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�
Abstract. In this paper we will present a general framework for solving linear systems of equations. The

solver is based on the Levinson-idea for solving Toeplitz systems of equations. We will consider a general class of
matrices, defined as the class of simple � �����	��

� -Levinson conform matrices. This class incorporates, for instance,
semiseparable, band, companion, arrowhead and many other matrices. For this class, we will derive a solver of
complexity ��� ������
���� . The system solver is written inductively, and uses in every step � , the solution of a so-called� th order Yule-Walker-like equation. The algorithm obtained first has complexity ��� � � � 
 � 
 � . Based, however
on the specific structure of the simple � �����	��
�� -Levinson conform matrices, we will be able to further reduce the
complexity of the presented method, and get an order ��� ������
���� algorithm.

Different examples of matrices are given for this algorithm. Examples are presented for: general dense ma-
trices, upper triangular matrices, higher order generator semiseparable matrices, quasiseparable matrices, Givens-
vector representable semiseparable matrices, band matrices, companion matrices, confederate matrices, arrowhead
matrices, fellow matrices and many more.

Finally, the relation between this method and an upper triangular factorization of the original matrix is given and
also details concerning possible look ahead methods are presented.
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1. Introduction. Solving systems of equations is an essential tool in all kinds of appli-
cations. Gaussian elimination (see [11, 21, 29]) is a well-known method for solving linear
systems, it takes �������! operations. For several applications, however, the coefficient matrices
involved are structured, for example, semiseparable, Toeplitz or Hankel matrices. These ma-
trices are essentially determined by �����" parameters, instead of �����$#! , for an unstructured
matrix. Therefore, they often admit faster solvers, of �����$#% , �����'&)(�*+���" , or even �����" , than
the traditional �����"�! methods, such as, for example, Gaussian elimination.

Toeplitz systems of equations, for example, can be solved in �����$#! , by using the Durbin
and Levinson algorithm. The Levinson algorithm for Toeplitz matrices is widespread and de-
scribed for example in [21, 24, 25]. Based on a specific block decomposition of the Toeplitz
matrix - , one can solve the coupled Yule-Walker equations, which provide enough informa-
tion for solving linear systems with this Toeplitz matrix. The original method is, however,
only applicable for strongly nonsingular Toeplitz matrices, as the inductive procedure, com-
putes solutions of principal leading submatrices of - . Look-ahead procedures exist to over-
come numerical instabilities, for matrices which are not or almost not strongly nonsingular;
see [7]..
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A Levinson-like solver for the class of symmetric strongly nonsingular higher order
semiseparable plus band, was investigated in [27, 31]. The solution of a system of a �0/2143�/ #  -
higher order generator representable semiseparable matrix plus an �65 1 3�5 #  -band matrix was
computed in �����7/ 198 5 1  :�7/ # 8 5 #  ;�" operations.

The method presented in this paper, is also based on this Levinson algorithm. A class
of matrices called �7/ 1 3�/ #  -Levinson conform is defined, which will admit a Levinson-like
algorithm. In this paper we focus to a specific subclass, called simple �7/ 1 36/ #  -Levinson
conform. This class is called simple, because we will prove that these matrices, admit a
solver of complexity ���7/ 1 / # �" , which is in fact linear in time. Matrices, such as Toeplitz
or Hankel, are not incorporated in the class of simple �0/ 1 3�/ #  -Levinson conform matrices.
However, as shown in the paper, several classes of matrices, do belong to this class, and hence
admit an order ���7/ 1 / # �" solver. For example the matrices considered in [27, 31], fit in this
framework, and are given as an example.

The algorithmic idea is exactly the same as for solving Toeplitz systems via the Levinson
algorithm. First � systems with a special right-hand-side, called the Yule-Walker like equa-
tions need to be solved. Based on these solutions, we can then solve the linear system, with
an arbitrary right-hand side.

In [13, 17], the authors investigated a closely related technique for solving systems of
equations. The authors restricted themselves to the class of block quasiseparable matrices,
which also includes the class of band matrices and semiseparable matrices. The algorithm
presented in these manuscripts is based on an efficient computation of the generators of a
triangular factorization of the quasiseparable matrix. Using this representation of the factor-
ization, they compute the solution by inverting one upper triangular quasiseparable matrix.
The algorithm in these manuscripts can be seen as an analogue of a Schur algorithm for
computing the <�= -decomposition of the resulting matrix. As several examples provided in
this paper naturally fit in the class of quasiseparable matrices, we investigate more closely,
in the example section, the relation between the method in [17], and the one presented in
this paper. Let us briefly elaborate on the difference. The method in [13, 17], computes an<�= -factorization via a Schur-type of algorithm. In this manuscript we use a Levinson-type al-
gorithm. The Levinson-type algorithm can be used to compute an <�=?> 1 factorization (this is
discussed in more detail in Section 4). But in fact, due to our specific structure we do not need
to compute the factors < and = or =@> 1 explicitly. Computing them causes extra, unnecessary
work, and by using the Levinson-like approach there is no need in computing these factors.
Due to this significant difference, we will see that we can get a speed up of a factor A for the
quasiseparable case, and moreover a reduction in complexity from ���0/"1B/+## �" 8 ���0/+#1 / # �" to
a complexity ���0/21;/ # �" for most of the cases (/�1 and / # are matrix dependent values smaller
than � ).

The paper is organized as follows. In Section 2, the class of simple �0/21!36/ #  -Levinson
conform matrices is defined. In fact this is just based on a special block decomposition of the
matrix involved. In Section 3, the algorithm for solving simple �7/�143�/ #  -Levinson matrices
is presented. First a direct way to solve systems in this manner is given having complexity���7/21;/ # ��#% . It will be shown however how one can further reduce this complexity to come
to a method which costs ���0/ 1 / # �" operations. It is therefore, important to choose the factors/ 1 and / # as small as possible. In Section 4, we investigate the upper triangular factoriza-
tion related to this method. In Section 5, numerous examples are described. The first three
examples are related to semiseparable matrices. In a first case the class of Givens-vector
representable semiseparable matrices is considered, secondly the class of quasiseparable ma-
trices and finally the class of higher order generator representable semiseparable matrices are
investigated. (These results are already extensions of the ones presented in [27, 31].) Next,
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the class of band matrices and arrowhead matrices are investigated, they are closely related to
semiseparable matrices as well: band matrices can be considered as the inverses of semisep-
arable matrices and an arrowhead matrix is a semiseparable plus diagonal matrix. Examples
for matrices having a nonsymmetric structure are given, such as a unitary Hessenberg ma-
trices. Moreover, the class of simple �7/ 1 3�/ #  -Levinson conform matrices is proven to be
closed under summation, this means that summations of simple Levinson conform matrices
are again simple Levinson conform. Finally, we also prove that upper triangular matrices,
dense matrices, companion matrices, comrade matrices as well as fellow matrices are simple
Levinson conform and hence admit the proposed solver. We also indicate how to implement
the look–ahead version of the algorithm, such that we can omit the strongly nonsingularity
condition. The paper closes with conclusions and future research.

2. The matrix block decomposition. In this paper we will develop a Levinson-like
solver for structured systems of equations. In order to develop such a solver, our coefficient
matrix should admit a specific partitioning of the matrix, making it able to derive the recursive
algorithm.

Let us therefore introduce the notion of (simple) /"1 -Levinson and (simple) �0/2143�/ #  -
Levinson conform matrices.

DEFINITION 2.1 (/21 -Levinson conform matrices). Given a matrix CEDF��G�H�I J% , for K
3MLNDO 3QP:P:P:3,� , and denote with CSRTDU��G�H�I J% , for K
3VLWD O 3:PQP:PX3
Y the upper Y[ZTY submatrix ofC . The matrix C is said to be /�1 -Levinson conform if the matrix can be decomposed in the
following way:

1. For every
O]\ Y \ �_^ O , there is a splitting in blocks of the matrix C R�`$1 of the

following form: C R�`a1 D b C R cdR4eSRgf�hR�`a1i R�`a1:j hR9k hR G R�`a1�I R�`a1ml
where f R�`a1onqp 1QrtsQu , i R�`a1onvp 1%r�s:w , e RTnvp Rtr�s%u , k R�3 c Rxnyp R�rzR e R�3 j Rxnp R�r�s:w and CdRNn{p R�r�R .

2. The following relation for the matrices e RX`a1 (with
Oo\ Y \ �|^ O ) needs to be

satisfied: e'R�`a1 D b e R4}~R� R�`a1 l 3
where } R is a matrix of dimension / 1 Z@/ 1 and

� R�`a1 is a row vector of length / 1 .
We call the matrix simple / 1 -Levinson conform if the matrix cdR equals the identity matrix of
order Y and the multiplication of a vector with the matrix } R can be done in linear time (i.e.
only ���0/ 1  operations are involved).

No conditions were placed on the matrix j R , if we put similar conditions on j R as on the
matrix e R we call the matrix �7/�1!3�/ #  -Levinson conform.

DEFINITION 2.2 ( �7/2143�/ #  -Levinson conform matrices). A matrix C is called �0/�143�/ #  -
Levinson conform, if the matrix is /�1 -Levinson conform, i.e. that Conditions (1) and (2) from
Definition 2.1 are fulfilled and the following condition for the matrices j R is satisfied:

3. The matrices j"RX`a1 (with
OS\ Y \ ��^ O ) can be decomposed as:j�R�`$1 D�� j Rg��R� R�`a1�� 3

where � R is a matrix of dimension / # Z�/ # and � RX`a1 is a row vector of length / # .
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We call a matrix simple �7/2143�/ #  -Levinson conform, if both the matrices c R and k R are equal
to the identity matrix of order Y and the multiplication of a vector with the matrices }�R and� R can be performed in respectively ���7/ 1  and ���0/ #  operations.

In fact, every matrix is simple Levinson conform.
LEMMA 2.3. Suppose an arbitrary matrix C�nxp9� r � is given, the matrix C is simple���]^ O 3���^ O  -Levinson conform.
Proof. The proof is straightforward. Define the Y[Z�����^ O  matrices e�R and j�R as

follows: e R�D j RSDF� �:R�3��g�
and assume for every Y the matrices cdR 3 k R 3�} R and � R to be equal to the identity. Definingi R'DF� G�R!I 1!3�G�R%I # 3:PQP:PX3�G�R%I R > 1g3��z3:PQP:PX3��4�V3f R'DF� G�1�I Rt3�G # I R�3:PQP:PX3�G�R > 1�I R�3��z3:PQP:PX3��4�V3
with both row vectors of length �_^ O . One can easily check that the conditions of Defini-
tion 2.2 are satisfied.

The Lemma also shows that the choice of f�R 3 i R 3 eSR and � R is not always unique. But,
the notion of simple �7/ 1 36/ #  -Levinson conformity is strongly related to the complexity of the
method we will deduce in this paper. The overall solver will have a complexity ���7/ 1 / # �" .
Hence it is important to keep the values of /�1 and / # as low as possible.

¿From now on we will only focus on Levinson conform matrices for which c R and k R
are equal to the identity matrix of size Y . This excludes in some sense important classes
of matrices, such as Toeplitz,Hankel and Vandermonde matrices. In the simple formulation
these matrices are ���[^ O 3,�|^ O  -Levinson conform, whereas, omitting the assumption of
being simple leads to a � O 3 O  -Levinson conform matrix. In this paper however we will restrict
ourselves to the class of simple Levinson conform matrices. This class is already wide enough
to admit different types of structures as will be showed later, in the examples section. More
information on efficient solvers for Toeplitz, Hankel and Vandermonde matrices, based on
their displacement representation, can for example be found in [20].

3. A framework for simple �7/2143�/ #  -Levinson conform matrices. In this section we
will construct a Levinson-like solver for solving strongly nonsingular linear systems of equa-
tions for which the coefficient matrix is simple �7/"1!36/ #  -Levinson conform. The limitation of
being strongly nonsingular can be relaxed; see the section on the look-ahead procedure. In
this section we will firstly solve the corresponding Yule-Walker-like systems. The solution
of these equations will be used for solving the general system of equations, with an arbi-
trary right-hand side, based on the Levinson method. A possible algorithm is presented in
Section 3.3, followed by complexity reducing remarks in Section 3.4. The final ���7/ 1 / # �" 
method is presented, with a detailed complexity count, in Section 3.5.

3.1. The Yule-Walker-like system. Suppose a simple /�1 -Levinson conform matrix C
is given. The aim of the Yule-Walker step is to solve the following system of equationsC�� � D�^ e � . The system will be solved by induction. Let us assume we know the solution
of the Y th order Yule-Walker-like problem (with

O'\ Y \ ��^ O ):C R � R D�^ eSR 3(3.1)

and we would like to compute the solution of the �6Y 8 O  th Yule-Walker-like problem. (Note
that, in general, �2R represents a matrix of dimension Y�Z"/�1 .) The ( Y 8 O )th system of equations
is of the form: C R�`$1 � R�`a1 Dq^ e'R�`a1 P
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Using the initial conditions put on the matrix C , we can rewrite the equation above asb C R e'R4f hR�`$1i R�`a1Qj hR G R�`a1�I R�`a1 l ��� RX`a1� R�`a1 � Dq^ b e'R } R� R�`a1 l 3
with � RX`a1 n{p R�r�s u and � R�`a1 n]p 1Qrts u . Expanding this equation towards its block-rows, we
observe that

(3.2) C R � R�`a198xe'Rdf hR�`a1 � R�`a1 Dq^ e'R } R 3
and

(3.3)
i R�`a1�j hR � R�`a198 G R�`a1�I R�`a1 � R�`$1 D�^ � R�`a1 P

Rewriting (3.2) towards � RX`a1 and using the solution of (3.1) gives� R�`a1 D�^�C > 1R e'Rd� } R�8Tf hR�`a1 � R�`a1Q�DE� R � } R�8xf hRX`a1 � R�`a1 � P(3.4)

Substituting the latter equation in (3.3) leads to:i R�`a1�j hR � R ��} R�8Tf hR�`a1 � RX`a1  8 G R�`a1�I R�`a1 � R�`$1 D�^ � R�`a1 3
from which we can extract � RX`a1 as:� R�`a1 Dq^ � RX`a198 i R�`$1:j hR � R } Ri R�`a1Qj hR � R4f h RX`a1 8 G R�`a1�I R�`a1 P
Using now the vector � R�`a1 in (3.4), we can compute the matrix � R�`a1 . Based on the formulas
for � R�`a1 and � R�`a1 , we can immediately derive a recursive algorithm, for solving the Yule-
Walker-like problems.

To conclude this section, we prove that the denominator in the formula for � RX`a1 is always
nonzero, i.e. that the computation of � R�`a1 is well defined. Because our matrix C is assumed
to be strongly nonsingular, we know that all the leading principal matrices are nonsingular.
This means that for every nonzero vector � : C R�`$1 � �D�� . Taking now � h D¡� f�RX`a1 � hR 3 O � ,
we have that: b C R e'R4f hR�`$1i R�`a1Qj hR G R�`a1�I R�`a1 l � � R4f�hR�`$1O �D¢� CdR4�£R f h RX`a1 8xe R f h R�`a1i R�`$1 j hR �¤R f h R�`a1 8 G�R�`a1�I R�`a1 ��D¥�zP
Using the fact that C R � R D¦^ e'R , we obtain that the first Y entries of the vector above are
zero. As the total vector needs to be different from zero we have that:i R�`a1Qj hR � R4f h R�`a1 8 G R�`a1�I R�`a1 �D��z3
which states that the calculation of � R�`a1 is well defined.

Based on the results presented in this section we will derive now the Levinson-like algo-
rithm for solving an arbitrary system of equations.
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3.2. The Levinson-like solver. In this section a Levinson-like method is proposed for
solving systems of equations for which the coefficient matrix C is simple /"1 -Levinson con-
form. The presented solver uses the solution of all the Y th order Yule-Walker-like problems
and it is based on an inductive procedure.

Suppose a matrix C which is simple / 1 -Levinson conform is given, and use the notation
from Definition 2.1 and the one from Section 3.1. We would like to compute a solution § for
the following system of equations C�§|Dy¨ , where ¨©h�Dª� « 1 3QP:P:PQ3�« � � is a general right-hand
side. In this section we also assume the matrix C to be strongly nonsingular. As already
mentioned, further in the text we will omit this strongly nonsingularity condition.

Assume we know the solution of the Y th order Yule-Walker system:

(3.5) CdRg�¤R�D�^ e R�3
and the solution of:

(3.6) C R § R D¥¨ R 3
where ¨~hR D¬� «:1!3QP:P:PQ3�«XRQ� . We will now solve CSRX`a1�§"R�`$1?D­¨©R�`a1 , based on the (3.5) and
(3.6).

The system we would like to solve can be rewritten in block form as:b CdR e R f h R�`$1i R�`a1Qj hR G R�`a1�I R�`a1 l ��® R�`a1¯ R�`a1¥� D°� ¨ R« R�`a1±� 3(3.7)

with ® RX`a1 n{p R�rz1 and ¯ R�`$1 a scalar.
Expanding (3.7) leads to the following two equations

(3.8) C R ® R�`a1�8 ¯ R�`a1²eSR4f hR�`a1 D�¨ R
and

(3.9)
i R�`$1²j hR ® R�`a198 ¯ R�`a1 G RX`a1
I RX`a1 DE« R�`a1 P

Equation (3.8) can be solved for ® R�`a1 . Using C > 1R ¨ R Dq§ R and C > 1R �B^ e'R  �Dq� R , we thus
get: ® R�`$1�D¥C > 1R �6¨©R�^ ¯ R�`a1 e R f h R�`$1 �D³§"R 8 ¯ R�`a1��£R f h R�`a1 P
Substituting the solution for ® RX`a1 into (3.9) and rewriting this leads to the following expres-
sion for ¯ RX`a1 : ¯ R�`a1 D «XR�`a1�^ i R�`a1 j hR §"R� i R�`a1Qj hR � R4f h R�`a1 8 G R�`a1�I R�`a1Q� P
The formula for ¯ R�`a1 is well defined as the denominator is always different from zero; see
Section 3.1. Using the relations for computing ¯ R�`a1 and � R�`a1 one can immediately derive a
recursive formula for computing the solution. We remark that for solving the system of equa-
tions, with this Levinson-like algorithm, the solution of the � th Yule-Walker-like equation is
not needed, hence we do not necessarily need to define the matrix e � . In the next section this
algorithm and the operation count is presented.
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3.3. A first algorithm of complexity ���7/�1B/ # ��#Q . Based on the previous two sections
we can present a first version of a Levinson-like solver for simple /a1 -Levinson conform ma-
trices.

The algorithm is given in a simple mathematical formulation. First the problem is ini-
tialized and then the main loop is performed. After each computation in the algorithm, the
number of flops1 involved is shown. We remark that the presented algorithm, is not the most
efficient implementation. It is written in this way, to clearly see the computationally most ex-
pensive steps. For the operation count, we assume that the multiplication of a row vector with
any of the matrices } R has a flop count bounded by ´ 1 � 8 ´ # , with ´ 1 and ´ # two constants.

ALGORITHM 3.1. Initialize � 1 D � 1 D ^ e'1G�1�I 1§ 1 D ¯ 1 D «:1G 1�I 1
For YµD O 3:P:PQPX3,��^ O do

1. Compute and store the following variables:
(a) j hR � R Flops: / 1 / # �6A�Y@^ O  
(b) j hR §"R Flops: / # �6A�Y¶^ O  
(c)

i R�`a1g� j hR �£Rg Flops: /£1g�6A�/ # ^ O  
(d) � i RX`a1 j9hR �£R f�hR�`$1 8 G�RX`a1
I RX`a1: Flops: AX/£1

2. � RX`a1�D�^ ·,¸�¹ u `2º ¸�¹ u,»t¼¸£½ ¸X¾º ¸,¹ uB» ¼¸ ½ ¸
¿ ¼¸,¹ u `aÀ ¸,¹ uVÁ ¸�¹ u Flops: A�/21 8 ´¤1;/£1 8 ´ #
3. � R�`$1 D¥� R � } 8xf�hR�`a1 � RX`a1 � Flops: Y2�M´ 1 / 1¤8 ´ #  8 Y2�MA�/ 1 ^ O  8 A�/ 1 Y
4. ¯ R�`a1 D Â ¸�¹ u > º ¸,¹ uB»�¼¸+Ã ¸º ¸�¹ u,» ¼¸ ½ ¸X¿ ¼¸�¹ u `"À ¸�¹ u;Á ¸,¹ u Flops:

O 8 AX/ #
5. ® R�`a1�D¥§"R 8 ¯ R�`$1��¤R f h R�`a1 Flops: A�Y 8 Y��6A�/21Ä^ O  
6. �¶hRX`a1 DF� � hR 3 � h R � Flops: �
7. §�hR�`a1 DF� ��hR 3 ¯ h R � Flops: �

endfor;
Performing an overall complexity count leads us to an algorithm of complexity ���0/ 1 / # ��#% .

This means that as long as the factor / 1 / #'Å � , the method will perform better than Gaussian
elimination if the matrices in question are large enough. However, taking a closer look at the
involved computations, we can see that the bottlenecks, causing the factor �~# in the operation
count, are the computations of the matrices j hR �£R , and j hR §"R , and the explicit formation of
the matrices � R�`$1 and vectors ® R�`a1 . Assume, now that one could remove the computation
of � R�`$1 and ® RX`a1 out of the most inner loop, and compute the final solution, using only the
stored values of � R and ¯ R in �����" operations (dependent on /�1 and / # however). Assume
also that one could compute the products j hR § R and j hR � R in constant time, independent ofY . This would lead to the following algorithm.

ALGORITHM 3.2. Initialize �21�D � 1²D ^ e'1G 1�I 1§ 1 D ¯ 1 D « 1G�1�I 1
For YµD O 3:P:PQPX3,��^ O do the same initializations:

1A floating point operation (flop) consists of any of the following operations: ÆÄ�BÇ©�,ÈÉ�MÊ . A sign change is not
counted as an operation.
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1. Compute and store the following variables:
(a) j hR �£R Flops: Independent of Y
(b) j hR § R Flops: Independent of Y
(c) � i R�`a1Qj hR � R4f h RX`a1 8 G R�`a1�I R�`a1  Flops: / 1 �6AX/ # ^ O  8 A�/ 1

2. � R�`a1 D�^ ·,¸�¹ u `2º ¸�¹ u,»�¼¸ ½ ¸�¾º ¸,¹ uB» ¼¸ ½ ¸
¿ ¼¸,¹ u `"À ¸,¹ u;Á ¸�¹ u Flops:
O 8 / 1©8 ´ 1 / 198 ´ #

3. ¯ R�`a1 D Â ¸,¹ u > º ¸,¹ uB»�¼¸ Ã ¸º ¸,¹ uB» ¼¸ ½ ¸�¿ ¼¸,¹ u `"À ¸�¹ u;Á ¸,¹ u Flops:
O 8 A�/ #

endfor;
Under these assumptions, the solver has a complexity: ���7/ 1 / # �" .
In the next section, we illustrate how to achieve the above complexity, by computing the

solution in another loop and by computing the products j hR �¤R and j hR §"R , in an inductive way,
making thereby the computation indepent of Y .

3.4. Reduction of the complexity. We know from the previous section that the com-
putations of the matrices �¶hR D¡� � hR 3 � h R � , the vectors § R DË� ® hR 3 ¯ R � and the computations
of the matrices j9hR § R and j9hR � R in every step of the algorithm are responsible for the � #
factor in the complexity count. If we could reduce the complexity of these operations, the
overall operation count would decrease by a factor � . Let us start with the computation of
the solution vector § . Instead of computing for every Y the vector §~R , wich incorporates the
computation of ® R�3 � R and �£R at every step, we will postpone this computation up to the very
end, and simple store the factors ¯ R and � R for every Y . Extracting the computation of § out
of the loop, the final solution vector can be written in the following form. (Denote with Ì�H
the K th component of the vector §±DF� Ì�1g3,Ì # 3:PQP:PQ3,Ì � �Íh .)

§±DÏÎÐÐÐÑ .
.
.Ò�Ó4Ô�Õ ¹9Ö Ó4Ô�Õ¤×)Ò�Ó4Ô w,Ø ¼Ó4Ô w ¹�Ù7Ú ÓgÔ�Õ ¹ Ø ¼Ó4Ô w Ö ÓgÔ w�Û ×	Ò�ÓgÔ u;Ø ¼Ó4Ô u ¹ÄÙ7Ú ÓgÔ w ¹ Ø ¼Ó4Ô u Ö Ó4Ô u,Û Ò Ó Ø ¼Ó�ÜVÜÒ�ÓgÔ w ¹9Ö Ó4Ô w ×	Ò�ÓgÔ u;Ø ¼Ó4Ô u ¹�Ù7Ú ÓgÔ w ¹ Ø ¼Ó4Ô u Ö Ó4Ô u,Û Ò Ó Ø ¼Ó�ÜÒ�ÓgÔ u ¹�Ö Ó4Ô u Ò Ó Ø ¼ÓÒ Ó

Ý0ÞÞÞß
D ÎÐÐÐÐÐÐÑ

...¯ � >¤� 8 � � >¤� �6Ì � >¤# f h� >¤# 8 } � >¤� ��Ì � > 1 f h� > 1 8 } � >£# Ì � f h� �Q�¯ � > 198 � � >£# ��Ì � > 1:f h� > 1 8 } � >¤# Ì � f h� �¯ � > 198 � � > 1�� Ì � f�àá��¯ �
Ý0ÞÞÞÞÞÞß P

The computation of the vector above can easily be rewritten in a recursive manner, as the
term following the vector � � > 1 in the computation of Ì � > 1 , can be used in the computation
of Ì � >£# . Consecutively, the term following the vector � � >¤# in the computation of Ì � >¤# ,
can be used in the computation of Ì � >¤� , and so on. Implementing this in a recursive way,
from bottom to top requires ���0/ 1 �" operations for computing the solution, instead of the���7/ 1 ��#% operations needed if it was incorporated in the main loop. The implementation of
this recursion is given the next section.

Secondly, one needs to reduce the complexity of the computation of the matrices j hR �£R
and j hR §"R in the loop. This reduction in complexity is related to the structure in the lower
triangular part, as the following example shows:

EXAMPLE 3.3. A simple case, considers the class of upper triangular matrices. This
means that the matrix j"R D�� . Hence all the computations involving the matrix j$R , such asj hR § R and j hR �¶h are removed thereby creating an ���0/ 1 �" solver for upper triangular, simple/ 1 -Levinson conform matrices.
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We would like to place this however in a more general framework. The class of matrices
admitting this reduction in complexity is the class of simple �0/"1!3�/ #  -Levinson conform ma-
trices. Assume a simple �7/ 1 3�/ #  -Levinson conform matrix C is given. This means that the
lower triangular part is structured in a similar way as the upper triangular part. We have that
our matrices j"R satisfy the following relations (for

O�\ Y \ ��^ O ):j�R�`$1 D � j"R � R� R�`a1 � 3
where �¶R is a matrix of dimension / # Z@/ # and � R�`a1 is a row vector of length / # .

Using this relation, the computation of j hR�`a1 �¤RX`a1 can be rewritten in terms of the matrixj hR �£R , admitting thereby a recursive computation of these products:j hR�`a1 �¤RX`a1�DF� � hR j hR 3 � hR�`a1 � � � R�`a1� RX`a1 �(3.10) Dy� hR j hR � R�`$1 8 � hR�`a1 � R�`$1Dy� hR j hR �¤R���}~R 8Tf hR�`a1 � R�`$1: 8 � hR�`$1 � R�`a1Dy� hR j hR �¤Rg}$R 8 �6� h R j hR �£R f h R�`a1 8 � hR�`$1  � R�`$14P
This leads to a recursive calculation for which the computational complexity is independent
of Y .

In a similar way, a recursive formula for computing the products j hR § R can be derived:

j hR�`$1 §"R�`$1�D�� � hR j hR 3 � hR�`a1 � � ® R�`a1¯ R�`$1 �(3.11) DE� hR j hR § R�8 ¯ R�`$1 � � h R j hR � Rgf h R�`a1 8 � hRX`a1 � P
This recursive formula for computing j hR §"R in each step of the loop is computationally inde-
pendent of Y .

In the first section we proved that every matrix is simple ����^ O 3���^ O  -Levinson conform.
Solving a system of equations with a strongly nonsingular simple ���_^ O 3��±^ O  -Levinson
conform matrix, therefore costs �����a�% .

In the following section the algorithm for solving strongly nonsingular simple �7/ 1 3�/ #  -
Levinson conform systems of equations in ���0/ 1 / # �" operations is presented.

3.5. A second algorithm of complexity ���7/�1B/ # �" . Before giving examples of matrices
solvable via these Levinson-like methods, we present here the general algorithm for simple�7/21!3�/ #  -Levinson conform matrices. For the computation of j hR �£R and j hR §"R we use the
recursive schemes presented in (3.10) and (3.11). We know that for every Y the multiplication
of a vector with the matrices � R and/or } R can be performed in linear time. Assume that´ 1 / 1Ä8 ´ # is an upper bound for the number of operations needed to multiply a vector with
a matrix } R , and assume â 1 / # 8 â # to be an upper bound for the number of operations
needed to multiply a vector with a matrix � R . The algorithm is presented below. After each
computation, the number of involved operations is shown (flop count). The operation count
presented here is the worst case scenario, as we do not take into consideration other possible
advantages such as sparsity in multiplications and so on. One can see this complexity count
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as an upper bound.
ALGORITHM 3.4. Initialize � 1 D ^ e�1G�1
I 1 Flops: / 1¯ 1²D «:1G 1
I 1 Flops:

Oj h1 � 1 D j h1 � 1 Flops: / # / 1j h1 Ì 1 D j h1 ¯ 1 Flops: / 1
For Y�D O 3:PQP:PX3���^ O do:

1. Compute and store the following variable:
(a) � i R�`a1Qj hR � R  Flops: �MA�/ # ^ O  ã/ 1
(b) � i R�`a1Qj hR � R4f h RX`a1 8 G R�`a1�I R�`a1  Flops: A�/ 1

2. � R�`a1 D�^ ·,¸,¹ u `2º ¸,¹ uB»�¼¸¤½ ¸X¾t¸º ¸,¹ uB» ¼¸ ½ ¸
¿ ¼¸,¹ u `"À ¸,¹ u;Á ¸�¹ u Flops: AX/ 1©8 ´ 1 / 198 ´ #
3. ¯ R�`a1�D Â ¸,¹ u > º ¸�¹ u,»t¼¸¤ä ¸º ¸,¹ uB» ¼¸ ½ ¸�¿ ¼¸,¹ u `"À ¸�¹ u;Á ¸,¹ u Flops: A�/ # 8 O
4. Compute and store the following variables (if Y Å ��^ O ):

(a) ��hR j hR �¤RgåXhR�`a1 8 � hR�`$1 Flops: A�/ # /£1 8 âz1V/ # 8 â #
(b) j hR�`a1 �¤R�`$1�D���hR j hR �¤R4}~R 8 �M��h j hR �£R f h R�`a1 8 � hR�`$1 � � R�`$1

Flops: A�/ # / 1©8 / 1 �ãâ 1 / # 8 â #  8 / # �6´ 1 / 198 ´ #  
(c) j hR�`a1 § R�`a1 DE��hR j hR § R�8F� ��hR j hR � R4f h R�`a1 8 � hR�`$1 � ¯ R�`a1

Flops: AX/ # 8 â�1;/ # 8 â #
endfor;

Computation of the solution vector ( æ is a dummy variable)Ì � D ¯ �æ�D ¯ � f h Flops: /£1
For Y�D¥��^ O 3:^ O 3 O do

1. Ì¤R�D ¯ R 8 � Rgæ Flops: AX/£1
2. æ�D�Ì+H f hH 8 }~R > 1Qæ Flops: AX/£1 8 ´¤1;/£1 8 ´ #

endfor.
It is clear that an overal complexity count leads to method with complexity ���7/ 1 / # �" .

A more detailed summation of the involved operations gives us an overall complexity of���]^ O  zçM�6è 8 âz1 8 ´¤1: ã/21V/ # 8 �6A�´¤1 8 â # 8Wé  ã/21 8 �MA!âz1 8 ´ # 8Tê  �/ # 8 A!â # 8 A�´ # 8 OXë8 �,^�ìd^oâz1�^[´£1X �/£1;/ # 8 ��ì'^oâ #  ã/21 8 �,^�AS^[A4â�1Ä^�´ #  ã/ # 8 � O ^�A!â #  �P
3.6. �7/21!36/ #  -Levinson conform matrices with c R�D k R�Dª�QR . The considered class

of �0/£143�/ #  -Levinson conform matrices was called simple, because the corresponding solver
had a complexity of ���0/21;/ # �" . Suppose now that we omit this simplicity assumption. This
would immediately increase the complexity. For example in the Toeplitz case, we cannot
extract the computation of the solution vector § out of the most inner loop and hence we have
immediately a complexity of �����"#! . If we assume however that the matrices cSR D k R D�� R ,
Algorithm 3.4 remains valid, but it will increase in complexity, because we cannot perform
multiplications with the matrices } R or � R in linear time anymore. In this section we will
assume the matrices cdR and k R equal to the identity matrix (because then Algorithm 3.4
remains valid), and we will see what the impact of the multiplications with the matrices } R
and � R is on the complexity count.
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can multiply vectors with the matrices �NR in linear time. This means that in Algo-
rithm 3.4, the following steps increase in complexity:

– in the main loop, steps
2. � R�`a1�Dq^ ·,¸,¹ u `�º ¸,¹ uB»�¼¸¤½ ¸:¾�¸º ¸�¹ u,» ¼¸ ½ ¸
¿ ¼¸�¹ u `"À ¸�¹ u;Á ¸,¹ u Flops: �6A�/21 8 O  ã/21
4. (b) j hR�`a1 � R�`a1 Dy��hR j hR � R } R�8 �V��h j hR � Rgf h R�`a1 8 � hRX`a1 � � RX`a1

Flops: AX/ # / 1©8 / 1 �ãâ 1 / # 8 â #  8 / 1 / # �6A�/ 1 ^ O  
– in the computation of the solution, step

2. æ�D¥Ì HMf hH 8 } R > 1 æ Flops: �6AX/ 198 O  �/ 1 P
This means that we will get an Algorithm of complexity ���0/ # 1 / # �" . More precisely
we get the following operation count:����^ O  �çt�MAX/ # 8Tê  %/ # 1 8 ��â�1 8xî  %/£1V/ # 8 �ãâ # 8xî  %/£1 8 �6A4â�1 8Tê  4/ # 8 A!â # 8 O:ë 8 ��� O  �Pí Assume the multiplication of a vector with the matrices } R can be done in linear
time, but not the multiplication with the matrices � R . In Algorithm 3.4, the follow-
ing steps increase in complexity:

– in the main loop, steps
4. (a) � h R j hR � R å h R�`$1 8 � hR�`a1 Flops: AX/ # / 1©8 / # �MA�/ # ^ O  
4. (b) j hR�`a1 �£R�`a1�Dy��hR j hR �£R4}$R 8 �V��h j hR �¤R f h R�`a1 8 � hRX`a1 � � RX`a1

Flops: AX/ # / 1©8 / # �6´ 1 / 1©8 ´ #  8 / 1 / # �6A�/ # ^ O  
4. (c) j hR�`$1 § R�`$1 D���hR j hR § R�8 � ��hR j hR � Rgf h R�`a1 8 � hR�`a1 � ¯ R�`a1

Flops: / # �MA�/ # 8 O  
– in the computation of the solution nothing changes.

Overall, we get the following operation count:����^ O  �çãA�/21V/ ## 8 ì:/ ## 8 �M´£1 8xî  !/£1;/ # 8 �MA�´¤1 8ïé  %/21 8 �6´ # 8 A� %/ # 8 A�´ # 8 OXë 8 ��� O  �Pí Suppose none of the matrices } R or � R admits a multiplication in linear time. Hence
the algorithm increases in complexity, and we get:

– in the main loop, steps
2. � R�`a1 Dq^ · ¸,¹ u;`�º ¸,¹ u »�¼¸ ½ ¸ ¾ ¸º ¸�¹ u » ¼¸ ½ ¸ ¿ ¼¸�¹ u `"À ¸�¹ u;Á ¸,¹ u Flops: �6AX/ 1©8 O  �/ 1
4. (a) ��hR j hR � R åXhR�`$1 8 � hR�`a1 Flops: A�/ # / 198 / # �6AX/ # ^ O  
4. (b) j hR�`a1 �£R�`a1�Dy��hR j hR �£R4}$R 8 �V��h j hR �¤R f h R�`a1 8 � hRX`a1 � � RX`a1

Flops: AX/ # /£1 8 /£1;/ # �MA�/ # ^ O  8 /21V/ # �6AX/£1Ä^ O  
4. (c) j hR�`$1 § R�`$1 D���hR j hR § R�8 �V��hR j hR � Rgf h R�`a1 8 � hR�`a1 � ¯ R�`a1

Flops: / # �MA�/ # 8 O  
– in the computation of the solution, steps

2. æ�D¥Ì HMf hH 8 } R > 1 æ Flops: �MA�/ 1©8 O  ã/ 1 P
If no linear multiplications with vectors are possible, we get the following complex-
ity: ���]^ O  �çãAX/ # 1 / # 8 AX/£1M/ ## 8Tê / # 1 8Tê /21M/ # 8 ì:/ ## 8Wî /£1 8 A�/ # 8 O:ë 8 ��� O  �P

In Section 5 there is a class of matrices included (quasiseparable matrices), which are�7/ 1 3�/ #  -Levinson conform, with cdR D k R D�� R , and the matrices } R and � R do not admit a
linear multiplication with a vector.
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4. An upper triangular factorization. The Levinson-like algorithm as presented in
this paper applied to a matrix C , is closely related to an upper triangular factorization of the
involved matrix. This is also the case for the Levinson algorithm related to Toeplitz matrices;
see, e.g., [21, 24]. Even though a similar construction is possible for general Levinson con-
form matrices, we will focus here on the case for which cSR D k R Dª� R . Suppose we have
a Levinson conform matrix C . Writing down the solution of the Y th order Yule-Walker-like
problem, gives us: C R � R D�^ eSR P
Bringing the matrix e R to the left-hand side, and multiplying this equation on the right with
the vector f h R�`$1 gives us: C R � R4f h R�`a1 8xe'R4f hR�`$1 D��zP
This equation can be rewritten in terms of the matrix C R�`$1 :b CdR e R f�hRX`a1i R�`$1 j hR G�R�`$1
I R�`$1 l � �£R f h R�`$1O � D � �ð R�`a1 � 3
with ð R�`a1 different from zero. If we put the successive equations for the different values of Y ,
in an upper triangular matrix we get (we remark that the products �"R f h R�`a1 are column vectors
of dimension Y ):

C ÎÐÐÐÐÐÑ
O �£1 f h# � # f h� P:PQP¬� � > 1 f h�� O� � O
...

...
. . . . . .� � P:P:P � O

Ý ÞÞÞÞÞß D ÎÐÐÐÐÐÐÑ
ð 1 � � P:P:P �Z ð # � P:P:P �
... Z ð � �
...

...
. . .

. . .
...Z Z P:P:P Z ð �
Ý0ÞÞÞÞÞÞß P

The Z denote arbitrary elements in the matrix. Rewriting the equations above, defining the
upper triangular matrix to the right of C as = and rewriting the matrix on the right-hand side
as <�ñ , with ñ�Dvò�óÍôg*¤� ð 143 ð # 3:PQP:PX3 ð �  a diagonal matrix and < lower triangular. We get the
following two relations: CEDE<�ñ²= > 1 3C > 1 Dv='ñ > 1 < > 1 3
where = and < are respectively upper and lower triangular matrices, with ones on the diago-
nal, and ñ a diagonal matrix. Moreover, we do not get the matrices = and < , but in fact we
get their generators, in terms of the vectors � R and ¯ R . This factorization can therefore be
used to compute the inverse of the matrix C .

We would like to stress once more that the presented Levinson-type method can be used
to compute the <�=@> 1 -decomposition of the involved matrices. One can clearly see that com-
puting this <�= > 1 -decomposition involves the computation of the matrices � H , these matrices
are however not necessary for solving the systems of equations as shown in the previous
sections. These factors < and =@> 1 are not computed in the solver. The fact that in the pre-
sented solver the factors < and =�> 1 are not explicitly formed, creates a low cost algorithm
for solving several systems of equations.
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5. Examples. In this section we will provide several classes of matrices, which are
simple �7/21!36/ #  -Levinson conform. Hence we can apply our previously designed algorithm
and come to an ���0/ 1 / # �" solver for these systems of equations. We do not always derive the
complete algorithm, but we define all the necessary matrices to illustrate that the presented
matrices are indeed simple �0/ 1 3�/ #  -Levinson conform matrices.

5.1. Givens-vector representable semiseparable matrices. Nowadays a lot of atten-
tion is being paid to semiseparable, and closely related matrices. Systems of equations with
semiseparable plus diagonal coefficient matrices arise for example in differential and integral
equations [23, 28], in oscillation theory [19], statistics [22], and so on.

For example, in the papers [8, 12, 14, 15, 18, 26, 30] different methods were proposed
for solving semiseparable systems of equations. Some of these papers cover more general
structures than the simple semiseparable one, the papers [26, 30] focus explicitely on the
class of semiseparable matrices of semiseparability rank

O
plus a diagonal. For this class of

matrices, the complexities of some of the different solvers are îgê � flops for [30], îgõ � flops
for [18], îgö � flops for [8] and õ �g� flops for [14].

As the structure of the simple �7/�1436/ #  -Levinson conform matrices, as presented in this
paper does not extend towards the diagonal, there is no loss of generality when solving a
simple �0/£143�/ #  -Levinson conform matrix plus a diagonal. In fact it does not even increase the
complexity. This means that the solver we derive below is also applicable for semiseparable
plus diagonal matrices.

In [32], an alternative representation for semiseparable matrices of semiseparability rankO
was presented. The representation is based on a sequence of Givens transformations and

a vector. Let us consider here the unsymmetric case, namely an unsymmetric semiseparable
matrix of semiseparability rank

O
, represented by using two sequences of Givens rotations

and a vector. (More information concerning this representation with respect to other types
of representations and algorithms related to it can be found in [32].) Let us denote the first
sequence of Givens rotations, and the vector for representing the lower triangular part as:÷ D°� å 1 å # P:PQPøå � > 1ù 1 ù # P:PQP ù � > 1 � 3ú D û ú 1 ú # P:P:P ú ��ü
and the second sequence of rotations and the vector, representing the strictly upper triangular
part as: ý D¢�Nþ 1 þ # P:P:P þ � >£#ÿ 1 ÿ # P:P:P ÿ � >¤# � 3� D�û � 1 � # PQP:P � � > 1 ü P
The matrices

÷
and

ý
contain in the first row, the cosines of Givens transformations and

in the second row the sines of the Givens transformation; every column corresponds to one
Givens rotation. The resulting semiseparable matrix j is of the following form

��� ����������
� �	��� 
!�	�!� 
:

���	�!��������
�����
��������������������4��������
�������� �����������!�� 
"!%����� � 
���
 
:
��:
 
�����
����������������B

�4��������
�������� �����������!�� � ! 
 ! � � � � � ! 
 � 
 � � � � . . .
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...
. . .

. . . 
 ����
 � ����
 � ����
 � ����
� ���+�
!�����
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We will construct here only the matrices e R�3 f R and }~R corresponding to the upper triangular
part. The matrices corresponding to the lower triangular part, can be constructed in a similar
way.

Put e 1�D � 1 and define f R�`$1ND þ R for YoD O 3:P:PQP:3��{^WA and f � D O
. If }~R?D ÿ R and� R�D � R , we get for Y�DyA�3QP:PQPX3,��^ O :

e R'D � e'R > 1 ÿ R > 1� R � D ÎÐÐÐÐÐÑ
� 1 ÿ 1 ÿ #(')'*' ÿ R > 1� # ÿ #+'*'*' ÿ R > 1...� R > 1 ÿ R > 1� R

Ý0ÞÞÞÞÞß
and hence (only the upper triangular part is shown)

C RX`a1 D¢� CdR e R þ Rå R�`a1 ú R�`a1 � D ÎÐÐÐÐÐÑ CSR
þ R ÿ R > 1 ')'*' ÿ 1 � 1þ R ÿ R > 1 ')'*' ÿ # � 1...þ R � Rå:R�`$1 ú R�`a1

Ý ÞÞÞÞÞß P
Which states that our defined matrices, generate the matrix C . Moreover we remark that
the multiplication of a vector with any of the matrices }9R?D ÿ R can clearly be performed in
linear time. This defines all the matrices, and therefore, this matrix is simple � O 3 O  -Levinson
conform and admits an �����" Levinson-like method. Using the operation count as presented
in Section 3.5, we see that the cost of solving a system of equations is bounded by A ê ��^�A ö
operations (with ´ 1 D³â 1 D O and ´ # D¥â # DE� ).

5.2. � O 3 O  -Quasiseparable matrices. In this section, the class of � O 3 O  -quasiseparable
matrices is considered. General quasiseparable matrices (see [16]) are investigated in Sec-
tion 5.4 as the general class is slightly different.

Currently a lot of attention is paid to the class of quasiseparable matrices; see, e.g.,
[12, 13, 17, 18]. Briefly speaking, we can say that a matrix is � O 3 O  -quasiseparable if ev-
ery subblock taken out of the strictly upper triangular part of the matrix has rank at most 1
(the same holds for the lower triangular part). Hence, the structure does not incorporate the
diagonal, in contrast to semiseparable matrices. The class of � O 3 O  quasiseparable matrices
incorporates for example the class of semiseparable matrices of semiseparability rank

O
, tridi-

agonal matrices and unitary Hessenberg matrices. Several algorithms for solving systems of
equations with quasiseparable matrices exist. The methods presented in [12, 18] compute a� e -factorization, and solve the system in this way. The methods presented in [13, 17] use
a recursive scheme for computing the solution and are in fact closely related to the Levin-
son method presented here applied to quasiseparable matrices. A comparison between these
approaches is given in Section 5.4.

Let us illustrate that � O 3 O  -quasiseparable matrices can be considered as simple � O 3 O  -
Levinson conform matrices, and hence admit an �����" solver of the Levinson type.

The class of � O 3 O  -quasiseparable matrices e DF� þ H�I J! consists of matrices of the follow-
ing form:

þ H�I J D ,- . / H G rH�I J)/ J 3 O'\ K Å L \ �©3ú H 3 O'\ K$DxL \ �©30 H « rH�I J æ J 3 O'\ L Å K \ �©P
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Where G rH�I J D�G�H)`a1$PQP:P�G�J > 1 and « rH�I J Dy«�H	`$1$P:PQP�«�J > 1 and all the elements G�H , «XH ,/¤H , / H , 0 H , æ+H andú H are scalars.
As the stucture of the upper triangular part is exactly the same as the structure from the

lower triangular part, we will search for the matrices corresponding to the upper triangular
part. The upper triangular part of such a � O 3 O  -quasiseparable matrix e has the following
structure:

e D ÎÐÐÐÐÐÐÐÐÑ
ú 1 / 1 / # / 1 G # / � / 1 G # G � /�1 ')'*' / 1 G # P:P:P�G � > 1 / �ú # / # / � / # G � /�1 ')'*' / # G � P:P:P�G � > 1 / �ú � / � /*1 ')'*' / � G 1 P:P:P�G � > 1 / �ú 1 ...

. . . / � > 1 / �ú �
Ý0ÞÞÞÞÞÞÞÞß P

Initializing e�1 D / 1 and defining ftR�`a1 D / R�`a1 , } R D�G R�`a1 and
� R D�/ R gives us forYµD O 3QP:PQP:3,��^ O :

e R'D � e'R > 1 } R > 1� R � D � eSR > 1 G R/ R � D ÎÐÐÐÐÐÑ
/ 1 G # G �(')'*' G R/ # G �('*')' G R.../ R > 1 G R/ R

Ý ÞÞÞÞÞß
and hence

C R�`a1 D°� CdR e R f R�`a1G R�`a1�I R�`a1 � D�� CSR e R / R�`a1ú R�`a1 � D ÎÐÐÐÐÐÐÐÑ CSR
/ 1 G # G �('*')' G R / R�`$1/ # G �+'*'*' G R / R�`$1.../ R > 1 G R / RX`a1/ R / RX`a1ú R�`a1

Ý ÞÞÞÞÞÞÞß 3
which gives us the desired matrices. All the conditions are satisfied (including the demands
on the multiplication with }©R ) to have a simple � O 3 O  -Levinson conform matrix. Using the
operation count as presented in Section 3.5, we see that the cost is bounded by A ê �[^¥A ö
operations (with ´£1{D¦â�1{D O

and ´ # D¦â # D¬� ), which is exactly the same number of
operations for a semiseparable plus diagonal matrix represented with a sequence of Givens
transformations and a vector. In fact both representations are closely related to each other;
see [32].

A careful computation of the number of operations involved in Algorithm 5.3 proposed
in [17] for solving a � O 3 O  -quasiseparable matrices gives us, for the number of flops, the
following complexity: êtö � 8 ��� O  .

5.3. Higher order generator representable semiseparable matrices. In two recent
papers [27, 31], we investigated how to solve symmetric strongly nonsingular systems of
higher order semiseparable matrices plus band matrices using a Levinson-like technique. The
results provided in this paper are more general. We include here the class of higher order gen-
erator representable matrices as an example. Moreover, we prove here that also nonsymmetric
matrices fit in this framework. Implementations of these solvers are available; see [27, 31].
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Suppose we have the following higher order generator representable semiseparable ma-
trix C :

CyD ÎÐÐÐÐÐÑ
2 1"3~h1 2 1"3~h# P:P:P 2 1�3~h�4 1�5 h 1 2 # 3~h# ...

...
. . . 2 � > 1 3~h�4 1 5 h� > 1 PQP:P 4 � > 1 5 h� > 1 2 � 3$h�

Ý0ÞÞÞÞÞß 3
for which all the row vectors 5~H and 4 H are of length / # and the row vectors 3 H and 2 H are
of length / 1 . This matrix is called an �7/ 1 3�/ #  -generator representable semiseparable matrix.
We will prove now that this matrix is simple �0/ 1 36/ #  -Levinson conform.

Let us define the matrices e'R and j�R as follows:e'R D ÎÐÑ 2 1...2 R Ý Þß and j�R D ÎÐÑ 4 1...4 R Ý Þß P
Defining } R Dq� s%u , � R D�� s:w , � R D 4 R and

� R D 2 R gives us the following relations (these
are Conditions 2 and 3 of Definition 2.2):e R�`a1�D � eSR2 R�`a1_� and j RX`a1�D � j�R4 R�`a1±� P
Moreover the upper left �6Y 8 O  ²Z[�MY 8 O  block of C is of the following form (Condition 1
of Definition 2.2): C R�`a1 D b C R e'R 3$hR�`$15$R�j hR 3 RX`a1 2 h RX`a1 l P
This coefficient matrix satisfies all the properties to come to the desired ���0/ 1 / # �" Levinson-
like solver. Using the operation count as presented in Section 3.5, we see that the number of
operations is bounded by�6èX/ 1 / # 8ïé / 1©8�ê / # 8 O  2����^ O  ~^[ìX/ 1 / # 8 ì:/ 1 ^�A�/ # 8 O P

5.4. General quasiseparable matrices. References concerning the class of quasisepa-
rable matrices can be found in Section 5.2. In this section we will compare the Levinson-like
method, with the algorithm presented in [17], for solving quasiseparable systems of equa-
tions e §oDE¨ . Before comparing both methods, we will briefly indicate how quasiseparable
matrices fit into this framework. A general �7/ 1 3�/ #  -quasiseparable matrix is of the following
form þ H�I JSD ,- . /¤H�G rH�I J)/ hJ 3 O'\ K Å L \ �©3ú HB3 O'\ K$DxL \ �©30 H « rH�I J æ hJ 3 O'\ L Å K \ �©P
Where G rH�I J D�G H)`a1 PQP:P,G J > 1 , « rH�I J D°« H)`a1 P:PQP�« J > 1 , / H 3 / H n�p 1%r�s u , 0 H 3�æ J n�p 1%r�s w , G H np s u rts u and « H nxp s w r�s w for all K . Combining the techniques presented in Sections 5.3 and
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5.2, we see that our quasiseparable matrix is �7/�1g3�/ #  -Levinson conform (we do not include
the details). The quasiseparable matrix is however not simple Levinson conform as our ma-
trices } R D�G RX`a1 and � R DE« R�`a1 and these matrices G R�`a1 and « R�`a1 do not necessarily admit
a linear multiplication with a vector. Hence, we are in the case of Section 3.6, leading to a
complexity of��çÍAX/ # 1 / # 8 A�/£1V/ ## 8Tê / # 1 8�ê /£1M/ # 8 ì:/ ## 8Wî /21 8 AX/ # 8 OXë 8 ��� O  �P
for solving a quasiseparable matrix via the Levinson-like solver, as presented in this paper.

The method presented in [17], computes in fact the generators of the inverse of the qua-
siseparable matrix, and then applies a fast multiplication CN> 1 to the right-hand side ¨ to
compute the solution vector § . Moreover the algorithm produces also the generators for the
matrices < and = , in the following factorization of the matrix C :CED�<Äñ�=²3
where < and = are respectively lower and upper triangular matrices, with ones on the diago-
nal, and ñ is a diagonal matrix. A complexity count of the algorithm proposed in [17], gives
us the following number of flops2��ç ê / # 1 / # 8�ê / ## /£1 8 O A�/21M/ # 8Tõ / # 1 8xõ / ## 8Wî /21 8xî / # 8 ì ë 8 ��� O  �P

The method presented in this paper however, does not explicitely compute the generators
of the inverse of the quasiseparable matrix. But in some sense it calculates an upper triangular
factorization of the following form (see Section 4)CS=qD�<Äñ�3
where = and < are respectively upper and lower triangular with ones on the diagonal, and ñ
is a diagonal matrix. Moreover comparing both complexity counts, we see that our Levinson-
like solver is approximately 2 times faster as the solver presented in [17].

We remark however that the algorithm proposed in [17], is also capable of dealing with
block quasiseparable matrices, which our method in the current form is not capable of deal-
ing with. Using the techniques however, which will be presented in the look-ahead section
(Section 6), one can derive the block version of the Levinson-like solver as presented in this
paper.

5.5. Band matrices. We will now briefly illustrate how we can solve band matrices
using the above proposed method. There is a huge variety of methods for solving banded
systems of equations: from � e -decompositions, <�= -decompositions, Gaussian elimination
to parallel methods. Some of these methods can be found in [10], and the references therein.
Band matrices can also be considered as quasiseparable matrices, for example a �7/$1!36/ #  band
matrix is also �7/2143�/ #  -quasiseparable. But instead of using the quasiseparable approach,
the direct approach gives a much faster algorithm: the quasiseparable approach involves the
terms /¤#1 / # , / 1 /+## and / 1 / # in the complexity count, whereas the Levinson-like approach only
involves the term / 1 / # in the complexity count (see Section 5.4, and the complexity count at
the end of this section).

Assume we have an �7/ 1 3�/ #  -band matrix C of the following form:

2In the paper [17] another definition of a flop is used, than the one used throughout this paper. Therefore the
operation count as presented in [17], was translated towards the definition of a flop in this paper.
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CED ÎÐÐÐÐÐÐÐÐÐÐÐÐÐÑ
G�1
I 1 G�1
I # P:PQP G�1�I s u `a1 � PQP:P �G # I 1 G # I # G # I � P:P:P G # I s%u;` # ...

... G � I # G � I � . . . �G s:w�`$1
I 1 ...
. . . G � > sQu�I �� G s:w�` # I # ...

...
. . . . . . G � > 1�I �� P:P:P � G � I � > s:w PQP:P G � I � > 1 G � I �

Ý ÞÞÞÞÞÞÞÞÞÞÞÞÞß 3
with all the G H�I J n�p . This is not the most compact representation of the band matrix C , as
many of its elements are zero. Let us therefore introduce the matrix 6C . (Similarly we can
construct the matrix C , for the lower triangular part.) which contains the elements in the same
row, strictly Let us denote with 67 H the K th row out of the matrix 6C , this means:8 67 HaD�� ��3QP:P:PQ3��z3�G�1�I H�3zG # I H�3:PQP:PX3+GtH > 1�I H�� if K \ /£167 HaD�� G�H > s u I H�3�G�H > s u `a1
I H�3:P:PQP:3zG�H > 1�I H�� if K:9|/£14P
The row vectors 67 H are of length /21 ( 67 1'D�� ). It is shown now that the upper triangular part
of the matrix satisfies the desired conditions, to be simple �7/"143�/ #  -Levinson conform. (The
lower triangular part is similar.) Let us define e R as a Y�ZN/21 matrix of the following form:e R�D � ���s u � 3
where � s%u denotes the identity matrix of size / 1 . In the beginning of the algorithm, we have
that Y \ / 1 . In this case we take only the last Y lines of � s%u , this means that:

eSR D ,;;- ;;. � �z3��:R!� if Y Å /21��s u if Y�D�/21� �� s%u � if Y<9o/ 1 P
For every Y the matrix } R is defined as the shift operator } , which is an / 1 Z@/ 1 matrix

of the following form

}�D ÎÐÐÐÐÐÐÑ
� P:PQP¬�O � P:PQP¬�� O � ...
...

. . . . . .� PQP:P � O �
Ý0ÞÞÞÞÞÞß P

Multiplying a matrix on the right with this operator, will shift all the columns in this matrix
one position to the left, and add a trailing zero column. Using this shift matrix and defining
for every Y the vector

� R DF� �z3���3QP:PQPX3��z3 O � gives use R�`$1�D � eSR }� ��3QP:PQP:3��z3 O � � P
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Using the above definitions and defining f R�D 67 R (define j R and
i R similarly as for the upper

triangular part.) leads to the following relations:

CdRX`a1�D b CdR e R 67 h R�`a1i R�`$1:j hR G R�`$1
I R�`$1 l P
This means that our band matrix is simple �7/�143�/ #  -Levinson conform, leading to a solver of
complexity ���7/21B/ # �" . More precisely we know, as the multiplication on the right with the
matrix }~R does not involve operations (just index shuffling), that the number of operations is
bounded by ��è:/£1;/ # 8ïé /£1 8Tê / # 8 O  2����^ O  $^[ìX/£1;/ # 8 ìX/21Ä^[AX/ # 8 O 3
as ´ 1 D ´ # D�â 1 D�â # D¬� . This is clearly an upper bound, as the special structure of
the matrices e'R is not taken into consideration. Exploiting this structure results in further
complexity reduction.

5.6. Arrowhead matrices. Arrowhead matrices are often an essential tool for the com-
putation of the eigenvalues, via divide and conquer approaches [5, 9]. They also arise, in
block form, in domain decomposition methods, when discretizing partial differential equa-
tions where they are used as preconditioners. In this section we will show how arrowhead
matrices can be solved efficiently using the presented framework, and we will present the
algorithm based on Section 3.5. Let us consider the nonsymmetric arrowhead matrix of the
following form:

CED ÎÐÐÐÐÐÑ
G�1 6G # 6G � P:PQP 6G �G # G #G � G �...

. . .G � G �
Ý ÞÞÞÞÞß 3

where the elements of the form 6G�H denote the elements of the arrow in the upper triangular
part, the elements G H denote the elements of the arrow in the lower triangular part, the elementsG H denote the diagonal elements, with G 1 D�G 1 D 6G 1 , and the elements not shown are assumed
to be zero.

Let us define the matrices e�R and j�R as j hR D e hR D­� O 3���3QP:P:P�3��4� which are vectors of
length Y . Let us define the elements f�R D 6G R and

i R DEG R , the matrices } R DE� R are chosen
equal to the identity matrix and the vectors

� R D � R D � . One can easily check that this
matrix is simple � O 3 O  -Levinson conform.

Based on our solver of Section 3.5, we derive here the solver for the arrowhead matrix.
ALGORITHM 5.1. Initialize � 1 D ^ OG�1 Flops:

O¯ 1 D « 1G�1 Flops:
Oj h1 �21�D j h1 � 1�D � 1 Flops: �j h1 Ì21�D j h1 ¯ 1�D ¯ 1 Flops: �

For YµD O 3:P:PQPX3,��^ O do:
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1. Compute and store the following variable:
(a) G R�`$1 j hR �¤R Flops:

O
(b) �6G R�`a1 j hR � R 6G R�`a1�8 G R�`a1�I R�`a1  Flops: A

2. � R�`a1�D�^ À ¸,¹ u »�¼¸£½ ¸À ¸,¹ u » ¼¸ ½ ¸>=À ¸,¹ u;`"À ¸�¹ u;Á ¸,¹ u Flops:
O

3. ¯ R�`a1�D Â ¸�¹ u > À ¸�¹ u »t¼¸¤ä ¸À ¸�¹ u » ¼¸ ½ ¸ =À ¸,¹ u `aÀ ¸,¹ uVÁ ¸�¹ u Flops: ì
4. Compute and store the following variables (if Y Å ��^ O ):

(a) j hR � R 6G R�`a1 Flops:
O

(b) j hR�`a1 � R�`$1 D j hR � R�8��Vj hR � R 6G R�`a1Q� � R�`a1 Flops: A
(c) j hR�`a1 § R�`a1 D j hR § R�8F�Vj hR � R 6G R�`a1Q� ¯ R�`$1 Flops: A

endfor;
Computation of the solution vector ( æ is a dummy variable)Ì � D ¯ �æ�D ¯ � 6G Flops:

O
For Y�D¥��^ O 3:^ O 3 O do

1. Ì R D ¯ R²8 � R æ Flops: A
2. æ�D�Ì H 6G H+8 æ Flops: A

endfor.
This algorithm has as largest term in its complexity

O ö � . If one however uses standard
Gaussian elimination to solve this system (after having flipped the arrow, so that it points
downwards), the complexity is è�� .

5.7. Unsymmetric structures. The examples presented above were matrices having a
symmetric structure. This means that if the upper part was semiseparable also the lower
triangular part was semiseparable, if the upper triangular part was from a band matrix, also
the lower triangular part was from a band matrix. But in fact, taking a closer look at the
conditions, the upper and/or the lower triangular part of the matrix need not to be related in
any way.

Dealing with the upper and the lower triangular part of the matrix separately we can
create matrices having a nonsymmetric structure:í An upper triangular semiseparable matrix is simple �0/ 1 3��t -Levinson conform, where/ 1 stands for the semiseparability rank of the upper triangular part.í An upper triangular band matrix is simple �0/ 1 3��� -Levinson conform, where / 1

stands for the bandwidth in the upper triangular part.í Different matrices from statistical applications, which have different semiseparabil-
ity ranks in the upper and the lower triangular part plus a band matrix can be found
in [22]. These matrices fit naturally in this Levinson framework.í A matrix for which the upper triangular part is semiseparable, and the lower triangu-
lar part is coming from a band matrix. For example a unitary Hessenberg matrix, this
matrix has the upper triangular part of semiseparable form and only one subdiagonal
different from zero. Hence a unitary Hessenberg matrix is simple � O 3 O  -Levinson
conform.í A matrix which has a band structure in the upper triangular part and, for which
the lower triangular part comes from an arrowhead is �0/ 1 3 O  -Levinson conform (/ 1
denotes the bandwidth).í Moreover, one can also combine matrices, for which the upper or the lower trian-
gular part is quasiseparable. In this case the complexity of the Levinson-like solver
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changes according to the complexity of the multiplication with the matrices }�R and��R ; see Section 3.6 for a more detailed analysis of the complexity.
In the following sections, some interesting classes of matrices having an unsymmetric struc-
ture are investigated in more detail.

5.8. Upper triangular matrices. Let us apply our Levinson solver to an upper tri-
angular system of equations. We have the matrix CÏD �6G�HÉJ4 where G�HÉJ¥D � if K?9¬L .
Let us denote with e R the matrix of dimension Y³Z����¥^ O  where e R�D � �:R�3��4� andf R|D¢� G�1�I R�3:PQP:PX3�G�R > 1�I R�3��z3:P:PQPX3��g� is a row vector of length

O Z¥���o^ O  . Moreover we as-
sume the matrix j R|D � and }�D � . The matrix is simple ���|^ O 3��� -Levinson conform
as: C R�`a1 D°� C R eSRgf hR�`a1� G R�`a1�I R�`a1 � P
We know that solving the system of equations in this manner will lead to an �����$#! method.
Moreover, this is a well-known method, as we will show.

Let us take a closer look at the solution generated by this Levinson-like approach. We
have all the necessary information to easily caculate the values of � R and ¯ R for every Y , asj�R D¥� . We have that for every Y � R D �A@ ��BRG�R%I R¯ R�D «XRG R%I R 3
where � @ ��BR is the Y th vector of the canonical basis of p � . Using these variables, we can
construct the solution vector § for the system C�§yD¡¨ . We will consider the computation
of the last three components of § , based on (3.10). The last component Ì � has the following
form: Ì � D ¯ � D « �G � I � P
The component Ì � > 1 is of the following form:Ì � > 1 D « � > 1G � > 1�I � > 1 8 �B^ O  G � > 1�I � > 1 « �G � I � � @ ��B� > 1 f h�D ^ OG � > 1�I � > 1 �M« � > 1�^|G � > 1
I � Ì �  £P
Let us conclude with element Ì � >¤# , which gives us the following equations:Ì � >£# D « � >¤#G � >£# I � >£# 8 � @ ��B� >¤#G � >£# I � >¤#DC « � > 1G � > 1
I � > 1 f h� > 1 8 �6� 8Tf h� > 1 ^ OG � > 1�I � > 1 � @ ��B� > 1  « �G � I � f h� ED OG � >£# I � >£# C « � >¤# ^[G � >¤# I � > 1 « � > 1G � > 1�I � > 1 ^[G � >¤# I � Ì � 8 G � >¤# I � > 1 G � > 1�I �G � > 1�I � > 1 Ì � ED OG � >£# I � >£# �M« � >¤# ^[G � >¤# I � > 1 Ì � > 1 ^[G � >¤# I � Ì �  £P

This means, that rewriting the general formulas for the Levinson-like solver for upper
triangular systems of equations, gives us the well-known backward substition algorithm [21].
In a similar way we can derive the solution method for a lower triangular system of equations.
This will give us the forward substitution algorithm.
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5.9. Dense matrices. Using Lemma 2.3 we know that also strongly nonsingular systems
of equations without structure in the coefficient matrix, can be solved in this way. This gives
us an algorithm, requiring �����"�! operations, more precisely è��"� , which is of course not
efficient enough.

5.10. Summations of Levinson-conform matrices. If we summate different Levinson-
conform matrices, we get again a Levinson-conform matrix. This is proved in the next theo-
rem.

THEOREM 5.2. Suppose we have two matrices FC and GC , which are respectively � F/ 1 3 F/ #  
and � G/ 1 3 G/ #  -Levinson conform. Then the matrix C D FC 8 GC will be � F/ 1�8 G/ 1 3 F/ # 8 G/ #  -
Levinson conform.

Proof. Let us denote all the matrices related to the matrix FC , with a hat and the ones
related to the matrix GC with a tilde. Let us define the matrices e�R 3�å R 3 ú R 3 j�R 3 � R and � R as
follows: e R�D çHFe R�3(Ge R ë , j R�D¬çIFj R�3 Gj R ëftR D�� Ff�R 3 Gf�R � , i R D ç Fi R 3 Gi R ë� R D çJF� R 3 G� R ë , � R DF� F� R 3 G� R ��P
Define the operators }~R and ��R as} R D°� F} R G}~R � and � R D�� F� R G��R � P
Then it is straightforward to prove that these newly defined matrices and vectors, satisfy the
desired conditions, such that the matrix C is � F/ 198 G/ 1 3 F/ # 8 G/ #  -Levinson conform.

We remark that if we summate two simple Levinson conform matrix, the resulting matrix
will also be simple Levinson conform.

Let us illustrate this with some possible structures which become solvable now:í One can solve now summations of all previously defined Levinson-conform ma-
trices. For example, the sum of a higher order semiseparable matrix plus a band
matrix.í Moreover it is not necessary that both matrices are strongly nonsingular. As long
as the sum of these matrices is strongly nonsingular, the problem can be solved by
the standard Levinson-like solver (for the look-ahead method, see Section 6). In this
way, we can also add simple Levinson conform matrices which are singular. For
example adding a rank 1 matrix to a Levinson conform matrix is feasible.í For example an arrowhead matrix with a larger band-width is �7/ 1'8 O 3�/ # 8 O  -
Levinson conform, as it can be written as the sum of an arrowhead matrix and an�7/ 1 36/ #  -band matrix.

In the next sections, we will give some more examples of matrices, which can easily be
seen as the sum of simple Levinson conform matrices.

5.11. Matrices with errors in structures. Quite often one will deal with matrices,
which do not have a perfect structure. For example a matrix, which is semiseparable, ex-
cept for some elements in one row or column. Or a matrix, which is almost of band form
except for some elements which are nonzero. The number of elements desintegrating the
structure is often low. If we are able to write now this matrix as the sum of the pure structure
(e.g. semiseparable plus band) and the elements destroying the structure, we can decrease the
complexity count of the Levinson method related to this matrix. Let us call these matrices
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destroying the structure, error matrices. If these error matrices are simple � � 143 � #  -Levinson
conform, the complete matrix will be simple �7/"1 8 � 143�/ # 8 � #  -Levinson conform. In case
of small � 1 and � # this does not lead to a large increase in complexity. Let us illustrate this
with some examples of errors in the upper triangular part. (The lower triangular part, can be
dealt with in a similar way.)í The error matrix c has only one column different from zero. Suppose column K :c�H D¦� � 1 3 � # 3QP:PQP:3 � � �ãh contains the only nonzero elements in the matrix c . If we

define e�1 D � 1 , eShR�`$1 D � e'hR 3 � R�`$1 � and all the ftR D � , except f�H	`$1 D O
, this

gives us the structure for the upper triangular part. Defining the lower triangular
part similarly gives us a simple � O 3 O  -Levinson conform matrix. Similarly one can
consider error matrices with more columns different from zero, or error matrices
with one or more rows different from zero. For example a matrix which is of unitary
Hessenberg form, except for the elements in the last column. These elements do not
belong to the semiseparable structure of the upper triangular part. This matrix can
be written as the sum of a unitary Hessenberg matrix plus an error matrix, which has
only one column different from zero.í The error matrix has a super diagonal different from zero. Similarly to the band
matrix approach, we can prove that this matrix is simple ���z3 O  -Levinson conform.
Multiple super diagonals and/or subdiagonals, can also be considered.í If the error matrix is unstructured, but contains few elements, one might be able to
represent it as a simple � � 1 3 � #  -Levinson conform matrix with small � 1 and � # , but
this is of course case dependent.

In the next sections some examples will be given of specific matrices which can be written as
the sum of a pure structure plus an error matrix.

5.12. Companion matrices. Companion matrices are often used for computing the ze-
ros of polynomials; see [4]. The companion matrix itself is not suitable for applying this
Levinson algorithm, as all the leading principal matrices, except possibly the matrix itself,
are singular. We can add this matrix however easily to other Levinson-conform matrices as it
is simple � O 3 O  -Levinson conform. Let us consider the companion matrix K corresponding
to the polynomial /$��Ì¤ ÄD¥Ì � 8 G � > 1 Ì � > 1 8 ')'*' 8 G 1 Ì 8 GIL :

KqD ÎÐÐÐÐÐÑ
� � � ')'*' ^�GILO � � ')'*' ^�G 1� O � ')'*' ^�G #...

. . .
...O ^�G � > 1

Ý0ÞÞÞÞÞß P
This matrix is clearly simple � O 3 O  -Levinson conform.

5.13. Comrade matrix. Lots of polynomial bases satisfy a three terms recurrence rela-
tion. If we would like to compute the roots of a polynomial expressed in such a basis, we can
use the comrade matrix [3].

When we have a set of polynomials defined in the following sense:/¤H,��Ì£ ÄD HMJ
N L /¤HÉJ:Ì J 3©K$DE��3 O 3�A�3�ìz3:P)P	P
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which satisfy the following relationships (in fact a three terms recurrence):/OLt��Ì¤ ÄD O 3/£1g��Ì¤ ÄD � 1�Ì 8QP 143/+H���Ì¤ ÄD�� � H6Ì 8RP HM �/+H > 1���Ì£ ~^_â�H	/+H >¤# ��Ì¤ for KTS³A�3
and suppose we have the following polynomial:G£��Ì£ �D�/ � ��Ì¤ 8 G 1 / � > 1 ��Ì£ 8 P:PQP 8 G � /UL���Ì£ �3
then the comrade matrix is defined as the matrix K :

KqD ÎÐÐÐÐÐÐÐÐÐÑ
>OV uW u 1W u � P:P:P �X wW w >OV wW w 1W w � P:P:P �� X ÕW Õ >OV ÕW Õ 1W Õ � PQP:P ...

...
. . . . . . . . . . . .X ÓgÔ uW Ó4Ô u >OV Ó4Ô uW Ó4Ô u 1W ÓgÔ u> À ÓW Ó > À ÓgÔ uW Ó P:PQP > À ÕW Ó > À w ` X ÓW Ó > À u >OV ÓW Ó

Ý ÞÞÞÞÞÞÞÞÞß P
It is clear that this comrade matrix can be written as the sum of a tridiagonal matrix

plus an error matrix, for which one row is different from zero. Hence, the matrix is simple� O 3�A� -Levinson conform.

5.14. Fellow matrices. Fellow matrices are rank
O

perturbations of unitary Hessenberg
matrices; see [6]. Finding the roots of a polynomial expressed as a linear combination of
Szegö polynomials is related to the eigenvalues of a fellow matrix; see [1, 2]. These matrices
are naturally written as the sum of two simple Levinson conform matrices. Suppose k to
be a fellow matrix, than we can write k D ý 8ZYH[ h , where

ý
is a unitary Hessenberg

matrix, which is simple � O 3 O  -Levinson conform, and the rank one matrix YH[zh is also simple� O 3 O  -Levinson conform. A fellow matrix is therefore simple �MA�3
A� -Levinson conform.

6. The look-ahead procedure. A limitation of the presented solver is the strongly non-
singularity assumption. In this section we will briefly illustrate how we can overcome this
problem by applying a look-ahead technique. Once the main decomposition of the involved
matrices is known, it is an easy exercise to derive the complete algorithm. Hence we do not
include all the details, we only illustrate it for the Yule-Walker-like equation.

Given a simple /21 -Levinson conform matrix C . Suppose that, after having solved theY th order Yule-Walker-like equation, we encounter some singular or almost singular principal
leading matrices CSR�`$1 up to CSR�`]\ > 1 . This means that the first nonsingular principal leading
matrix is C R�`]\ . We will now solve this �MY 8 56 th Yule-Walker-like system, based on the
solution of the Y th Yule-Walker-like problem:Cd�¤R�D�^ e RtP
The coefficient matrix C R�`]\ , can be decomposed in block form asC R�`]\ D b C R e'R K'hR%I \^ R%I \�j hR _ R%I \ l 3
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where _ R%I \ÄD�CN�6Y 8 Oa` 5B3
Y 8 Oa` 5M 3 is an 5�Z±5 matrix and K�R!I \ is an 59Z?/21 matrix of the
following form: K hR%I \ D�û f hR�`a1 3�}~R f h RX` # 3:P:PQPX3�}~R4}~R�`a1 '*'*' }$RX`]\ >¤# f h RX`]\ ü P
Before we can solve the system CSRX`]\6�£R�`]\9D�^ e R�`]\ , we also need to block-decompose the
matrix e R�`]\ : e R�`]\"D � eSR } R '*')' } R�`]\ > 1b R%I \ �
with

b R!I \$n{p \MrtsQu of the form:

b R%I \ D ÎÐÐÐÐÐÑ
� R�`a1 } R�`a1 } R�` # } R�` �:'*'*' } RX`]\ > 1� R�` # } R�` # } R�` �:'*'*' } RX`]\ > 1� R�` � }~R�` � '*'*' }$RX`]\ > 1...� RX`]\

Ý0ÞÞÞÞÞß P
Using these block-decompositions of the matrices C�R�`]\ and e RX`]\ , the �6Y 8 56 th Yule-Walker-
like equation can be written asb C R e'R K hR%I \^ hR%I \ j hR _ R%I \ l �@� R%I \� R%I \ � D � e'R } R '*'*' } RX`]\ > 1b R!I \ � 3
with � R%I \ n�p Rtr�s u and � R%I \ n]p \Vr�s u .

Expanding the above equations and solving them towards � R%I \ and � R%I \ leads to the
following formulas:� R%I \"DE�¤RS�V}$Rg}$R�`$1 '*')' }~R�`]\ > 1 8 K hR!I \ � R%I \6�~3� R%I \ D�^ � ^ R%I \6j hR � R K hR%I \ 8 _ R!I \6� > 1 � b R%I \+8 ^ R%I \�j hR � R } R ')'*' } R�` \ > 1Q� P
This means that for computing � R!I \ , we need to solve / 1 systems of size 5tZ'5 , this can be done
by several techniques, at a cost of ����5M�Q . As long as the value of 5 , w.r.t. the problem size is
small, there is no significant increase in complexity, but this is of course closely related to the
problem.

Having computed the solution of the Yule-Walker-like equation, the solving of the cor-
responding Levinson problem is done similarly. Also the complexity reducing remarks as
presented in Section 3.4, can be translated towards this block-version.

An important issue, which we will not address here, is to decide when a principal leading
matrix is numerically singular. Or even more, when is it too ill conditioned, such that it might
have a large influence on the accuracy of the final result. An easy way to measure the ill-
conditioning is to check the value of the denominator in the computation of � R ; as long as
this value is not too close to zero (w.r.t. the nominator), the computations are numerically
sound. A more detailed analysis should however be done case by case for obtaining a fast
and accurate practical implementation.

3With the matrix c9�ed+È�f:�6��È�g	� , we denote the submatrix of the matrix c , with rows ranging from d up to f , and
with columns ranging from � up to g .
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7. Conclusions. In this paper we developed an algorithm for solving simple �7/a143�/ #  -
Levinson conform matrices. The algorithm was linear in time, w.r.t. the size of the matrix,
multiplied with / 1 and / # . It was shown that different classes of matrices, including semisep-
arable, quasiseparable, band, ... fit in this framework. We also investigated the relation with
an upper triangular factorization, and we pointed out how to design a look-ahead method for
this type of algorithm.
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