma^{c}}\right\rangle_{\Gamma^{c}} . \tag{2.1}
\end{equation*}
$$

Proof. For $\mu_{\Gamma} \in H^{1 / 2}(\Gamma)$ and $\mu_{\Gamma^{c}} \in H_{00}^{1 / 2}\left(\Gamma^{c}\right)$ define

$$
\left\langle f_{\Gamma}, \mu_{\Gamma}\right\rangle_{\Gamma}:=\left\langle f, E_{\Gamma}^{1 / 2} \mu_{\Gamma}\right\rangle_{\partial \Omega} \quad\left\langle f_{\Gamma^{c}}, \mu_{\Gamma^{c}}\right\rangle_{\Gamma^{c}}:=\left\langle f, E_{00, \Gamma^{c}}^{1 / 2} \mu_{\Gamma^{c}}\right\rangle_{\partial \Omega}
$$

We obtain

$$
\left\langle f_{\Gamma}, \mu_{\Gamma}\right\rangle_{\Gamma} \leq\|f\|_{H^{-1 / 2}(\partial \Omega)}\left\|E_{\Gamma}^{1 / 2} \mu_{\Gamma}\right\|_{H^{1 / 2}(\partial \Omega)} \preceq\|f\|_{H^{-1 / 2}(\partial \Omega)}\left\|\mu_{\Gamma}\right\|_{H^{1 / 2}(\Gamma)}
$$

and so $f_{\Gamma} \in H^{-1 / 2}(\Gamma)$. Analogously, $f_{\Gamma^{c}} \in H_{00}^{-1 / 2}\left(\Gamma^{c}\right)$. Moreover,

$$
\left\langle f_{\Gamma}, \mu_{\Gamma}\right\rangle_{\Gamma}+\left\langle f_{\Gamma^{c}}, \mu_{\Gamma^{c}}\right\rangle_{\Gamma^{c}}=\left\langle f, E_{\Gamma}^{1 / 2} \mu_{\Gamma}+E_{00, \Gamma^{c}}^{1 / 2} \mu_{\Gamma^{c}}\right\rangle_{\partial \Omega}=\langle f, \mu\rangle_{\partial \Omega}
$$

REMARK 2.5. In particular, if $f \in H^{-1 / 2}(\partial \Omega)$ and $\left.f\right|_{\Gamma^{c}}=0$ (see Definition 2.3 above), we have from (2.1) that

$$
\langle f, \mu\rangle_{\partial \Omega}=\left\langle f_{\Gamma}, \mu_{\Gamma}\right\rangle_{\Gamma} .
$$

Hence, functionals in $H^{-1 / 2}(\partial \Omega)$ which are zero when restricted to $\partial \Omega \backslash \Gamma$ can be identified with functionals in $H^{-1 / 2}(\Gamma)$.

REMARK 2.6. Given $f_{\Gamma} \in H^{-1 / 2}(\Gamma)$ we can define $f \in H^{-1 / 2}(\partial \Omega)$ by $\langle f, \mu\rangle_{\partial \Omega}:=$ $\left\langle f_{\Gamma}, \mu_{\Gamma}\right\rangle_{\Gamma}$, where $\mu=E_{\Gamma}^{1 / 2} \mu_{\Gamma}+E_{00, \Gamma^{c}}^{1 / 2} \mu_{\Gamma^{c}}$ as defined in Lemma 2.2. We have a similar result for $f_{\Gamma} \in H_{00}^{-1 / 2}\left(\Gamma^{c}\right)$.

Define the space $\boldsymbol{H}(\operatorname{div}, \Omega)$ by

$$
\boldsymbol{H}(\operatorname{div}, \Omega):=\left\{\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega): \nabla \cdot \boldsymbol{v} \in L^{2}(\Omega)\right\}
$$

with the norm

$$
\begin{equation*}
\|\boldsymbol{v}\|_{\boldsymbol{H}(\operatorname{div}, \Omega)}^{2}:=\|\boldsymbol{v}\|_{\boldsymbol{L}^{2}(\Omega)}^{2}+\|\nabla \cdot \boldsymbol{v}\|_{L^{2}(\Omega)}^{2} \tag{2.2}
\end{equation*}
$$

Recall that if $\boldsymbol{v} \in \boldsymbol{H}(\operatorname{div}, \Omega)$ then $\boldsymbol{v} \cdot \boldsymbol{\eta} \in H^{-1 / 2}(\partial \Omega)$. For the next result, see [30].
Lemma 2.7. For each $\boldsymbol{u} \in \boldsymbol{H}(\operatorname{div}, \Omega)$ with $\int_{\partial \Omega} \boldsymbol{u} \cdot \boldsymbol{\eta}=\langle\boldsymbol{u} \cdot \boldsymbol{\eta}, 1\rangle_{\partial \Omega}=0$ we have

$$
\sup _{\substack{\phi \in H^{1 / 2}(\partial \Omega) \\ \phi \neq \text { constant }}} \frac{\langle\boldsymbol{u} \cdot \boldsymbol{\eta}, \phi\rangle_{\partial \Omega}}{|\phi|_{H^{1 / 2}(\partial \Omega)}} \preceq\|\boldsymbol{u} \cdot \boldsymbol{\eta}\|_{H^{-1 / 2}(\partial \Omega)} \leq \sup _{\substack{\phi \in H^{1 / 2}(\partial \Omega) \\ \phi \neq \text { constant }}} \frac{\langle\boldsymbol{u} \cdot \boldsymbol{\eta}, \phi\rangle_{\partial \Omega}}{|\phi|_{H^{1 / 2}(\partial \Omega)}} .
$$

with a constant which depends only on Ω.
Using an argument similar to the one given in [30], we have
LEMMA 2.8. For each $f \in H^{-1 / 2}(\Gamma)$ with $\int_{\Gamma} f=\langle f, 1\rangle_{\Gamma}=0$, we have

$$
\sup _{\substack{\phi \in H^{1 / 2}(\Gamma) \\ \phi \neq \text { constant }}} \frac{\langle f, \phi\rangle_{\Gamma}}{|\phi|_{H^{1 / 2}(\Gamma)}} \preceq\|f\|_{H^{-1 / 2}(\Gamma)} \leq \sup _{\substack{\phi \in H^{1 / 2}(\Gamma) \\ \phi \neq \text { constant }}} \frac{\langle f, \phi\rangle_{\Gamma}}{|\phi|_{H^{1 / 2}(\Gamma)}}
$$

with a constant which depends only on Γ.

Proof. Observe that if α is a constant then $\langle f, \alpha\rangle_{\Gamma}=\alpha\langle f, 1\rangle_{\Gamma}=0$ and for $\phi \in H^{1 / 2}(\Gamma)$ non-constant we have

$$
\frac{\langle f, \phi\rangle_{\Gamma}}{\|\phi\|_{H^{1 / 2}(\Gamma)}} \leq \frac{\langle f, \phi\rangle_{\Gamma}}{|\phi|_{H^{1 / 2}(\Gamma)}}
$$

then

$$
\|f\|_{H^{-1 / 2}(\Gamma)}=\sup _{\substack{\phi \in H^{1 / 2}(\Gamma) \\ \phi \neq \text { constant }}} \frac{\langle f, \phi\rangle_{\Gamma}}{\|\phi\|_{H^{1 / 2}(\Gamma)}} \leq \sup _{\substack{\phi \in H^{1 / 2}(\Gamma) \\ \phi \neq \text { constant }}} \frac{\langle f, \phi\rangle_{\Gamma}}{|\phi|_{H^{1 / 2}(\Gamma)}}
$$

which gives the right inequality. Using a Poincaré inequality, there exists a positive constant which depends only on Γ, such that

$$
\|\psi\|_{H^{1 / 2}(\Gamma)}^{2} \preceq|\psi|_{H^{1 / 2}(\Gamma)}^{2}
$$

holds for all $\psi \in H^{1 / 2}(\Gamma)$ with $\int_{\Gamma} \psi=0$. For $\phi \in H^{1 / 2}(\Gamma)$ non-constant, we have

$$
\psi:=\phi-\int_{\Gamma} \phi \neq 0
$$

and

$$
\frac{\langle f, \psi\rangle_{\Gamma}}{\|\psi\|_{H^{1 / 2}(\Gamma)}}=\frac{\langle f, \phi\rangle_{\Gamma}}{\|\psi\|_{H^{1 / 2}(\partial \Omega)}} \succeq \frac{\langle f, \phi\rangle}{|\psi|_{H^{1 / 2}(\Gamma)}}=\frac{\langle f, \phi\rangle}{|\phi|_{H^{1 / 2}(\Gamma)}}
$$

This gives an equivalent norm in the subspace of $H^{-1 / 2}(\Gamma)$ of zero average functionals. Definition 2.9. For $f \in H^{-1 / 2}(\Gamma)$, f with zero average $\left(\langle f, 1\rangle_{\Gamma}=0\right.$), define

$$
|f|_{H^{-1 / 2}(\Gamma)}:=\sup _{\substack{\phi \in H^{1 / 2}(\Gamma) \\ \phi \neq \text { constant }}} \frac{\langle f, \phi\rangle_{\Gamma}}{|\phi|_{H^{1 / 2}(\Gamma)}}=\sup _{\substack{\phi \in H^{1 / 2}(\Gamma) \\ \int_{\Gamma} \phi=0, \phi \neq 0,}} \frac{\langle f, \phi\rangle_{\Gamma}}{|\phi|_{H^{1 / 2}(\Gamma)}}
$$

We have the following result.
Lemma 2.10. For $\mu \in H^{1 / 2}(\Gamma)$ with $\int_{\Gamma} \mu=0$ we have

$$
|\mu|_{H^{1 / 2}(\Gamma)}=\sup _{\substack{f \in H^{-1 / 2}(\Gamma) \\\langle f 1\rangle=0}} \frac{\langle f, \mu\rangle_{\Gamma}}{|f|_{H^{-1 / 2}(\Gamma)}}
$$

Proof. Consider $\left(H^{1 / 2}(\Gamma) \cap L_{0}^{2}(\Gamma)\right)^{*}$, the dual space of $H^{1 / 2}(\Gamma) \cap L_{0}^{2}(\Gamma)$, and observe that a functional $f_{0} \in\left(H^{1 / 2}(\Gamma) \cap L_{0}^{2}(\Gamma)\right)^{*}$ can be extended to one in $H^{1 / 2}(\Gamma)^{*}$, say f, by the following formula: $\langle f, \phi\rangle:=\left\langle f_{0}, \phi_{0}\right\rangle$ where $\phi \in H^{1 / 2}(\Gamma)$ and $\phi_{0}:=\phi-\int_{\Gamma} \phi$.
3. P.D.E model. In general, $\Omega_{f}, \Omega_{p} \subset \mathbb{R}^{n}, \Gamma=\bar{\Omega}_{f} \cap \bar{\Omega}_{p}, \Omega=\operatorname{int}\left(\bar{\Omega}_{f} \cup \bar{\Omega}_{p}\right), \Omega_{f}$ and Ω_{p} are Lipschitz, so it is possible to define outward unit normal vectors, denoted by $\boldsymbol{\eta}_{\boldsymbol{j}}$, $j=f, p$. The tangent vectors on Γ are denoted by $\tau_{1}(n=2)$, or $\tau_{l}, l=1,2(n=3)$. In order to avoid a setting that is too general, when $n=2$ we consider $\Omega_{f}=(1,2) \times(0,1)$ and $\Omega_{p}=(0,1) \times(0,1)$ or a regular Lipschitz perturbation of this configuration. Analogous conditions are consider for the case $n=3$.

Define $\Gamma_{j}:=\partial \Omega_{j} \backslash \Gamma, j=f, p$. Velocities are denoted by $u_{j}: \Omega_{j} \rightarrow \mathbb{R}^{n}, j=f, p$. Pressures are $p_{j}: \Omega_{j} \rightarrow \mathbb{R}, j=f, p$.

As was mentioned previously, Stokes equations are the model for the fluid region. The model basically consists of conservation of mass and conservation of momentum, and we have

$$
\left\{\begin{array}{rlrl}
-\nabla \cdot T\left(\boldsymbol{u}_{f}, p_{f}\right) & & =\boldsymbol{f}_{f} & \tag{3.1}\\
\text { in } \Omega_{f} \\
\nabla \cdot \boldsymbol{u}_{f} & =g_{f} & & \text { in } \Omega_{f} \\
\boldsymbol{u}_{f} & =\boldsymbol{h}_{f} & & \text { on } \Gamma_{f}
\end{array}\right.
$$

Here $T(\boldsymbol{v}, p):=-p I+2 \nu \boldsymbol{D} \boldsymbol{v}$ where ν is the fluid viscosity and $\boldsymbol{D} \boldsymbol{v}:=\frac{1}{2}\left(\nabla \boldsymbol{v}+\nabla^{T} \boldsymbol{v}\right)$ is the linearized strain tensor.

For the porous domain Ω_{p}, Darcy's law is used, i.e., $\left(\boldsymbol{u}_{p}, p_{p}\right)$ satisfies on Ω_{p}

$$
\left\{\begin{align*}
\boldsymbol{u}_{p} & =-\frac{\kappa}{\nu} \nabla p_{p}+\boldsymbol{f}_{p} & & \text { in } \Omega_{p} \tag{3.2}\\
\nabla \cdot \boldsymbol{u}_{p} & =g_{p} & & \text { (Darcy's law) } \Omega_{p} \\
\boldsymbol{u}_{p} \cdot \boldsymbol{\eta}_{p} & =h_{p} & & \text { on } \Gamma_{p}
\end{align*}\right.
$$

In general κ is a symmetric and a uniformly positive definite tensor that represents the rock permeability. For simplicity of the analysis, we assume that κ is a real positive constant. Recall that ν is the fluid viscosity.

We also impose the compatibility condition

$$
\begin{equation*}
\int_{\Omega_{f}} g_{f}+\int_{\Omega_{p}} g_{p}-\int_{\Gamma_{f}} \boldsymbol{h}_{f} \cdot \boldsymbol{\eta}_{f}-\int_{\Gamma_{p}} h_{p}=0 \tag{3.3}
\end{equation*}
$$

The systems presented above must be coupled across the interface Γ. The following conditions are imposed (see $[11,12,13,20]$ and references therein):

Conservation of mass across Γ : It is expressed by:

$$
\begin{equation*}
\boldsymbol{u}_{f} \cdot \boldsymbol{\eta}_{f}+\boldsymbol{u}_{p} \cdot \boldsymbol{\eta}_{p}=0 \text { on } \Gamma . \tag{3.4}
\end{equation*}
$$

This means that the fluid that is leaving a region enters in the other one.
Balance of normal forces across Γ : From Cauchy formula we see that

$$
\Sigma\left(\boldsymbol{u}_{f}, p_{f}\right):=T\left(\boldsymbol{u}_{f}, p_{f}\right) \boldsymbol{\eta}_{f}
$$

is the force on $\partial \Omega_{f}$ acting on the fluid volume inside Ω_{f}, i.e., Σ is the Cauchy stress (or traction) vector. The force on Γ from Ω_{f} side is then $\Sigma\left(\boldsymbol{u}_{f}, p_{f}\right)$. The only force acting on the interface from Ω_{p} side is the one given by p_{p} in the direction of $\boldsymbol{\eta}_{p}$ and must be equal to the component of Σ in this direction. We get

$$
\begin{equation*}
p_{f}-2 \nu \boldsymbol{\eta}_{f}^{T} \boldsymbol{D}\left(\boldsymbol{u}_{f}\right) \boldsymbol{\eta}_{f}=p_{p} \quad \text { on } \Gamma . \tag{3.5}
\end{equation*}
$$

The other components of Σ, i.e., $\Sigma \cdot \tau_{l}, l=1, n-1$, are more delicate and treated below.
Beavers-Joseph-Saffman condition: This condition is a kind of empirical law that gives an expression for the tangential component of Σ. It is expressed by:

$$
\begin{equation*}
\boldsymbol{u}_{f} \cdot \boldsymbol{\tau}_{l}=-\frac{\sqrt{\kappa}}{\alpha_{f}} 2 \boldsymbol{\eta}_{f}^{T} \boldsymbol{D}\left(\boldsymbol{u}_{f}\right) \boldsymbol{\tau}_{l} \quad \text { on } \Gamma, l=1, n-1 \tag{3.6}
\end{equation*}
$$

In the general case, κ is a symmetric and uniformly positive definite tensor, and κ in (3.6) is replaced by $\tau_{l} \cdot \kappa \cdot \tau_{l}$.

A related condition is

$$
\left(\boldsymbol{u}_{f}-\boldsymbol{u}_{p}\right) \cdot \boldsymbol{\tau}_{l}=-\frac{\sqrt{\kappa}}{\alpha_{f}} 2 \boldsymbol{\eta}_{f}^{T} \boldsymbol{D}\left(\boldsymbol{u}_{f}\right) \boldsymbol{\tau}_{l} \quad \text { on } \Gamma, l=1, n-1
$$

which is known as the Beavers-Joseph condition. But it turns out in practice that the component of \boldsymbol{u}_{p} in $\boldsymbol{\tau}_{l}$ direction is small compared with that of \boldsymbol{u}_{f}. When more general cases are considered, suitable interface conditions have to be imposed. An analytical way to find the right interface conditions is via homogenization; see [18].
4. Weak formulations and inf-sup analysis. In this section we derive and analyze several weak formulations associated with the Stokes-Darcy system presented in Section 3.
4.1. Weak formulations. According to Appendix A, it is enough to consider the case $g_{f}=0$ and $\boldsymbol{h}_{f}=\mathbf{0}$ in (3.1) and $g_{p}=0$ and $h_{p}=0$ in (3.2).

For Ω_{f} define

$$
\boldsymbol{X}_{f}:=H_{0}^{1}\left(\Omega_{f}, \Gamma_{f}\right)^{n} \text { and } M_{f}:=L^{2}\left(\Omega_{f}\right)
$$

where $H_{0}^{1}\left(\Omega_{f}, \Gamma_{f}\right)^{n}$ means by definition the subspace of functions \boldsymbol{v}_{f} such that each component of \boldsymbol{v}_{f} belongs to $H^{1}\left(\Omega_{f}\right)$ and vanishes on Γ_{f}.

For Ω_{p} we introduce the following spaces:

$$
\boldsymbol{X}_{p}:=\boldsymbol{H}_{0}\left(\operatorname{div}, \Omega_{p}, \Gamma_{p}\right) \text { and } M_{p}:=L^{2}\left(\Omega_{p}\right)
$$

where $\boldsymbol{H}_{0}\left(\operatorname{div}, \Omega_{p}, \Gamma_{p}\right)$ is defined as the subspace of $\boldsymbol{H}\left(\operatorname{div}, \Omega_{p}\right)$ of functions with vanishing normal component on Γ_{p} in the sense of Definition 2.3. Recall that if $\boldsymbol{u}_{p} \in \boldsymbol{H}\left(\operatorname{div}, \Omega_{p}\right)$ then $\boldsymbol{u}_{p} \cdot \boldsymbol{\eta}_{p} \in H^{-1 / 2}\left(\partial \Omega_{p}\right)$; see (2.2).

Define $\boldsymbol{X}:=\boldsymbol{X}_{f} \times \boldsymbol{X}_{p}$ with the usual norm, i.e., given $\boldsymbol{v}=\left(\boldsymbol{v}_{f}, \boldsymbol{v}_{p}\right) \in \boldsymbol{X}$,

$$
\|\boldsymbol{v}\|_{\boldsymbol{X}}^{2}:=\left|\boldsymbol{v}_{f}\right|_{\boldsymbol{H}^{1}\left(\Omega_{f}\right)^{n}}^{2}+\left\|\boldsymbol{v}_{p}\right\|_{\boldsymbol{H}\left(\operatorname{div}, \Omega_{p}\right)}^{2}
$$

We also set $M:=M_{f} \times M_{p}$ with the norm $\|q\|_{M}^{2}:=\left\|q_{f}\right\|_{L^{2}\left(\Omega_{f}\right)}^{2}+\left\|q_{f}\right\|_{L^{2}\left(\Omega_{p}\right)}^{2}$.
In order to derive a weak formulation we first proceed formally and then we introduce the adequate rigorous framework.

We start with the Stokes equation (3.1). For all $\boldsymbol{v}_{f} \in \boldsymbol{X}_{f}$ we have

$$
\begin{equation*}
\left(-2 \nu \nabla \cdot \boldsymbol{D} \boldsymbol{u}_{f}, \boldsymbol{v}_{f}\right)_{\Omega_{f}}+\left(\nabla p_{f}, \boldsymbol{v}_{f}\right)_{\Omega_{f}}=\left(\boldsymbol{f}_{f}, \boldsymbol{v}_{f}\right)_{\Omega_{f}} \tag{4.1}
\end{equation*}
$$

From the Green formula we have

$$
\begin{aligned}
-\left(\Delta \boldsymbol{u}_{f}, \boldsymbol{v}_{f}\right)_{\Omega_{f}} & =\left(\nabla \boldsymbol{u}_{f}, \nabla \boldsymbol{v}_{f}\right)_{\Omega_{f}}-\left(\nabla \boldsymbol{u}_{f} \boldsymbol{\eta}_{f}, \boldsymbol{v}_{f}\right)_{\Gamma} \\
& =\left(\nabla \boldsymbol{u}_{f}, \nabla \boldsymbol{v}_{f}\right)_{\Omega_{f}}-\left\langle\boldsymbol{\eta}_{f}^{T} \nabla \boldsymbol{u}_{f} \boldsymbol{\eta}_{f}, \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{f}\right\rangle_{\Gamma}-\sum_{l=1}^{n-1}\left\langle\boldsymbol{\tau}_{l}^{T} \nabla \boldsymbol{u}_{f} \boldsymbol{\eta}_{f}, \boldsymbol{v}_{f} \cdot \boldsymbol{\tau}_{l}\right\rangle_{\Gamma}
\end{aligned}
$$

and

$$
\begin{aligned}
-\left(\nabla \cdot \nabla \boldsymbol{u}_{f}^{T}, \boldsymbol{v}_{f}\right)_{\Omega_{f}} & =\left(\nabla \boldsymbol{u}_{f}^{T}, \nabla \boldsymbol{v}_{f}\right)_{\Omega_{f}}-\left\langle\nabla \boldsymbol{u}_{f}^{T} \boldsymbol{\eta}_{f}, \boldsymbol{v}_{f}\right\rangle_{\Gamma} \\
& =\left(\nabla \boldsymbol{u}_{f}^{T}, \nabla \boldsymbol{v}_{f}\right)_{\Omega_{f}}-\left\langle\boldsymbol{\eta}_{f}^{T} \nabla \boldsymbol{u}_{f}^{T} \boldsymbol{\eta}_{f}, \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{f}\right\rangle_{\Gamma}-\sum_{l=1}^{n-1}\left\langle\boldsymbol{\tau}_{l}^{T} \nabla \boldsymbol{u}_{f}^{T} \boldsymbol{\eta}_{f}, \boldsymbol{v}_{f} \cdot \boldsymbol{\tau}_{l}\right\rangle_{\Gamma}
\end{aligned}
$$

then

$$
\begin{aligned}
-\left(2 \nabla \cdot \boldsymbol{D} \boldsymbol{u}_{f}, \boldsymbol{v}_{f}\right)_{\Omega_{f}}= & 2\left(\boldsymbol{D} \boldsymbol{u}_{f}, \boldsymbol{D} \boldsymbol{v}_{f}\right)_{\Omega_{f}}-2\left\langle\boldsymbol{\eta}_{f}^{T} \boldsymbol{D} \boldsymbol{u}_{f} \boldsymbol{\eta}_{f}, \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{f}\right\rangle_{\Gamma} \\
& -2 \sum_{l=1}^{n-1}\left\langle\boldsymbol{\tau}_{l}^{T} \boldsymbol{D} \boldsymbol{u}_{f} \boldsymbol{\eta}_{f}, \boldsymbol{v}_{f} \cdot \boldsymbol{\tau}_{l}\right\rangle_{\Gamma}
\end{aligned}
$$

For the second term on (4.1) we have

$$
\begin{equation*}
\left(\nabla p_{f}, \boldsymbol{v}_{f}\right)_{\Omega_{f}}=\left\langle p_{f}, \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{f}\right\rangle_{\Gamma}-\left(p_{f}, \nabla \cdot \boldsymbol{v}_{f}\right)_{\Omega_{f}} \tag{4.2}
\end{equation*}
$$

For $\boldsymbol{u}_{f}, \boldsymbol{v}_{f} \in \boldsymbol{X}_{f}$ and $q_{f} \in M_{f}$ define

$$
\begin{gather*}
a_{f}\left(\boldsymbol{u}_{f}, \boldsymbol{v}_{f}\right):=2 \nu\left(\boldsymbol{D} \boldsymbol{u}_{f}, \boldsymbol{D} \boldsymbol{v}_{f}\right)_{\Omega_{f}}+\sum_{l=1}^{n-1} \frac{\nu \alpha_{f}}{\sqrt{\kappa}}\left\langle\boldsymbol{u}_{f} \cdot \boldsymbol{\tau}_{l}, \boldsymbol{v}_{f} \cdot \boldsymbol{\tau}_{l}\right\rangle_{\Gamma} \tag{4.3}\\
b_{f}\left(\boldsymbol{v}_{f}, q_{f}\right):=-\left(q_{f}, \nabla \cdot \boldsymbol{v}_{f}\right)_{\Omega_{f}} \tag{4.4}
\end{gather*}
$$

By replacing (4.2) in (4.1), and using the condition (3.6), we obtain for all $\boldsymbol{v}_{f} \in \boldsymbol{X}_{f}$ and $q_{f} \in M_{f}$

$$
\begin{cases}a_{f}\left(\boldsymbol{u}_{f}, \boldsymbol{v}_{f}\right)+b_{f}\left(\boldsymbol{v}_{f}, p_{f}\right)+\left\langle p_{f}-2 \nu \boldsymbol{\eta}_{f}^{T} \boldsymbol{D}\left(\boldsymbol{u}_{f}\right) \boldsymbol{\eta}_{f}, \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{f}\right\rangle_{\Gamma} & =\left(\boldsymbol{f}_{f}, \boldsymbol{v}_{f}\right)_{\Omega_{f}} \tag{4.5}\\ b_{f}\left(\boldsymbol{u}_{f}, q_{f}\right) & =0\end{cases}
$$

Analogously, defining

$$
\begin{gather*}
a_{p}\left(\boldsymbol{u}_{p}, \boldsymbol{v}_{p}\right):=\left(\frac{\nu}{\kappa} \boldsymbol{u}_{p}, \boldsymbol{v}_{p}\right)_{\Omega_{p}} \quad \text { for all } \boldsymbol{u}_{p}, \boldsymbol{v}_{p} \in \boldsymbol{X}_{p} \tag{4.6}\\
b_{p}\left(\boldsymbol{v}_{p}, q_{p}\right):=-\left(q_{p}, \nabla \cdot \boldsymbol{v}_{p}\right)_{\Omega_{p}} \text { for all } \boldsymbol{v}_{p} \in \boldsymbol{X}_{p} \text { and } q_{p} \in M_{p},
\end{gather*}
$$

we have for all $\boldsymbol{v}_{p} \in \boldsymbol{X}_{p}$ and $q_{p} \in M_{p}$

$$
\begin{cases}a_{p}\left(\boldsymbol{u}_{p}, \boldsymbol{v}_{p}\right)+b_{p}\left(\boldsymbol{v}_{p}, p_{p}\right)+\left\langle p_{p}, \boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}\right\rangle_{\Gamma} & =\left(\boldsymbol{f}_{p}, \boldsymbol{v}_{p}\right)_{\Omega_{p}} \tag{4.7}\\ b_{p}\left(\boldsymbol{u}_{p}, q_{p}\right) & =0\end{cases}
$$

To couple the two subproblems (4.5) and (4.7) we use balance of normal forces (3.5) and a Lagrange multiplier which also approximate the Darcy pressure on the interface Γ. Introduce the Lagrange multiplier,

$$
\begin{equation*}
\lambda=p_{p}=p_{f}-2 \nu \boldsymbol{\eta}_{f}^{T} \boldsymbol{D}\left(\boldsymbol{u}_{f}\right) \boldsymbol{\eta}_{f}=p_{f}-2 \nu \boldsymbol{\eta}_{f}^{T} \nabla \boldsymbol{u} \boldsymbol{\eta}_{f} \tag{4.8}
\end{equation*}
$$

Then we get

$$
\left\{\begin{array}{lll}
a_{f}\left(\boldsymbol{u}_{f}, \boldsymbol{v}_{f}\right)+b_{f}\left(\boldsymbol{v}_{f}, p_{f}\right)+\left\langle\boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{f}, \lambda\right\rangle_{\Gamma} & =\left(\boldsymbol{f}_{\boldsymbol{f}}, \boldsymbol{v}_{f}\right)_{\Omega_{f}} & \text { for all } \boldsymbol{v}_{f} \in \boldsymbol{X}_{f} \tag{4.9}\\
a_{p}\left(\boldsymbol{u}_{p}, \boldsymbol{v}_{p}\right)+b_{p}\left(\boldsymbol{v}_{p}, p_{p}\right)+\left\langle\boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}, \lambda\right\rangle_{\Gamma} & =\left(\boldsymbol{f}_{p}, \boldsymbol{v}_{p}\right)_{\Omega_{p}} & \text { for all } \boldsymbol{v}_{p} \in \boldsymbol{X}_{p} \\
b_{f}\left(\boldsymbol{u}_{f}, q_{f}\right) & =0 & \text { for all } q_{f} \in M_{f} \\
b_{p}\left(\boldsymbol{u}_{p}, q_{p}\right) & =0 & \text { for all } q_{f} \in M_{p} \\
\left\langle\boldsymbol{u}_{f} \cdot \boldsymbol{\eta}_{f}+\boldsymbol{u}_{p} \cdot \boldsymbol{\eta}_{p}, \mu\right\rangle_{\Gamma} & =0 & \text { for all } \mu \in \Lambda,
\end{array}\right.
$$

where the space Λ is defined below.

Define $a: \boldsymbol{X} \times \boldsymbol{X} \rightarrow \mathbb{R}$ and $b: \boldsymbol{X} \times M \rightarrow \mathbb{R}$ by:

$$
\begin{gather*}
a(\boldsymbol{u}, \boldsymbol{v}):=a_{f}\left(\boldsymbol{u}_{f}, \boldsymbol{v}_{f}\right)+a_{p}\left(\boldsymbol{u}_{p}, \boldsymbol{v}_{p}\right) \tag{4.10}\\
b(\boldsymbol{v}, q):=b_{f}\left(\boldsymbol{v}_{f}, q_{f}\right)+b_{p}\left(\boldsymbol{v}_{p}, q_{p}\right) \tag{4.11}
\end{gather*}
$$

Using (3.4), we obtain

$$
\begin{cases}a(\boldsymbol{u}, \boldsymbol{v})+b(\boldsymbol{v}, p)+\left\langle\boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{f}+\boldsymbol{v}_{\boldsymbol{p}} \cdot \boldsymbol{\eta}_{p}, \lambda\right\rangle_{\Gamma} & =\left(\boldsymbol{f}_{f}, \boldsymbol{v}_{f}\right)_{\Omega_{f}}+\left(\boldsymbol{f}_{p}, \boldsymbol{v}_{p}\right)_{\Omega_{p}} \tag{4.12}\\ b(\boldsymbol{u}, q) & =0 \\ \left\langle\boldsymbol{u}_{f} \cdot \boldsymbol{\eta}_{f}+\boldsymbol{u}_{p} \cdot \boldsymbol{\eta}_{p}, \mu\right\rangle_{\Gamma} & =0\end{cases}
$$

Note that if p is a solution of (4.12), then p plus any constant is also a solution of (4.12); this follows directly from applying the divergence theorem on the first equation of (4.12) and using (4.8). In addition, using the the divergence theorem on the second equation of (4.12) and the compatibility condition (3.3) we have that the equation (4.12) is automatically satisfied for constant test functions $q \in M$. Therefore, we can replace the space M in (4.9) by the following subspace of M

$$
\begin{equation*}
M^{\circ}:=\left\{q=\left(q_{f}, q_{p}\right) \in M: \int_{\Omega_{f}} q_{f}+\int_{\Omega_{p}} q_{p}=0\right\} \tag{4.13}
\end{equation*}
$$

We have to choose a suitable function space Λ for λ. Observe that on the porous exterior boundary Γ_{p} we consider zero flux as boundary condition, i.e., $\boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}=0$ on Γ_{p}. Recalling Definition 2.3, this means that

$$
\left\langle\boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}, E_{00, \Gamma_{p}}^{1 / 2} \phi\right\rangle_{\partial \Omega_{p}}=0 \quad \text { for all } \phi \in H_{00}^{1 / 2}\left(\Gamma_{p}\right)
$$

where $E_{00, \Gamma_{p}}^{1 / 2}$ denotes the extension by zero on $\Gamma_{p}^{c}=\Gamma$. Then, according to Lemma 2.4 and Remark 2.5 we can think of $\boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}$ as a distribution in $H^{-1 / 2}(\Gamma)$, more precisely, we can define $\left.\boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{\boldsymbol{p}}\right|_{\Gamma} \in H^{-1 / 2}(\Gamma)$ as

$$
\begin{equation*}
\left\langle\left.\boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}\right|_{\Gamma}, \phi\right\rangle_{\Gamma}:=\left\langle\boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}, E_{\Gamma}^{1 / 2} \phi\right\rangle_{\partial \Omega_{p}}, \quad \phi \in H^{1 / 2}(\Gamma) \tag{4.14}
\end{equation*}
$$

where $E_{\Gamma}^{1 / 2}$ is the extension operator defined in Lemma 2.1. This is the main mathematical motivation for choosing Λ as $H^{1 / 2}(\Gamma)$ rather than $H_{00}^{1 / 2}(\Gamma)$. On the fluid exterior boundary Γ_{f} we are using Dirichlet boundary condition, i.e., $\boldsymbol{v}_{f}=\mathbf{0}$ on Γ_{f}. Then $\left.\boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{f}\right|_{\Gamma} \in H_{00}^{1 / 2}(\Gamma)$ relatively to $\partial \Omega_{f}$. Then $\left.\boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{f}\right|_{\Gamma} \in H_{00}^{1 / 2}(\Gamma)$ relatively to $\partial \Omega_{p}$. Here we use the fact that $H_{00}^{1 / 2}(\Gamma)$, which is the trace of $H_{0}^{1}\left(\Omega_{f}, \Gamma_{f}\right)$, is equivalent to the trace of $H_{0}^{1}\left(\Omega_{p}, \Gamma_{p}\right)$ if the shape and measure of Ω_{f} are of the similar size of those of Ω_{p}; see [17, 23]. Since $H_{00}^{1 / 2}(\Gamma) \subset H^{-1 / 2}(\Gamma)$ we conclude that $\left.\boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{f}\right|_{\Gamma} \in H^{-1 / 2}(\Gamma)$. In what follows we denote $\left.\boldsymbol{v}_{\boldsymbol{p}} \cdot \boldsymbol{\eta}_{p}\right|_{\Gamma}$ simply by $\boldsymbol{v}_{\boldsymbol{p}} \cdot \boldsymbol{\eta}_{p}$ and $\left.\boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{\boldsymbol{f}}\right|_{\Gamma}$ by $\boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{\boldsymbol{f}}$.

From the previous discussion we conclude that $\boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{f}+\boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p} \in H^{-1 / 2}(\Gamma)$ and so we choose for λ the space

$$
\begin{equation*}
\Lambda:=H^{1 / 2}(\Gamma) \quad \text { with } \quad\|\cdot\|_{\Lambda}^{2}:=\|\cdot\|_{H^{1 / 2}(\Gamma)}^{2}=\|\cdot\|_{L^{2}(\Gamma)}^{2}+|\cdot|_{H^{1 / 2}(\Gamma)}^{2} \tag{4.15}
\end{equation*}
$$

and define $b_{\Gamma}: \boldsymbol{X} \times \Lambda \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
b_{\Gamma}(\boldsymbol{v}, \mu):=\left\langle\boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{f}, \mu\right\rangle_{\Gamma}+\left\langle\boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}, \mu\right\rangle_{\Gamma}, \quad \boldsymbol{v}=\left(\boldsymbol{v}_{f}, \boldsymbol{v}_{p}\right) \in \boldsymbol{X}, \quad \mu \in \Lambda \tag{4.16}
\end{equation*}
$$

with the second duality pairing as in (4.14).
From Lemma 2.4, we obtain
LEMMA 4.1. $b_{\Gamma}: \boldsymbol{X} \times \Lambda \rightarrow \mathbb{R}$ defined in (4.16) and (4.14) is continuous.
Another reason for choosing $H^{1 / 2}(\Gamma)$ instead of $H_{00}^{1 / 2}(\Gamma)$ is because the Lagrange multiplier represents the porous pressure on Γ, see (4.8), and hence there is no physical reason for the pressure p_{p} to vanish on $\Gamma \cap \partial \Omega$ when flux boundary conditions are imposed on the porous side exterior boundary Γ_{p}. The space we choose for Λ is richer than $H_{00}^{1 / 2}(\Gamma)$, therefore the equation

$$
b_{\Gamma}(\boldsymbol{u}, \mu)=0 \quad \text { for all } \mu \in \Lambda=H^{1 / 2}(\Gamma)
$$

applied to \boldsymbol{u} is a stronger condition than considering μ on the space $H_{00}^{1 / 2}(\Gamma)$. As a result, better mass conservation near $\Gamma \cap \partial \Omega$ is achieved. On the other hand, choosing $H_{00}^{1 / 2}(\Gamma)$ as the spaces of Lagrange multipliers associated to the porous pressure would be more appropriate if zero pressure was imposed on $\partial \Omega$; see [11].
4.1.1. First weak formulation. We finally arrive to the weak formulation of the problem: Find $\left(\boldsymbol{u}^{1}, p^{1}, \lambda^{1}\right) \in \boldsymbol{X} \times M^{\circ} \times \Lambda$ such that

$$
\left\{\begin{array}{lll}
a\left(\boldsymbol{u}^{1}, \boldsymbol{v}\right)+b\left(\boldsymbol{v}, p^{1}\right)+b_{\Gamma}\left(\boldsymbol{v}, \lambda^{1}\right) & =\ell(\boldsymbol{v}) & \text { for all } \boldsymbol{v} \in \boldsymbol{X} \tag{4.17}\\
b\left(\boldsymbol{u}^{1}, q\right) & =0 & \text { for all } q \in M^{\circ} \\
b_{\Gamma}\left(\boldsymbol{u}^{1}, \mu\right) & =0 & \text { for all } \mu \in \Lambda
\end{array}\right.
$$

where

$$
\ell(\boldsymbol{v}):=\left(\boldsymbol{f}_{f}, \boldsymbol{v}_{f}\right)_{\Omega_{f}}+\left(\boldsymbol{f}_{p}, \boldsymbol{v}_{p}\right)_{\Omega_{p}} \text { for all } \boldsymbol{v} \in \boldsymbol{X}
$$

and the bilinear forms a, b and b_{Γ} are defined in (4.10), (4.11) and, (4.16) and (4.14), respectively.

Next we introduce two other weak formulations and we refer to them as the second and the third weak formulations; see (4.20) and (4.23). The second weak formulation is an intermediate step for deriving the third weak formulation. The third formulation is the most fundamental one among the three formulations and it is where most of the analysis is carried on. Once the inf-sup condition is established for the third weak formulation, the inf-sup for the other two formulations follow straightforwardly; see Remark 4.8. The analysis of the third weak formulation is based on seminorms and on the theoretical tools developed in Section 2. The three weak formulations are all equivalent in the following sense (see Remarks 4.2 and 4.3):

1. If we know a solution $(\hat{\boldsymbol{u}}, \hat{p}, \hat{\lambda})$ for one weak formulation, then we can construct a solution for the other two weak formulations. This construction is done by removing or by recovering the mean value of the fluid and porous pressure solutions and the mean value of the Lagrange multiplier solution.
2. All three weak formulations have the same velocity solutions.

The Proposition 5.7 establishes the inf-sup condition for the third weak formulation, therefore, the existence and uniqueness of the solution follow; see Subsection 4.1.3. Hence, existence of a solution for the first and second weak formulations follows from Remarks 4.2 and 4.3. Finally, the Remark 4.8 establishes the inf-sup conditions for the first and second weak formulations and therefore, the uniqueness of their solution.
4.1.2. Second weak formulation. We now introduce an equivalent weak formulation for (4.17) by eliminating the velocities with non-zero mean normal jump across Γ and also
the Lagrange multipliers that are constants; see Remark 4.2 below. Define

$$
\begin{equation*}
\boldsymbol{X}^{\circ}=\left\{\boldsymbol{v}=\left(\boldsymbol{v}_{f}, \boldsymbol{v}_{p}\right) \in \boldsymbol{X}: b_{\Gamma}(\boldsymbol{v}, 1)=\int_{\Gamma} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{f}+\boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}=0\right\} \tag{4.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda^{\circ}:=H^{1 / 2}(\Gamma) \cap L_{0}^{2}(\Gamma) \quad \text { with norm }|\cdot|_{\Lambda^{\circ}}:=|\cdot|_{H^{1 / 2}(\Gamma)} \tag{4.19}
\end{equation*}
$$

The second weak formulation is: Find $\left(\boldsymbol{u}^{2}, p^{2}, \lambda^{2}\right) \in \boldsymbol{X}^{\circ} \times M^{\circ} \times \Lambda^{\circ}$ such that

$$
\left\{\begin{array}{lll}
a\left(\boldsymbol{u}^{2}, \boldsymbol{v}\right)+b\left(\boldsymbol{v}, p^{2}\right)+b_{\Gamma}\left(\boldsymbol{v}, \lambda^{2}\right) & =\ell(\boldsymbol{v}) & \text { for all } \boldsymbol{v} \in \boldsymbol{X}^{\circ} \tag{4.20}\\
b\left(\boldsymbol{u}^{2}, q\right) & =0 & \text { for all } q \in M^{\circ} \\
b_{\Gamma}\left(\boldsymbol{u}^{2}, \mu\right) & =0 & \text { for all } \mu \in \Lambda^{\circ}
\end{array}\right.
$$

REMARK 4.2. It is easy to see that if $\left(\boldsymbol{u}^{1}, p^{1}, \lambda^{1}\right) \in \boldsymbol{X} \times M^{\circ} \times \Lambda$ solves the weak formulation (4.17) then $\boldsymbol{u}^{1} \in \boldsymbol{X}^{\circ}$ and $\left(\boldsymbol{u}^{1}, \boldsymbol{p}^{1}, \lambda^{2}\right)$ solves (4.20) with $\lambda^{2}=\lambda^{1}-\frac{1}{|\Gamma|} \int_{\Gamma} \lambda^{1}$. To see the converse, let $\left(\boldsymbol{u}^{2}, p^{2}, \lambda^{2}\right) \in \boldsymbol{X}^{\circ} \times M^{\circ} \times \Lambda^{\circ}$ be a solution of (4.20). Construct $\boldsymbol{w}=\left(0, \boldsymbol{w}_{p}\right) \in \boldsymbol{X}$ such that

$$
\boldsymbol{w}_{p} \cdot \boldsymbol{\eta}_{p}=\frac{1}{|\Gamma|} \text { on } \Gamma, \quad \boldsymbol{w}_{p} \cdot \boldsymbol{\eta}_{p}=0 \text { on } \Gamma_{p}
$$

define

$$
\bar{\lambda}:=\ell(\boldsymbol{w})-a\left(\boldsymbol{u}^{2}, \boldsymbol{w}\right)-b\left(\boldsymbol{w}, p^{2}\right)
$$

and set $\lambda^{1}:=\lambda^{2}+\bar{\lambda}$. Then $\left(\boldsymbol{u}^{2}, p^{2}, \lambda^{1}\right)$ solves (4.17). Indeed, observe that $b_{\Gamma}\left(\boldsymbol{w}, \lambda^{1}\right)=\bar{\lambda}$ and that for $\boldsymbol{v}=\left(\boldsymbol{v}_{f}, \boldsymbol{v}_{p}\right) \in \boldsymbol{X}$ we can find α such that $\boldsymbol{v}^{2}:=\boldsymbol{v}+\alpha \boldsymbol{w} \in \boldsymbol{X}^{\circ}$. Hence, we obtain

$$
\begin{aligned}
a\left(\boldsymbol{u}^{2}, \boldsymbol{v}\right)+b\left(\boldsymbol{v}, p^{2}\right)+b_{\Gamma}\left(\boldsymbol{v}, \lambda^{1}\right)= & \left\{a\left(\boldsymbol{u}^{2}, \boldsymbol{v}^{2}\right)+b\left(\boldsymbol{v}^{2}, p^{2}\right)+b_{\Gamma}\left(\boldsymbol{v}^{2}, \lambda^{2}\right)\right\} \\
& -\alpha\left\{a\left(\boldsymbol{u}^{2}, \boldsymbol{w}\right)+b\left(\boldsymbol{w}, p^{2}\right)+b_{\Gamma}\left(\boldsymbol{w}, \lambda^{1}\right)\right\} \\
= & \ell\left(\boldsymbol{v}^{2}\right)-\alpha\left\{a\left(\boldsymbol{u}^{2}, \boldsymbol{w}\right)+b\left(\boldsymbol{w}, p^{2}\right)+\bar{\lambda}\right\} \\
= & \ell\left(\boldsymbol{v}^{2}\right)-\alpha \ell(\boldsymbol{w})=\ell(\boldsymbol{v})
\end{aligned}
$$

The second and third equations of (4.17) are also easily verified.
4.1.3. Third weak formulation. We can continue with the elimination of piecewise constant pressures on each subdomain together with velocities with non-zero mean normal component on Γ. Define

$$
\begin{equation*}
\boldsymbol{X}^{\circ \circ}=\left\{\boldsymbol{v}=\left(\boldsymbol{v}_{f}, \boldsymbol{v}_{p}\right) \in \boldsymbol{X}^{\circ}: \int_{\Gamma} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{f}=0 \text { and } \int_{\Gamma} \boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}=0\right\} \tag{4.21}
\end{equation*}
$$

and

$$
\begin{equation*}
M^{\circ \circ}:=\left\{q=\left(q_{f}, q_{p}\right) \in M_{f} \times M_{p}: \int_{\Omega_{f}} q_{f}=0 \text { and } \int_{\Omega_{p}} q_{p}=0\right\} \tag{4.22}
\end{equation*}
$$

and consider the following formulation: Find $\left(\boldsymbol{u}^{3}, p^{3}, \lambda^{3}\right) \in \boldsymbol{X}^{\circ \circ} \times M^{\circ \circ} \times \Lambda^{\circ}$ such that

$$
\left\{\begin{array}{lll}
a\left(\boldsymbol{u}^{3}, \boldsymbol{v}\right)+b\left(\boldsymbol{v}, p^{3}\right)+b_{\Gamma}\left(\boldsymbol{v}, \lambda^{3}\right) & =\ell(\boldsymbol{v}) & \text { for all } \boldsymbol{v} \in \boldsymbol{X}^{\circ \circ} \tag{4.23}\\
b\left(\boldsymbol{u}^{3}, q\right) & =0 & \text { for all } q \in M^{\circ \circ} \\
b_{\Gamma}\left(\boldsymbol{u}^{3}, \mu\right) & =0 & \text { for all } \mu \in \Lambda^{\circ}
\end{array}\right.
$$

REMARK 4.3. Let $\left(\boldsymbol{u}^{2}, p^{2}, \lambda^{2}\right) \in \boldsymbol{X}^{\circ} \times M^{\circ} \times \Lambda^{\circ}$ be a solution of (4.20). We next show that $\boldsymbol{u}^{2} \in \boldsymbol{X}^{\circ \circ}$. Consider the following piecewise constant pressure $p^{c}=\left(1,-\frac{\left|\Omega_{f}\right|}{\Omega_{p}}\right) \in M^{\circ}$. From the second equation in (4.20) we have

$$
0=\int_{\Omega_{f}} \nabla \cdot \boldsymbol{u}_{f}^{2}-\frac{\left|\Omega_{f}\right|}{\left|\Omega_{p}\right|} \int_{\Omega_{p}} \nabla \cdot \boldsymbol{u}_{p}^{2}=\int_{\Gamma} \boldsymbol{u}_{f}^{2} \cdot \boldsymbol{\eta}_{f}-\frac{\left|\Omega_{f}\right|}{\left|\Omega_{p}\right|} \int_{\Gamma} \boldsymbol{u}_{p}^{2} \cdot \boldsymbol{\eta}_{p}
$$

and since $\boldsymbol{u}^{2} \in \boldsymbol{X}^{\circ}$, i.e.,

$$
\int_{\Gamma} \boldsymbol{u}_{f}^{2} \cdot \boldsymbol{\eta}_{f}+\int_{\Gamma} \boldsymbol{u}_{p}^{2} \cdot \boldsymbol{\eta}_{p}=0
$$

we obtain $\int_{\Gamma} \boldsymbol{u}_{\boldsymbol{f}}^{2} \cdot \boldsymbol{\eta}_{f}=\int_{\Gamma} \boldsymbol{u}_{\boldsymbol{p}}^{2} \cdot \boldsymbol{\eta}_{p}=0$, therefore, $\boldsymbol{u}^{2} \in \boldsymbol{X}^{\circ \circ}$. Now set

$$
p^{3}:=\left(p_{f}^{2}-\frac{1}{\left|\Omega_{f}\right|} \int_{\Omega_{f}} p_{f}^{2}, p_{p}^{2}-\frac{1}{\left|\Omega_{p}\right|} \int_{\Omega_{p}} p_{p}^{2}\right) \in M^{\circ \circ}
$$

Then $b\left(\boldsymbol{v}, p^{3}\right)=b\left(\boldsymbol{v}, p^{2}\right)$ for all $\boldsymbol{v} \in \boldsymbol{X}^{\circ \circ}$ and we conclude that $\left(\boldsymbol{u}^{2}, p^{3}, \lambda^{2}\right)$ solves (4.23). Now for the converse, suppose $\left(\boldsymbol{u}^{3}, p^{3}, \lambda^{3}\right) \in \boldsymbol{X}^{\circ 0} \times M^{\circ 0} \times \Lambda^{\circ}$ solves (4.23). Let $\boldsymbol{z}=$ $\left(\boldsymbol{z}_{f}, \boldsymbol{z}_{p}\right) \in \boldsymbol{X}^{\circ}$ be any function such that $\int_{\Gamma} \boldsymbol{z}_{f} \cdot \boldsymbol{\eta}_{f}=-\int_{\Gamma} \boldsymbol{z}_{p} \cdot \boldsymbol{\eta}_{p}=\frac{\left|\Omega_{p}\right|}{\left|\Omega_{f}\right|+\left|\Omega_{p}\right|}$. Then

$$
b\left(\boldsymbol{z}, p^{c}\right)=\int_{\Omega_{f}} \nabla \cdot \boldsymbol{z}_{f}-\frac{\left|\Omega_{f}\right|}{\left|\Omega_{p}\right|} \int_{\Omega_{p}} \nabla \cdot \boldsymbol{z}_{p}=\int_{\Gamma} z_{f} \cdot \boldsymbol{\eta}_{f}-\frac{\left|\Omega_{f}\right|}{\left|\Omega_{p}\right|} \int_{\Gamma} z_{p} \cdot \boldsymbol{\eta}_{p}=1
$$

Define

$$
\gamma:=\ell(\boldsymbol{z})-a\left(\boldsymbol{u}^{3}, \boldsymbol{z}\right)-b\left(\boldsymbol{z}, p^{3}\right)-b_{\Gamma}\left(\boldsymbol{z}, \lambda^{3}\right)
$$

and $p^{2}:=p^{3}+\gamma p^{c}$ where, as before, $p^{c}=\left(1,-\frac{\left|\Omega_{f}\right|}{\left|\Omega_{p}\right|}\right)$. Next we show that $\left(\boldsymbol{u}^{3}, p^{2}, \lambda^{3}\right)$ solves (4.20). Indeed, if $(\boldsymbol{v}, q, \mu) \in \boldsymbol{X}^{\circ} \times M^{\circ} \times \Lambda^{\circ}$, we can find ϵ such that $\boldsymbol{v}^{3}:=\boldsymbol{v}+\epsilon \boldsymbol{z} \in \boldsymbol{X}^{\circ \circ}$. Then we have

$$
\begin{aligned}
a\left(\boldsymbol{u}^{3}, \boldsymbol{v}\right)+b\left(\boldsymbol{v}, p^{2}\right)+b_{\Gamma}\left(\boldsymbol{v}, \lambda^{3}\right)= & \left\{a\left(\boldsymbol{u}^{3}, \boldsymbol{v}^{3}\right)+b\left(\boldsymbol{v}^{3}, p^{3}\right)+b_{\Gamma}\left(\boldsymbol{v}^{3}, \lambda^{3}\right)\right\}+\gamma b\left(\boldsymbol{v}^{3}, p^{c}\right) \\
& -\epsilon\left\{a\left(\boldsymbol{u}^{3}, \boldsymbol{z}\right)+b\left(\boldsymbol{z}, p^{3}\right)+b_{\Gamma}\left(\boldsymbol{z}, \lambda^{3}\right)+\gamma b\left(\boldsymbol{z}, p^{c}\right)\right\} \\
= & \ell\left(\boldsymbol{v}^{3}\right)-\epsilon \ell(\boldsymbol{z})=\ell(\boldsymbol{v})
\end{aligned}
$$

Here we have used the fact that $b\left(\boldsymbol{v}^{3}, p^{c}\right)=0$ for all $\boldsymbol{v}^{3} \in \boldsymbol{X}^{\circ \circ}$. The second and third equation of (4.20) are also easily verified.
4.2. Inf-sup analysis. In the subsequent sections, we consider only the formulation (4.23), and we abandon the super-index 3 to avoid proliferation of indexes. In particular we establish the inf-sup associated to this formulation, see Proposition 4.7. See also Remark 4.8 for the inf-sup of the first and second weak formulations.

Define

$$
\boldsymbol{V}=\left(\boldsymbol{V}_{f}, \boldsymbol{V}_{p}\right):=\left\{\boldsymbol{v} \in \boldsymbol{X}^{\circ \circ}: b_{\Gamma}(\boldsymbol{v}, \mu)=0 \text { for all } \mu \in \Lambda^{\circ}\right\}
$$

with $\boldsymbol{X}^{\circ \circ}$ and Λ° defined in (4.21) and (4.19), respectively. The space \boldsymbol{V} is closed because the linear map $B_{\Gamma}: \boldsymbol{X} \rightarrow \Lambda^{\prime}$ defined by $B_{\Gamma}(\boldsymbol{v}) \mu:=b_{\Gamma}(\boldsymbol{v}, \mu)$ is continuous and $\boldsymbol{V}=\operatorname{Ker} B_{\Gamma}$. It
is easy to see that for $\boldsymbol{v} \in \boldsymbol{V}$ we have $\boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}=\boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{p} \in H_{00}^{1 / 2}(\Gamma)$. Then we can formulate the problem (4.23) as

$$
\left\{\begin{array}{lll}
a(\boldsymbol{u}, \boldsymbol{v})+b(\boldsymbol{v}, p) & =\ell(\boldsymbol{v}) & \text { for all } \boldsymbol{v} \in \boldsymbol{V} \tag{4.24}\\
b(\boldsymbol{u}, q) & =0 & \text { for all } q \in M^{\circ \circ}
\end{array}\right.
$$

with $M^{\circ \circ}$ defined in (4.22). Since $\boldsymbol{u}_{p} \cdot \boldsymbol{\eta}_{p}=\boldsymbol{u}_{f} \cdot \boldsymbol{\eta}_{\boldsymbol{f}} \in H_{00}^{1 / 2}(\Gamma)$, some regularity results on \boldsymbol{u}_{p} and p_{p} can be derived which depends on smoothness and convexity properties of $\partial \Omega_{p}$. We note however that no regularity is used to establish the continuous and discrete inf-sup conditions. Regularity is assumed only in the Section 6 where a priori error estimates are established.

Now, define

$$
\begin{equation*}
\boldsymbol{Z}=\left(\boldsymbol{Z}_{f}, \boldsymbol{Z}_{p}\right):=\left\{\boldsymbol{v} \in \boldsymbol{X}^{\circ \circ}: b(\boldsymbol{v}, q)=0 \text { for all } q \in M^{\circ \circ}\right\} \tag{4.25}
\end{equation*}
$$

Then we can also formulate problem (4.23) as:

$$
\left\{\begin{array}{lll}
a(\boldsymbol{u}, \boldsymbol{v})+b_{\Gamma}(\boldsymbol{v}, \lambda) & =\ell(\boldsymbol{v}) & \text { for all } \boldsymbol{v} \in \boldsymbol{Z} \tag{4.26}\\
b_{\Gamma}(\boldsymbol{u}, \mu) & =0 & \text { for all } \mu \in \Lambda^{\circ}
\end{array}\right.
$$

REMARK 4.4. The Korn inequality implies that the bilinear form a_{f} defined in (4.3) is $\boldsymbol{X}_{\boldsymbol{f}}$-elliptic; see [5,23]. The bilinear for a_{p} defined in (4.6) is \boldsymbol{H} ($\operatorname{div}^{0}, \Omega_{p}$)-elliptic, here $\boldsymbol{H}\left(\operatorname{div}^{0}, \Omega_{p}\right)$ consists of functions in $\boldsymbol{H}\left(\operatorname{div}, \Omega_{\mathrm{p}}\right)$ with vanishing divergence, i.e., the kernel of bilinear form b_{p}. Then the bilinear form " a " defined in (4.10) is $\boldsymbol{X}_{f} \times \boldsymbol{H}$ ($\operatorname{div}^{0}, \Omega_{p}$)-elliptic.

Define

$$
\begin{equation*}
\boldsymbol{W}_{p}:=\boldsymbol{X}_{p} \cap H^{1}\left(\Omega_{p}\right)^{2} \quad \text { and } \boldsymbol{W}=\left(\boldsymbol{X}_{f}, \boldsymbol{W}_{p}\right) \tag{4.27}
\end{equation*}
$$

with

$$
\begin{equation*}
\|\boldsymbol{v}\|_{\boldsymbol{W}_{p}}:=\left\|\boldsymbol{v}_{p}\right\|_{\boldsymbol{H}^{1}\left(\Omega_{p}\right)^{2}} \quad \text { and } \quad\|\boldsymbol{v}\|_{\boldsymbol{W}}^{2}:=\left\|\boldsymbol{v}_{f}\right\|_{\boldsymbol{X}_{f}}^{2}+\left\|\boldsymbol{v}_{p}\right\|_{\boldsymbol{W}_{p}}^{2} \tag{4.28}
\end{equation*}
$$

The use of a subspace $\boldsymbol{W} \cap \boldsymbol{X}^{\circ \circ}$ with a stronger norm $\|\cdot\|_{\boldsymbol{X}} \leq\|\cdot\|_{\boldsymbol{W}}$ is a common strategy in showing continuous and discrete inf-sup conditions without assuming any regularity on the solution of the associated problem [7, 15]; see also Lemmas 4.5 and 5.5 and Proposition 5.3.

From the usual inf-sup condition for the Stokes problem on the whole domain Ω and since $M^{\circ \circ} \subset M^{\circ}$, we easily derive the inf-sup condition associated to the formulation (4.24).

Lemma 4.5. There is a constant $\rho>0$ such that

$$
\inf _{\substack{q \in M^{\circ \circ} \\ q \neq 0}} \sup _{\substack{\boldsymbol{v} \in \boldsymbol{V} \\ \boldsymbol{v} \neq 0}} \frac{b(\boldsymbol{v}, q)}{\|\boldsymbol{v}\|_{\boldsymbol{X}}\|q\|_{M}} \geq \inf _{\substack{q \in M^{\circ \circ} \\ q \neq 0}} \sup _{\substack{\boldsymbol{v} \in \boldsymbol{V} \cap \boldsymbol{W} \\ \boldsymbol{v} \neq 0}} \frac{b(\boldsymbol{v}, q)}{\|\boldsymbol{v}\|_{\boldsymbol{W}}\|q\|_{M}} \geq \rho>0
$$

with \boldsymbol{W} and $\|\cdot\|_{\boldsymbol{W}}$ defined in (4.27) and (4.28), respectively.
Lemma 4.5, Remark 4.4, and the fact that $(\operatorname{Ker} b \cap \boldsymbol{V}) \subset\left(\boldsymbol{X}_{f} \times \boldsymbol{H}\left(\operatorname{div}^{0}, \Omega_{p}\right)\right)$ guarantee stability of the weak formulation (4.24); see [7, 15].

Recall that $\boldsymbol{Z} \subset \boldsymbol{H}\left(\operatorname{div}^{0}, \Omega_{f}\right) \times \boldsymbol{H}\left(\operatorname{div}^{0}, \Omega_{p}\right)$; see (4.25). To see that the weak formulation (4.26) is stable, the next lemma shows that the inf-sup condition between spaces \boldsymbol{Z} and Λ° holds; see [7, 15]. The proof presented here follows the same ideas as [20], Lemma 3.4. The main difference is that we are working with the spaces Λ° and \boldsymbol{Z}.

Lemma 4.6. There is a constant $\gamma>0$, such that

$$
\begin{array}{cc}
\inf _{\mu \in \Lambda^{\circ}} & \sup _{\boldsymbol{v} \in \boldsymbol{Z}} \\
\begin{array}{c}
\boldsymbol{v} \neq 0
\end{array} & \frac{b_{\Gamma}(\boldsymbol{v}, \mu)}{\|\boldsymbol{v}\|_{\boldsymbol{X}}|\mu|_{\Lambda^{\circ}}} \geq \gamma>0 .
\end{array}
$$

Proof. Fix $\mu \in \Lambda^{\circ}$, then $\mu \in H^{1 / 2}(\Gamma)$ and $\int_{\Gamma} \mu=0$, in particular if $\mu \neq 0$ then μ is not a constant. From Lemma 2.10 we have that there exists $f_{\Gamma} \in H^{-1 / 2}(\Gamma)$ such that $\left\langle f_{\Gamma}, 1\right\rangle_{\Gamma}=0$ and

$$
\begin{equation*}
\frac{\left\langle f_{\Gamma}, \mu\right\rangle_{\Gamma}}{\left|f_{\Gamma}\right|_{H^{-1 / 2}(\Gamma)}} \geq \frac{1}{2}|\mu|_{H^{1 / 2}(\Gamma)}=\frac{1}{2}|\mu|_{\Lambda^{\circ}} . \tag{4.29}
\end{equation*}
$$

From Remark 2.6, we introduce $f \in H^{-1 / 2}\left(\partial \Omega_{p}\right)$ given by

$$
\begin{equation*}
\langle f, \phi\rangle_{\partial \Omega_{p}}:=\left\langle f_{\Gamma},\left.\phi\right|_{\Gamma}\right\rangle_{\Gamma} \quad \text { for all } \phi \in H^{1 / 2}\left(\partial \Omega_{p}\right) \tag{4.30}
\end{equation*}
$$

with

$$
\begin{equation*}
|f|_{H^{-1 / 2}\left(\partial \Omega_{p}\right)} \leq C_{1}\left|f_{\Gamma}\right|_{H^{-1 / 2}(\Gamma)} \tag{4.31}
\end{equation*}
$$

and zero mean on $\partial \Omega_{p}$, i.e., $\langle f, 1\rangle_{\partial \Omega_{p}}=\left\langle f_{\Gamma}, 1\right\rangle_{\Gamma}=0$. By using the normal trace theorem, and a continuous Stokes problem (f has zero mean on $\partial \Omega_{p}$) we can find $\boldsymbol{v}_{p} \in \boldsymbol{H}\left(\operatorname{div}, \Omega_{p}\right)$ with $\nabla \cdot \boldsymbol{v}_{p}=0$ in Ω_{p} such that

$$
\begin{align*}
\left\|\boldsymbol{v}_{p}\right\|_{\boldsymbol{H}\left(\mathrm{div}, \Omega_{p}\right)} & \leq C|f|_{H^{-1 / 2}\left(\partial \Omega_{p}\right)} \tag{4.32}\\
\boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p} & =f \text { on } \partial \Omega_{p} \tag{4.33}
\end{align*}
$$

Observe that $\boldsymbol{v}_{p} \in \boldsymbol{X}_{p}^{\circ}$. Indeed, if $\phi \in H_{00}^{1 / 2}\left(\Gamma_{p}\right)$, then

$$
\left\langle\boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}, \phi\right\rangle_{\partial \Omega_{p}}=\langle f, \phi\rangle_{\partial \Omega_{p}}=\left\langle f_{\Gamma},\left.\phi\right|_{\Gamma}\right\rangle_{\Gamma}=\left\langle f_{\Gamma}, 0\right\rangle_{\Gamma}=0
$$

and $\left\langle\boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}, 1\right\rangle_{\partial \Omega_{p}}=\left\langle f_{\Gamma}, 1\right\rangle_{\Gamma}=0$.
Choosing $\boldsymbol{v}_{f}=0$, we have $\boldsymbol{v}:=\left(\boldsymbol{v}_{f}, \boldsymbol{v}_{p}\right) \in \boldsymbol{Z}$ and:

$$
\begin{aligned}
\frac{b_{\Gamma}(\boldsymbol{v}, \mu)}{\|\boldsymbol{v}\|_{\boldsymbol{X}}}= & \frac{0+\left\langle\boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}, E_{\Gamma}^{1 / 2} \mu\right\rangle_{\partial \Omega_{p}}}{\left\|\boldsymbol{v}_{p}\right\|_{\boldsymbol{H}\left(\mathrm{div}, \Omega_{p}\right)}} \text { by (4.14) } \\
& \geq \frac{1}{C} \frac{\left\langle f, E_{\Gamma}^{1 / 2} \mu\right\rangle_{\partial \Omega_{p}}}{|f|_{H^{-1 / 2}\left(\partial \Omega_{p}\right)}} \quad \text { by (4.32) and (4.33) } \\
= & \frac{1}{C C_{1}} \frac{\left\langle f_{\Gamma}, \mu\right\rangle_{\Gamma}}{\left|f_{\Gamma}\right|_{H^{-1 / 2}(\Gamma)}} \text { by (4.30) and (4.31) } \\
& \geq \frac{1}{C C_{1}} \frac{1}{2}|\mu|_{H^{1 / 2}(\Gamma)} \quad \text { by (4.29). } \quad
\end{aligned}
$$

For $(q, \mu) \in M^{\circ \circ} \times \Lambda^{\circ}$ define $|(p, \mu)|_{M \times \Lambda^{\circ}}^{2}:=\|p\|_{M}^{2}+|\mu|_{\Lambda^{\circ}}^{2}$. From Lemmas 4.5 and 4.6 we can show

Proposition 4.7. There is a constant $\beta>0$ such that:

$$
\begin{equation*}
\inf _{\substack{(q, \mu) \in M^{\circ \circ} \times \Lambda^{\circ} \\(q, \mu) \neq(0,0)}} \sup _{\substack{\boldsymbol{v} \in \boldsymbol{X}^{\circ \circ} \\ \boldsymbol{v} \neq 0}} \frac{b(\boldsymbol{v}, q)+b_{\Gamma}(\boldsymbol{v}, \mu)}{\|\boldsymbol{v}\|_{\boldsymbol{X}}|(q, \mu)|_{M \times \Lambda^{\circ}}} \geq \beta>0 . \tag{4.34}
\end{equation*}
$$

Proof. Given $(q, \mu) \in M^{\circ \circ} \times \Lambda^{\circ}$, if $q \neq 0$, from Lemma 4.5 there exists $\hat{\boldsymbol{v}} \in \boldsymbol{V}$ such that

$$
\frac{b(\hat{\boldsymbol{v}}, q)}{\|\hat{\boldsymbol{v}}\|_{\boldsymbol{X}}} \geq \rho\|q\|_{M}>0
$$

where ρ independent of q. If $\mu \neq 0$, from Lemma 4.6 there exists $\boldsymbol{z} \in \boldsymbol{Z}$ such that

$$
\frac{b_{\Gamma}(\boldsymbol{z}, \mu)}{\|\boldsymbol{z}\|_{\boldsymbol{X}}} \geq \gamma|\mu|_{\Lambda^{\circ}}>0
$$

where γ independent of μ.
Observe that, if $q \neq 0$

$$
\sup _{\substack{\boldsymbol{v} \in \boldsymbol{X}^{\circ \circ} \\ \boldsymbol{v} \neq 0}} \frac{b(\boldsymbol{v}, q)+b_{\Gamma}(\boldsymbol{v}, \mu)}{\|\boldsymbol{v}\|_{\boldsymbol{X}}} \geq \frac{b(\hat{\boldsymbol{v}}, q)+b_{\Gamma}(\hat{\boldsymbol{v}}, \mu)}{\|\hat{\boldsymbol{v}}\|_{\boldsymbol{X}}}=\frac{b(\hat{\boldsymbol{v}}, q)+0}{\|\hat{\boldsymbol{v}}\|_{\boldsymbol{X}}} \geq \rho\|q\|_{M}
$$

Analogously, if $\mu \neq 0$,

$$
\sup _{\substack{\boldsymbol{v} \in \boldsymbol{X}^{\circ \circ} \\ \boldsymbol{v} \neq 0}} \frac{b(\boldsymbol{v}, q)+b_{\Gamma}(\boldsymbol{v}, \mu)}{\|\boldsymbol{v}\|_{\boldsymbol{X}}} \geq \frac{0+b_{\Gamma}(\boldsymbol{z}, \mu)}{\|\boldsymbol{z}\|_{\boldsymbol{X}}} \geq \gamma|\mu|_{\Lambda^{\circ}}
$$

then

$$
\begin{aligned}
\sup _{\substack{\boldsymbol{v} \in \boldsymbol{X}^{\circ \circ} \\
\boldsymbol{v} \neq 0}} \frac{b(\boldsymbol{v}, q)+b_{\Gamma}(\boldsymbol{v}, \mu)}{\|\boldsymbol{v}\|_{\boldsymbol{X}}} & \geq \frac{\min \{\rho, \gamma\}}{2}\left(\|q\|_{M}+|\mu|_{\Lambda^{\circ}}\right) \\
& \geq \frac{\min \{\rho, \gamma\}}{2}|(q, \mu)|_{M \times \Lambda^{\circ}} .
\end{aligned}
$$

Proposition 4.7 permits us to formulate problem (4.23) as

$$
\left\{\begin{array}{lll}
a(\boldsymbol{u}, \boldsymbol{v})+c(\boldsymbol{v},(p, \lambda)) & =\ell(\boldsymbol{v}) & \tag{4.35}\\
\text { for all } \boldsymbol{v} \in \boldsymbol{X}^{\circ \circ} \\
c(\boldsymbol{u},(q, \mu)) & =0 & \text { for all }(q, \mu) \in M^{\circ \circ} \times \Lambda^{\circ}
\end{array}\right.
$$

where $c(\boldsymbol{v},(q, \mu)):=b(\boldsymbol{v}, q)+b_{\Gamma}(\boldsymbol{v}, \mu)$. Then (4.34) in Proposition 4.7 can be written as: there exists $\beta=\frac{\min \{\rho, \gamma\}}{2}>0$ such that

$$
\inf _{\substack{(q, \mu) \in M^{\circ \circ} \times \Lambda^{\circ} \\(q, \mu) \neq 0}} \sup _{\substack{\boldsymbol{v} \in \boldsymbol{X}^{\circ \circ} \\ \boldsymbol{v} \neq 0}} \frac{c(\boldsymbol{v},(q, \mu))}{\|\boldsymbol{v}\|_{\boldsymbol{X}}|(q, \mu)|_{M \times \Lambda^{\circ}}} \geq \beta>0
$$

This inf-sup condition, together with the fact that a is $\boldsymbol{X}_{f} \times \boldsymbol{H}\left(\operatorname{div}^{0}, \Omega_{p}\right)$-elliptic and a and c are bounded, (according to the abstract saddle point theory) guarantees the well-posedness of the problem (4.35) or (4.23); see [7, 15].

REMARK 4.8. We now obtain the inf-sup condition for the weak formulation (4.20). Consider \boldsymbol{z} introduced in Remark 4.3. Note that in Remark 4.3 we only have required $\boldsymbol{z} \in \boldsymbol{X}^{\circ}$ and

$$
\int_{\Gamma} z_{f} \cdot \boldsymbol{\eta}_{f}=-\int_{\Gamma} \boldsymbol{z}_{p} \cdot \boldsymbol{\eta}_{p}=\frac{\left|\Omega_{p}\right|}{\left|\Omega_{f}\right|+\left|\Omega_{p}\right|}
$$

Now we also require the divergence of z to be constant on each subdomain and also that $\boldsymbol{z}_{f} \cdot \boldsymbol{\eta}_{\boldsymbol{f}}=-\boldsymbol{z}_{\boldsymbol{p}} \cdot \boldsymbol{\eta}_{p}$. For instance, we can solve a Stokes problem with constant divergence on the fluid side and a Darcy problem with the corresponding boundary data and constant divergence on the porous side, with divergences values satisfying the subdomain compatibility conditions. Then we have

$$
\begin{equation*}
b\left(\boldsymbol{z}, q^{3}\right)=0 \text { for all } q^{3} \in M^{\circ \circ}, \text { and } b_{\Gamma}\left(\boldsymbol{z}, \mu^{2}\right)=0 \text { for all } \mu^{2} \in \Lambda^{\circ} \tag{4.36}
\end{equation*}
$$

We now show show that the inf-sup condition for the weak formulation (4.20) holds. The spaces involved are \boldsymbol{X}° for velocities, and M° and Λ° for pressures and Lagrange multipliers, respectively; see (4.18), (4.13) and (4.19). Take $q^{2} \in M^{\circ}$ and $\mu^{2} \in \Lambda^{\circ}$ and let $p^{c}=$ $\left(1,-\frac{\left|\Omega_{f}\right|}{\Omega_{p} \mid}\right) \in M^{\circ}$ as in Remark 4.3. We can write $q^{2}=q^{3}+\bar{q} p^{c}$ where $q^{3} \in M^{\circ \circ}$. Note that

$$
\left\|q^{2}\right\|_{M} \leq\left\|q^{3}\right\|_{M}+\mid \bar{q}\| \| p^{c} \|_{M}
$$

From Proposition 4.7 and a Poincaré inequality, there exists $\boldsymbol{v}^{3} \in \boldsymbol{X}^{\circ \circ}$ such that

$$
b\left(\boldsymbol{v}^{3}, q^{3}\right)+b_{\Gamma}\left(\boldsymbol{v}^{3}, \mu^{2}\right) \geq \tilde{\beta}\left\|\boldsymbol{v}^{3}\right\|_{\boldsymbol{X}}\left\{\left\|q^{3}\right\|_{M}+\left\|\mu^{2}\right\|_{\Lambda^{\circ}}\right\}
$$

where $\tilde{\beta}$ is a positive constant independent of \boldsymbol{v}^{3}. If $\bar{q} \neq 0$, let

$$
\boldsymbol{v}^{2}=\boldsymbol{v}^{3}+\tilde{\beta}\left\|\boldsymbol{v}^{3}\right\|_{\boldsymbol{X}}\left\|p^{c}\right\|_{M} \frac{\bar{q}}{|\bar{q}|} \boldsymbol{z}=\boldsymbol{v}^{3}+r \boldsymbol{z}, \quad \text { with } r=\tilde{\beta}\left\|\boldsymbol{v}^{3}\right\|_{\boldsymbol{X}}\left\|p^{c}\right\|_{M} \frac{\bar{q}}{|\bar{q}|}
$$

Observe that $\left\|\boldsymbol{v}^{2}\right\|_{\boldsymbol{X}} \leq\left(1+\tilde{\beta}\|\boldsymbol{z}\|_{\boldsymbol{X}}\left\|p^{c}\right\|_{M}\right)\left\|\boldsymbol{v}^{3}\right\|_{\boldsymbol{X}}$. We have

$$
\begin{array}{rlc}
b\left(\boldsymbol{v}^{2}, q^{2}\right) & =\left\{b\left(\boldsymbol{v}^{3}, q^{3}\right)+\bar{q} b\left(\boldsymbol{v}^{3}, p^{c}\right)\right\}+r\left\{b\left(\boldsymbol{z}, q^{3}\right)+\bar{q} b\left(\boldsymbol{z}, p^{c}\right)\right\} \\
& =\left\{b\left(\boldsymbol{v}^{3}, q^{3}\right)+0\right\}+r\{0+\bar{q}\} \quad(\text { see }(4.36)) \\
& =b\left(\boldsymbol{v}^{3}, q^{3}\right)+\tilde{\beta} \mid \bar{q}\left\|\boldsymbol{v}^{3}\right\|_{\boldsymbol{X}}\left\|p^{c}\right\|_{M}
\end{array}
$$

and

$$
b_{\Gamma}\left(\boldsymbol{v}^{2}, \mu^{2}\right)=b_{\Gamma}\left(\boldsymbol{v}^{3}, \mu^{2}\right)+r b_{\Gamma}\left(\boldsymbol{z}, \mu^{2}\right)=b\left(\boldsymbol{v}^{3}, \mu^{2}\right)+0
$$

Then

$$
\begin{aligned}
b\left(\boldsymbol{v}^{2}, q^{2}\right)+b_{\Gamma}\left(\boldsymbol{v}^{2}, \mu^{2}\right) & =b\left(\boldsymbol{v}^{3}, q^{3}\right)+b_{\Gamma}\left(\boldsymbol{v}^{3}, \mu^{2}\right)+\tilde{\beta} \mid \bar{q}\| \| \boldsymbol{v}^{3}\left\|_{\boldsymbol{X}}\right\| p^{c} \|_{M} \\
& \geq \tilde{\beta}\left\|\boldsymbol{v}^{3}\right\|_{\boldsymbol{X}}\left\{\left\|q^{3}\right\|_{M}+\left\|\mu^{2}\right\|_{\Lambda^{\circ}}\right\}+\tilde{\beta} \mid \bar{q}\left\|\boldsymbol{v}^{3}\right\|_{\boldsymbol{X}}\left\|p^{c}\right\|_{M} \\
& =\tilde{\beta}\left\|\boldsymbol{v}^{3}\right\|_{\boldsymbol{X}}\left\{\left\|q^{3}\right\|_{M}+|\bar{q}|\left\|p^{c}\right\|_{M}+\left\|\mu^{2}\right\|_{\Lambda}\right\} \\
& \geq \tilde{\beta}\left\|\boldsymbol{v}^{3}\right\|_{\boldsymbol{X}}\left\{\left\|q^{2}\right\|_{M}+\left\|\mu^{2}\right\|_{\Lambda^{\circ}}\right\} \\
& \geq \frac{\tilde{\beta}}{1+\tilde{\beta}\|\boldsymbol{z}\|_{\boldsymbol{X}}\left\|p^{c}\right\|_{M}}\left\|\boldsymbol{v}^{2}\right\|_{\boldsymbol{X}}\left\{\left\|q^{2}\right\|_{M}+\left\|\mu^{2}\right\|_{\Lambda^{\circ}}\right\}
\end{aligned}
$$

This gives the inf-sup condition for weak formulation (4.20).
We now obtain the inf-sup condition for the weak formulation (4.17). The spaces are \boldsymbol{X} for velocities, M° for pressures, and Λ defined in (4.15) for Lagrange multipliers. Consider \boldsymbol{w} introduced in Remark 4.2. Note that in Remark 4.2 we required $\boldsymbol{w}=\left(\mathbf{0}, \boldsymbol{w}_{\boldsymbol{p}}\right)$ with

$$
\boldsymbol{w}_{p} \cdot \boldsymbol{\eta}_{p}=\frac{1}{|\Gamma|} \text { on } \Gamma \text { and } \boldsymbol{w}_{p} \cdot \boldsymbol{\eta}_{p}=0 \text { on } \Gamma_{p}
$$

Now we also require that the divergence of \boldsymbol{w} be a constant on Ω_{p}. Given $\mu^{1} \in \Lambda$ and $q^{1} \in M^{\circ}$, we write $\mu^{1}=\mu^{2}+\bar{\mu}$ where $\int_{\Gamma} \mu^{2}=0$, i.e., $\mu^{2} \in \Lambda^{\circ}$. From the inf-sup for weak formulation (4.20) deduced above, we can find $\boldsymbol{v}^{2} \in \boldsymbol{X}^{\circ}$ such that

$$
b\left(\boldsymbol{v}^{2}, q^{1}\right)+b_{\Gamma}\left(\boldsymbol{v}^{2}, \mu^{2}\right) \geq \hat{\beta}\left\|v^{2}\right\|_{\boldsymbol{X}}\left\{\left\|q^{1}\right\|_{M}+\left\|\mu^{2}\right\|_{\Lambda^{\circ}}\right\}
$$

If $\bar{\mu} \neq 0$, define $\boldsymbol{v}^{1}=\boldsymbol{v}^{2}+\left.\hat{\beta}\left\|\boldsymbol{v}^{2}\right\|_{\boldsymbol{X}}\right|^{\left.\right|^{\frac{1}{2}} \frac{\bar{\mu}}{|\bar{\mu}|} \boldsymbol{w} \text {. Note that }{ }^{\frac{1}{2}} \text {. }}$

$$
\left\|\boldsymbol{v}^{1}\right\|_{\boldsymbol{X}} \leq\left(1+\hat{\beta}\|\boldsymbol{w}\|_{\boldsymbol{X}}|\Gamma|^{\frac{1}{2}}\right)\left\|\boldsymbol{v}^{2}\right\|_{\boldsymbol{X}} \text { and }\left\|\mu^{1}\right\|_{\Lambda} \asymp\left\|\mu^{2}\right\|_{\Lambda^{\circ}}+|\bar{\mu} \| \Gamma|^{\frac{1}{2}} .
$$

And we proceed as before to obtain the inf-sup condition for the weak formulation (4.17).
5. Finite element approximation. In Section 3 the problem for the coupling fluid flow with porous media flow in its continuous form was presented, while in Section 4 it was presented its variational formulation and well-posedness. Now a two dimensional non-matching grid finite element approximation is discussed. We choose the $P 2 \backslash P 1$ triangular Taylor Hood finite elements for approximating the free fluid side velocity and pressure, while we use the lowest order triangular Raviart-Thomas finite element to approximate the filtration velocity and the porous pressure; see Section 5.1 below. In Section 5.2 a discrete non-conforming Lagrange multiplier space to couple the Taylor-Hood and Raviart-Thomas spaces is introduced. It is important for the analysis to choose the Stokes side as the mortar side, i.e., to place the discrete Lagrange multiplier on the Darcy side. In this case the discrete map from mortar to non-mortar side is continuous in $L^{2}(\Gamma)$ norm. Extensions of the results to other than Stokes and Darcy finite element spaces are straightforward; just take the Lagrange multiplier spaces that are used to hybridize mixed finite elements of the Darcy equation; see [7]. We establish the discrete inf-sup conditions related to the weak formulation (4.24), (4.26) and (4.23). The extension of the results to the three dimensional case is also straightforward.
5.1. Discretization. From now on we assume that Ω has polygonal boundary. Let $\mathcal{T}_{h_{j}}$ be a triangulation of $\Omega_{j}, j=f, p$. We do not assume that they match at the polyhedral interface Γ. We choose $P 2 \backslash P 1$ triangular Taylor-Hood finite elements; see [6, 7, 15]. Define

$$
\begin{equation*}
\boldsymbol{X}_{h_{f}}:=\left\{\boldsymbol{v}_{f} \in \boldsymbol{X}_{f}: \boldsymbol{v}_{f K}=\hat{\boldsymbol{v}}_{f K} \circ F_{K}^{-1} \text { on } K \text { and } \hat{\boldsymbol{v}}_{K} \in P_{2}(\hat{K})^{2}\right\} \cap C^{0}\left(\bar{\Omega}_{f}\right)^{2} \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{X}_{h_{f}}^{\circ}:=\left\{\boldsymbol{v}_{h_{f}} \in \boldsymbol{X}_{h_{f}}: \int_{\Gamma} \boldsymbol{v}_{h_{f}} \cdot \boldsymbol{\eta}_{f}=0\right\} \tag{5.2}
\end{equation*}
$$

where $\boldsymbol{v}_{f K}:=\left.\boldsymbol{v}_{f}\right|_{K}$. We also define

$$
M_{h_{f}}:=\left\{q_{f} \in M_{f}: q_{f K}=\hat{q}_{f K} \circ F_{K}^{-1} \text { on } K \text { and } \hat{q}_{f K} \in P_{1}(\hat{K})\right\} \cap C^{0}\left(\bar{\Omega}_{f}\right)
$$

$$
\begin{equation*}
M_{h_{f}}^{\circ}:=\left\{q_{f} \in M_{h_{f}}: \int_{\Omega_{f}} q_{f}=0\right\} \tag{5.3}
\end{equation*}
$$

We have the following result.
LEMMA 5.1 (Approximation of Taylor-Hood elements). Suppose that $\mathcal{T}_{h_{f}}$ is non-degenerate and has no triangle with two edges on $\partial \Omega_{f}$. Then, there exists a bounded linear operator $\boldsymbol{I}_{h_{f}}^{T H}: \boldsymbol{X}_{f} \rightarrow \boldsymbol{X}_{h_{f}}$ such that

$$
b_{f}\left(\boldsymbol{v}_{f}-\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f}, p_{h_{f}}\right)=0 \quad \text { for all } p_{h_{f}} \in M_{h_{f}}^{\circ}
$$

and $\left\|\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f}\right\|_{\boldsymbol{X}_{f}} \preceq\left\|\boldsymbol{v}_{f}\right\|_{\boldsymbol{X}_{f}}$, with constant independent of h_{f}. In addition we have:

$$
\begin{gather*}
\left\|\boldsymbol{v}_{f}-\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f}\right\|_{L^{2}\left(\Omega_{f}\right)^{2}} \preceq h_{f}^{s}\left|\boldsymbol{v}_{f}\right|_{H^{s}\left(\Omega_{f}\right)^{2}} \quad s=1,2 . \tag{5.4}\\
\left|\boldsymbol{v}_{f}-\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f}\right|_{H^{1}\left(\Omega_{f}\right)^{2}} \preceq h_{f}\left|\boldsymbol{v}_{f}\right|_{H^{2}\left(\Omega_{f}\right)^{2}} \tag{5.5}\\
\int_{\Gamma} \boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{f}=\int_{\Gamma} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{f} \quad\left(\text { which implies } \boldsymbol{I}_{h_{f}}^{T H}: \boldsymbol{X}_{f}^{\circ} \rightarrow \boldsymbol{X}_{h_{f}}^{\circ}\right) \\
\left|\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f}\right|_{H^{1 / 2}(\Gamma)^{2}} \preceq\left|\boldsymbol{v}_{f}\right|_{H^{1 / 2}(\Gamma)^{2}} . \tag{5.6}
\end{gather*}
$$

A constructive and apparently new proof using Fortin interpolation is given in Appendix B, or see $[6,7,15]$.

A direct consequence of Fortin's criterion and the previous lemma is that, if $\mathcal{T}_{h_{f}}$ is nondegenerate and has no triangle with two edges on $\partial \Omega_{f}$, then $\left(\boldsymbol{X}_{h_{f}}^{\circ}, M_{h_{f}}^{\circ}\right)$ satisfies the inf-sup condition; see (5.2) and (5.3).

For the porous region we are going to use the lowest order Raviart-Thomas finite elements based on triangles. In general the Raviart-Thomas elements in a cell are defined by (see [5, 7, 15])

$$
R T_{k}(K):=\left(P_{k}(K)\right)^{n}+P_{k}(K) \boldsymbol{x}
$$

and if $\boldsymbol{v} \in R T_{k}(K)$ then $\nabla \cdot \boldsymbol{v} \in P_{k}(K)$ and $\left.\boldsymbol{v} \cdot \boldsymbol{\eta}\right|_{e_{i}} \in P_{k}\left(e_{i}\right)$, for all edge e_{i}. Then we choose

$$
\begin{equation*}
\boldsymbol{X}_{h_{p}}^{\circ}:=\left\{\boldsymbol{v}_{p} \in \boldsymbol{X}_{p}:\left.\boldsymbol{v}_{p}\right|_{K} \in R T_{0}(K) \text { and } \int_{\Gamma} \boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}=0\right\} \tag{5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{h_{p}}^{\circ}:=\left\{p_{p} \in M_{p}:\left.p_{p}\right|_{K} \in P_{0}(K) \text { with } \int_{\Omega_{p}} p_{p}=0\right\} \tag{5.8}
\end{equation*}
$$

Velocities of lowest order Raviart-Thomas finite elements, $R T_{0}(K), K \in \mathcal{T}_{h_{p}}$, are then of the form

$$
\boldsymbol{v}_{p}\left(x_{1}, x_{2}\right)=\binom{a}{b}+c\binom{x_{1}}{x_{2}} .
$$

We obtain the following result; see also [5, 7]. Recall the definition of \boldsymbol{W}_{p} in (4.27).

Lemma 5.2 (Approximation of Raviart-Thomas elements). For $K \in \mathcal{T}_{h_{p}}$, define $\boldsymbol{I}_{h_{p}, K}^{R T}: \boldsymbol{H}(\operatorname{div}, K) \cap H^{1}(K)^{2} \rightarrow R T_{0}(K)$ by

$$
\begin{equation*}
\left.\boldsymbol{I}_{h_{p}, K}^{R T} \boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}\right|_{e}=\frac{1}{|e|} \int_{e} \boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p} \tag{5.9}
\end{equation*}
$$

and define $\boldsymbol{I}_{h_{p}}^{R T}: \boldsymbol{W}_{p} \rightarrow R T_{0}$ locally by: $\left.\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{v}_{p}\right|_{K}=\boldsymbol{I}_{h_{p}, K}^{R T} \boldsymbol{v}_{p}$. Then

$$
\begin{equation*}
\int_{\Omega_{p}} \nabla \cdot\left(\boldsymbol{v}_{p}-\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{v}_{p}\right) q_{h_{p}}=0 \quad \text { for all } q_{h_{p}} \in M_{h_{p}}^{\circ} \tag{5.10}
\end{equation*}
$$

and $\left\|\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{v}_{p}\right\|_{\boldsymbol{H}\left(d i v, \Omega_{p}\right)} \preceq\left\|\boldsymbol{v}_{p}\right\|_{\boldsymbol{W}_{p}}$ with $\|\cdot\|_{\boldsymbol{W}_{p}}$ defined in (4.28). The property (5.9) implies that $\boldsymbol{I}_{h_{p}}^{R T}: \boldsymbol{X}_{p}^{\circ} \cap \boldsymbol{W}_{p} \rightarrow \boldsymbol{X}_{h_{p}}^{\circ}$. In addition, with the property (5.10) we have $\boldsymbol{I}_{h_{p}}^{R T}: \boldsymbol{Z}_{p} \cap$ $\boldsymbol{W}_{p} \rightarrow \boldsymbol{Z}_{h_{p}}^{\circ}$. Moreover, if $\boldsymbol{v}_{p} \in H^{1}\left(\Omega_{p}\right)^{2}$ then

$$
\begin{equation*}
\left\|\boldsymbol{v}_{p}-\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{v}_{p}\right\|_{L^{2}\left(\Omega_{p}\right)^{2}} \preceq h_{p}\left|\boldsymbol{v}_{p}\right|_{H^{1}\left(\Omega_{p}\right)^{2}} \tag{5.11}
\end{equation*}
$$

and

$$
\left\|\nabla \cdot\left(\boldsymbol{v}_{p}-\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{v}_{p}\right)\right\|_{L^{2}\left(\Omega_{p}\right)} \preceq h_{p}\left|\nabla \cdot \boldsymbol{v}_{p}\right|_{H^{1}\left(\Omega_{p}\right)}
$$

By using Fortin's idea we can establish the inf-sup condition for the spaces ($X_{h_{p}}^{\circ}, M_{h_{p}}^{\circ}$) defined in (5.7) and (5.8), respectively.
5.2. Discrete inf-sup condition. Let $\Gamma \cap \mathcal{T}_{h_{p}}$ be the trace on Γ of the porous side triangulation. We consider piecewise constant Lagrange multiplier space

$$
\Lambda_{h_{p}}^{\circ}=\left\{\mu_{h_{p}} \in L^{2}(\Gamma):\left.\quad \mu_{h_{p}}\right|_{e_{p}} \text { is constant on each edge } e_{p} \in \Gamma \cap \mathcal{T}_{p}^{h_{p}} \text { and } \int_{\Gamma} \mu=0\right\}
$$

We note that this choice leads to non-conforming finite elements associated to Λ° since piecewise constant functions do not belong to $H^{1 / 2}(\Gamma)$; see (4.19).

We also introduce for later use

$$
\Lambda_{h_{p}}=\left\{\mu_{h_{p}} \in L^{2}(\Gamma):\left.\quad \mu_{h_{p}}\right|_{e_{p}} \text { is constant on each edge } e_{p} \in \Gamma \cap \mathcal{T}_{p}^{h_{p}}\right\}
$$

Define $h=\left(h_{f}, h_{p}\right)$,

$$
\begin{equation*}
\boldsymbol{X}_{h}^{\circ \circ}:=\boldsymbol{X}_{h_{f}}^{\circ} \times \boldsymbol{X}_{h_{p}}^{\circ} \subset \boldsymbol{X}^{\circ \circ}, \quad M_{h}^{\circ \circ}:=M_{h_{f}}^{\circ} \times M_{h_{p}}^{\circ} \subset M^{\circ \circ} \tag{5.12}
\end{equation*}
$$

and
(5.13) $\boldsymbol{V}_{h}=\left(\boldsymbol{V}_{h_{f}}, \boldsymbol{V}_{h_{p}}\right):=\left\{\boldsymbol{v}_{h} \in \boldsymbol{X}_{h}^{\circ \circ}:\left(\llbracket \boldsymbol{v}_{h} \rrbracket \cdot \boldsymbol{\eta}_{f}, \mu_{h_{p}}\right)_{\Gamma}=0\right.$ for all $\left.\mu_{h_{p}} \in \Lambda_{h_{p}}^{\circ}\right\}$,
where $\llbracket \boldsymbol{v}_{h} \rrbracket:=\boldsymbol{v}_{h_{f}}-\boldsymbol{v}_{h_{p}}$ on Γ for all $\boldsymbol{v}_{h} \in \boldsymbol{X}_{h}^{\circ}$. Also define

$$
\begin{equation*}
\boldsymbol{Z}_{h}=\left(\boldsymbol{Z}_{h_{f}}, \boldsymbol{Z}_{h_{p}}\right):=\left\{\boldsymbol{v}_{h} \in \boldsymbol{X}_{h}^{\circ \circ}: b\left(\boldsymbol{v}_{h}, q_{h}\right)=0 \text { for all } q_{h} \in M_{h}^{\circ \circ}\right\} \tag{5.14}
\end{equation*}
$$

For $\left.z_{h_{p}} \in \boldsymbol{X}_{h_{p}}^{\circ} \cdot \boldsymbol{\eta}_{p}\right|_{\Gamma}=\Lambda_{h_{p}}^{\circ}$, i.e., $z_{h_{p}}$ is piecewise constant on Γ relatively to $\mathcal{T}_{h_{p}}$ and with zero mean on Γ, define $\boldsymbol{E}_{h_{p}} z_{h_{p}} \in \boldsymbol{X}_{h_{p}}^{\circ}$ as the discrete velocity solution of the problem

$$
\left\{\begin{array}{lll}
a_{p}\left(\boldsymbol{E}_{h_{p}} z_{h_{p}}, \boldsymbol{v}_{h_{p}}\right)+b_{p}\left(\boldsymbol{v}_{h_{p}}, \hat{p}_{h_{p}}\right) & =0 & \text { for all } \boldsymbol{v}_{h_{p}} \in \boldsymbol{X}_{h_{p}}^{\circ} \tag{5.15}\\
b_{p}\left(\boldsymbol{E}_{h_{p}} z_{h_{p}}, q_{h_{p}}\right) & & \text { such that } \boldsymbol{v}_{h_{p}} \cdot \boldsymbol{\eta}_{p}=0 \text { on } \Gamma_{p} \\
\boldsymbol{E}_{h_{p}} z_{h_{p}} \cdot \boldsymbol{\eta}_{p} & =0 & \text { for all } q_{h_{p}} \in M_{h_{p}}^{\circ} \\
& =z_{h_{p}} & \text { on } \Gamma .
\end{array}\right.
$$

We note that a discrete divergence free Raviart-Thomas vector field is also a divergence free vector field. Therefore, using [22] we have

$$
\begin{equation*}
\left\|\boldsymbol{E}_{h_{p}} z_{h_{p}}\right\|_{\boldsymbol{L}^{2}(\Omega)}^{2}=\left\|\boldsymbol{E}_{h_{p}} z_{h_{p}}\right\|_{\boldsymbol{X}_{p}} \asymp\left|z_{h_{p}}\right|_{H^{-1 / 2}(\Gamma)} \tag{5.16}
\end{equation*}
$$

We have the following result.
PROPOSITION 5.3. Suppose that $\mathcal{T}_{h_{f}}$ is non-degenerate and has no triangle with two edges on $\partial \Omega_{f}$ and consider \boldsymbol{W} defined in (4.27). There exists a linear continuous operator

$$
\boldsymbol{\Pi}_{h}:(\boldsymbol{V} \cap \boldsymbol{W}) \rightarrow \boldsymbol{V}_{h}
$$

such that

$$
\begin{equation*}
b\left(\boldsymbol{\Pi}_{h} \boldsymbol{v}-\boldsymbol{v}, q_{h}\right)=0 \text { for all } q_{h} \in M_{h}^{\circ \circ} \tag{5.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\boldsymbol{\Pi}_{h} \boldsymbol{v}\right\|_{\boldsymbol{X}} \preceq\left\|\boldsymbol{v}_{p}\right\|_{\boldsymbol{W}_{p}} \leq\|\boldsymbol{v}\|_{\boldsymbol{W}} \tag{5.18}
\end{equation*}
$$

with $\|\cdot\|_{\boldsymbol{W}}$ defined in (4.28).
Proof. Write $\boldsymbol{\Pi}_{h}(\boldsymbol{v})=\left(\boldsymbol{\Pi}_{h_{f}} \boldsymbol{v}, \boldsymbol{\Pi}_{h_{p}} \boldsymbol{v}\right)$, where $\boldsymbol{\Pi}_{h_{f}} \boldsymbol{v}:=\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f}$ and

$$
\boldsymbol{\Pi}_{h_{p}} \boldsymbol{v}:=\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{v}_{p}+\boldsymbol{E}_{h_{p}}\left(Q_{h_{p}}\left(\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{p}\right)-\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}\right)
$$

where $Q_{h_{p}}$ denotes the L^{2}-projection on $\Lambda^{h_{p}}$, i.e., on the space of piecewise constant functions on Γ.

Let $\mu_{h_{p}} \in \Lambda_{h_{p}}^{\circ}$. We have

$$
\begin{aligned}
\left(\llbracket \boldsymbol{\Pi}_{h} \boldsymbol{v} \rrbracket \cdot \boldsymbol{\eta}, \mu_{h_{p}}\right)_{\Gamma} & =\left(\boldsymbol{\Pi}_{h_{p}} \boldsymbol{v} \cdot \boldsymbol{\eta}_{p}, \mu_{h_{p}}\right)_{\Gamma}-\left(\boldsymbol{\Pi}_{h_{f}} \boldsymbol{v} \cdot \boldsymbol{\eta}_{p}, \mu_{h_{p}}\right)_{\Gamma} \\
& =\left(Q_{h_{p}}\left(\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{p}\right), \mu_{h_{p}}\right)_{\Gamma}-\left(\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{p}, \mu_{h_{p}}\right)_{\Gamma} \\
& =0 \quad \text { by definition of } Q_{h_{p}},
\end{aligned}
$$

and then obtain $\boldsymbol{\Pi}_{h} \boldsymbol{v} \in \boldsymbol{V}_{h}$.
Now we show (5.18). Observe that

$$
\begin{aligned}
\left\|\boldsymbol{\Pi}_{h} \boldsymbol{v}\right\|_{\boldsymbol{X}} \leq & \left\|\boldsymbol{\Pi}_{h_{f}} \boldsymbol{v}\right\|_{\boldsymbol{X}_{f}}+\left\|\boldsymbol{\Pi}_{h_{p}} \boldsymbol{v}\right\|_{\boldsymbol{X}_{p}} \\
\leq & \left\|\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f}\right\|_{\boldsymbol{X}_{f}}+\left\|\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{v}_{p}\right\|_{\boldsymbol{X}_{p}} \\
& +\left\|\boldsymbol{E}_{h_{p}}\left(Q_{h_{p}}\left(\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{p}\right)-\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}\right)\right\|_{\boldsymbol{X}_{p}} .
\end{aligned}
$$

The bound (5.18) follows from the boundedness of $\boldsymbol{I}_{h_{f}}^{T H}\left(\right.$ Lemma 5.1), $\boldsymbol{I}_{h_{p}}^{R T}$ (Lemma 5.2), $\boldsymbol{E}_{h_{p}}$ (Equation (5.16)), and from the following two bounds:

1. From the boundedness of $\boldsymbol{I}_{h_{f}}^{T H}$ and $Q_{h_{p}}$, and from a trace theorem, we have

$$
\begin{aligned}
\left|Q_{h_{p}}\left(\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{p}\right)\right|_{H^{-1 / 2}(\Gamma)} & \preceq\left\|Q_{h_{p}}\left(\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{p}\right)\right\|_{L^{2}(\Gamma)} \\
& \leq\left\|\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{p}\right\|_{L^{2}(\Gamma)} \\
& \preceq\left|\boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{p}\right|_{H^{1 / 2}(\Gamma)} \\
& =\left|\boldsymbol{v}_{\boldsymbol{p}} \cdot \boldsymbol{\eta}_{p}\right|_{H^{1 / 2}(\Gamma)} \\
& \preceq\left\|\boldsymbol{v}_{p}\right\|_{\boldsymbol{W}_{p}} \\
& \leq\|\boldsymbol{v}\|_{\boldsymbol{W}} .
\end{aligned}
$$

2. From the normal trace theorem and the boundedness of $\boldsymbol{I}_{h_{p}}^{R T}$, we have

$$
\left|\boldsymbol{I}_{h_{p} T}^{R T} \boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}\right|_{H^{-1 / 2}(\Gamma)} \preceq\left\|\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{v}_{p}\right\|_{\boldsymbol{X}_{p}} \preceq\left\|\boldsymbol{v}_{p}\right\|_{\boldsymbol{W}_{p}} \leq\|\boldsymbol{v}\|_{\boldsymbol{W}}
$$

REMARK 5.4. We note that when the mesh $\mathcal{T}_{h_{f}}\left(\Omega_{f}\right)$ restricted to Γ is a refinement of the mesh $\mathcal{T}_{h_{p}}\left(\Omega_{p}\right)$ restricted to Γ, then by using (B.8) in Appendix B we have $Q_{h_{p}}\left(\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f}\right.$. $\left.\boldsymbol{\eta}_{p}\right)=Q_{h_{p}} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{p}$. Also from (5.9) we have $\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}=Q_{h_{p}} \boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}$. Hence using that $\boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}=\boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{f} \in H_{00}^{1 / 2}(\Gamma)$ we obtain

$$
\boldsymbol{E}_{h_{p}}\left(Q_{h_{p}}\left(\boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{p}\right)-\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{v}_{p} \cdot \boldsymbol{\eta}_{p}\right)=0
$$

In the following result we establish the discrete inf-sup condition using Fortin's Lemma.
Lemma 5.5. Suppose that $\mathcal{T}_{h_{f}}$ is non-degenerate and has no triangle with two edges on $\partial \Omega_{f}$. Consider \boldsymbol{V} and $M_{h}^{\circ \circ}$ defined in (5.13) and (5.12), respectively. Then ($\boldsymbol{V}_{h}, M_{h}^{\circ \circ}$) satisfies the discrete inf-sup condition, i.e., there is a constant $\tilde{\rho}>0$ independent of h, such that

$$
\inf _{\substack{q_{h} \in M_{h}^{\circ \circ} \\ q_{h} \neq 0}} \sup _{\substack{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h} \\ \boldsymbol{v}_{h} \neq 0}} \frac{b\left(\boldsymbol{v}_{h}, q_{h}\right)}{\left\|\boldsymbol{v}_{h}\right\|_{\boldsymbol{X}}\left\|q_{h}\right\|_{M}} \geq \tilde{\rho}>0
$$

Proof. Take $q_{h} \in M_{h}^{\circ \circ}$. From Lemma 4.5 we can find $\boldsymbol{v} \neq 0 \in \boldsymbol{V} \cap \boldsymbol{W}$ such that

$$
\frac{b\left(\boldsymbol{v}, q_{h}\right)}{\|\boldsymbol{v}\|_{\boldsymbol{W}}} \geq \rho\left\|q_{h}\right\|_{M}
$$

Then from Proposition 5.3 we have

$$
\rho\left\|q_{h}\right\|_{M} \leq \frac{b\left(\boldsymbol{v}, q_{h}\right)}{\|\boldsymbol{v}\|_{\boldsymbol{W}}}=\frac{b\left(\boldsymbol{\Pi}_{h} \boldsymbol{v}, q_{h}\right)}{\|\boldsymbol{v}\|_{\boldsymbol{W}}} \leq \frac{b\left(\boldsymbol{\Pi}_{h} \boldsymbol{v}, q_{h}\right)}{\frac{1}{C}\left\|\boldsymbol{\Pi}_{h} \boldsymbol{v}\right\|_{\boldsymbol{X}}}
$$

where C is the constant in (5.18).
For $\mu_{h_{p}} \in \Lambda_{h_{p}}^{\circ}$, define $\widetilde{\boldsymbol{u}}_{h_{p}}=\widetilde{\boldsymbol{u}}_{h_{p}}\left(\mu_{h_{p}}\right) \in \boldsymbol{X}_{h_{p}}^{\circ}$ as velocity solution of the discrete problem,

$$
\left\{\begin{array}{lll}
a_{p}\left(\widetilde{\boldsymbol{u}}_{h_{p}}, \boldsymbol{v}_{h_{p}}\right)+b_{p}\left(\boldsymbol{v}_{h_{p}}, p_{h_{p}}\right) & =-\left(\boldsymbol{v}_{h_{p}} \cdot \boldsymbol{\eta}_{p}, \mu_{h_{p}}\right)_{\Gamma} & \tag{5.19}\\
\text { for all } \boldsymbol{v}_{h_{p}} \in \boldsymbol{X}_{h_{p}}^{\circ} & =0 & \text { for all } q_{h_{p}} \in M_{h_{p}}^{\circ}
\end{array}\right.
$$

and introduce

$$
\begin{equation*}
\left|\mu_{h_{p}}\right|_{\Lambda_{h_{p}}^{\circ}}^{2}:=a_{p}\left(\widetilde{\boldsymbol{u}}_{h_{p}}\left(\mu_{h_{p}}\right), \widetilde{\boldsymbol{u}}_{h_{p}}\left(\mu_{h_{p}}\right)\right) \tag{5.20}
\end{equation*}
$$

In order to see that $|\cdot|_{\Lambda_{h_{p}}}^{\circ}$ is a norm on $\Lambda_{h_{p}}^{\circ}$, observe that if $\mu_{h_{p}}$ is such that $\left|\mu_{h_{p}}\right|_{\Lambda_{h_{p}}}=0$, then $\widetilde{\boldsymbol{u}}_{h_{p}}\left(\mu_{h_{p}}\right)$ vanishes. If we take $\boldsymbol{v}_{h_{p}}$ in (5.19) such that

$$
\left\{\begin{array}{ll}
\boldsymbol{v}_{h_{p}} \cdot \boldsymbol{\eta}_{p} & =\mu_{h_{p}} \\
b_{p}\left(\boldsymbol{v}_{h_{p}}, q_{h_{p}}\right) & =0
\end{array} \quad q_{h_{p}} \in M_{h_{p}}^{\circ}\right.
$$

we see that $\left\|\mu_{h_{p}}\right\|_{L^{2}(\Gamma)}=0$, that is $\mu_{h_{p}}=0$. Then $|\cdot|_{\Lambda_{h_{p}}}$ is positive.
The norm $\Lambda_{h_{p}}^{\circ}$ is the natural discrete version of the norm $H^{1 / 2}(\Gamma)$ scaled by the factor $\sqrt{\frac{\kappa}{\nu}}$ for the space $\Lambda_{h_{p}}^{\circ}$. Indeed, by using (5.15) and (5.19), we have
(5.21) $\sup _{z_{h_{p}} \in \boldsymbol{X}_{h_{p}}^{\circ} \cdot \boldsymbol{\eta}_{p} \mid \Gamma=\Lambda_{h_{p}}^{\circ}} \frac{\left(z_{h_{p}}, \mu_{h_{p}}\right)}{\sqrt{\frac{\nu}{\kappa}}\left|z_{h_{p}}\right|_{H^{-1 / 2}(\Gamma)}} \asymp \sup _{z_{h_{p}} \in \Lambda_{h_{p}}^{\circ}} \frac{\left(\boldsymbol{E}_{h_{p}} z_{h_{p}} \cdot \boldsymbol{\eta}_{p}, \mu_{h_{p}}\right)}{\sqrt{\frac{\nu}{\kappa}}\left\|\boldsymbol{E}_{h_{p}} z_{h_{p}}\right\|_{\boldsymbol{L}^{2}(\Omega)}}=\left|\mu_{h_{p}}\right|_{\Lambda_{h_{p}}^{\circ}}$.

We obtain the following result.
Lemma 5.6. The spaces $\left(\boldsymbol{Z}_{h}, \Lambda_{h_{p}}^{\circ}\right)$ satisfy the discrete inf-sup condition, i.e., there is a constant $\tilde{\gamma}>0$ such that

$$
\inf _{\substack{\mu_{h_{p}} \in \Lambda_{h_{p}}^{\circ} \\ \lambda_{h_{p}} \neq 0}} \sup _{\substack{\boldsymbol{v}_{h} \in \boldsymbol{Z}_{h} \\ \boldsymbol{v}_{h} \neq 0}} \frac{\left(\llbracket \boldsymbol{v}_{h} \rrbracket \cdot \boldsymbol{\eta}_{f}, \mu_{h_{p}}\right)_{\Gamma}}{\left\|\boldsymbol{v}_{h}\right\|_{\boldsymbol{X}}\left|\mu_{h_{p}}\right| \Lambda_{h_{p}}^{\circ}} \geq \tilde{\gamma}>0
$$

Proof. Take $\mu_{h_{p}} \in \Lambda_{h_{p}}^{\circ}$ and let $\widetilde{\boldsymbol{u}}_{h_{p}}\left(\mu_{h_{p}}\right)$ be the velocity solution of (5.19). Since $\widetilde{\boldsymbol{u}}_{h_{p}}\left(\mu_{h_{p}}\right) \in \boldsymbol{Z}_{h_{p}}$ then $\nabla \cdot \widetilde{\boldsymbol{u}}_{h_{p}}=0$. Take $\boldsymbol{v}_{h}=\left(\mathbf{0}, \widetilde{\boldsymbol{u}}_{h_{p}}\left(\mu_{h_{p}}\right)\right) \in \boldsymbol{Z}_{h_{f}} \times \boldsymbol{Z}_{h_{p}}$, then from (5.19) we obtain

$$
\frac{\left(\llbracket \boldsymbol{v}_{h} \rrbracket \cdot \boldsymbol{\eta}_{f}, \mu_{h_{p}}\right)_{\Gamma}}{\left\|\boldsymbol{v}_{\boldsymbol{h}}\right\|_{\boldsymbol{X}}\left|\mu_{h_{p}}\right| \Lambda_{h_{p}}^{\circ}}=\frac{a_{p}\left(\widetilde{\boldsymbol{u}}_{h_{p}}\left(\mu_{h_{p}}\right), \widetilde{\boldsymbol{u}}_{h_{p}}\left(\mu_{h_{p}}\right)\right)}{\left\|\widetilde{\boldsymbol{u}}_{h_{p}}\left(\mu_{h_{p}}\right)\right\|_{L^{2}\left(\Omega_{p}\right)}\left|\mu_{h_{p}}\right| \Lambda_{h_{p}}^{\circ}}=\sqrt{\frac{\nu}{\kappa}}>0
$$

For $\left(q_{h}, \mu_{h_{p}}\right) \in M_{h}^{\circ \circ} \times \Lambda_{h_{p}}^{\circ}$ define $\left|\left(q_{h}, \mu_{h_{p}}\right)\right|_{M \times \Lambda_{h_{p}}^{\circ}}^{2}:=\left\|q_{h}\right\|_{M}^{2}+\left|\mu_{h_{p}}\right|_{\Lambda_{h_{p}}^{\circ}}^{2}$. Then using the same argument of Proposition 4.7 we have

Proposition 5.7. Under assumptions of Lemmas 5.5 and 5.6 we have that there exists $\tilde{\beta}>0$ such that

$$
\begin{array}{cc}
\inf _{\substack{\left(q_{h}, \mu_{h_{p}}\right) \in M_{h}^{\circ \circ} \times \Lambda_{h_{p}}^{\circ} \\
\left(q_{h}, \mu_{h_{p}}\right) \neq(0,0)}} \sup _{\substack{\boldsymbol{v}_{h} \in \boldsymbol{X}_{h}^{\circ \circ} \\
\boldsymbol{v}_{h} \neq 0}} \frac{b\left(\boldsymbol{v}_{h}, q_{h}\right)+\left(\llbracket \boldsymbol{v}_{h} \rrbracket \cdot \boldsymbol{\eta}_{f}, \mu_{h_{p}}\right)_{\Gamma}}{\|\boldsymbol{v}\|_{\boldsymbol{X}}\left\|\left(q_{h}, \mu_{h_{p}}\right)\right\|_{M \times \Lambda_{h_{p}}^{\circ}}^{\circ}} \geq \tilde{\beta}>0 . \tag{5.22}
\end{array}
$$

Remark 5.8. With the inf-sup condition (5.22) of Proposition 5.7 we can establish the inf-sup conditions corresponding to the discrete versions of the first and the second weak formulations in (4.17) and (4.20), respectively. Here we consider $\left\|\mu_{h_{p}}\right\|_{\Lambda_{h_{p}}}^{2}:=\left\|\mu_{h_{p}}\right\|_{L^{2}(\Gamma)}^{2}+$ $\left|\mu_{h_{p}}\right|_{\Lambda_{h_{p}}^{\circ}}^{2}$. This is done using similar arguments to those given in Section 4.2; see Remark 4.8.
6. Error analysis. We remark that the constants involved in the notation \preceq are all independent, not only of the mesh size but also independent of the parameters ν and κ. In addition, using scaling arguments, it is easy to see that $\frac{1}{\sqrt{\nu}} p_{f}, \sqrt{\nu} \boldsymbol{u}_{f}, \sqrt{\frac{\kappa}{\nu}} p_{p}$ and $\sqrt{\frac{\nu}{\kappa}} \boldsymbol{u}_{p}$ are all $O(1)$, therefore, we keep those factors on the a priori error estimates.

We introduce the following energy norms,

$$
\begin{align*}
& \left|\boldsymbol{v}_{f}\right|_{a_{f}}^{2}:=a_{f}\left(\boldsymbol{v}_{f}, \boldsymbol{v}_{f}\right) \tag{6.1}\\
& \left\|\boldsymbol{v}_{p}\right\|_{a_{p}}^{2}:=a_{p}\left(\boldsymbol{v}_{p}, \boldsymbol{v}_{p}\right) \tag{6.2}
\end{align*}
$$

and

$$
\begin{equation*}
\|\boldsymbol{v}\|_{a}^{2}:=a(\boldsymbol{v}, \boldsymbol{v}) \tag{6.3}
\end{equation*}
$$

We next establish a priori error estimates for the Stokes and Darcy velocities.
Proposition 6.1. Suppose that $\mathcal{T}_{h_{f}}$ is non-degenerate and has no triangle with two edges on $\partial \Omega_{f}$. Let $h:=\max \left\{h_{f}, h_{p}\right\}$. Then we have the following estimate

$$
\begin{gathered}
\left\|\boldsymbol{u}-\boldsymbol{u}_{h}\right\|_{a} \preceq h\left(\sqrt{\nu}\left|\boldsymbol{u}_{f}\right|_{H^{2}\left(\Omega_{f}\right)^{2}}+\sqrt{\frac{\nu}{\kappa}}\left|\boldsymbol{u}_{p}\right|_{H^{1}\left(\Omega_{p}\right)^{2}}\right) \\
+h_{p} \frac{1}{\sqrt{\nu}}\left|p_{f}\right|_{H^{1}\left(\Omega_{f}\right)} .
\end{gathered}
$$

Moreover, if the refinement condition of Remark 5.4 is satisfied then

$$
\left\|\boldsymbol{u}-\boldsymbol{u}_{h}\right\|_{a} \preceq h_{f} \sqrt{\nu}\left|\boldsymbol{u}_{\boldsymbol{f}}\right|_{H^{2}\left(\Omega_{f}\right)^{2}}+h_{p} \sqrt{\frac{\nu}{\kappa}}\left|\boldsymbol{u}_{p}\right|_{H^{1}\left(\Omega_{p}\right)^{2}} .
$$

Proof. From Proposition 5.7 we have that $\boldsymbol{Z}_{h} \cap \boldsymbol{V}_{h}$ is not empty, where \boldsymbol{Z}_{h} and \boldsymbol{V}_{h} are defined in (5.14) and (5.13), respectively. Then, the discrete problem associated with (4.24) can also be described as: find $\boldsymbol{u}_{h} \in \boldsymbol{Z}_{h} \cap \boldsymbol{V}_{h}$ such that

$$
a\left(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right)=\ell\left(\boldsymbol{v}_{h}\right) \quad \boldsymbol{v}_{h} \in \boldsymbol{Z}_{h} \cap \boldsymbol{V}_{h}
$$

where a is elliptic in $\boldsymbol{Z}_{h} \cap \boldsymbol{V}_{h}$. Furthermore, \boldsymbol{u}_{h} is also the only velocity solution of
(6.4) $\left\{\begin{array}{lll}a\left(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right)+b\left(\boldsymbol{v}_{h}, p_{h}\right)+\left(\llbracket \boldsymbol{v}_{h} \rrbracket \cdot \boldsymbol{\eta}_{f}, \lambda_{h_{p}}\right) & =\ell\left(\boldsymbol{v}_{h}\right) & \text { for all } \boldsymbol{v}_{h} \in \boldsymbol{X}_{h}^{\circ \circ} \\ b\left(\boldsymbol{u}_{h}, \boldsymbol{q}_{h}\right) & =0 & \text { for all } q_{h} \in M_{h}^{\circ \circ} \\ \left(\llbracket \boldsymbol{u}_{h} \rrbracket \cdot \boldsymbol{\eta}_{f}, \mu_{h_{p}}\right) & =0 & \text { for all } \mu_{h_{p}} \in \Lambda_{h_{p}}^{\circ} .\end{array}\right.$

For any $\boldsymbol{w}_{h} \in \boldsymbol{Z}_{h} \cap \boldsymbol{V}_{h}$ we have that $\boldsymbol{v}_{h}:=\boldsymbol{u}_{h}-\boldsymbol{w}_{h} \in \boldsymbol{Z}_{h} \cap \boldsymbol{V}_{h}$ and

$$
\begin{equation*}
a\left(\boldsymbol{v}_{h}, \boldsymbol{v}_{h}\right)=a\left(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right)-a\left(\boldsymbol{w}_{h}, \boldsymbol{v}_{h}\right)=\ell\left(\boldsymbol{v}_{h}\right)-a\left(\boldsymbol{w}_{h}, \boldsymbol{v}_{h}\right) \tag{6.5}
\end{equation*}
$$

Let $(\boldsymbol{u}, p, \lambda)$ be the solution of the continuous problem (4.9). Then

$$
\ell\left(\boldsymbol{v}_{h}\right)=a\left(\boldsymbol{u}, \boldsymbol{v}_{h}\right)+b\left(\boldsymbol{v}_{h}, p\right)+b_{\Gamma}\left(\boldsymbol{v}_{h}, \lambda\right)
$$

and using (6.5) it follows that

$$
a\left(\boldsymbol{v}_{h}, \boldsymbol{v}_{h}\right)=a\left(\boldsymbol{u}-\boldsymbol{w}_{h}, \boldsymbol{v}_{h}\right)+b\left(\boldsymbol{v}_{h}, p\right)+b_{\Gamma}\left(\boldsymbol{v}_{h}, \lambda\right)
$$

and

$$
\begin{aligned}
\left\|\boldsymbol{u}_{h}-\boldsymbol{w}_{h}\right\|_{a}=\left\|\boldsymbol{v}_{h}\right\|_{a} & \leq\left\|\boldsymbol{u}-\boldsymbol{w}_{h}\right\|_{a} \\
& +\sup _{\boldsymbol{z}_{h} \in \boldsymbol{Z}_{h} \cap \boldsymbol{V}_{h}} \frac{b\left(\boldsymbol{z}_{h}, p\right)}{\left\|\boldsymbol{z}_{h}\right\|_{a}}+\sup _{\boldsymbol{z}_{h} \in \boldsymbol{Z}_{h} \cap \boldsymbol{V}_{h}} \frac{b_{\Gamma}\left(\boldsymbol{z}_{h}, \lambda\right)}{\left\|\boldsymbol{z}_{h}\right\|_{a}} .
\end{aligned}
$$

Hence, using

$$
\left\|\boldsymbol{u}-\boldsymbol{u}_{h}\right\|_{a} \leq\left\|\boldsymbol{u}-\boldsymbol{w}_{h}\right\|_{a}+\left\|\boldsymbol{u}_{h}-\boldsymbol{w}_{h}\right\|_{a}
$$

we obtain

$$
\begin{align*}
\left\|\boldsymbol{u}-\boldsymbol{u}_{h}\right\|_{a} & \leq 2 \inf _{\boldsymbol{w}_{h} \in \boldsymbol{\boldsymbol { Z } _ { h } \cap \boldsymbol { V } _ { h }}}\left\|\boldsymbol{u}-\boldsymbol{w}_{h}\right\|_{a} \tag{6.6}\\
& +\sup _{\boldsymbol{z}_{h} \in \boldsymbol{Z}_{h} \cap \boldsymbol{V}_{h}} \frac{b\left(\boldsymbol{z}_{h}, p\right)}{\left\|\boldsymbol{z}_{h}\right\|_{a}}+\sup _{\boldsymbol{z}_{h} \in \boldsymbol{Z}_{h} \cap \boldsymbol{V}_{h}} \frac{b_{\Gamma}\left(\boldsymbol{z}_{h}, \lambda\right)}{\left\|\boldsymbol{z}_{h}\right\|_{a}} .
\end{align*}
$$

To bound the first term on the right-hand size of (6.6) we let $\boldsymbol{w}_{h}=\boldsymbol{\Pi}_{h} \boldsymbol{u}$, where $\boldsymbol{\Pi}_{h}$ is defined in Proposition 5.3. Proposition 5.3 guarantees that $\boldsymbol{w}_{h} \in \boldsymbol{V}_{h}$. In addition, since $b\left(\boldsymbol{u}, q_{h}\right)=0$ for all $q_{h} \in M_{h}^{\circ \circ}$, (5.17) guarantees that $\boldsymbol{w}_{h}=\boldsymbol{\Pi}_{h} \boldsymbol{u} \in \boldsymbol{Z}_{h}$ and we have

$$
\begin{aligned}
\left\|\boldsymbol{u}-\boldsymbol{\Pi}_{h} \boldsymbol{u}\right\|_{a} \leq & \left\|\boldsymbol{u}_{f}-\boldsymbol{\Pi}_{h_{f}} \boldsymbol{u}\right\|_{a_{f}}+\left\|\boldsymbol{u}_{p}-\boldsymbol{\Pi}_{h_{p}} \boldsymbol{u}\right\|_{a_{p}} \\
\leq & \left\|\boldsymbol{u}_{f}-\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{u}_{f}\right\|_{a_{f}}+\left\|\boldsymbol{u}_{p}-\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{u}_{p}\right\|_{a_{p}} \\
& +\left\|\boldsymbol{E}_{h_{p}}\left(Q_{h_{p}}\left(\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{u}_{f} \cdot \boldsymbol{\eta}_{p}\right)-\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{u}_{p} \cdot \boldsymbol{\eta}_{p}\right)\right\|_{a_{p}} .
\end{aligned}
$$

From (5.5) in Lemma 5.1 we obtain

$$
\left\|\boldsymbol{u}_{f}-\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{u}_{f}\right\|_{a_{f}} \preceq h_{f} \sqrt{\nu}\left|\boldsymbol{u}_{f}\right|_{H^{2}\left(\Omega_{f}\right)^{2}}
$$

and from (5.11) in Lemma 5.2 we obtain

$$
\left\|\boldsymbol{u}_{p}-\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{u}_{p}\right\|_{a_{p}} \preceq h_{p} \sqrt{\frac{\nu}{\kappa}}\left|\boldsymbol{u}_{p}\right|_{H^{1}\left(\Omega_{p}\right)^{2}}
$$

since $\nabla \cdot \boldsymbol{u}_{p}=0$.
From the boundedness of $\boldsymbol{E}_{h_{p}}$ in (5.16), we have

$$
\left\|\boldsymbol{E}_{h_{p}}\left(Q_{h_{p}}\left(\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{u}_{f} \cdot \boldsymbol{\eta}_{p}\right)-\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{u}_{p} \cdot \boldsymbol{\eta}_{p}\right)\right\|_{a_{p}} \preceq \sqrt{\frac{\nu}{\kappa}}\left|Q_{h_{p}}\left(\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{u}_{f} \cdot \boldsymbol{\eta}_{p}\right)-\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{u}_{p} \cdot \boldsymbol{\eta}_{p}\right|_{H^{-1 / 2}(\Gamma)}
$$

Therefore, we need to estimate the following three terms:

$$
\begin{aligned}
\mid Q_{h_{p}}\left(\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{u}_{f} \cdot \boldsymbol{\eta}_{p}\right) & -\left.\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{u}_{p} \cdot \boldsymbol{\eta}_{p}\right|_{H^{-1 / 2}(\Gamma)} \leq\left|Q_{h_{p}}\left(\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{p}\right)-\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{u}_{f} \cdot \boldsymbol{\eta}_{p}\right|_{H^{-1 / 2}(\Gamma)} \\
& +\left|\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{u}_{\boldsymbol{f}} \cdot \boldsymbol{\eta}_{p}-\boldsymbol{u}_{f} \cdot \boldsymbol{\eta}_{p}\right|_{H^{-1 / 2}(\Gamma)}+\left\|\boldsymbol{u}_{f} \cdot \boldsymbol{\eta}_{p}-\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{u}_{p} \cdot \boldsymbol{\eta}_{p}\right\|_{H^{-1 / 2}(\Gamma)}
\end{aligned}
$$

1. Approximation property (6.7), boundedness of $\boldsymbol{I}_{h_{f}}^{T H}$ in (5.6) and the trace theorem give

$$
\begin{aligned}
\left|Q_{h_{p}}\left(\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{u}_{f} \cdot \boldsymbol{\eta}_{p}\right)-\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{u}_{f} \cdot \boldsymbol{\eta}_{p}\right|_{H^{-1 / 2}(\Gamma)} & \preceq h_{p}\left|\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{u}_{f} \cdot \boldsymbol{\eta}_{p}\right|_{H^{1 / 2}(\Gamma)} \\
& \preceq h_{p}\left|\boldsymbol{u}_{f} \cdot \boldsymbol{\eta}_{p}\right|_{H^{1 / 2}(\Gamma)} \\
& =h_{p}\left|\boldsymbol{u}_{p} \cdot \boldsymbol{\eta}_{p}\right|_{H^{1 / 2}(\Gamma)} \\
& \leq h_{p}\left|\boldsymbol{u}_{p}\right|_{H^{1 / 2}(\Gamma)^{2}} \\
& \preceq h_{p}\left|\boldsymbol{u}_{p}\right|_{H^{1}\left(\Omega_{p}\right)^{2}}
\end{aligned}
$$

2. The trace theorem and approximation properties of $\boldsymbol{I}_{h_{f}}^{T H}$ (Lemma 5.1) give

$$
\begin{aligned}
\left|\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{u}_{f} \cdot \boldsymbol{\eta}_{p}-\boldsymbol{u}_{f} \cdot \boldsymbol{\eta}_{p}\right|_{H^{-1 / 2}(\Gamma)} & \preceq h_{f}\left\|\boldsymbol{u}_{f} \cdot \boldsymbol{\eta}_{p}\right\|_{H^{1 / 2}(\Gamma)} \\
& =h_{f}\left\|\boldsymbol{u}_{p} \cdot \boldsymbol{\eta}_{p}\right\|_{H^{1 / 2}(\Gamma)} \\
& \preceq h_{f}\left|\boldsymbol{u}_{p}\right|_{H^{1}\left(\Omega_{p}\right)^{2}} .
\end{aligned}
$$

3. The normal trace theorem and the approximation property (5.11) of $\boldsymbol{I}_{h_{p}}^{R T}$ imply

$$
\begin{aligned}
\left|\boldsymbol{u}_{p} \cdot \boldsymbol{\eta}_{p}-\boldsymbol{I}_{h_{p}}^{R T} \boldsymbol{u}_{p} \cdot \boldsymbol{\eta}_{p}\right|_{H^{-1 / 2}(\Gamma)} & \preceq h_{p}\left|\boldsymbol{u}_{p} \cdot \boldsymbol{\eta}_{p}\right|_{H^{1 / 2}(\Gamma)} \\
& \preceq h_{p}\left|\boldsymbol{u}_{p}\right|_{H^{1}\left(\Omega_{p}\right)^{2}} .
\end{aligned}
$$

We note that we have used

$$
\begin{equation*}
\left|Q_{h_{p}} \mu-\mu\right|_{H^{-1 / 2}(\Gamma)} \preceq h_{p}|\mu|_{H^{1 / 2}(\Gamma)}, \tag{6.7}
\end{equation*}
$$

since by using local arguments we have $\left\|Q_{h_{p}} \mu-\mu\right\|_{L^{2}(\Gamma)} \preceq h_{p}^{1 / 2}|\mu|_{H^{1 / 2}(\Gamma)}$ and then

$$
\begin{aligned}
\left|Q_{h_{p}} \mu-\mu\right|_{H^{-1 / 2}(\Gamma)} & =\sup _{\phi \in H^{1 / 2}(\Gamma)} \frac{\left\langle Q_{h_{p}} \mu-\mu, \phi\right\rangle_{\Gamma}}{|\phi|_{H^{1 / 2}(\Gamma)}} \\
& \leq \sup _{\phi \in H^{1 / 2}(\Gamma)} \frac{\left\|Q_{h_{p}} \mu-\mu\right\|_{L^{2}(\Gamma)}\left\|Q_{h_{p}} \phi-\phi\right\|_{L^{2}(\Gamma)}}{|\phi|_{H^{1 / 2}(\Gamma)}} \\
& \preceq h_{p}|\mu|_{H^{1 / 2}(\Gamma)} .
\end{aligned}
$$

We now bound the second term on the right-hand size of (6.6). Note that since we are using lowest order Raviart-Thomas elements, the porous side components of \boldsymbol{Z}_{h} defined in (5.14) are divergence free, i.e., $\boldsymbol{Z}_{h_{p}} \subset \boldsymbol{Z}_{p}$, where \boldsymbol{Z}_{p} is defined in (4.25). Therefore, $b_{p}\left(\boldsymbol{z}_{\boldsymbol{h}}, q\right)=0$ for all $q=\left(q_{f}, q_{p}\right) \in M^{\circ \circ}$. In addition, we have $b\left(\boldsymbol{z}_{\boldsymbol{h}}, p-q_{h}\right)=0$ for $z_{h} \in \boldsymbol{Z}_{h} \cap \boldsymbol{V}_{h}$. In summary, we have

$$
\left|b\left(\boldsymbol{z}_{h}, p\right)\right|=\left|b_{f}\left(\boldsymbol{z}_{h_{f}}, p_{f}\right)\right|=\left|b_{f}\left(\boldsymbol{z}_{h_{f}}, p_{f}-Q_{f} p_{f}\right)\right| \preceq h_{f} \frac{1}{\sqrt{\nu}}\left|p_{f}\right|_{H^{1}\left(\Omega_{f}\right)}\left\|z_{h}\right\|_{a}
$$

where we have used the first order approximation of the L_{2}-projection operator Q_{f} on the fluid pressure space $M_{h_{f}}^{\circ}$.

To bound the third term on the right-hand size of (6.6) we have

$$
\begin{aligned}
b_{\Gamma}\left(\boldsymbol{z}_{h}, \lambda\right) & =\left\langle\lambda, \boldsymbol{z}_{h_{f}} \cdot \boldsymbol{\eta}_{f}\right\rangle_{\Gamma}+\left\langle\lambda, \boldsymbol{z}_{h_{p}} \cdot \boldsymbol{\eta}_{p}\right\rangle_{\Gamma} \\
& =\left\langle\lambda, \boldsymbol{z}_{h_{f}} \cdot \boldsymbol{\eta}_{f}\right\rangle_{\Gamma}+\left\langle Q_{h_{p}} \lambda, \boldsymbol{z}_{h_{p}} \cdot \boldsymbol{\eta}_{p}\right\rangle_{\Gamma} \quad \boldsymbol{z}_{h_{p}} \cdot \boldsymbol{\eta}_{p} \text { is constant in } e \\
& =\left\langle\lambda-Q_{h_{p}} \lambda, \boldsymbol{z}_{h_{f}} \cdot \boldsymbol{\eta}_{f}\right\rangle_{\Gamma} \quad \boldsymbol{z}_{h_{p}} \in \boldsymbol{Z}_{h},
\end{aligned}
$$

hence,

$$
\begin{equation*}
\left|b_{\Gamma}\left(\boldsymbol{z}_{h}, \lambda\right)\right| \preceq h_{p} \frac{1}{\sqrt{\nu}}|\lambda|_{H^{1 / 2}(\Gamma)} \sqrt{\nu}\left|\boldsymbol{z}_{h_{f}} \cdot \boldsymbol{\eta}_{f}\right|_{H^{1 / 2}(\Gamma)} \tag{6.8}
\end{equation*}
$$

By using (4.8) on Γ (on the Ω_{f} side) and trace theorems, we obtain

$$
\begin{equation*}
\left|b_{\Gamma}\left(\boldsymbol{z}_{h}, \lambda\right)\right| \preceq h_{p}\left(\frac{1}{\sqrt{\nu}}\left|p_{f}\right|_{H^{1}\left(\Omega_{f}\right)}+\sqrt{\nu}\left|\boldsymbol{u}_{f}\right|_{H^{2}\left(\Omega_{f}\right)^{2}}\right)\left\|\boldsymbol{z}_{h}\right\|_{a} \tag{6.9}
\end{equation*}
$$

and the proposition follows.
REMARK 6.2. We note that we could have used the porous media side in (4.8) to bound $|\lambda|_{H^{1 / 2}(\Gamma)}$ in (6.8). In this case, we would have obtained

$$
\begin{equation*}
\left|b_{\Gamma}\left(z_{h}, \lambda\right)\right| \preceq \frac{h_{p}}{\sqrt{\nu}}\left|p_{p}\right|_{H^{1}\left(\Omega_{p}\right)}\left\|z_{h}\right\|_{a} \tag{6.10}
\end{equation*}
$$

Even thought we obtain the term h_{p} multiplying p_{p} in (6.10), the bound (6.9) is qualitatively better than the bound (6.10). Note that by using scaling arguments we have $\sqrt{\frac{\kappa}{\nu}} p_{p}=O(1)$. Therefore, the factor $\frac{h_{p}}{\sqrt{\nu}}\left|p_{p}\right|_{H^{1}\left(\Omega_{p}\right)}$ is very pessimistic due to the fact that in practice the value of κ is very small.

We next establish a priori error estimates for the Stokes and Darcy pressures.
PROPOSITION 6.3. Suppose that $\mathcal{T}_{h_{f}}$ is non-degenerate and has no triangle with two edges on $\partial \Omega_{f}$. Let $h:=\max \left\{h_{f}, h_{p}\right\}$. Then we have the following estimate,

$$
\begin{aligned}
\frac{1}{\sqrt{\nu}}\left\|p_{f}-p_{h_{f}}\right\|_{L^{2}\left(\Omega_{f}\right)} & +\sqrt{\frac{\kappa}{\nu}}\left\|p_{p}-p_{h_{p}}\right\|_{L^{2}\left(\Omega_{p}\right)} \\
& \preceq h\left(\sqrt{\nu}\left|\boldsymbol{u}_{f}\right|_{H^{2}\left(\Omega_{f}\right)^{2}}+\sqrt{\frac{\nu}{\kappa}}\left|\boldsymbol{u}_{p}\right|_{H^{1}\left(\Omega_{p}\right)^{2}}+\frac{1}{\sqrt{\nu}}\left|p_{f}\right|_{H^{1}\left(\Omega_{f}\right)}\right) \\
& +h_{p} \sqrt{\frac{\kappa}{\mu}}\left|p_{p}\right|_{H^{1}\left(\Omega_{p}\right)} .
\end{aligned}
$$

Moreover, if the refinement condition of Remark 5.4 is satisfied then

$$
\begin{aligned}
\frac{1}{\sqrt{\nu}}\left\|p_{f}-p_{h_{f}}\right\|_{L^{2}\left(\Omega_{f}\right)} & +\sqrt{\frac{\kappa}{\nu}}\left\|p_{p}-p_{h_{p}}\right\|_{L^{2}\left(\Omega_{p}\right)} \\
& \preceq h_{f}\left(\sqrt{\nu}\left|\boldsymbol{u}_{f}\right|_{H^{2}\left(\Omega_{f}\right)^{2}}+\frac{1}{\sqrt{\nu}}\left|p_{f}\right|_{H^{1}\left(\Omega_{f}\right)}\right) \\
& +h_{p}\left(\sqrt{\frac{\kappa}{\mu}}\left|p_{p}\right|_{H^{1}\left(\Omega_{p}\right)}+\sqrt{\frac{\nu}{\kappa}}\left|\boldsymbol{u}_{p}\right|_{H^{1}\left(\Omega_{p}\right)^{2}}\right)
\end{aligned}
$$

Proof. To obtain an expression for the pressure error, observe that for all $\boldsymbol{v}_{h} \in \boldsymbol{V}_{h} \cap$ $\left(H_{0}^{1}\left(\Omega_{f}\right) \times \boldsymbol{H}_{0}\left(\operatorname{div}, \Omega_{p}\right)\right)$ (i.e., $\boldsymbol{v}_{h_{f}}=0$ on $\partial \Omega_{f}$ and $\boldsymbol{v}_{h_{p}} \cdot \boldsymbol{\eta}_{p}=0$ on $\left.\partial \Omega_{p}\right)$ and all $q_{h} \in M_{h}^{\circ \circ}$

$$
\begin{equation*}
b\left(\boldsymbol{v}_{h}, p_{h}-q_{h}\right)=a\left(\boldsymbol{u}-\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right)+b\left(\boldsymbol{v}_{h}, p-q_{h}\right) \tag{6.11}
\end{equation*}
$$

This holds true in particular for $\boldsymbol{v}_{h}=\left(\boldsymbol{v}_{h_{f}}, 0\right)$ and $q_{h}=\left(q_{h_{f}}, 0\right)$. If we take $q_{h_{f}}=Q_{f} p_{f}$, i.e., the L_{2}-projection on the discrete fluid pressure space, we obtain

$$
b_{f}\left(\boldsymbol{v}_{h_{f}}, p_{h_{f}}-Q_{f} p_{f}\right)=a_{f}\left(\boldsymbol{u}_{f}-\boldsymbol{u}_{h_{f}}, \boldsymbol{v}_{h_{f}}\right)+b_{f}\left(\boldsymbol{v}_{h_{f}}, p_{f}-Q_{f} p_{f}\right)
$$

Then, using the standard discrete inf-sup condition for the fluid problem, we have

$$
\begin{aligned}
\frac{1}{\sqrt{\nu}}\left\|p_{h_{f}}-Q_{f} p_{f}\right\|_{L^{2}\left(\Omega_{f}\right)} & \preceq \sup _{\boldsymbol{v}_{h_{f}} \in \boldsymbol{V}_{h_{f}} \cap H_{0}^{1}\left(\Omega_{f}\right)} \frac{a_{f}\left(\boldsymbol{u}_{f}-\boldsymbol{u}_{h_{f}}, \boldsymbol{v}_{h_{f}}\right)+b_{f}\left(\boldsymbol{v}_{h_{f}}, p_{f}-Q_{f} p_{f}\right)}{\left\|\boldsymbol{v}_{h_{f}}\right\|_{a_{f}}} \\
& \preceq\left\|\boldsymbol{u}_{f}-\boldsymbol{u}_{h_{f}}\right\|_{a_{f}}+\frac{1}{\sqrt{\nu}}\left\|p_{f}-Q_{f} p_{f}\right\|_{L^{2}\left(\Omega_{f}\right)} \\
& \preceq\left\|\boldsymbol{u}_{f}-\boldsymbol{u}_{h_{f}}\right\|_{a_{f}}+h_{f} \frac{1}{\sqrt{\nu}}\left|p_{f}\right|_{H^{1}\left(\Omega_{f}\right)},
\end{aligned}
$$

and from a triangle inequality we obtain

$$
\frac{1}{\sqrt{\nu}}\left\|p_{f}-p_{h_{f}}\right\|_{L^{2}\left(\Omega_{f}\right)} \preceq\left\|\boldsymbol{u}_{f}-\boldsymbol{u}_{h_{f}}\right\|_{a_{f}}+h_{f} \frac{2}{\sqrt{\nu}}\left|p_{f}\right|_{H^{1}\left(\Omega_{f}\right)} .
$$

Analogously we obtain

$$
\sqrt{\frac{\kappa}{\mu}}\left\|p_{p}-p_{h_{p}}\right\|_{L^{2}\left(\Omega_{p}\right)} \preceq\left\|u_{\boldsymbol{p}}-u_{h_{p}}\right\|_{p_{f}}+2 h_{p} \sqrt{\frac{\kappa}{\mu}}\left|p_{p}\right|_{H^{1}\left(\Omega_{p}\right)} .
$$

The proposition follows from the bound on velocity error given on Proposition 6.1. \square
Now we analyze a priori error estimate for λ in the discrete norm $|\cdot|_{\Lambda_{h_{p}}}^{\circ}$ defined in (5.20); see also [1]. Note that the norm $\Lambda_{h_{p}}^{\circ}$ was defined for piecewise constant functions on the $\Gamma_{h_{p}}$ triangulation. For functions $\mu \in L^{2}(\Gamma)$, we define

$$
\begin{equation*}
|\mu|_{\Lambda_{h_{p}}^{\circ}}:=\left|Q_{h_{p}} \mu\right|_{\Lambda_{h_{p}}^{\circ}}, \tag{6.12}
\end{equation*}
$$

where $Q_{h_{p}}$ is the L^{2}-projection onto $\Lambda_{h_{p}}^{\circ}$. We have the following result.
PROPOSITION 6.4. Suppose that $\mathcal{T}_{h_{f}}$ is non-degenerate and has no triangle with two edges on $\partial \Omega_{f}$. Let $h:=\max \left\{h_{f}, h_{p}\right\}$. Then we have the following estimates:

$$
\begin{gather*}
\left|\lambda-\lambda_{h_{p}}\right|_{\Lambda_{h_{p}}^{\circ}} \preceq h\left(\sqrt{\nu}\left|\boldsymbol{u}_{f}\right|_{H^{2}\left(\Omega_{f}\right)^{2}}+\sqrt{\frac{\nu}{\kappa}}\left|\boldsymbol{u}_{p}\right|_{H^{1}\left(\Omega_{p}\right)^{2}}\right) \tag{6.13}\\
+h_{p} \frac{1}{\sqrt{\nu}}\left|p_{f}\right|_{H^{1}\left(\Omega_{f}\right)},
\end{gather*}
$$

and

$$
\begin{equation*}
\sqrt{\frac{\kappa}{\nu}}\left|\lambda-\lambda_{h_{p}}\right|_{H^{-1 / 2}(\Gamma)} \preceq h_{p} \sqrt{\frac{\kappa}{\nu}}\left|p_{p}\right|_{H^{1}\left(\Omega_{p}\right)}+\left|\lambda-\lambda_{h_{p}}\right|_{h_{p}}^{\circ} . \tag{6.14}
\end{equation*}
$$

Moreover, if the refinement condition of Remark 5.4 is satisfied then

$$
\left|\lambda-\lambda_{h_{p}}\right|_{h_{h_{p}}^{\circ}} \preceq h_{f} \sqrt{\nu}\left|\boldsymbol{u}_{f}\right|_{H^{2}\left(\Omega_{f}\right)^{2}}+h_{p} \sqrt{\frac{\nu}{\kappa}}\left|\boldsymbol{u}_{p}\right|_{H^{1}\left(\Omega_{p}\right)^{2}} .
$$

Proof. Let $\widetilde{\boldsymbol{u}}_{h_{p}}\left(Q_{h_{p}} \lambda\right)$ and $\widetilde{p}_{h_{p}}\left(Q_{h_{p}} \lambda\right)$ be the solution of (5.19). Note that the solution of (6.4) satisfies $\boldsymbol{u}_{h_{p}}=\widetilde{\boldsymbol{u}}_{h_{p}}\left(\lambda_{h_{p}}\right)$ and $p_{h_{p}}=\widetilde{p}_{h_{p}}\left(\lambda_{h_{p}}\right)$. Then, using the definition of the discrete norm $\Lambda_{h_{p}}^{\circ}$ we have

$$
\left|\lambda-\lambda_{h_{p}}\right|_{\Lambda_{h_{p}}^{\circ}}=\left\|\widetilde{\boldsymbol{u}}_{h_{p}}\left(Q_{h_{p}} \lambda\right)-\boldsymbol{u}_{h_{p}}\right\|_{a_{p}}
$$

which can be bounded by

$$
\begin{equation*}
\left\|\widetilde{\boldsymbol{u}}_{h_{p}}\left(Q_{h_{p}} \lambda\right)-\boldsymbol{u}_{h_{p}}\right\|_{a_{p}} \leq\left\|\widetilde{\boldsymbol{u}}_{h_{p}}\left(Q_{h_{p}} \lambda\right)-\boldsymbol{u}_{p}\right\|_{a_{p}}+\left\|\boldsymbol{u}_{p}-\boldsymbol{u}_{h_{p}}\right\|_{a_{p}} \tag{6.15}
\end{equation*}
$$

We use Proposition 6.1 to estimate the second term on the right-hand side of (6.15). We next estimate the first term of the right-hand side of (6.15). Note that

$$
\begin{equation*}
a_{p}\left(\widetilde{\boldsymbol{u}}_{h_{p}}\left(Q_{h_{p}} \lambda\right)-\boldsymbol{u}_{p}, \boldsymbol{v}_{h_{p}}\right)+b_{p}\left(\boldsymbol{v}_{h_{p}}, \widetilde{p}_{h_{p}}\left(Q_{h_{p}} \lambda\right)-p_{p}\right)=0 \tag{6.16}
\end{equation*}
$$

Inserting $\boldsymbol{v}_{h_{p}}=\widetilde{\boldsymbol{u}}_{h_{p}}\left(Q_{h_{p}} \lambda\right)-\boldsymbol{u}_{h_{p}} \in \boldsymbol{Z}_{h_{p}}$ into (6.16) and recalling that $\boldsymbol{Z}_{h_{p}} \subset \boldsymbol{Z}_{p}$ where $\boldsymbol{Z}_{h_{p}}$ and \boldsymbol{Z}_{p} are defined in (4.25) and (5.14), respectively, we have

$$
a_{p}\left(\widetilde{\boldsymbol{u}}_{h_{p}}\left(Q_{h_{p}} \lambda\right)-\boldsymbol{u}_{p}, \widetilde{\boldsymbol{u}}_{h_{p}}\left(Q_{h_{p}} \lambda\right)-\boldsymbol{u}_{h_{p}}\right)=0
$$

Hence,

$$
a_{p}\left(\widetilde{\boldsymbol{u}}_{h_{p}}\left(Q_{h_{p}} \lambda\right)-\boldsymbol{u}_{p}, \widetilde{\boldsymbol{u}}_{h_{p}}\left(Q_{h_{p}} \lambda\right)-\boldsymbol{u}_{p}\right)+a_{p}\left(\widetilde{\boldsymbol{u}}_{h_{p}}\left(Q_{h_{p}} \lambda\right)-\boldsymbol{u}_{p}, \boldsymbol{u}_{p}-\boldsymbol{u}_{h_{p}}\right)=0
$$

and by using a Cauchy-Schwarz inequality we obtain

$$
\left\|\widetilde{\boldsymbol{u}}_{h_{p}}\left(Q_{h_{p}} \lambda\right)-\boldsymbol{u}_{p}\right\|_{a_{p}} \leq\left\|\boldsymbol{u}_{h_{p}}-\boldsymbol{u}_{p}\right\|_{a_{p}}
$$

and (6.13) follows. To obtain the estimate (6.14), we note that from (5.21) we have

$$
\sqrt{\frac{\kappa}{\mu}}\left\|Q_{h_{p}} \lambda-\lambda_{h_{p}}\right\|_{L^{2}(\Gamma)}=\sup _{z_{h_{p}} \in \Lambda_{h_{p}}^{\circ}} \frac{\left(z_{h_{p}}, Q_{h_{p}} \lambda-\lambda_{h_{p}}\right)}{\sqrt{\frac{\nu}{\kappa}}\left|z_{h_{p}}\right|_{L^{2}(\Gamma)}} \preceq\left|\lambda-\lambda_{h_{p}}\right|_{\Lambda_{h_{p}}^{\circ}}
$$

therefore,

$$
\begin{equation*}
\left|\lambda-\lambda_{h_{p}}\right|_{H^{-1 / 2}(\Gamma)} \preceq\left|\lambda-Q_{h_{p}} \lambda\right|_{H^{-1 / 2}(\Gamma)}+\left\|Q_{h_{p}} \lambda-\lambda_{h_{p}}\right\|_{L^{2}(\Gamma)} \tag{6.17}
\end{equation*}
$$

and (6.14) follows from (6.17) and (6.7).
REMARK 6.5. Note that we are discretizing the third weak formulation (4.23). We have to recover the piecewise constant pressure in each subdomain. Recall the function z of Remark 4.3. Note that we can compute $\boldsymbol{z}_{h}:=\boldsymbol{\Pi}_{h}(\boldsymbol{z})=\left(\boldsymbol{\Pi}_{h_{f}} \boldsymbol{z}, \boldsymbol{\Pi}_{h_{p}} \boldsymbol{z}\right)$; see Proposition 5.3. Then

$$
\gamma_{h}:=\ell\left(\boldsymbol{z}_{h}\right)-a\left(\boldsymbol{u}_{h}, \boldsymbol{z}_{h}\right)-b\left(\boldsymbol{z}_{h}, p_{h}\right)-\left(\llbracket \boldsymbol{z}_{h} \rrbracket \cdot \boldsymbol{\eta}_{f}, \lambda_{h_{p}}\right)_{\Gamma}
$$

and $\gamma_{h} p^{c}=\gamma_{h}\left(p_{f}^{c}, p_{p}^{c}\right)$ is the approximation for piecewise constant pressure in each subdomain $\Omega_{j}, j=f, p$. Observe that

$$
\left|\gamma-\gamma_{h}\right| \preceq\left|a\left(\boldsymbol{u}-\boldsymbol{u}_{h}, \boldsymbol{z}_{h}\right)\right|+\left|b\left(\boldsymbol{z}_{h}, \boldsymbol{p}-\boldsymbol{p}_{h}\right)\right|+\left|\left(\llbracket \boldsymbol{z}_{h} \rrbracket \cdot \boldsymbol{\eta}_{f}, \gamma-\gamma_{h_{p}}\right)_{\Gamma}\right| .
$$

These last terms can be estimated using the results of this section. Analogously we can recover the mean value $\bar{\lambda}$ of the Lagrange multiplier. Indeed, we can find

$$
\boldsymbol{w}_{h}=\left(0, \boldsymbol{w}_{h_{p}}\right) \in \boldsymbol{X}_{f} \times \boldsymbol{X}_{p}
$$

such that

$$
\boldsymbol{w}_{h_{p}} \cdot \boldsymbol{\eta}_{p}=\frac{1}{|\Gamma|} \text { on } \Gamma \text { and } \boldsymbol{w}_{h_{p}} \cdot \boldsymbol{\eta}_{p}=0 \text { on } \Gamma_{p}
$$

and so we can define (see Remark 4.2)

$$
\bar{\lambda}_{h}:=\ell(\boldsymbol{w})-a\left(\boldsymbol{u}_{h}, \boldsymbol{w}\right)-b\left(\boldsymbol{w}, p_{h}\right)
$$

In this case

$$
\left|\bar{\lambda}-\bar{\lambda}_{h}\right| \preceq\left|a\left(\boldsymbol{u}-\boldsymbol{u}_{h}, w\right)\right|+\left|b\left(\boldsymbol{w}, p-p_{h}\right)\right| .
$$

The last two terms can be estimated using the results of this section.
7. Numerical results. In this section we present numerical experiments in order to verify the estimates established in the paper. We consider $\Omega_{f}=(1,2) \times(0,1)$ and $\Omega_{p}=$ $(0,1) \times(0,1)$. We consider $\alpha_{f}=0$. The velocity solution for Stokes is given by $\boldsymbol{u}_{f}(x, y)=$ $(y(1-y),-x+2+2(x-1) y)$ with pressure $p_{f}(x, y)=-2 x-\frac{\nu}{\kappa} y+5 / 2+\frac{5 \nu}{12 \kappa}$. Note that \boldsymbol{u}_{f} is not divergence free. The velocity solution for Darcy is $\boldsymbol{u}_{p}(x, y)=\left(1-2 x+x^{2}+y-\right.$ $\left.y^{2},-1+x+2 y-2 x y\right)$ with pressure $p_{p}(x, y)=\frac{\nu}{\kappa}\left((1-x) y(1-y)-x+x^{2}-\frac{x^{3}}{3}+\frac{3}{4}-y\right)+\frac{1}{2}$. Note that the normal component of \boldsymbol{u}_{p} has a parabolic profile on the interface $\Gamma=1 \times(0,1)$ while its tangential component is zero. Note also that $\boldsymbol{D} \boldsymbol{u}_{f}=\left(\begin{array}{cc}0 & 0 \\ 0 & *\end{array}\right)$ on Γ, and $p_{f}=p_{p}$ on Γ. The exact solution is compatible with (3.5) with (3.6) when $\alpha_{f}=0$. A similar example is presented in [8], where the term $\nabla \cdot \boldsymbol{D} \boldsymbol{u}_{f}$ is replaced by $\Delta \boldsymbol{u}_{f}$ in the Stokes equations.

In Figure 7.1 we show the computed solution of the coupled problem. On the porous side we have plotted the velocity in the center of each triangle. In Figure 7.2 we zoom part of the interface and plot the y component of the velocities. In Figure 7.3 we show the be-

FIG. 7.1. Computed velocities (left figure) and pressures (right figure). On the porous side (left subdomain) we have plotted the value of the velocity at the centroid of each triangle.
havior of the error (in the scaled norms defined in (6.1), (6.2) and (6.3)) with respect to the discretization parameters. Here we also show $\left\|\lambda-\lambda_{h_{p}}\right\|_{\Lambda^{h_{p}}}$, i.e., the Lagrange multiplier approximation error in the discrete norm defined in (6.12). We observe according to Figure 7.3, the error in the norm $\|\cdot\|_{a}^{2}$ defined in (6.3), which is the sum of the fluid velocity and porous velocity errors in the scaled norms, is of linear order. This agree with Proposition 6.1. Analogously, the pressure error is of linear order. This also agree with the result about the pressure error, see Proposition 6.3. We finally observe that the Lagrange multiplier error in the discrete norm defined in (6.12) is also of linear order.
8. Conclusion. We studied the coupling across an interface of fluid and porous media flows, consisting of Stokes equations in the fluid region Ω_{f} and Darcy law for the filtration velocity in the porous medium region Ω_{p}. After discussing the adequate choice of $H^{1 / 2}(\Gamma)$, rather than $H_{00}^{1 / 2}(\Gamma)$, as the Lagrange multiplier space, we presented a complete analysis for the inf-sup and approximation results associated with the continuous and discrete formulations of this Stokes-Darcy system. We chose the triangular $P 2 \backslash P 1$ Taylor Hood finite elements and the lower order Raviart-Thomas elements as discrete spaces for the free and porous medium subdomains, respectively. Optimal a priori discrete error estimates do not

FIG. 7.2. The x-component of the discrete velocity (left figure), where on the porous side (left subdomain) we plot the two values of the x-component of the velocities at the midpoint of each edge; recall that Raviart-Thomas elements allow discontinuous tangential velocities on interior edges. The discrete (in blue) and the exact (in red) Lagrange multipliers on the interface (right figure).

FIG. 7.3. Velocities errors (left) and pressures errors (right).
depend on the coefficients ν and κ and ratio of mesh parameters. Sharper local estimates can also be obtained for the case where the fluid mesh on the interface Γ is a refinement of the porous mesh on Γ. The numerical experiments show good agreements with our theoretical results.

Acknowledgement. We would like to thank the referees and Professor M. Dryja for their useful comments, which helped to improve the presentation.

REFERENCES

[1] T. Arbogast, L. C. Cowsar, M. F. Wheeler, and I. Yotov, Mixed finite element methods on nonmatching multiblock grids, SIAM J. Numer. Anal., 37 (2000), pp. 1295-1315.
[2] T. Arbogast and H. L. LEhr, Homogenization of a Darcy-Stokes system modeling vuggy porous media, Comput. Geosci., 10 (2006), pp. 291-302.
[3] G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30 (1967), pp. 197-207.
[4] C. BERNARDI, Y. MADAY, AND A. T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear partial differential equations and their applications. Collège
de France Seminar, Vol. XI (Paris, 1989-1991), Pitman Res. Notes Math. Ser., Vol. 299, Longman Sci. Tech., Harlow, 1994, pp. 13-51.
[5] D. BraEss, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, Second ed., Cambridge University Press, Cambridge, 2001.
[6] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, Vol. 15, Springer, New York, 1994.
[7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, vol. 15 of Springer Series in Computational Mathematics, Springer, New York, 1991.
[8] E. Burman and P. Hansbo, A unified stabilized method for Stokes' and Darcy's equations, J. Comput. Appl. Math., 198 (2007), pp. 35-51.
[9] P. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. RAIRO Analyse Numérique, 9 (1975), pp. 77-84.
[10] M. Discacciati, Domain decomposition methods for the coupling of surface and groundwater flows, PhD thesis, Thèse n. 3117, Ecole Polytechnique Fédérale, Lausanne, Switzerland, 2004.
[11] M. Discacciati, E. Miglio, and A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43 (2002), pp. 57-74.
[12] M. Discacciati and A. Quarteroni, Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations, in ENUMATH 2001, F. Brezzi, A. Buffa, S. Corsaro, and A. Murli, eds., Numerical Mathematics and Advanced Applications, Springer, New York, 2003, pp. 3-20.
[13] ——, Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations, Comput. Vis. Sci., 6 (2004), pp. 93-103.
[14] J. Galvis and M. Sarkis, Balancing domain decomposition methods for mortar coupling Stokes-Darcy systems, in Domain Decomposition Methods in Science and Engineering XVI, D. Keyes and O. B. Widlund, eds., Lect. Notes Comput. Sci. Eng., Vol. 55, Springer, Berlin, 2006, pp. 373-380.
[15] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer Series in Computational Mathematics, Vol. 5, Springer, Berlin, 1986.
[16] V. Girault, B. Rivière, and M. F. Wheeler, A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems, Math. Comp., 74 (2005), pp. 53-84.
[17] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, Vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.
[18] U. Hornung, ed., Homogenization and Porous Media, Interdisciplinary Applied Mathematics, Vol. 6, Springer, New York, 1997.
[19] W. JÄGER AND A. Mikelić, On the interface boundary condition of Beavers, Joseph, and Saffman, SIAM J. Appl. Math., 60 (2000), pp. 1111-1127.
[20] W. J. LAYtOn, F. SChIEWECK, AND I. Yotov, Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40 (2002), pp. 2195-2218 (2003).
[21] K. A. MARDAL, X.-C. TAI, AND R. WInthER, A robust finite element method for Darcy-Stokes flow, SIAM J. Numer. Anal., 40 (2002), pp. 1605-1631.
[22] T. P. MATHEW, Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems. II. Convergence theory, Numer. Math., 65 (1993), pp. 469-492.
[23] J. NEČAS, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs, Paris, 1967.
[24] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Numerical Mathematics and Scientific Computation, The Clarendon Press Oxford University Press, Oxford Science Publications, New York, 1999.
[25] A. Quarteroni, A. Veneziani, and P. Zunino, A domain decomposition method for advection-diffusion processes with application to blood solutes, SIAM J. Sci. Comput., 23 (2002), pp. 1959-1980.
[26] B. Rivière and I. Yotov, Locally conservative coupling of Stokes and Darcy flows, SIAM J. Numer. Anal., 42 (2005), pp. 1959-1977.
[27] P. Saffman, On the boundary condition at the surface of a porous media, Stud. Appl. Math., 50 (1971), pp. 93-101.
[28] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), pp. 483-493.
[29] B. I. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J. Numer. Anal., 38 (2000), pp. 989-1012.
[30] B. I. Wohlmuth, A. Toselli, and O. B. Widlund, An iterative substructuring method for RaviartThomas vector fields in three dimensions, SIAM J. Numer. Anal., 37 (2000), pp. 1657-1676.

Appendix A. Non-homogeneous boundary conditions. The non-homogeneous boundary condition can be reduced to the homogeneous case when $h_{f} \in H^{1 / 2}\left(\Gamma_{f}\right)^{2}$ and
$h_{p} \in H^{-1 / 2}\left(\Gamma_{p}\right)$. First construct $\omega_{f} \in H^{1}\left(\Omega_{f}\right)^{2}$ such that

$$
\left\{\begin{align*}
-\nabla \cdot T\left(\boldsymbol{w}_{f}, \tilde{p}_{f}\right) & =0 & & \text { in } \Omega_{f} \tag{A.1}\\
\nabla \cdot \boldsymbol{w}_{f} & =g_{f} & & \operatorname{in} \Omega_{f} \\
\boldsymbol{w}_{f} & =\boldsymbol{h}_{f} & & \text { on } \Gamma_{f} \\
T\left(\boldsymbol{w}_{f}, \tilde{p}_{f}\right) \cdot \boldsymbol{\eta}_{f} & =0 & & \text { on } \Gamma .
\end{align*}\right.
$$

From the divergence theorem

$$
\begin{equation*}
\int_{\Gamma_{f}} \boldsymbol{w}_{f} \cdot \boldsymbol{\eta}_{f}=\int_{\Omega_{f}} g_{f}-\int_{\Gamma_{f}} \boldsymbol{h}_{f} \cdot \boldsymbol{\eta}_{f} \tag{A.2}
\end{equation*}
$$

Now put $\boldsymbol{u}_{f}=\boldsymbol{\omega}_{f}+\boldsymbol{\zeta}_{f}$ where \boldsymbol{u}_{f} satisfies the non-homogeneous system (3.1). So we are looking for ζ_{f} that satisfy

$$
\left\{\begin{aligned}
-\nabla \cdot T\left(\boldsymbol{\zeta}_{f}, p_{f}\right) & =\boldsymbol{f}_{f}+\nabla \cdot 2 \nu \boldsymbol{D}\left(\boldsymbol{\omega}_{f}\right) & & \text { in } \Omega_{f} \\
\nabla \cdot \boldsymbol{\zeta}_{f} & =0 & & \text { in } \Omega_{f} \\
\zeta_{f} & =0 & & \text { on } \Gamma_{f} .
\end{aligned}\right.
$$

Analogously, on the porous region, the non-homogeneous case can be reduced to the homogeneous one. In this case $h_{p} \in H^{-1 / 2}\left(\Gamma_{p}\right)$. Construct $\boldsymbol{w}_{p} \in \boldsymbol{H}\left(\operatorname{div}, \Omega_{p}\right)$ such that

$$
\left\{\begin{align*}
\frac{\nu}{\kappa} \boldsymbol{w}_{p}+\nabla \tilde{p}_{p} & =0 & & \text { in } \Omega_{p} \tag{A.3}\\
\nabla \cdot \boldsymbol{w}_{p} & =g_{p} & & \text { in } \Omega_{p} \\
\boldsymbol{w}_{p} \cdot \boldsymbol{\eta}_{p} & =h_{p} & & \text { on } \Gamma_{p} \\
\boldsymbol{w}_{p} \cdot \boldsymbol{\eta}_{p} & =\boldsymbol{w}_{f} \cdot \boldsymbol{\eta}_{p} & & \text { on } \Gamma
\end{align*}\right.
$$

with \boldsymbol{w}_{f} defined in (A.1). This construction is possible since the compatibility condition (3.3) and (A.2) imply that the system (A.3) is compatible. Put $\boldsymbol{u}_{p}=\boldsymbol{\omega}_{p}+\boldsymbol{\zeta}_{p}$. Then we look for $\boldsymbol{\zeta}_{p}$ such that

$$
\left\{\begin{array}{rlll}
\frac{\nu}{\kappa} \boldsymbol{\zeta}_{p}+\nabla p_{p} & =-\frac{\nu}{\kappa} \omega_{p} & & \text { in } \Omega_{p} \\
\nabla \cdot \boldsymbol{\zeta}_{p} & =0 & & \text { in } \Omega_{p} \\
\boldsymbol{\zeta}_{p} \cdot \boldsymbol{\eta}_{p} & =0 & & \Gamma_{p}
\end{array}\right.
$$

In terms of weak formulation, with $\boldsymbol{\omega}:=\left(\boldsymbol{\omega}_{f}, \boldsymbol{\omega}_{p}\right)$, we have:
find $(\boldsymbol{\zeta}, p, \lambda) \in \boldsymbol{X} \times M^{\circ} \times \Lambda$ satisfying

$$
\left\{\begin{array}{lll}
a(\boldsymbol{\zeta}, \boldsymbol{v})+b(\boldsymbol{v}, p)+b_{\Gamma}(\boldsymbol{v}, \lambda) & =\ell(\boldsymbol{v})-a(\boldsymbol{\omega}, \boldsymbol{v}) & \text { for all } \boldsymbol{v} \in \boldsymbol{X} \\
b(\boldsymbol{\zeta}, q) & =0 & \text { for all } q \in M^{\circ} \\
b_{\Gamma}(\boldsymbol{\zeta}, \mu) & =0 & \text { for all } \mu \in \Lambda
\end{array}\right.
$$

which is the same problem (4.17) with a different right hand side.
Appendix B. Approximation properties of Taylor-Hood finite elements. In this appendix, the domain of reference is Ω_{f}. Recall the definitions of \boldsymbol{X}_{f} and $M_{h_{f}}^{\circ}$ on (5.1) and (5.3), respectively. In order to simplify the notation in some cases we omit the subscript that refers to the domain. In particular, all the operators defined in this section act on velocities defined on Ω_{f}.

Let $\mathcal{Q}: \boldsymbol{X}_{f} \rightarrow \boldsymbol{X}_{h_{f}}$ be Clement interpolation; see [5, 9, 28]. It is know that \mathcal{Q} is bounded, i.e.,

$$
\begin{equation*}
\left|\mathcal{Q} \boldsymbol{v}_{f}\right|_{H^{1}\left(\Omega_{f}\right)^{2}} \preceq|\boldsymbol{v}|_{H^{1}\left(\Omega_{f}\right)^{2}} \tag{B.1}
\end{equation*}
$$

and we have

$$
\begin{align*}
&\left\|\boldsymbol{v}_{f}-\mathcal{Q} \boldsymbol{v}_{f}\right\|_{L^{2}\left(\Omega_{f}\right)^{2}} \preceq h^{s}\left|\boldsymbol{v}_{f}\right|_{H^{s}\left(\Omega_{f}\right)^{2}}, \quad s=1,2 . \tag{B.2}\\
&\left|\boldsymbol{v}_{f}-\mathcal{Q} \boldsymbol{v}_{f}\right|_{H^{1}\left(\Omega_{f}\right)^{2}} \preceq h\left|\boldsymbol{v}_{f}\right|_{H^{2}\left(\Omega_{f}\right)^{2}}, \tag{B.3}\\
&\left|\boldsymbol{\mathcal { Q }} \boldsymbol{v}_{f}\right|_{H^{1 / 2}(\Gamma)^{2}} \preceq\left|\boldsymbol{v}_{f}\right|_{H^{1 / 2}(\Gamma)^{2}} \tag{B.4}\\
&\left\|\boldsymbol{v}_{f}-\mathcal{Q} \boldsymbol{v}_{f}\right\|_{L(\Gamma)^{2}} \preceq h^{\frac{1}{2}}\left|\boldsymbol{v}_{f}\right|_{H^{1 / 2}(\Gamma)^{2}} . \tag{B.5}
\end{align*}
$$

This interpolation is basically a Clement interpolation on Γ, i.e., values zero at the interface relative boundary points and a Clement interpolation at the interior nodes.

Given $K \in \mathcal{T}_{h_{f}}$ and e edge of K, let $\boldsymbol{\eta}_{e}^{(K)}=\left(\eta_{e}^{1}, \eta_{e}^{2}\right)$ denote the normal to e exterior to $K, \boldsymbol{\tau}_{e}^{(K)}=\left(\tau_{e}^{1}, \tau_{e}^{2}\right)$ the tangential vector to e (with ∂K anticlockwise oriented), and x_{e} the midpoint of the edge e. Each interior edge belongs to two triangles K_{1} and K_{2}. Let $\boldsymbol{\eta}_{e}$ denote one of the directions $\boldsymbol{\eta}_{e}^{\left(K_{1}\right)}$ or $\boldsymbol{\eta}_{e}^{\left(K_{2}\right)}$. For boundary edges $\boldsymbol{\eta}_{e}$ denotes $\boldsymbol{\eta}_{e}^{(K)}$. Analogously, for interior edges let $\boldsymbol{\tau}_{e}$ denote one of the directions $\boldsymbol{\tau}_{e}^{\left(K_{1}\right)}$ or $\boldsymbol{\tau}_{e}^{\left(K_{2}\right)}$, and for boundary edges $\boldsymbol{\tau}_{e}=\boldsymbol{\tau}_{e}^{(K)}$.

Let $\phi_{i}^{(K)}, i=1,2,3$, be the edge bubble Taylor-Hood basis functions based on the midpoints of the edges of K. Let $\boldsymbol{\psi}_{i}^{(K)}:=\phi_{i}^{(K)} \boldsymbol{\eta}_{e_{i}}, i=1,2,3$, and $\boldsymbol{\vartheta}_{i}^{(K)}:=\phi_{i}^{(K)} \boldsymbol{\tau}_{e_{i}}, i=1,2,3$. Observe that

$$
\begin{aligned}
& \int_{K} \boldsymbol{\psi}_{i}^{(K)} \cdot \boldsymbol{\eta}_{e_{i}} \neq 0, \quad \boldsymbol{\psi}_{i}^{(K)} \cdot \boldsymbol{\tau}_{e_{i}}=0 \quad i=1,2,3 . \\
& \boldsymbol{\vartheta}_{i}^{(K)}\left(x_{e_{i}}\right) \cdot \boldsymbol{\tau}_{e_{i}} \neq 0, \quad \boldsymbol{\vartheta}_{i}^{(K)} \cdot \boldsymbol{\eta}_{e_{i}}=0 \quad i=1,2,3 .
\end{aligned}
$$

Now consider the following subspaces of $\boldsymbol{X}_{h_{f}}$:

$$
\boldsymbol{W}_{h_{f}}^{\boldsymbol{\eta}}:=\left\{\boldsymbol{v}_{h_{f}} \in \boldsymbol{X}_{h_{f}}:\left.v\right|_{K} \in \operatorname{Span}\left\{\boldsymbol{\psi}_{1}^{(K)}, \boldsymbol{\psi}_{2}^{(K)}, \boldsymbol{\psi}_{3}^{(K)}\right\}\right\} \cap \boldsymbol{X}_{h_{f}}
$$

and

$$
\boldsymbol{W}_{h_{f}}^{\boldsymbol{\tau}}:=\left\{\boldsymbol{v}_{h_{f}} \in \boldsymbol{X}_{h_{f}}:\left.v\right|_{K} \in \operatorname{Span}\left\{\boldsymbol{\vartheta}_{1}^{(K)}, \boldsymbol{\vartheta}_{2}^{(K)}, \boldsymbol{\vartheta}_{3}^{(K)}\right\}\right\} \cap \boldsymbol{X}_{h_{f}}
$$

Note that if $\boldsymbol{v}_{h_{f}} \in \boldsymbol{W}_{h_{f}}^{\boldsymbol{\eta}}$ then $\left.\boldsymbol{v}_{h_{f}} \cdot \boldsymbol{\eta}_{\boldsymbol{f}}\right|_{\Gamma} \in H_{00}^{1 / 2}(\Gamma)$ and $\left.\boldsymbol{v}_{h_{f}} \cdot \boldsymbol{\tau}_{f}\right|_{\partial \Omega_{f}}=0$. Also note that if $\boldsymbol{v}_{h_{f}} \in \boldsymbol{W}_{h_{f}}^{\boldsymbol{\tau}}$ then $\left.\boldsymbol{v}_{h_{f}} \cdot \boldsymbol{\tau}_{f}\right|_{\Gamma} \in H_{00}^{1 / 2}(\Gamma)$ and $\left.\boldsymbol{v}_{h_{f}} \cdot \boldsymbol{\eta}_{\boldsymbol{f}}\right|_{\partial \Omega_{f}}=0$.

Let $\boldsymbol{\Pi}_{\eta}: \boldsymbol{X}_{f} \rightarrow \boldsymbol{W}_{h_{f}}^{\boldsymbol{\eta}}$ be (locally) defined by

$$
\boldsymbol{\Pi}_{\eta} \boldsymbol{v}_{f} \in \operatorname{Span}\left\{\boldsymbol{\psi}_{1}^{(K)}, \boldsymbol{\psi}_{2}^{(K)}, \boldsymbol{\psi}_{3}^{(K)}\right\}, \quad \text { s.t. } \int_{e_{i}} \boldsymbol{\Pi}_{\eta} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}=\frac{1}{\left|e_{i}\right|} \int_{e_{i}} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{e_{i}}, i=1,2,3
$$

for all $K \in \mathcal{T}_{h}$. In other words, $\boldsymbol{\Pi}_{\eta} \boldsymbol{v}_{f}=\alpha_{1} \boldsymbol{\psi}_{1}+\alpha_{2} \boldsymbol{\psi}_{2}+\alpha_{3} \boldsymbol{\psi}_{3}$, where

$$
\alpha_{i}:=\frac{\int_{e_{i}} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{e_{i}}}{\int_{e_{i}} \boldsymbol{\psi}_{i} \cdot \boldsymbol{\eta}_{e_{i}}}=\frac{\int_{e_{i}} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{e_{i}}}{\int_{e_{i}} \phi_{i}^{(K)}}
$$

From a trace theorem and a scaling argument we have that

$$
\left|\alpha_{i}\right|^{2} \preceq \frac{1}{h_{f}^{2}}\left\|\boldsymbol{v}_{f}\right\|_{L^{2}(K)^{2}}^{2}+\left|\boldsymbol{v}_{f}\right|_{H^{1}(K)^{2}}^{2} .
$$

Then

$$
\left|\boldsymbol{\Pi}_{\eta} \boldsymbol{v}_{f}\right|_{H^{1}\left(\Omega_{f}\right)^{2}} \preceq \max _{1 \leq i \leq 3}\left|\alpha_{i}\right|^{2} \preceq \frac{1}{h_{f}^{2}}\left\|\boldsymbol{v}_{f}\right\|_{L^{2}\left(\Omega_{f}\right)^{2}}^{2}+\left|\boldsymbol{v}_{f}\right|_{H^{1}\left(\Omega_{f}\right)^{2}}^{2}
$$

and

$$
\begin{equation*}
\left\|\boldsymbol{\Pi}_{\eta} \boldsymbol{v}_{f}\right\|_{L^{2}\left(\Omega_{f}\right)^{2}}^{2} \preceq h_{f}^{2} \max _{1 \leq i \leq 3}\left|\alpha_{i}\right|^{2} \preceq\left\|\boldsymbol{v}_{f}\right\|_{L^{2}\left(\Omega_{f}\right)^{2}}^{2}+h_{f}^{2}\left|\boldsymbol{v}_{f}\right|_{H^{1}\left(\Omega_{f}\right)^{2}}^{2} \tag{B.6}
\end{equation*}
$$

Observe that

$$
\int_{K} \nabla \cdot \boldsymbol{\Pi}_{\eta} \boldsymbol{v}_{f}=\int_{\partial K} \boldsymbol{\Pi}_{\eta}\left(\boldsymbol{v}_{f}\right) \cdot \boldsymbol{\eta}=\int_{\partial K} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}=\int_{K} \nabla \cdot \boldsymbol{v}_{f}
$$

We also have

$$
\begin{equation*}
\left\|\boldsymbol{\Pi}_{\eta} \boldsymbol{v}_{f}\right\|_{L^{2}(\Gamma)^{2}} \preceq\left\|\boldsymbol{v}_{f}\right\|_{L^{2}(\Gamma)^{2}} . \tag{B.7}
\end{equation*}
$$

Define $\boldsymbol{\Upsilon}_{\eta}: \boldsymbol{X}_{f} \rightarrow \boldsymbol{X}_{h_{f}}$ by

$$
\begin{equation*}
\boldsymbol{\Upsilon}_{\eta} \boldsymbol{v}_{f}:=\mathcal{Q} \boldsymbol{v}_{f}+\boldsymbol{\Pi}_{\eta}\left(\boldsymbol{v}_{f}-\mathcal{Q} \boldsymbol{v}_{f}\right) \tag{B.8}
\end{equation*}
$$

then we have the following result.
LEmmA B.1. The operator $\mathbf{\Upsilon}_{\eta}$ defined in (B.8) is bounded

$$
\begin{equation*}
\left|\mathbf{\Upsilon}_{\eta} \boldsymbol{v}_{f}\right|_{H^{1}\left(\Omega_{f}\right)^{2}} \preceq\left|\boldsymbol{v}_{f}\right|_{H^{1}\left(\Omega_{f}\right)^{2}}, \tag{B.9}
\end{equation*}
$$

moreover,

$$
\begin{equation*}
\left\|\boldsymbol{v}_{f}-\boldsymbol{\Upsilon}_{\eta} \boldsymbol{v}_{f}\right\|_{L^{2}\left(\Omega_{f}\right)^{2}} \preceq h^{s}\left\|\boldsymbol{v}_{f}\right\|_{H^{s}\left(\Omega_{f}\right)^{2}} \quad s=1,2 . \tag{B.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\boldsymbol{v}_{f}-\boldsymbol{\Upsilon}_{\eta} \boldsymbol{v}_{f}\right|_{H^{1}\left(\Omega_{f}\right)^{2}} \preceq h\left|\boldsymbol{v}_{f}\right|_{H^{2}\left(\Omega_{f}\right)^{2}} \tag{B.11}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\left|\mathbf{\Upsilon}_{\eta} \boldsymbol{v}_{f}\right|_{H^{1 / 2}(\Gamma)^{2}} \preceq\left\|\boldsymbol{v}_{f}\right\|_{H^{1 / 2}(\Gamma)^{2}} \tag{B.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{e} \mathbf{\Upsilon}_{\eta} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{e}=\int_{e} \boldsymbol{v}_{f} \cdot \boldsymbol{\eta}_{e} \quad \text { for all edge } e \tag{B.13}
\end{equation*}
$$

Proof. From (B.6) we have, for $s=1,2$,

$$
\begin{aligned}
\sum_{K \in \mathcal{T}_{h}} \| \boldsymbol{\Pi}_{\eta}\left(\boldsymbol{v}_{f}\right. & \left.-\mathcal{Q} \boldsymbol{v}_{f}\right) \|_{L^{2}(K)^{2}}^{2} \preceq \sum_{K \in \mathcal{T}_{h}}\left(\left\|\boldsymbol{v}_{f}-\mathcal{\mathcal { Q }} \boldsymbol{v}_{f}\right\|_{L^{2}(K)^{2}}^{2}+h_{f}^{2}\left|\boldsymbol{v}_{f}-\mathcal{Q} \boldsymbol{v}_{f}\right|_{H^{1}(K)^{2}}^{2}\right) \\
& \preceq h_{f}^{2 s}\left|\boldsymbol{v}_{f}\right|_{\boldsymbol{H}^{s}\left(\Omega_{f}\right)^{2}}^{2}+h_{f}^{2(s-1)+2}\left|\boldsymbol{v}_{f}\right|_{H^{s}\left(\Omega_{f}\right)^{2}}^{2} \quad \text { by (B.2), (B.3) and (B.1). } \\
\text { (B.14) } \quad & \preceq h_{f}^{2 s}\left|\boldsymbol{v}_{f}\right|_{H^{s}\left(\Omega_{f}\right)^{2}}^{2} .
\end{aligned}
$$

Then, using an inverse estimate (see [5]) and (B.14) we get

$$
\left|\boldsymbol{\Pi}_{\eta}\left(\boldsymbol{v}_{f}-\mathcal{Q} \boldsymbol{v}_{f}\right)\right|_{H^{1}(K)^{2}} \preceq \frac{1}{h_{f}}\left\|\boldsymbol{\Pi}_{\eta}\left(\boldsymbol{v}_{f}-\mathcal{Q} \boldsymbol{v}_{f}\right)\right\|_{L^{2}(K)^{2}} \preceq\left|\boldsymbol{v}_{f}\right|_{H^{1}\left(\Omega_{f}\right)^{2}},
$$

and hence

$$
\begin{aligned}
\left|\boldsymbol{\Upsilon}_{\eta} \boldsymbol{v}_{f}\right|_{H^{1}\left(\Omega_{f}\right)^{2}} & \leq\left|\mathcal{Q} \boldsymbol{v}_{f}\right|_{H^{1}\left(\Omega_{f}\right)^{2}}+\left|\boldsymbol{\Pi}_{\eta}\left(\boldsymbol{v}_{f}-\mathcal{Q} \boldsymbol{v}_{f}\right)\right|_{H^{1}\left(\Omega_{f}\right)^{2}} \text { by definition of } \boldsymbol{\Upsilon}_{\eta} \\
& \preceq\left|\boldsymbol{v}_{f}\right|_{H^{1}\left(\Omega_{f}\right)^{2}}+\left|\boldsymbol{v}_{f}\right|_{H^{1}\left(\Omega_{f}\right)^{2}} \preceq\left|\boldsymbol{v}_{f}\right|_{H^{1}\left(\Omega_{f}\right)^{2}} .
\end{aligned}
$$

To show (B.10) we have that

$$
\begin{array}{rlr}
\left\|\boldsymbol{v}_{f}-\boldsymbol{\Upsilon}_{\eta} \boldsymbol{v}_{f}\right\|_{L^{2}\left(\Omega_{f}\right)^{2}} & =\left\|\boldsymbol{v}_{f}-\mathcal{Q} \boldsymbol{v}_{f}-\boldsymbol{\Pi}_{\eta}\left(\boldsymbol{v}_{f}-\boldsymbol{\mathcal { Q }} \boldsymbol{v}_{f}\right)\right\|_{L^{2}\left(\Omega_{f}\right)^{2}} & \text { by definition of } \boldsymbol{\Upsilon}_{\eta} . \\
& \leq\left\|\boldsymbol{v}_{f}-\boldsymbol{\mathcal { Q }} \boldsymbol{v}_{f}\right\|_{L^{2}\left(\Omega_{f}\right)^{2}}+\left\|\boldsymbol{\Pi}_{\eta}\left(\boldsymbol{v}_{f}-\boldsymbol{\mathcal { Q }} \boldsymbol{v}_{f}\right)\right\|_{L^{2}\left(\Omega_{f}\right)^{2}} \\
& \preceq h_{f}^{s}\left|\boldsymbol{v}_{f}\right|_{H^{s}\left(\Omega_{f}\right)^{2}}+h^{s}\left|\boldsymbol{v}_{f}\right|_{H^{s}\left(\Omega_{f}\right)^{2}} & \text { by (B.2) and (B.14) } \\
& \preceq h_{f}^{s}\left|\boldsymbol{v}_{f}\right|_{H^{s}\left(\Omega_{f}\right)^{2}}, \quad s=1,2 .
\end{array}
$$

Analogously we get (B.11). To prove (B.12), observe that

$$
\begin{aligned}
\left|\mathbf{\Upsilon}_{\eta} \boldsymbol{v}_{f}\right|_{H^{1 / 2}(\Gamma)^{2}} & \leq\left|\mathcal{Q} \boldsymbol{v}_{f}\right|_{H^{1 / 2}(\Gamma)^{2}}+\left|\boldsymbol{\Pi}_{\eta}\left(\boldsymbol{v}_{f}-\mathcal{Q} \boldsymbol{v}_{f}\right)\right|_{H^{1 / 2}(\Gamma)^{2}} \\
& \preceq\left\|\mathcal{Q} \boldsymbol{v}_{f}\right\|_{H^{1 / 2}(\Gamma)^{2}}+h_{f}^{-\frac{1}{2}}\left|\boldsymbol{\Pi}_{\eta}\left(\boldsymbol{v}_{f}-\mathcal{Q} \boldsymbol{v}_{f}\right)\right|_{L^{2}(\Gamma)^{2}} \\
& \preceq\left|\boldsymbol{v}_{f}\right|_{H^{1 / 2}(\Gamma)^{2}}+h_{f}^{-\frac{1}{2}}\left\|\boldsymbol{v}_{f}-\mathcal{Q} \boldsymbol{v}_{f}\right\|_{L^{2}(\Gamma)^{2}} \quad \text { by (B.4) and (B.7) } \\
& \preceq\left|\boldsymbol{v}_{f}\right|_{H^{1 / 2}(\Gamma)^{2}} \quad \text { by (B.5). }
\end{aligned}
$$

The last assertion, (B.13), is straightforward. \square
Given $q_{h_{f}} \in M_{h_{f}}$, define (locally) $\widehat{\boldsymbol{\Pi}}_{\tau} q_{h_{f}} \in \boldsymbol{W}_{h_{f}}^{\boldsymbol{\tau}}$ by

$$
\left.\widehat{\boldsymbol{\Pi}}_{\tau} q_{h_{f}}\right|_{K} \in \operatorname{Span}\left\{\boldsymbol{\vartheta}_{1}^{(K)}, \boldsymbol{\vartheta}_{2}^{(K)}, \boldsymbol{\vartheta}_{3}^{(K)}\right\}
$$

with

$$
\begin{equation*}
\widehat{\boldsymbol{\Pi}}_{\tau} q_{h_{f}}\left(x_{e}\right) \cdot \boldsymbol{\eta}=0 \text { and } \widehat{\boldsymbol{\Pi}}_{\tau} q_{h_{f}}\left(x_{e}\right) \cdot \boldsymbol{\tau}=\nabla q_{h_{f}}\left(x_{e}\right) \cdot \boldsymbol{\tau} \tag{B.15}
\end{equation*}
$$

at midpoints x_{e} of all interior edges e. For edges on Γ_{f} we define $\left.\widehat{\boldsymbol{\Pi}}_{\tau} q\right|_{e}=0$. Note that $\widehat{\boldsymbol{\Pi}}_{\tau} q_{h_{f}}$ is zero at the vertices of all elements of $\mathcal{T}_{h_{f}}$ and observe that $\widehat{\boldsymbol{\Pi}}_{\tau} q_{h_{f}} \in H^{1}\left(\Omega_{f}\right)^{2}$ because the above equation are consistent in neighbor triangles which gives $\widehat{\boldsymbol{\Pi}}_{\tau} q_{h_{f}}$ continuous; see [5], Chapter II, Theorem 5.2.

Lemma B.2. Suppose that $\mathcal{T}_{h_{f}}$ is non-degenerate and has no triangle with two edges on $\partial \Omega_{f}$ and consider the operator $\widehat{\boldsymbol{\Pi}}_{\tau}$ defined in (B.15). Then

$$
\left\|\widehat{\boldsymbol{\Pi}}_{\tau} q_{h_{f}}\right\|_{L^{2}\left(\Omega_{f}\right)^{2}} \preceq\left|q_{h_{f}}\right|_{H^{1}\left(\Omega_{f}\right)} \quad \text { for all } q_{h_{f}} \in M_{h_{f}}^{\circ}
$$

and there exists a positive constant such that:

$$
\int_{\Omega_{f}} \widehat{\Pi}_{\tau} q_{h_{f}} \cdot \nabla q_{h_{f}} \succeq\left|q_{h_{f}}\right|_{H^{1}\left(\Omega_{f}\right)}^{2} \succeq\left\|q_{h_{f}}\right\|_{L^{2}\left(\Omega_{f}\right)}^{2} \quad \text { for all } q_{h_{f}} \in M_{h_{f}}^{\circ}
$$

From Lemma B. 2 and the boundedness of $\widehat{\boldsymbol{\Pi}}_{\tau}$, the spaces $\boldsymbol{W}_{h_{f}}^{\boldsymbol{\tau}}$ (with the $L^{2}\left(\Omega_{f}\right)$-norm) and $M_{h_{f}}^{\circ}$ (with the $H^{1}\left(\Omega_{f}\right)$-norm) satisfy the inf-sup condition independent of h_{f} with respect to the bilinear form defined in (4.4) by

$$
b_{f}\left(\boldsymbol{v}_{f}, q_{f}\right):=-\left(q_{f}, \nabla \cdot \boldsymbol{v}_{f}\right)_{\Omega_{f}} \quad \text { for all } \boldsymbol{v}_{f} \in \boldsymbol{X}_{f} \text { and } q_{f} \in M_{f}^{\circ}
$$

Also observe that if $\boldsymbol{v}_{f} \in \boldsymbol{W}_{h_{f}}^{\boldsymbol{\tau}}$ then $\boldsymbol{v}_{f} \cdot \boldsymbol{\eta}=0$ on $\partial \Omega_{f}$ and then $b_{f}\left(\boldsymbol{v}_{f}, q_{f}\right)=\int_{\Omega_{f}} \boldsymbol{v}_{f} \cdot \nabla q_{f}$ by the Green formula. Then, according to the Brezzi's splitting theorem (see [5, 15]), we can always obtain a stable solution $\boldsymbol{w} \in \boldsymbol{W}_{h_{f}}^{\boldsymbol{\tau}}$ of

$$
\left\{\begin{array}{lll}
\left(\boldsymbol{w}, \boldsymbol{v}_{f}\right)_{\Omega_{f}}+b_{f}\left(\boldsymbol{v}_{f}, p_{f}\right) & =\left(\boldsymbol{z}, \boldsymbol{v}_{f}\right)_{\Omega_{f}} & \text { for all } \boldsymbol{v}_{f} \in \boldsymbol{W}_{h_{f}}^{\boldsymbol{\tau}} \tag{B.16}\\
b_{f}\left(\boldsymbol{w}, q_{f}\right) & =b_{f}\left(\boldsymbol{z}, q_{f}\right)_{\Omega_{f}} & \text { for all } q_{f} \in M_{h_{f}}^{\circ}
\end{array}\right.
$$

where $z \in L^{2}\left(\Omega_{f}\right)^{2}$.
Given \boldsymbol{z}, denote by $\boldsymbol{\Upsilon}_{\tau} \boldsymbol{z}$ the solution of (B.16). Then

$$
\begin{equation*}
\left\|\mathbf{\Upsilon}_{\tau} \boldsymbol{z}\right\|_{L^{2}\left(\Omega_{f}\right)^{2}} \preceq\|\boldsymbol{z}\|_{L^{2}\left(\Omega_{f}\right)^{2}} \tag{B.17}
\end{equation*}
$$

and $b_{f}\left(\mathbf{\Upsilon}_{\tau} \boldsymbol{z}, q_{h_{f}}\right)=b_{f}\left(\boldsymbol{z}, q_{h_{f}}\right)$ for $q_{h_{f}} \in M_{h_{f}}^{\circ}$.
In order to prove Lemma 5.1 define

$$
\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f}:=\mathbf{\Upsilon}_{\eta} \boldsymbol{v}_{f}+\mathbf{\Upsilon}_{\tau}\left(\boldsymbol{v}_{f}-\mathbf{\Upsilon}_{\eta} \boldsymbol{v}_{f}\right)
$$

Observe that

$$
\begin{aligned}
&\left|\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f}\right|_{H^{1}\left(\Omega_{f}\right)^{2}} \leq\left|\mathbf{\Upsilon}_{\eta} \boldsymbol{v}_{f}\right|_{H^{1}\left(\Omega_{f}\right)^{2}}+\left|\mathbf{\Upsilon}_{\tau}\left(\boldsymbol{v}_{f}-\mathbf{\Upsilon}_{\eta} \boldsymbol{v}_{f}\right)\right|_{H^{1}\left(\Omega_{f}\right)^{2}} \\
& \preceq\left|\boldsymbol{v}_{f}\right|_{H^{1}\left(\Omega_{f}\right)^{2}}+\frac{1}{h_{f}}\left\|\mathbf{\Upsilon}_{\tau}\left(\boldsymbol{v}_{f}-\mathbf{\Upsilon}_{\eta} \boldsymbol{v}_{f}\right)\right\|_{L^{2}\left(\Omega_{f}\right)^{2}} \quad \begin{array}{l}
\text { by (B.9) and inverse } \\
\text { estimate. } \\
\\
\\
\\
\\
\\
\\
\\
\left.\preceq\left|\boldsymbol{v}_{f}\right|_{H^{1}\left(\Omega_{f}\right)^{2}}+\frac{1}{h_{f}}\left\|\boldsymbol{v}_{f}-\mathbf{\Upsilon}_{\eta} \boldsymbol{v}_{f}\right\|_{L^{2}\left(\Omega_{f}\right)^{2}}+\mid \Omega_{f}\right)^{2}
\end{array} \quad \text { by (B.17) } \\
&\left.\right|_{H^{1}\left(\Omega_{f}\right)^{2}} \quad \text { by (B.10). }
\end{aligned}
$$

Then the operator $\boldsymbol{I}_{h_{f}}^{T H}$ is bounded (with constant independent of h_{f}). In addition for $p_{h_{f}} \in$ $M_{h_{f}}^{\circ}$ we get

$$
\begin{aligned}
b_{f}\left(\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f}, p_{h_{f}}\right) & =b_{f}\left(\mathbf{\Upsilon}_{\eta} \boldsymbol{v}_{f}, p_{h_{f}}\right)+b_{f}\left(\mathbf{\Upsilon}_{\tau}\left(\boldsymbol{v}_{f}-\mathbf{\Upsilon}_{\eta} \boldsymbol{v}_{f}\right), p_{h_{f}}\right) \\
& =b_{f}\left(\mathbf{\Upsilon}_{\eta} \boldsymbol{v}_{f}, p_{h_{f}}\right)+b_{f}\left(\boldsymbol{v}_{f}-\mathbf{\Upsilon}_{\eta} \boldsymbol{v}_{f}, p_{h_{f}}\right) \quad \text { by definition of } \mathbf{\Upsilon}_{\tau} \\
& =b_{f}\left(\boldsymbol{v}_{f}, p_{h_{f}}\right)
\end{aligned}
$$

To obtain (5.4) observe that from definition of $\boldsymbol{I}_{h_{f}}^{T H}$ we have

$$
\begin{aligned}
\left\|\boldsymbol{v}_{f}-\boldsymbol{I}_{h_{f}}^{T H} \boldsymbol{v}_{f}\right\|_{L^{2}\left(\Omega_{f}\right)^{2}} & \leq\left\|\boldsymbol{v}_{f}-\mathbf{\Upsilon}_{\eta} \boldsymbol{v}_{f}\right\|_{L^{2}\left(\Omega_{f}\right)^{2}}+\left\|\mathbf{\Upsilon}_{\tau}\left(\boldsymbol{v}_{f}-\mathbf{\Upsilon}_{\eta} \boldsymbol{v}_{f}\right)\right\|_{L^{2}\left(\Omega_{f}\right)^{2}} \\
& \preceq\left\|\boldsymbol{v}_{f}-\mathbf{\Upsilon}_{\eta} \boldsymbol{v}_{f}\right\|_{L^{2}\left(\Omega_{f}\right)^{2}}+\left\|\boldsymbol{v}_{f}-\mathbf{\Upsilon}_{\eta} \boldsymbol{v}_{f}\right\|_{L^{2}\left(\Omega_{f}\right)^{2}} \quad \text { by (B.17) } \\
& \preceq h_{f}^{s}\left|\boldsymbol{v}_{f}\right|_{H^{s}\left(\Omega_{f}\right)^{2}} \quad s=1,2 . \quad \text { by (B.10) }
\end{aligned}
$$

The proof of (5.5) is similar. Inequality (5.6) is obtained from (B.12).

[^0]: *Received May 31, 2006. Accepted for publication June 20, 2007. Recommended by S. Brenner.
 ${ }^{\dagger}$ Instituto Nacional de Matemática Pura e Aplicada, Estrada Dona Castorina 110, CEP 22460-320, Rio de Janeiro, Brazil (\{jugal, msarkis\}@impa.br).
 \ddagger Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609, USA (msarkis@wpi.edu).

