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ITERATIVE METHODS FOR SOLVING THE DUAL FORMULATION
ARISING FROM IMAGE RESTORATION
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�
Abstract. Many variational models for image denoising restoration are formulated in primal variables that

are directly linked to the solution to be restored. If the total variation related semi-norm is used in the models,
one consequence is that extra regularization is needed to remedy the highly non-smooth and oscillatory coefficients
for effective numerical solution. The dual formulation was often used to study theoretical properties of a primal
formulation. However as a model, this formulation also offers some advantages over the primal formulation in
dealing with the above mentioned oscillation and non-smoothness. This paper presents some preliminary work on
speeding up the Chambolle method [J. Math. Imaging Vision, 20 (2004), pp. 89–97] for solving the dual formulation.
Following a convergence rate analysis of this method, we first show why the nonlinear multigrid method encounters
some difficulties in achieving convergence. Then we propose a modified smoother for the multigrid method to enable
it to achieve convergence in solving a regularized Chambolle formulation. Finally, we propose a linearized primal-
dual iterative method as an alternative stand-alone approach to solve the dual formulation without regularization.
Numerical results are presented to show that the proposed methods are much faster than the Chambolle method.

Key words. image restoration, nonlinear partial differential equations, singularity, nonlinear iterations, Fourier
analysis, multigrid method
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1. Introduction. Image restoration is the most basic problem in the long list of image
processing problems. Often such restored images are used for further tasks such as image
segmentation and matching [1, 11].

The best-known model for denoising is the following primal formulation by Rudin-
Osher-Fatemi ROF [18] �����	 
���
�� �������������� ���! #"%$'&)(*&)+-,(1.1)

or its Euler-Lagrange form for the denoising case �/.10 of interest to us�!
2�43-5 ���� �����76 �8�9�! .1: ,(1.2)

where
 <;>= $ �7? " is the observed image and

�
is our desired image (with homogeneous

Neumann boundary conditions) to be restored. Here and in (1.1), the term with
� ����� .@ � $A �8� $B

defines the total variation (TV) of function
�

. In practice, only a discrete quantity C;D=2EGF�E
will be available. In (1.2), one assumes that

� �����IH.J: ; to allow generality, a
replacement equation with

� ���K� L .4M � ����� $ �8N for some
N!O : may be considered,�!
2�>3G5 ���� ����� LP6 �8�9�! .C:RQ(1.3)S
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Other non-minimization models may be proposed directly in the form of a differential equa-
tion, e.g., the Perona-Malik [17] model for the same denoising problem takes the formT �TGU . �43WV X � � ����� "Y���*Z[,
where

� . � � (\,]+G, U " , � � (\,]+G, : " .  
, and the nonlinear diffusive coefficient

X
is designed

to restore sharp edges in
�

. It turns out that these two kinds of models are closely related
[13]; see also [9, 19] for more sophisticated models than ROF [18] for denoising. Here we
are mainly concerned with the ROF model.

There exist many numerical methods for solving both (1.1) and (1.2); see [6, 7, 8] for
detailed surveys and the references therein. Here we shall address the question of how to
solve the dual equation [5] (details are discussed in the next section):�!� � 
 div �_^ "��` #"a�b� � � 
 div �_^ "��` #"c� ^ed_f gh.1: ,(1.4)

where ^i.j�lkPm , k $ " is the dual variable and the restored solution will be given by
� . P�9


div �_^ " . The clear advantage of the dual formulation (1.4) over the primal equation (1.3)
is that no such extra regularizing parameter

N
is needed and the dual equation appears more

amenable—however, despite the appearance, as we shall see, the latter equation is deceptively
challenging as far as finding efficient solvers is concerned. There exist few studies of this dual
equation. In [16], a non-smooth Newton method is considered but the achieved convergence
is not yet quadratic. A related dual problem (for a different but slightly easier functional than
the ROF model) has been studied recently in [14].

2. Review of the dual and related formulations. Casting the primal formulation (1.2)
into a dual formulation is a main approach used to study the theoretical properties of

�
. Here

our aim is to address methods of solving the dual formulations effectively. We first review
some previous studies and then present their connections. Although equation (1.4) is com-
monly known as the Chambolle’s dual formulation, three other papers [4, 10, 15] are closely
connected to this formulation. We now review their connections for readers’ convenience.

From Meyer’s G-space theory [15], the solution to model (1.2) lies in the G-space, i.e.,�9�` �;on .Dprq �[s q s �ut1v , q�� (w,Y+x" . �y3�z . T Ar{ m|� (\,]+x"\� T B}{ $ � (\,]+x"~, { m , { $ ;������[,
where

z .�� { m , { $ " and
s q s � is defined as the lower bound of all

� � ��? " norms of the
function

� { � (\,Y+x"�� .yM { $m � { $$ . Therefore it is valid to assume that� .  h����� ^(2.1)

for some
�

; it turns out that such a parameter is precisely
��


to coincide with [4, 5].
Upon introducing the dual variable ^ to replace the TV-term by applying the equality� ����� . ���r�� �K� � m ^ 3����

to the ROF model (1.1) and interchanging the ����� and ���|� , Carter [4] derived (as in (2.1))� .  e�!
2� ^ ,
and then she proposed to numerically solve���|�� ��� � m 
 � � �43 ^ "Y I� 
 � � �y3 ^ " $ &)(*&)+ Q(2.2)



ETNA
Kent State University 
etna@mcs.kent.edu

ITERATIVE METHODS FOR THE DUAL FORMULATION FROM IMAGE RESTORATION 301

Various unilevel (optimization) relaxation methods are considered for solving (2.2) in [4]. It
was not clear which method comes out as more robust than others for (2.2).

In order to solve (1.1), Chambolle [5] starts by looking for the projection ��� �  #" .

div �_^ " , with

� .  e� �G� �  #" in mind, from������ sc

div �_^ "��! Gs $$ , � ^ d�f g �#� �P� ��� ,��#"~,(2.3)

where
� ^ d_f g � . @ �_�um " $d_f g � �_� $ " $d�f g . It remains to solve the unconstrained KKT problem�u� � 
 div ��^ "K�` #" d�f g �8� d_f g ^ d_f g .�:xQ

Recognizing either
� d�f g O : , � ^ed_f g � .4M k $m � k $$ . � or

� d_f g�.b: , � ^ed_f g � t � , Chambolle [5]
finds

� d_f gh.��� �>� div �_^ "2����w� �� d�f g and presents the dual formulation in the form�y5 � � div �_^ "��  
 " 6 d_f g � ��� � � div �_^ "��  
 " ��� d_f g ^ d_f g .1: ,(2.4)

or at each pixel �_� ,��#"¡¢¢¢¢£ ¢¢¢¢¤ T
$ k mT ( $ � T $ k $T ( T + � �
 T  T ( .4¥ 5 T $ k mT ( $ � T $ k $T ( T + � �
 T  T (¦6 $ ��5 T $ k $T + $ � T $ k mT + T ( � �
 T  T +�6 $ kKm ,T $ k $T + $ � T $ kKmT + T ( �§�
 T  T + . ¥ 5 T $ kKmT ( $ � T $ k $T ( T + �¨�
 T  T (�6 $ � 5 T $ k $T + $ � T $ kPmT + T ( �¨�
 T  T +�6 $ k $ Q

Using a semi-implicit time-marching scheme, the so-called Chambolle method [5] proposes
to solve the semi-implicit scheme^�©«ª~¬ m%­d�f g � ^®©«ª ­d�f g¯ . 5 � � div �_^ ©«ª ­ "K�  
 " 6 d�f g � ��� � � div �_^ ©«ª ­ "2�  
 " ��� d_f g ^ ©«ª~¬ mY­d_f g(2.5)

or ^ ©«ªc¬ m%­d�f g . ^ ©«ª ­d�f g � ¯ ��� � div ��^ ©«ª ­ "��°�� " � d_f g� � ¯ �� � � div �_^ ©«ª ­ "�� �� " �� d�f g Q
It is the purpose of this paper to address alternative methods for solving (2.4).

2.1. Equivalence of the Carter formulation to the Chambolle formulation. To relate
(2.2) to (2.3), we change the sign of the functional in (2.2) to introduce the equivalent �����
problem and neglect the last term (not depending on ^ ),���«�� �P� � m 
 �C± 
 $� � �y3 ^ "Y$²�`
 � �>3 ^ "% W³�&)(*&)+ . �´�«�� �K� � m �� 
 �8µ � 
��y3 ^ �! [" $ �` [$~¶K&W(G&W+-,
which is clearly equivalent to the following problem:������ �K� s��·3 ^ �` -s $$ , � ^ �#� � Q
This is in turn the same as the Chambolle equation (2.3), so, following the same argument,
we arrive at � 5 � � div ��^ "��  
 " 6 � ��� � � div �_^ "��  
 " ��� ^<.�:xQ
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2.2. Equivalence of the primal-dual method [10] to the Chambolle formulation. To
solve (1.3), Chan-Golub-Mulet [10] proposed the primal-dual formulation¸ ��
��43 k ���9�! .�: ,k M � ����� $ ��N¹����� .�: ,(2.6)

in two variables � �2, k " after introducing in (1.3) the dual variable by k¦. ����º M � ����� $ �2N for
some small

N!O : . In fact, when
� ���K� . N .�: , equation (2.6) is still valid and is equivalent

to (1.2) when
� �����GH.1: so we may let ^<. � k and rewrite (2.6), for the purpose of modeling�

, as ¸ 
 div �_^ "\�8�9�! .1: ,^ � �®�K���»��� .1: ,(2.7)

where one observes
�°3 ^�. div �_^ " . One can eliminate

�
in the second equation using the

first equation, i.e.
� .  e�!
 div �_^ " , to derive that^ � � �  2�®
 div �_^ "Y"'�l��� �  w��
 div �_^ "Y" .C: , or

��� � 
 div �_^ "|�� [" �¹� � �  2�®
 div �_^ "Y"�� ^·.C: ,
which is evidently the same as the Chambolle formulation (2.4) after scaling by



.

3. Nonlinear multigrid for the Chambolle’s dual formulation. We now turn to the
main aim of this paper on developing a multigrid algorithm for the Chambolle formulation
(2.4): �u� � 
 div ��^ "K�` #" d�f g � ��� � � div �_^ "��  
 " ��� d�f g ^�d�f gu.�:xQ
It turns out that this equation cannot be easily solved by a multigrid method as shown below.
Simple smoothers such as Jacobi and Gauss-Seidel do not work; the experts [3] are unfor-
tunately not surprised about this as (2.4) is degenerate. Then in the next section, after some
analysis, we shall present alternative algorithms.

To proceed, it is convenient to denote the discretized version of this equation in the
operator notation by ¼ mc½9m².1: ,(3.1)

where ½ m . V �lk m " m f m , �_k m " m f $ , Q�Q'Q , �lk m " E f E , �lk $ " m f m , �lk $ " m f $ , Q�Q'Q , �lk $ " E f E Z¿¾ denotes our so-
lution on the finest level

�
with À»Á`À pixels. Let À . �)Â ¬ $ � � . We remark that kPm , k $

will have : Dirichlet boundary conditions so we shall assume the given image
 �;�=�EGF�E

is
embedded in a larger domain having a zero boundary condition at all sides. Let a standard
coarsening strategy be used to generate a sequence of coarse levels Ã . � ,]ÄR, Q�Q'Q ,Å� with theÃ th level containing À ª ÁÆÀ ª pixels with À ª . �|Â ¬ $'Ç ª � � so that the coarsest level hasÀ Â . � $ � � . Ä . Similarly denote a level Ã discretization of (2.4) by¼ ª ½ ª .�:xQ
We use the standard nonlinear multilevel algorithm by Brandt [2], as detailed in Chen [12,
Alg. 6.2.8].

Start from an initial guess ½�m . Assume we have set up these multigrid parameters:È m — pre-smoothing steps on each level Ã (before restriction)È $ — post-smoothing steps on each level Ã (after interpolation)�
— multigrid cycles on each level Ã or the cycling pattern (here

� . � ).
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ALGORITHM 3.1 (Nonlinear Multigrid).
1. Based on the current approximation ½Ém to equation (3.1), to do Ê steps of a

�
-cycling

nonlinear multigrid, use for Ê timesËÍÌDÎ �_½ m , { m , � " Q
2. One step of a

�
-cycling nonlinear multigrid NMG �_½ ª , { ª , Ã " proceeds as followsËÍÌDÎ �_½ ª , { ª , Ã "�Ïif Ã . ��, then

— Solve on level
�

for ½ Â accurately
, ¼ Â ½ Â . { Â

else, on level Ã ,
&[Ð

— Pre-smoothing
Ï ½ ª .�Ñ²Ò'Ó �r�xÔÅÕª �_½ ª , { ª "~,— Restrict to the coarse grid, ½ ª~¬ m�.�Ö ª~¬ mª ½ ª

— Compute
{ ª~¬ m�.1Ö ªc¬ mª � { ª � ¼ ª ½ ª "\� ¼ ª~¬ m~½ ª~¬ m ,— Set the initial solution on level Ã � � as ×½ ª~¬ m�.C½ ªc¬ m ,— Implement
�

steps of NMG � ×½ ª~¬ m , { ª~¬ m , Ã � � "~,— Add the residual correction
, ½ ª .Ø½ ª �8Ù ªª~¬ m � ×½ ª~¬ m � ½ ª~¬ m "-,— Post-smoothing

Ï ½ ª .1Ñ�Ò'Ó �r� ÔYÚª �_½ ª , { ª "~,end if Ã
end one step of NMG ��½ ª , { ª , Ã " Q

Here we make the usual choice of the restriction operator Ö ª~¬ mª as the simple injection
and operator

Ù ªª~¬ m as the bilinear interpolation. It remains to discuss how to implementÑ²Ò'Ó �r� Ôª ��½ ª , { ª " which denotes a relaxation method applying to

¼ ª ½ ª . { ª on level Ã for È
steps.

Some experiments conducted on relaxation methods show that the following methods are
not suitable smoothers: point-wise Jacobi, Gauss-Seidel and the

� Á � block Jacobi method.
The natural choice appears to use the Chambolle iterations (2.5).

Take È m . È $ .CÛ and use
� :W: iterations on the coarsest level

�
. We found that the non-

linear Algorithm 3.1 fails to converge quickly. To exclude the possibility of �� � � div ��^ ©¿ª ­ "2���� " ��being small or zero, we considered modifying the Chambolle iteration (2.5) to^ ©¿ª~¬ mY­d�f g � ^ ©«ª ­d_f g¯ . 5}� � div ��^ ©¿ª ­ "��  
 " 6 d_f g �ØÜ ��� � � div �_^ ©«ª ­ "K�  
 " ��� $d_f g �8N ^ ©«ª~¬ mY­d_f g ,
(3.2)

where
N . � : ÇGÝ is used. Again only minor improvements were observed. We show

�
test

results in Figs. 3.1 and 3.2, where the top plots use
N .1: and the bottom

N . � : ÇGÝ . Clearly
there should be reasons why Algorithm 3.1 converges slowly for

N .1: .
4. Convergence rate analysis and modified algorithms. We first use Fourier analysis

to gain some insight into the behavior of the Chambolle iterations and the associated Algo-
rithm 3.1. Then this analysis is used to assist us to propose alternative algorithms that would
converge.

4.1. Fourier analysis. Recall that the local Fourier analysis (LFA) aims to measure
the largest amplification factor in a relaxation scheme [2, 12, 20]. Let the general Fourier
component beÞ � f L � (Rß},]+Wà�" .1Ò ��á 5 ��â � ( ßã � ��â L + àã 6 .CÒ ��áoä � � 
 Êc�À �>� � Naå �À æ ,
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FIG. 3.1. Test example ç to show the slow convergence of the standard Algorithm 3.1, with the left, the center
and the right plots displaying respectively the true image, the noisy image and the restored image by ècé cycles of
MG. Here ê�ë�ì~é and the residuals íÅî ïRð2ë�í î ï�ñ�ðÅòWó ëÉô}õ ö .

Prob = 2

True image
20 40 60 80100120

20

40

60

80

100

120

beta=0

Noisy z
20 40 60 80100120

20

40

60

80

100

120

Residual =3.3e+0

MG restored u
20 40 60 80100120

20

40

60

80

100

120

Prob = 2

True image
20 40 60 80100120

20

40

60

80

100

120

beta=e−3

Noisy z
20 40 60 80100120

20

40

60

80

100

120

Residual =3.3e+0

MG restored u
20 40 60 80100120

20

40

60

80

100

120

FIG. 3.2. Test example ì to show the slow convergence of the standard Algorithm 3.1, with the left, the center
and the right plots displaying respectively the true image, the noisy image and the restored image by ècé cycles of
MG. Here ê�ëÉècé and the residuals íÅî ïRð2ë�í î ï�ñ�ð òWó ëÉô}õ ô
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and define the local error functions by ÷ ©«ª ­m .økKm � k ©«ª ­m and ÷ ©«ª ­$ .øk $ � k ©«ª ­$ . Hereâ � . � 
 � º À , â L . � N � º À ;�V�� � , � Z . Then LFA involves expanding÷ ©«ª ­m . EWù $ú� f L)û Ç E)ù $ ��ü ©«ª ­m " � f L Þ � f L � (xß ,Y+Wàe"~, ÷ ©«ª ­$ . EWù $ú� f L)û Ç E)ù $ ��ü ©«ª ­$ " � f L Þ � f L � (xß},Y+Wàe"
in Fourier components. We shall first estimate the maximum spectral radius ���r� � f L�ý ��þ � f LG"
where þ � f L , of size

� Á � , denotes the amplification matrix for our smoothing method for the
dual system: ÿ �_ü ©«ª~¬ mY­m " � f L�_ü ©«ª~¬ mY­$ " � f L�� .Cþ � f L ÿ �_ü ©«ª ­m " � f L�_ü ©«ª ­$ " � f L�� Q

Consider the Chambolle smoothing iterations with a view to specify ü m , ü $ :¡¢¢¢¢£ ¢¢¢¢¤ k ©¿ª~¬ mY­m � k ©«ª ­m¯ . TT (�� T k ©«ª ­mT ( � T k ©«ª ­$T + �  
�� ��� k ©«ª~¬ mY­m ,
k²©¿ª~¬ mY­$ � k²©«ª ­$¯ . TT + � T k²©«ª ­mT ( � T k²©¿ª ­$T + �  
 � �	� k ©«ªc¬ m%­$ ,(4.1)

where
� . Ü 5�

 A � 

�������Õ
 A � 

�������Ú
 B � �� " 6 $ �>5�

 B � 

�������Õ
 A � 
��������Ú
 B � �� " 6 $ will be ‘frozen’

locally to implement the Fourier analysis [2]. The finite difference discretization takes the
form ¡¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢£ ¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¤

�lk ©¿ª~¬ mY­m " d�f g � �_k ©«ª ­m " d�f g¯ . �_k ©«ª ­m " d ¬ m f g � �_k ©«ª ­m " d Ç m f g � � �_k ©«ª ­m " d�f gã $� �lk ©«ª ­$ " d ¬ m f g � �lk ©«ª ­$ " d�f g Ç m � �_k ©«ª ­$ " d�f g � �_k ©«ª ­$ " d ¬ m f g Ç mã $� X ¬A  
 ��� k ©«ª~¬ mY­m ,�lk²©¿ª~¬ mY­$ " d�f g � �_k²©«ª ­$ " d�f g¯ . �_k²©«ª ­$ " d_f g ¬ m � �_k²©«ª ­$ " d_f g Ç m � � �_k²©«ª ­$ " d�f gã $� �lk²©«ª ­m " d ¬ m f g � �lk²©«ª ­m " d�f g Ç m � �_k²©«ª ­m " d�f g � �_k²©«ª ­m " d ¬ m f g Ç mã $� X ¬B  
 ��� k ©«ª~¬ mY­$ Q
(4.2)

Applying the Fourier analysis with
ã . � , À . ��� on a À`Á�À grid to (4.2) leads to¡¢¢¢¢¢¢£ ¢¢¢¢¢¢¤

� ÷ ©«ª~¬ mY­m " d�f g � � � ¯ �I" .y� ÷ ©«ª ­m " d�f g � � � � ¯ "\� ¯ µ � ÷ ©«ª ­m " d ¬ m f g � � ÷ ©«ª ­m " d Ç m f g ¶ �¯ µ � ÷ ©«ª ­$ " d ¬ m f g � � ÷ ©«ª ­$ " d�f g Ç m � � ÷ ©«ª ­$ " d ¬ m f g Ç m � � ÷ ©«ª ­$ " d�f g ¶ ,� ÷)©«ª~¬ mY­$ " d�f g � � � ¯ �I" .y� ÷)©«ª ­$ " d�f g � � � � ¯ "\� ¯ µ � ÷)©«ª ­$ " d_f g ¬ m � � ÷)©«ª ­$ " d_f g Ç m ¶��¯ µ � ÷ ©«ª ­m " d Ç m f g � � ÷ ©«ª ­m " d�f g ¬ m � � ÷ ©«ª ­m " d Ç m f g ¬ m � � ÷ ©«ª ­m " d�f g ¶ ,
and further toþ � f L .���� $�� �"!$# ©&% � ù$' ­ ¬ m Ç-$(�m ¬*) � � �,+"-�.0/�1,2 ¬ + ò -&.�3
1,2 Ç m Ç +"-&. � / ò 3 � 1,2 "m ¬*) �� � + ò -�.0/ ù$' ¬ +4-�.53
1"2 Ç m Ç + ò -�. � / ò 3 � 1,2 "m ¬*) � $�� �"!$# ©&% L ù$' ­ ¬ m Ç-$6�m ¬*) � 7�89 Q(4.3)
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TABLE 4.1
Estimated smoothing rate of the Chambolle’s method

Minimal C value ���r� � f L ý �7þ � f L " Predicted iterations for
� : Ç;:

10 0.4444 17
1 0.8889 117

1/2 0.9412 228
1/4 0.9697 449� : Ç m 0.9877 1116� : ÇG$ 0.9988 11506� : ÇGÝ 0.9999 138150

Then to compute the smoothing rate ���|� � f L¦ý �7þ � f L*" in the high frequency range � 
�,]Nw"�;V�� � , � Z=<�V�� � º � , � º � Z , we have to estimate this quantity numerically on same mesh grid and
each specification of

�
; with ¯ . � º?> as in [5] we found that the convergence rate is identical

to the smoothing rate shown in Table 4.1, where the last column shows the predicted number
of iterations to reduce a residual by

� : Ç;: . Other numerical tests, based on using exact values
for ^ ,$� at pixels where

�
is small, confirmed the sharpness of this last column. The results

confirm the belief that the behaviour of the dual equation is not similar to what is expected
of an elliptic equation. This analysis also shows that when there are a substantial number of
pixels at which

� . � ���K� t � º � :): , the smoothing rate of :RQ @A@ >B> will be too close to
�
,

i.e., the Chambolle iterations fail to provide an effective smoother. This case will happen in
flat regions of the desired image

�
. Since such a quantity will gradually get small in such

flat regions as iterations progress, one should observe that, correspondingly, the multigrid
algorithm should become slower and slower. Indeed this phenomenon has been observed.

It remains to understand more of the nature of slow convergence of the Chambolle’s
iterations associated with small

�
and to propose new methods to speed up the iterations.

4.2. Analysis for a modified smoother. A simple generalization of Chambolle smooth-
ing iterations is to introduce a parameter C ;�= into the basic scheme¡¢¢¢¢¢¢¢¢£ ¢¢¢¢¢¢¢¢¤

k²©«ª~¬ mY­m � k²©¿ª ­m¯ . TT (D� T k²©«ª ­mT ( � T k²©¿ª ­$T + �  
E�� C k ©¿ª~¬ mY­m ��� k ©«ª~¬ mY­m � C k ©«ª ­m � qWm ,k²©«ª~¬ mY­$ � k²©¿ª ­$¯ . TT +F� T k²©«ª ­mT ( � T k²©«ª ­$T + �  
G�� C k ©¿ª~¬ mY­$ ��� k ©«ª~¬ mY­$ � C k ©«ª ­$ � q $ ,
(4.4)

where C .bq m .bq $ .1: reduce to (2.4) on the finest level, q m , q $ are normally not : on coarse
levels and

� . ¥ 5 TT ( � T k ©«ª ­mT ( � T k ©«ª ­$T + �  
 " 6 $ �°5 TT + � T k ©«ª ­mT ( � T k ©«ª ­$T + �  
 " 6 $ Q
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TABLE 4.2
Estimated smoothing rate of a modified Chambolle type method with HwëJIaè

Minimal C value ���|� � f L ý ��þ � f L " Predicted iterations for
� : Ç;:

10 0.2857 11
1 0.8000 62

1/2 0.8889 117
1/4 0.9412 228� : Ç m 0.9756 559� : ÇG$ 0.9980 6901� : ÇGÝ 0.9998 69071

The finite difference discretization similar to (4.2) takes the form¡¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢£ ¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¤

�lk ©¿ª~¬ mY­m " d�f g � �_k ©«ª ­m " d�f g¯ . �_k ©«ª ­m " d ¬ m f g � �_k ©«ª ­m " d Ç m f g � � �_k ©«ª ­m " d�f gã $� �lk ©«ª ­$ " d ¬ m f g � �lk ©«ª ­$ " d�f g Ç m � �_k ©«ª ­$ " d�f g � �_k ©«ª ­$ " d ¬ m f g Ç mã $� X ¬A  
 � C k ©¿ª~¬ mY­m ��� k ©«ª~¬ m%­m � C k ©¿ª ­m � qWm ,�lk ©¿ª~¬ mY­$ " d�f g � �_k ©«ª ­$ " d�f g¯ . �_k ©«ª ­$ " d_f g ¬ m � �_k ©«ª ­$ " d_f g Ç m � � �_k ©«ª ­$ " d�f gã $� �lk ©«ª ­m " d ¬ m f g � �lk ©«ª ­m " d�f g Ç m � �_k ©«ª ­m " d�f g � �_k ©«ª ­m " d ¬ m f g Ç mã $� X ¬B  
 � C k²©¿ª~¬ mY­$ ��� k²©«ª~¬ m%­$ � C k²©¿ª ­$ � q $ Q
(4.5)

Applying the Fourier analysis to (4.5) leads to the matrix

þ � f L .���� $(� �"!$# ©&% � ù$' ­ ¬ m ¬LK �|Ç-$(�m ¬*) � ¬MK � � � +"-&.�/�1"2 ¬ + ò -&.53
1,2 Ç m Ç +"-&. � / ò 3 � 1,2 "m ¬*) � ¬MK �� �N+ ò -�.�/O1,2 ¬ +"-�.�3
1,2 Ç m Ç + ò -�. � / ò 3 � 1,2 "m ¬*) � ¬MK � $�� �"!$# ©&% L ù$' ­ ¬ m ¬LK �|Ç-$(�m ¬*) � ¬MK � 7�89 Q
Then estimating ���|� � f L¦ý ��þ � f L*" in the high frequency range � 
�,YN2"²;!V � � , � ZP<xV � � º � , � º � Z
numerically gives the results in Table 4.2, where C . � Û gives much improved rates than
the standard Chambolle’s iterations. Intuitively one might suggest that C . � leads to a good
smoother but this is not the case.

In experiments, the use of C . � Û can indeed accelerate both the Chambolle iterations
and the corresponding multigrid method by up to Q : %.

4.3. Modified algorithms. In designing modified algorithms, the main consideration is
how to overcome the slow convergence of the Chambolle type methods, either (4.1) or (4.4),
for small

�
.

4.3.1. A simple multigrid algorithm. Having analyzed the convergence and smoothing
rates of the Chambolle’s iterations, a simpler idea is to ensure that the

�
term is never too

small, so that multigrid algorithms would converge quickly.
We reconsider the modified system (3.2)^ ©«ª~¬ mY­d_f g � ^ ©«ª ­d�f g¯ . 5 � � div ��^ ©«ª ­ "��  
 " 6 d�f g �ØÜ ��� � � div �_^ ©«ª ­ "��  
 " ��� $d�f g �8N ^�©«ª~¬ m%­d�f g
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and in particular (with C . � Û )^ ©«ª~¬ m%­d�f g � ^ ©«ª ­d�f g¯ . 5 � � div �_^ ©«ª ­ "K�  
 " 6 d�f g �	� L ^�©¿ª~¬ mY­d�f g � C ^�©¿ª~¬ mY­d�f g � C ^®©¿ª ­d�f g ,(4.6)

where
N . � : ÇG$ instead of

N . � : ÇGÝ tried previously.
With this choice,

��LSR � : ÇG$ so the smoothing rate is
ý!� :xQ @B@ > and

Ä � : steps would
reduce a residual by :xQ ÛA@ � � which resembles the smoothing rate by a Gauss-Seidel method
for a Poisson’s equation [2]. In practice, pre-smoothing steps ranging in Û � Û): would be
sufficient to generate a converging multigrid method.

4.3.2. A semi-implicit method. A natural idea to increase the ‘implicitness’ of the pre-
vious scheme (2.5) is by^ ©«ªc¬ m%­d�f g � ^ ©¿ª ­d�f g¯ . 5 � � div �_^ ©«ª~¬ m%­ "K�  
 " 6 d�f g � ��� � � div �_^ ©«ª ­ "��  
 " ��� d_f g ^ ©«ª~¬ mY­d_f g ,
(4.7)

which leads to no improvements over (2.5). To understand the problem with
�UT : , recog-

nizing that
� . � ����� , it is constructive to consider the primal-dual system (2.7)¸ 
 div �_^ "\�8�9�! .1: ,���´�V� ^<.1: , or

¸ 
 div ��^ ©«ª~¬ mY­ "\�8� ©«ªc¬ m%­ �! .1: ,��� ©«ªc¬ m%­ �V� ©«ª ­ ^ ©«ª~¬ mY­ .1:RQ
Put into matrix form on discretization, the above system can be written as

�� 0 º|
 Ù WX � m :Y : � $ 79 �� �k mk $ 79 ©«ª~¬ mY­ . ��  #º|
:: 79 ,(4.8)

where
� m ,Z� $ , each of size � À � � " À Á � À � � " À , denote two diagonal matrices consisted

of entries of
� ©«ª ­ ,ÅÙ¦,$W denote the divergence operator div and

X , Y
denote the gradient

operator
�

for vector forms of
�w,Å 

, of size À $ Á � . Clearly if there are sufficiently large
number of extremely small diagonal (or : ) entries in

� m ,$� $ due to
�

, the coefficient matrix
of the linearized primal-dual system (4.8) will be singular!

One way to ensure that (4.8) is non-singular is to add a positive parameter
�

on the main
diagonal, so it becomes

�� 0 º|
 Ù WX � m �!� 0 :Y : � $ 79 �� �kKmk $ 79 ©«ªc¬ m%­ . ��
 #º|
� k²©«ª ­m: 79 ,(4.9)

which will have the same solution as (4.8) upon convergence. This purely algebraic consid-
eration is in fact equivalent to solving the partially time-marching primal-dual system¡¢¢¢¢£ ¢¢¢¢¤



div ��^ ©¿ª~¬ mY­ "\�8� ©«ªc¬ m%­ .  R,k²©¿ª~¬ mY­m � k²©«ª ­m¯ . � T � ©«ª~¬ m%­T ( �	� ©¿ª ­ k ©«ª~¬ m%­m ,T � ©«ª~¬ m%­T + �V� ©«ª ­ k ©«ªc¬ m%­$ . : ,

if one chooses ¯ � . � .
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TABLE 5.1
Comparison of a nonlinear multilevel algorithm to the Chambolle’s method with tol= çYé?[�\
Problem Size Chambolle Multigrid
number À Steps CPU PNSR Cycles CPU PNSR

1 63 55675 325.7 24.81 4 2.5 24.88
128 121926 2473.8 26.94 4 9.1 27.06
256 212544 22978.8 29.71 4 48.8 29.88

2 63 38529 226.3 25.53 4 2.9 25.63
128 82858 1675.4 27.60 5 9.7 27.64
256 212887 20309.0 29.98 5 43.2 29.95

TABLE 5.2
Performance of a nonlinear multilevel algorithm with tol= çYé [�\

Problem Size Multigrid
number À Cycles CPU PNSR

1 511 5 158.9 32.90
1023 5 1277.6 35.75
2047 6 8365.2 36.38

2 511 5 163.0 32.43
1023 5 1284.3 34.55
2047 6 8191.6 36.78

5. Numerical experiments. In this section, we shall first compare Algorithm 3.1 using
the smoother (4.6) with the Chambolle’s iterative method (2.5) in both solution quality and
speed of convergence. Then we demonstrate the performance of Algorithm 3.1 for some large
images which cannot be processed by the Chambolle’s iterative method (2.5) in an acceptable
amount of time. Finally we present some preliminary results from using the linearized primal-
dual iterations (4.9) as an iterative method, whose effective use in a multilevel algorithm will
be the subject of future work.

We shall use the two examples shown in Figs. 3.1-3.2 in our experiments. The stopping
criterion will be based on reducing the static residual, i.e., (2.4), to below a tolerance

U Ð^]
.

Restoration performance is quantitatively measured by the peak signal-to-noise ratio (PSNR)Ù`_ Ë Öb. Ù`_ Ë Ö��Pa ,]�-" . � :KÓcbBd m4e � QBQ $mà E�f d_f g �=a d�f g �`� d_f g " $
where a d�f g and

� d_f g denote the pixel values of the restored image and the original image
respectively, with

�2, a ;¹= à F�E . Here we assume a}d�f g ,Y� d�f g ;�V : , � QBQ Z .
Comparison. We take several resolutions of the same problems and display the results in
Table 5.1. Clearly one observes that the multigrid method is much more efficient than the
Chambolle’s method for delivering the same quality (PSNR) of restoration.
Large images. From the values of CPU in Table 5.1, one may envisage that getting the results
for À R Q �)� by Chambolle’s method can take many days, especially for small

U Ð^]
(we should

remark that there are practical situations where restored results are already acceptable before
convergence). Instead, we test the examples with large À for the multigrid method and show
the results in Table 5.2. Clearly one sees that the efficiency scales well with À . The restoredÀÆÁÉÀ images for À . � : � Ä are also shown in Fig. 5.1.
Performance of linearized primal-dual iterations. Finally we test the linearized primal-dual
method (LPD) (4.9) and show some results in Table 5.3. For the same tol=

� : Ç;g , we see that
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FIG. 5.1. Restored results from a multigrid method, with the left and the right plots displaying respectively
the noisy image and the restored image by è cycles of MG. Here hoëbçYé [�i for both problems. For problem ç :ê�ëÉì~é�jckBH�l[í
mon�pxë�ì~ì}õ çqjokBH4l[í�m&rAsEtupGë�ô~ô}õ ö and vPk^r�mcrAsEt*pRëÍç~ç�w}ç~õ öqw . For problem ì : ê�ë�ècé�jckAH4l[í�mcn�pxëì~ì}õ çqjckAH4l[í�m&r sEt pRëÉô~é}õ w and vPk^r�mcr sEt pRëÍç~ç�wqx}õ ç�w .

TABLE 5.3
Performance of a linearized primal-dual algorithm with tol= çYé^[(\

Problem Size LPD
number À Steps CPU PNSR

1 63 255 198.0 24.81
127 348 1481.9 26.94
255 432 11040.4 29.71

2 63 261 191.2 25.53
127 340 1379.6 27.60
255 461 11300.6 29.98

LPD takes much less iterations then the Chambolle’s method; see Table 5.1.

6. Conclusions. This paper presented two iterative solvers for solving the dual for-
mulation for image restoration. After giving a unified formulation of the dual problem,
we analyzed the convergence rate of the widely-used Chambolle’s method and found that� . � ���K�yT : contributes to the slow convergence of the method. We then proposed an
improved method suitable for use in multigrid methods to solve a regularized version of the
dual formulation. We also considered a linearized primal-dual iteration method for the dual
problem. Numerical results confirmed that the multigrid method with a modified Chambolle’s
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smoother is many orders of magnitude faster than the original method. The linearized primal-
dual iteration method is found to give fast convergence, but it has yet to be used in a multigrid
method.
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