
Electronic Transactions on Numerical Analysis.
Volume 26, pp. 103-120, 2007.
Copyright  2007, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University 
etna@mcs.kent.edu

A FETI-DP PRECONDITIONER FOR MORTAR METHODS
IN THREE DIMENSIONS

�
HYEA HYUN KIM

�
Abstract. A FETI-DP method is developed for three dimensional elliptic problems with mortar discretization.

Mortar matching conditions are considered as the continuity constraints in the FETI-DP formulation. Among them,
face average constraints are selected as primal constraints in our FETI-DP formulation to achieve an algorithm as
scalable as two dimensional problems. A Neumann-Dirichlet preconditioner is used in the FETI-DP formulation and
it gives the condition number bound � ������
	��� � � �� � ��������������� � �"!$#%�"&�&"')(+*
where

� � and #%� are sizes of domain and mesh for each subdomain, respectively. When the subdomain with the
smaller coefficient is chosen as the nonmortar side across the interface, the constant

�
is independent of

� � , #%� ,
and the coefficients of the elliptic problem. The proposed algorithm can be applied to two dimensional elliptic
problems with edge average constraints only as primal constraints and it can be generalized to geometrically non-
conforming subdomain partitions. Numerical results present the performance of the algorithm for elliptic problems
with discontinuous coefficients.
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1. Introduction. FETI-DP methods were introduced by Farhat et al. [7] and applied
to solving elliptic problems with conforming discretizations both in two and three dimen-
sions [8]. In three dimensions, subdomains intersect with neighboring subdomains on faces,
edges, or at corners, while they intersect on edges or at corners in two dimensions; the conti-
nuity of solution is imposed on faces and edges with dual variables and at corners with primal
variables in the dual-primal FETI (FETI-DP) methods. However, numerical results in [7, 8]
show that we need additional primal constraints for three dimensional problems to attain the
same efficiency as two dimensional problems. For these primal constraints, additional La-
grange multipliers are introduced and they are treated as primal variables in the FETI-DP
formulation. FETI-DP methods with various redundant constraints have been studied and
their condition number bound was analyzed by Klawonn et al. [16, 17] for elliptic problems
with heterogeneous coefficients. Numerical results were further provided in [14].

FETI-DP methods have been also applied to mortar finite elements methods [5, 6, 11, 20,
4]. In [5, 6], the condition number bound of FETI-DP operator was analyzed for various types
of preconditioners but it depends on ratios of mesh sizes between neighboring subdomains.
In [11], a Neumann-Dirichlet preconditioner was proposed and analyzed for elliptic problems
with discontinuous coefficients. In this case, the condition number bound does not depend
on the mesh sizes and the coefficients when the subdomain with the smaller coefficient is
chosen as the nonmortar side. Moreover, numerical results show that the Neumann-Dirichlet
preconditioner works much more efficiently than other FETI-DP preconditioners for elliptic
problems with highly discontinuous coefficients. Recently, a preconditioner, with its weight
factor depending on mesh parameters and the problem coefficients, was introduced and an-
alyzed to be independent of coefficients and mesh parameters for two dimensional elliptic
problems, see Dokeva et. al. [4]. For three dimensional problems, FETI methods with mortar
discretizations were developed and their numerical results were provided in [19].,
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The primary contribution of our work is the extension of the FETI-DP method in [11] to
three dimensional problems and to the second generation of mortar methods. In [11], vertex
continuity constraints are introduced as primal constraints. However, for the three dimen-
sional case we need primal constraints other than the vertex constraints to obtain a method
as scalable as the two dimensional case in [11]. We select as constraints that averages of the
solution across subdomain interfaces are the same, which are the so-called face constraints in
[17]. Similarly to the previous work in [11], we propose a Neumann-Dirichlet preconditioner
for the FETI-DP formulation and show that the condition number bound- .0/21354�6$7�8�8�8�7 9;:=<?>A@CB5DFEG<�H 3�I%JK3ML�L?NPO
holds for elliptic problems with discontinuous constant coefficients. Here, H 3 and JK3 are sizes
of domain and mesh for each subdomain, respectively, and the constant

-
is independent ofH 3 , J 3 , and the coefficients of elliptic problems. In our FETI-DP formulation, we follow a

change of basis formulation introduced in [15, 18]. The change of basis makes the analy-
sis of FETI-DP algorithms easier when primal constraints other than the vertex continuity
constraints are used. Moreover it gives an efficient and robust implementation of FETI-DP
algorithms [12, 13].

We note that edge average constraints can be considered as primal constraints for two
dimensional problems. The continuity constraints at vertices can not be selected as primal
constraints for the second generation of mortar methods [1]. We are able to extend the result
in [11] to the second generation of mortar methods by introducing edge average constraints
and using the change of basis formulation. Furthermore, the condition number bound estimate
of this case can be carried out similarly to three dimensional case presented in this paper.

This paper is organized as follows. In Section 2, we introduce finite element spaces
and norms and in Section 3, we derive the FETI-DP formulation with the Neumann-Dirichlet
preconditioner. Section 4 is devoted to analyzing the condition number bound of the FETI-DP
algorithm. Numerical tests are presented in Section 5.

Throughout the paper,
-

or Q <?R - L denotes a generic positive constant that does not
depend on any mesh parameters or on the coefficients of the elliptic problems.

2. Finite element spaces and norms.

2.1. A model problem and Sobolev spaces. Let S be a bounded polyhedral domain
in TVU and W N < S L be the space of square integrable functions defined in S equipped with the
norm XZY[X N\^]$_
`Kacb�dfe ` Y NhgFi�j
The space H 6 < S L is the set of functions, which are square integrable up to the first weak
derivatives, and the norm is given byX�Y�XZkml _5`na b�dpo�e `rq Yts q Y gui @ >g N` e ` Y Nhguinv 6xw Nzy
where g ` denotes the diameter of S .

We consider the following model elliptic problem:
Find {}| H 6 < S L such that

(2.1) ~ q s <��[< i L q { < i LxL d�� < i L y i |�S y{ < i L d�� y i |���S y
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where � < i L is a square integrable function and �[< i L is a positive and bounded function in S .
Let S be partitioned into non-overlapping polyhedral subdomains �)S 3x� 9354�6 . We assume

that the partition is geometrically conforming, which means that each subdomain intersects
its neighboring subdomains on a full face, a full edge or at a vertex. Each subdomain S 3
is equipped with a quasi uniform triangulation SG�3 , which consists of tetrahedrons. These
triangulations need not be aligned across subdomain interfaces.

Each subdomain S 3 is equipped with a conforming linear finite element space� 3 b�d � Y | H 6� < S 3 L b Y�� � |�� 6 <�� L y � |�S �3 � y
where H 6� < S 3�L b�d � Y | H 6 < S 3�L b Y df� on ��S�����S 3 � and � 6 <�� L is a set of polynomials
of degree Rf> in � . We assume that�[< i L d � 3 y�� i |�S 3 y
where � 3 is a positive constant. A bilinear form � 3 < s y s L b � 3V� � 3�� T is defined as

(2.2) � 3 < { 3 y Y 3 L b�d � 3 e `K� q { 3 s q Y 3 gFi�j
We now introduce Sobolev spaces defined on the boundaries of subdomains. The spaceH 6 w N < ��S 3�L is the trace space of H 6 < S 3�L equipped with the normX�¡ 3 X Nk¢l�£ ] _5¤¥` � a b�d � ¡ 3 � Nk¢l�£ ] _5¤¥` � a @ >g `K� X�¡ 3 X N\^]�_5¤¥` � a y

where � ¡ 3 � Nk¢l�£ ] _5¤¥` � a b�d e ¤¥` � e ¤¦` � � ¡ 3 < i L ~ ¡ 3 <�§ L � N� i ~ § � U gP¨ < i L g©¨ <"§ L j
For any face ª 3�« |;��S 3 , H 6 w N¬�¬ < ª 3�« L is the set of functions in W N < ª 3�« L whose zero extension
into �[S 3 is contained in H 6 w N < �[S 3 L and is equipped with the normXZY[X Nk l�£ ]� _5®F��¯ a b�d � Y�� Nk lM£ ] _
®u��¯�a @ e ®F�°¯ Y N < i L

dist < i y �[ª 3�«)L gP¨uj
From Section 4.1 in [25], we have the following relation for

Y | H 6xw N¬�¬ < ª 3�« L :
(2.3) Q X$±Y[X k l�£ ]Z_²¤¦`K�"a R XZY[X k l�£ ]� _
® �°¯ a R - X�±Y�X k l�£ ]�_5¤¥`K�"a y
where

± Y
is the zero extension of

Y
to ��S 3 , i.e.,

± Y d Y
on ª 3�« and

± Y d�� on ��S 3K³ ª 3�« .

2.2. Mortar matching conditions. Let us define� b�dµ´ Y | 9¶354�6 � 3 b Y
is continuous at subdomain vertices ·

and ¸ b�d ´ ¡ | 9¶3
4=6 ¸ 3 y b ¡
is continuous at subdomain vertices · y
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FIG. 2.1. Mortar and nonmortar sides of ¿ � À
where

¸ 3 is the trace space of
� 3 , i.e.,

¸ 3 d � 3 � ¤¥`n� . We will approximate the solution
of the problem (2.1) in

�
. We note that the space

�
is not contained in H 6 < S L . In order

to approximate the solution of the problem (2.1) in the nonconforming finite element space�
, we impose the mortar matching condition on

�
, for which jumps of a function in

�
across a common face (interface) are orthogonal to a Lagrange multiplier space, i.e.,

Y d< Y 6 y s¦sÁs y Y 9ÂL | �
satisfies

(2.4) e ® ��¯ < Y 3 ~ Y « LxÃ 3�« g©¨Âd�� � Ã 3�« |�Ä 3�« y�� ª 3�« y
where Ä 3�« is a Lagrange multiplier space given on the common interface ª 3�« b�d ��S 3 �0��S « .

On ª 3�« , we distinguish S �3 � ® �°¯ and S �« � ® �°¯ as in Figure 2.1 and choose one as a mortar
side and the other as a nonmortar side. On each nonmortar side, we define a finite element
space

(2.5)

¸ 3�« b�d � Y[� ® �°¯ | H 6¬ < ª 3�«)L b Y | �0Å _ 3�« a�� y
where Æ <"Ç�È L is the nonmortar side (nonmortar subdomain) of ª 3�« .

To get the optimal order approximation, we need the following abstract conditions on the
space Ä 3�« ;

(A.1) The basis �¥É 3�«Ê � 9 ��¯Ê 4�6 are locally supported, that is, the number of elements
in Sm�3 � ® ��¯ , which have nonempty intersections with the simply connected support
of É 3�«Ê , is bounded independently of mesh sizes and ª 3�« .
(A.2)

¸ 3�« and Ä 3�« have the same dimension.
(A.3) There is a constant

-
such thatX¦ËVX \ ] _5® ��¯ a R -ÍÌxÎnÏÐ[ÑuÒ �°¯ÂÓ ® ��¯ ËKÔ g©¨X�ÔÕX \ ] _5® ��¯ a � Ë | ¸ 3�« j

(A.4) For Ö�| H Ê¥× 6xw N < ª 3�«)L , there exists Ö � |�Ä 3�« such thatX Ö ~ Ö � X N\ ] _
® �°¯ a R - J N Ê)× 63 � Ö � NkcØ�Ù©lM£ ] _5® ��¯ a y
where Ú is the order of finite elements in

� 3 .
The condition (A.4) implies that > |�Ä 3�« . In the following, we assume that the Lagrange

multiplier space Ä 3�« satisfies the above conditions; the standard Lagrange multiplier space
in [2] and the Lagrange multipliers with dual basis in [9] are those examples.
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In our FETI-DP formulation, we will use the mortar matching condition (2.4) as conti-
nuity constraints. These continuity constraints can further be written into9Û 3
4=6�Ü 3 ¡ 3 dÝ� y
where

¡ 3 d Y 3 � ¤¥`n� . We note that the matrices Ü 3 are not boolean matrices as in the original
FETI (or FETI-DP) methods.

In the following, we will use the same notation for finite element functions and the corre-
sponding vectors of nodal values. For example,

¡ 3 is used to denote a finite element function
or the vector of nodal values of that function. The same applies to the notations for function
spaces such as

¸ 3 , �
,

¸
, etc.

3. FETI-DP formulation.

3.1. FETI-DP operator. In this section, we formulate the FETI-DP operator for the
problem (2.1) with the mortar matching condition as continuity constraints. For Þuß elliptic
problems, it was shown that using the primal variables at vertices is not enough to get the same
condition number bound as à%ß problems; see numerical results in [7, 8]. Hence, additional
primal constraints are introduced to accelerate the convergence of the FETI-DP method.

For the Þuß elliptic problems with conforming discretizations, Klawonn et al. [16] devel-
oped FETI-DP methods with various redundant constraints. They introduced edge average or
face average constraints as primal constraints to achieve the same condition number bound
as à%ß elliptic problems. The continuity constraints on edges (faces) are that the averages of
functions across a common edge (face) are the same. In [17], they extended the results to a
case with face constraints only.

In the mortar discretizations, two sets of primal constraints are possible; the one that
contains continuity constraints at vertices and the face average constraints, and the other one
with only the face average constraints. Using the second set of the primal constraints we can
generalize our algorithm and theory to the second generation of mortar discretizations [1]
and to geometrically non-conforming partitions [10], since we can relax the continuity at
subdomain vertices. In our work, we consider the first case with the vertex continuity and
the face averages as primal constraints. We may impose the face average constraints by
introducing additional Lagrange multipliers and then treat them as primal variables in the
FETI-DP formulation; see [7, 8, 16]. In our FETI-DP formulation, we follow the change of
basis formulation introduced in [15, 18] that leads to much easier analysis and more robust
implementation; see [12, 13].

On each interface ª 3�« , for

¡ 3�« d ¡ 3 � ® �°¯ ( or

¡ 3�« d ¡ « � ® �°¯ ) we consider a change of
variables so that ¡ 3�« d�á ®F�°¯ãâ ¡ _ 3�« aä¡ _ 3�« aå�æ y
where á ®u��¯ retains unknowns at the boundary of ª 3�« ,

¡ _ 3�« aå is the average of

¡ 3�« on ª 3�« , i.e.,¡ _ 3�« aå d Ó ®u��¯ ¡ 3�« gP¨Ó ® �°¯ > gP¨ y
and the function

¡ _ 3�« aä has the average value zero on ª 3�« , i.e.,e ®u��¯ ¡ _ 3�« aä gP¨çd��^j



ETNA
Kent State University 
etna@mcs.kent.edu

108 H. H. KIM

We note that

¡ _ 3�« aä is a function in the above equation and it can be represented using the
change of basis given by the transform á ® ��¯

After the transforms, we express the unknowns

¡ 3 into¡ 3 d â ¡ _ 3 aä¡ _ 3 aåèæ y
where é stands for the unknowns of primal variables, i.e., the averages on faces and un-
knowns at vertices, and ê stands for the remaining unknowns. These notations will be used
throughout this paper.

We now consider a subspace ë¸ of

¸
that satisfies the primal constraintsë ¸ b�dÝ´ ¡ | ¸ bAe ®F�°¯ < ¡ 3 ~ ¡ «)L gP¨çd��

and

¡
is continuous at subdomain vertices � j(3.1)

Let

¸ ä be a space of the vectors, ¡ ä díìîîï
¡ _ 6 aä

...
¡ _ 9 aä

ðÁññò y
and let

¸ å be the space of primal unknowns

¡ å . We then decompose the space ë¸ into the
dual and the primal parts, ë¸ d ¸ äôó ¸ å j
We define õ _ 3 aå b ¸ å � ¸ å � `K�
that restricts the primal unknowns to the local primal unknowns.

Let ö _ 3 a
be the Schur complement matrix obtained from the bilinear form � 3 < s y s L in (2.2)

and let ÷ _ 3 a
be the Schur complement forcing vector obtained from Ó ` � � Y 3 gui . After the

change of variables, the matrix ö _ 3 a
and vector ÷ _ 3 a

are written intoö _ 3 a d â ö _ 3 aäzä ö _ 3 aä åö _ 3 aå ä ö _ 3 aå[å æ y ÷ _ 3 a d â ÷ _ 3 aä÷ _ 3 aå æ j
We recall the mortar matching condition9Û 354�6 Ü 3 ¡ 3 dÝ�nj

Since

¡ |øë¸ satisfies the face average constraints and > |øÄ 3�« , the above continuity con-
straints are redundant for

¡ |�ë¸ . We consider a subspace Ä 3�« of Ä 3�« that has one less basis
than Ä 3�« . We impose the mortar matching condition (2.4) with the Lagrange multiplier spaceÄ 3�« instead of Ä 3�« and obtain its matrix representation9Û 3
4�6 Ü 3 ¡ 3 d��^j
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The above constraints are then non-redundant constraints for

¡ |ùë¸ . We rewrite it as

(3.2)

9Û 3
4=6 < Ü _ 3 aä ¡ _ 3 aä @ Ü _ 3 aå ¡ _ 3 aå L dÝ�^j
Let Ä ä d ¶ 3�« Ä 3�« j

We then obtain the following mixed formulation of the problem (2.1) with the constraints (3.2):
Find < ¡ ä y ¡ å y ÃKL | ¸ ä � ¸ å � Ä ä satisfyingö äzä ¡ ä @ ö ä å ¡ å @ Ürúä Ã d ÷ ä yö å ä ¡ ä @ ö å�å ¡ å @ Ürúå Ã d ÷ å yÜ ä ¡ ä @ Ü å ¡ å d�� y(3.3)

where ö äzä d diag 354�6�7�8�8�8?7 9fû ö _ 3 aäzäcü y
ö ä å d ìîîï ö _ 6 aä å õ _ 6 aå

...ö _ 9 aä å õ _ 9 aå
ð ññò y

ö å ä d ö úä å yö å[å d 9Û 3
4=6 < õ _ 3 aå L ú ö _ 3 aå[å õ _ 3 aå y
Ü ä d û Ü _ 6 aä y sÁs¦s y Ü _ 9 aä ü y Ü å d 9Û 354�6 Ü _ 3 aå õ _ 3 aå y
÷ ä díìîîï ÷ _ 6 aä

...÷ _ 9 aä
ð ññò y ÷ å d 9Û 354�6 < õ _ 3 aå L ú ÷ _ 3 aå y ¡ ä dýìîîï

¡ _ 6 aä
...

¡ _ 9 aä
ð ññò j

After eliminating

¡ ä and

¡ å from (3.3), we obtainª �ÿþ Ã dÝgKj
We note that � ª �ÿþ+Ã y Ã�� d .0/21� Ñ��� � Ü ¡ y Ã�� N�Á±ö ¡ y ¡ � y
where Ü d�� Ü ä Ü å
	 y±ö d o ö äzä ö ä åö å ä ö å[å v y ¡ d o ¡ ä¡ å v j
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More precisely, we computeª �ÿþ d Ü ±ö × 6 Ürú d ª äzä @ ª ä å ª × 6å�å ª å ä y
where ª äzä d Ü ä ö × 6äzä Ü úä d 9Û 3
4=6 Ü _ 3 aä < ö _ 3 aäzä L × 6 < Ü _ 3 aä L ú yª ä å d ~ < Ü å ~ Ü ä ö × 6äzä ö ä å L d ~ 9Û 354�6 < Ü _ 3 aå ~ Ü _ 3 aä < ö _ 3 aäzä L × 6 ö _ 3 aä å L õ _ 3 aå yª å ä d ª úä å yª å[å d 9Û 354�6 < õ _ 3 aå L ú < ö _ 3 aå[å ~ ö _ 3 aå ä < ö _ 3 aäzä L × 6 ö _ 3 aä å L õ _ 3 aå j
From the above formula, we can see that the computation ª �ÿþ Ã can be done by applying
matrix-vector multiplications in each subdomain except the term ª × 6å�å .

3.2. Preconditioner. We derive a preconditioner from the similar idea to [11], in which
a Neumann-Dirichlet preconditioner is built from a dual norm on the Lagrange multiplier
space using a duality pairing between the Lagrange multiplier space and the finite element
space on nonmortar sides. In the following, the idea is provided in more detail.

We further decompose the space ë ¸ into

(3.4) ë¸ d ¸ ä ó ¸ å d ¸ ä 7 Å ó ¸ ä 7 � ó ¸ å y
where the subscript Æ stands for the space of vectors for the unknowns at the interior of
nonmortar faces and the subscript � stands for the remaining unknowns. In other words, we
split a vector

¡ ä | ¸ ä into ¡ ä d o ¡ ä 7 Å¡ ä 7 � v y
where

¡ ä 7 Å are unknowns at the interior of nonmortar faces and

¡ ä 7 � are the remaining
unknowns. We recall the mortar matching conditionÜ ä ¡ ä @ Ü å ¡ å d��nj
It is then written into Ü ä 7 Å ¡ ä 7 Å @ Ü ä 7 � ¡ ä 7 � @ Ü å ¡ å d��nj
Here, the matrix Ü ä 7 Å is square and invertible.

We will propose the Neumann-Dirichlet preconditioner of the formª × 6�ÿþ d Ü ß ±özß Ü ú y
where Ü and ß are given by

Ü d � Ü ä 7 Å Ü ä 7 � Ü å 	 y ß d ìï ß Å%Å ß ��� ß å[å ðò j
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The Neumann-Dirichlet preconditioner provides the weights

(3.5) ß Å%Å d � Ü úä 7 Å Ü ä 7 Å 	 × 6 y ß ��� d�� y ß å�å d��nj
This preconditioner is originated from a dual norm on the Lagrange multiplier spaceÄ ä ; see [11]. We recall the space ë¸ and

¸ ä 7 Å in (3.1) and (3.4). For

¡ | ë¸ , we define a
norm X�¡tX N � � d �Á±ö ¡ y ¡ � j
Since a function

¡ ä 7 Å | ¸ ä 7 Å has the zero average on each face ª 3�« and has zero values
at subdomain vertices, its zero extension

±¡ ä 7 Å to

¸
satisfies the primal constraints, i.e.,

±¡ ä 7 Å |�ë¸ . We may write ±¡ ä 7 Å d ìï
¡ ä 7 Å�� ðò |�ë¸ j

We then define a norm for

¡ ä 7 Å byX�¡ ä 7 Å X N ����� � d �Á±ö ±¡ ä 7 Å y ±¡ ä 7 Å � y
and a dual norm on the space Ä ä by

(3.6)

X Ã X
������ � d .0/%1� ��� � Ñ�� ��� � � Ü ä 7 Å ¡ ä 7 Å y Ã��X�¡ ä 7 Å X

� ��� � j
The Neumann-Dirichlet preconditioner

ª × 6�ÿþ is given by

(3.7)

� ª �ÿþAÃ y Ã�� d X Ã X N ������ � j
Similarly, the matrix ª �+þ can be obtained from a dual norm� ª �ÿþAÃ y Ã�� d X Ã X N �� � y
where the dual norm is given byX Ã X N � � � d .0/%1� Ñ��� � Ü ¡ y Ã�� NX�¡tX N � � d . /%1� Ñ��� � Ü ¡ y Ã�� N� ±ö ¡ y ¡ � j
The preconditioner is originated from the idea that these two dual norms will be sufficiently
close so as to get

ª × 6�ÿþ as a good preconditioner for ª �ÿþ . The lower bound estimate can be
done from

(3.8)

X Ã X N ������ � d .0/21� ��� ��Ñ������ � � Ü ±¡ ä 7 Å y Ã�� N�Á±ö ±¡ ä 7 Å y ±¡ ä 7 Å � R .0/21� Ñ��� � Ü ¡ y Ã�� NXZ¡tX N �� d X Ã X N � � � y
because

±¡ ä 7 Å is contained in ë¸ . In the following section, we will provide an upper bound
of the Neumann-Dirichlet preconditioner

ª × 6�ÿþ .
From (3.6) and (3.7), we find the following form of the preconditioner

(3.9)
ª × 6�ÿþ d 9Û 3
4�6 û < < Ü _ 3 aä 7 Å L ú L × 6 � ü ö _ 3 aäzä â < Ü _ 3 aä 7 Å L × 6� æ y
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that provides the weights in (3.5). The computation
ª × 6�ÿþ Ã can be done by solving a Neumann-

Dirichlet problem in each subdomain, i.e.,ö _ 3 aäzä d <�� _ 3 aäzä ~ � _ 3 aä
� <�� _ 3 a��� L × 6 � _ 3 a�$ä L y
where

� _ 3 a d ìîï � _ 3 a��� � _ 3 a�$ä � _ 3 a� å� _ 3 aä
� � _ 3 aäzä � _ 3 aä å� _ 3 aå � � _ 3 aå ä � _ 3 aå�å ð ñò j
Here � _ 3 a

is the stiffness matrix of the bilinear form � 3 < { y Y L for { y Y | � 3 and the sub-
scripts � , é , and ê stand for the subdomain interior unknowns, the unknowns for the primal
variables, and the remaining unknowns, respectively.

When we compute ö _ 3 aäzä o < Ü úä 7 Å L × 6� v Ã y
we solve the problem

� _ 3 a��� { _ 3 a� d � _ 3 a��ä â < Ü _ 3 aä 7 Å L × 6 Ã� æ y
where Neumann boundary condition, < Ü _ 3 aä 7 Å L × 6 Ã , is given on the nonmortar faces and zero
Dirichlet boundary condition is provided on the remaining part of the subdomain boundary.

4. Condition number bound estimation. On the interface ª 3�« , we assume that S 3 is
the nonmortar side and S « is the mortar side. We denote the mesh sizes in each subdomainsS 3 and S « by JK3 and J�« , respectively. We recall the space

¸ 3�« in (2.5).
DEFINITION 4.1. We define a mortar projection  3�« b W N < ª 3�«)L � ¸ 3�« for

Y |�W N < ª 3�«2L
by e ® ��¯ < Y ~  3�« Y L Ãn3�« gP¨�d�� � ÃK3�« |�Ä 3�« j
For the space Ä 3�« satisfying the conditions (A.1)-(A.4) (see Section 2.2), we can show that

the mortar projection  3�« is continuous on the space H 6 w N¬�¬ < ª 3�«)L (see [9] or [24] );X
 3�« Y[X k l�£ ]� _
® �°¯ a R - X�Y�X k l�£ ]� _
® ��¯ a � Y | H 6 w N¬ ¬ < ª 3�«)L y

where
-

is a constant not depending on H 3 and Jn3 . Moreover, the projection is continuous
on the space W N < ª 3�«)L .

LEMMA 4.2. When S 3 is the nonmortar side of the interface ª 3�« d �[S 3 �}��S « , any
function

¡ | H 6 w N < ª 3�«)L satisfiesX
 3�« ¡tX Nk l�£ ]� _
® �°¯ a R - o >A@ log H 3JK3 v N X�¡tX Nk l�£ ] _
®F�°¯xa y

where H 3�IFJn3 denotes the number of elements across the nonmortar subdomain S 3 .
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Proof. Let !
¡

be the W N -projection onto the finite element space

¸ 3 � ®F�°¯ , that is the
restriction of

¸ 3 to the interface ª 3�« . It then satisfies, see [3, Chapter II],

(4.1)

X�¡ ~ !
¡tX N\ ] _
® �°¯ a R - JK3 XZ¡tX Nkml�£ ] _
® ��¯ a y X

!
¡tX Nk¢l�£ ] _
® �°¯ a R - X�¡�X NkmlM£ ] _
® ��¯ a j

For the function !
¡

, we denote by � �®u��¯ < ! ¡ L and � �¤¥® ��¯ < ! ¡ L the nodal interpolants of !
¡

to
the space

¸ 3 � ®F��¯ that vanish at the nodes on ��ª 3�« and at the nodes interior to ª 3�« , respectively.
We then decompose !

¡
into

!
¡ d � �® ��¯ < ! ¡ L @ � �¤¥® �°¯ < ! ¡ L j

We now considerX
 3�« < ¡ L X Nk lM£ ]M _
®u��¯xa R à X

 3�« < ¡ ~ !
¡ L X Nk l�£ ]� _
®F�°¯xa @ à X

 3�« < ! ¡ L X Nk l�£ ]� _
®F�°¯xa j
Using an inverse inequality, the continuity of  3�« in the W N -norm, and (4.1), the first term is
estimated by

(4.2)

X
 3�« < ¡ ~ !

¡ L X Nk l�£ ]� _5® ��¯ a R - J × 63 X
 3�« < ¡ ~ !

¡ L X N\^]Z_
®F�°¯xa R - X�¡�X NkmlM£ ] _
® ��¯ a j
We consider the second term,X
 3�« < ! ¡ L X Nk l�£ ]M _
®u��¯xa R à X

 3�« < � �®F��¯ < ! ¡ LxL X Nk l�£ ]M _
®F�°¯ a @ à X
 3�« < < � �¤¥®F�°¯ < ! ¡ LxL X Nk lM£ ]M _
®u��¯xaR - o >A@CB5DFE H 3JK3 v N X

!
¡tX Nk lM£ ]�_
®u��¯xa @ - J × 63 X

 3�« < < � �¤¥® ��¯ < ! ¡ L L X N\ ] _
®u��¯ aR - o >A@CB5DFE H 3JK3 v N X�¡�X Nk lM£ ] _
®F�°¯ a @ - J × 63 X
� �¤¥® ��¯ < ! ¡ L X N\ ] _5®F��¯ aR - o >A@CB5DFE H 3J 3 v N X�¡�X NkmlM£ ] _
® �°¯ a @ - X

� �¤¥® �°¯ < ! ¡ L X N\ ] _5¤¥®F�°¯xaR - o >A@CB5DFE H 3J 3 v N X�¡�X Nk lM£ ]Z_
® �°¯ a j(4.3)

Here we have used a face lemma [21, Lemma 4.24], an inverse inequality, (4.1), the continuity
of  3�« in W N < ª 3�«)L , and an edge lemma [21, Lemma 4.17]. From (4.2) and (4.3), we obtain the
desired estimate.

LEMMA 4.3. For

¡ d < ¡ 6 y sÁs¦s y ¡ 9 L |�ë¸ , we haveX
 3�« < ¡ 3 ~ ¡ «¥L X NkmlM£ ] _
®u��¯xa R - o >A@CB5DFE H 3JK3 v N û � ¡ 3 � Nk¢l�£ ] _5¤¥`n�"a @ � ¡ « � Nk¢l�£ ] _5¤¥`^¯xa ü y

where S 3 is the nonmortar side of the interface ª 3�« .
Proof. Since

¡
satisfies the primal constraints,

¡ 3 and

¡ « have the same average valueQ 3�« on ª 3�« . We then obtain the resulting bound from Lemma 4.2 and a Poincaré inequality by
replacing

¡ 3 and

¡ « by

¡ 3 ~ Q 3�« and

¡ « ~ Q 3�« , respectively.
REMARK 4.4. The face average constraints are important in applying a Poincaré inequal-

ity to the above analysis, while the continuity at vertices are not necessary. Since the continu-
ity constraints at the vertices can be relaxed, it is possible to extend the theory and algorithm
to the second generation of mortar discretizations and to geometrically non-conforming sub-
domain partitions.
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To obtain a condition number bound that does not depend on mesh sizes and the coeffi-
cients, we need the following assumptions.

ASSUMPTION 4.5. On a common interface ª 3�« , we choose the subdomain S 3 with
smaller � 3 as the nonmortar side and the subdomain S « with larger � « as the mortar side.

The Assumption 4.5 is conventionally used in the analysis of the mortar methods; see
[22, Remark 3.1].

We now estimate the upper bound of the FETI-DP algorithm.
LEMMA 4.6. Under Assumption 4.5, for Ã |�Ä ä , we have� ª �ÿþ Ã y Ã�� R - . /%1354�6�7�8�8�8?7 9 ´�o >A@CB
DuE H 3J 3 v N · � ª �ÿþ Ã y Ã�� y

where the constant
-

does not depend on J[3 , H 3 , and � 3 .
Proof. We note that� ª �ÿþ Ã y Ã�� d X Ã X N � � � d .0/%1� Ñ��� � Ü ¡ y Ã�� N�Z±ö ¡ y ¡ � y

(4.4) � ª �ÿþ Ã y Ã�� d X Ã X N � ���� � d .0/%1� ��� � Ñ�� ��� � � Ü ä 7 Å ¡ ä 7 Å y Ã�� NX�¡ ä 7 Å X N ����� � j(4.5)

From the definitions of Ü and  3�« , we have� Ü ¡ y Ã�� N d ìï Û 3�« e ®F�°¯  3�« < ¡ 3 ~ ¡ « LxÃ 3�« gP¨ ðò N j
Let " 3�« d  3�« < ¡ 3 ~ ¡ « L j
From > |�Ä 3�« and the definition of  3�« , we havee ® �°¯ " 3�« g©¨Âd e ® ��¯ < ¡ 3 ~ ¡ « L g©¨Âd��nj
Since " 3�« has zero average on ª 3�« and has zero values on ��ª 3�« , after the transform introduced
in Section 3.1 we may write

(4.6)

� Ü ¡ y Ã�� d Û 3�« e ® ��¯  3�« < ¡ 3 ~ ¡ «¥L Ãn3�« g©¨Âd � Ü ä 7 Å " ä 7 Å y Ã�� N y
where " ä 7 Å d " 3�« on ª 3�« and " ä 7 Å | ¸ ä 7 Å . We note that " ä 7 Å can be a function or a vector
of unknowns. From the above relation (4.6) and (4.5), we get

(4.7)

� Ü ¡ y Ã�� N R � ª �ÿþ Ã y Ã�� X " ä 7 Å X N � ��� � j
We will show that

(4.8)

X
" ä 7 Å X N � ��� � R -�.0/%13 ´ o >A@ log H 3J 3 v N · �Z±ö ¡ y ¡ � j

The desired bound then follows from (4.4) and (4.7).
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Let

±
" ä 7 Å be the zero extension of " ä 7 Å to the all interfaces, i.e., into the space

¸
. It is

easy to see that

±
" ä 7 Å |ôë¸ . Let " 3 d ±

" ä 7 Å � ¤¥`n� y the restriction of

±
" ä 7 Å to the subdomain S 3 .

We then obtainX
" ä 7 Å X N ����� � d �Á±ö ±

" ä 7 Å y ± " ä 7 Å �d Û 3 � ö _ 3 a " 3 y " 3#�R - Û 3 � 3 � " 3 � Nk l�£ ]Z_²¤¦` � aR - Û 3 Û « � 3 X " 3�« X Nk l�£ ]M _
® �°¯ ad - Û 3 Û « � 3 X  3�« < ¡ 3 ~ ¡ «¥L X Nk lM£ ]M _
®u��¯xa
R - .0/%1354�6�7�8�8�8�7 9 ´�o >A@ log H 3J 3 v N · ìï Û 3�« o � ö _ 3 a ¡ 3 y ¡ 3$� @ � 3� « � ö _ « a ¡ « y ¡ «%� v ðò j

Here we used the well-known inequality� 3 � " 3 � Nk l�£ ]Á_5¤¥` � a R � ö _ 3 a " 3 y " 3$� R - � 3 � " 3 � Nk lM£ ]Z_5¤¥` � a y
the relation in (2.3), and Lemma 4.3, and S 3 is the nonmortar side of the interface ª 3�« . From
Assumption 4.5, � 3 I � « R > so that we have shown (4.8) with the constant

-
independent ofJ 3 , H 3 , and � 3 .

REMARK 4.7. The above analysis can be applied to two dimensional problems with
edge average constraints only as primal constraints.

From the lower bound estimate in (3.8) and the upper bound estimate in Lemma 4.6, we
then have the condition number bound of the FETI-DP algorithm.

THEOREM 4.8. Under Assumption 4.5, the condition number bound holds for the FETI-
DP algorithm,

& < ª × 6�+þ ª �+þ L R -ù.0/213 ´ o >A@ log H 3J 3 v N · y
where the constant

-
does not depend on J�3 , H 3 , and � 3 .

5. Numerical results. In this section, we provide numerical tests for the proposed
FETI-DP algorithm. We consider the following model problem:~ q s <��[< i y § y " L q { L df� in S y{ d�� on ��S y
where S d < � y > L U is the unit cube, the exact solution is{ < i y § y " L d >�[< i y § y " L('*)  N Ì,+.- <�/  i L Ì,+.- <�/  § L Ì,+0- <�/  " L j

We divide the domain S into 1 � 1 � 1 uniform cubical subdomains with side lengthH d > I 1 . Each subdomain S 3 is discretized by conforming trilinear finite elements with
uniform cubes of the size JK3 . The mesh size J�3 can be different to different subdomains.



ETNA
Kent State University 
etna@mcs.kent.edu

116 H. H. KIM

TABLE 5.1
The number of CG iterations (Iter), corresponding condition numbers (Cond), and the broken

� �
-norm er-

ror,
�32 ��4658795�:�4 '; l

<>= ��? & �A@ ' , of the FETI-DP algorithm for the model problem with the constant coefficientB �0C *AD%*#EÁ&GF �
; left four columns (the subdomain problem size HJI increases with the fixed number of subdomainsKML FON L ), right three columns (the number of subdomains

KPL
increases with the fixed local problem size HJI F9Q ).) Æ Iter Cond H 6

-error 1�U Iter Cond
4 14 6.1185 1.099819e-02 àuU 14 6.1185

16 16 8.8967 5.576953e-03 ) U 18 7.3615
24 18 10.9198 3.706825e-03 / U 18 7.5818
32 19 11.7914 2.773728e-03

The corresponding Lagrange multiplier is given by the tensor product of two dimensional
multipliers considered in [23]. Even though the theory provided in the previous section was
developed for tetrahedral finite elements, it extends to the trilinear finite elements without
difficulty.

To see the performance of the preconditioner, we perform two types of experiments;
the case when the coefficient ��< i y § y " L d > and the case when the coefficient �[< i y § y " L is a
positive constant � 3 in each subdomain S 3 , they can be discontinuous across the interface. We
solve the FETI-DP equation using the conjugate gradient method with the Neumann-Dirichlet
preconditioner

ª × 6�ÿþ in (3.9). The conjugate gradient iteration is performed up to the relative
residual norm reduced by > � ×�R

.
We first consider the model problem with �[< i y § y " L d > . All subdomains have a uniform

triangulation of cubical elements with the mesh size H I < ) Æ L , where H is the diameter of the
subdomains. In Table 5.1, the number of CG iterations, condition numbers, and the errors in
the broken H 6

-norm are shown as the increase of the local problem size with a fixed number
of subdomains 1}U < d à%U L and as the increase of the number of subdomains 1�U with a fixed
local problem size ) Æ < d / L . From the result, we observe the log N -growth of the condition
number in terms of the local problem size (see Figure 5.3), the optimal convergence of errors
in the broken H 6

-norm, and a scalability in terms of the number of subdomains.
We now consider the cases when �[< i y § y " L is discontinuous across the subdomain in-

terface. In our example, we consider four values of �[< i y § y " L , 1, 10, 250, and 1000, and
distribute these values to the subdomain partition. In Figure 5.1, we present a cube that
is divided into eight uniform cubical subdomains. For the eight subdomains we distribute�[< i y § y " L as in the right of Figure 5.1. When we introduce more number of subdomains,
for an example 1 U d ) U , we put the eight cubical partition in a periodic pattern and obtain
the coefficient distribution. In the following, we will present the results varying the choices
of the mortar and the nonmortar sides and varying mesh sizes depending on the coefficient
distribution.

1

5000 10

250

(n)

(4n) (2n)

(3n)
250

500010

1

(n)

(2n)

(3n)

(4n)

FIG. 5.1. A subdomain partition (left) and the values B �.C *#D%*AEÁ& (right) of four subdomains on the bottom and
four subdomains on the top, respectively.
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1 1

5000 5000

250

10 10

250

FIG. 5.2. An example of non-uniform meshes depending on the coefficients (left: the smaller mesh sizes for the
smaller coefficients, right: the reversed selection) when

� ! � HJI & � I FONZ& is the smallest mesh size.

TABLE 5.2
The number of CG iterations (Iter), corresponding condition numbers (Cond), and the broken

� �
-norm error,� 2 � 465S7T5�:�4 '; l

<U=u� ? & �A@ ' , of the FETI-DP algorithm as the decrease of the largest mesh size
� ! � HJI & for the

model problem with a discontinuous coefficient B �0C *AD%*$EÁ& and the subdomain partition
K ' � K FVNZ& ; left (uniform

meshes), center (non-uniform meshes), right (reversed non-uniform meshes).

uniform nonuniform reversed nonuniform) Æ Iter Cond H 6
-error Iter Cond H 6

-error Iter Cond H 6
-error

8 12 4.39 5.5265e-03 12 4.15 5.5494e-03 10 2.96 7.8789e-03
16 14 5.74 2.8026e-03 14 5.31 2.8130e-03 13 4.22 1.0320e-02
24 15 6.61 1.8626e-03 14 6.06 1.8698e-03 14 5.06 7.3698e-03
32 16 7.29 1.3937e-03 15 6.66 1.3991e-03 15 5.69 5.5064e-03

Table 5.2 presents the performance of the algorithm varying the mesh sizes. We have
used the uniform mesh size H I < ) Æ L for all subdomains, the non-uniform mesh sizes, fromH I Æ to H I < ) Æ L , depending on the coefficients. In addition we have selected the subdomain
with smaller �[< i y § y " L as the nonmortar. For the non-uniform case, we selected smaller mesh
sizes for smaller coefficients, see the right in Figure 5.1, with H I < ) Æ L the smallest. Such non-
uniform meshes satisfy the optimal ratio of meshes J[3�IFJP«XW <"� 3�I � «¦L 6 wZY that was observed
in [24] by applying an appropriate adaptivity strategy when the right hand side � < i L of the
model problem does not reflect the jump in the coefficient distribution. In addition, we have
tested the case when the selection for the mesh size is reversed, see Figure 5.2. For the
reversed case, the nonmortar side has the larger mesh size.

The results in Table 5.2 present that the condition numbers seem to be not affected by
the selection of mesh sizes. All three give the B5DFE N -growth of the condition number bound
with respect to the local problem size, see Figure 5.3. We can see that the errors are almost
the same for the uniform and the non-uniform cases. However the reversed non-uniform
case gives larger errors than the previous two cases at the same discretization level. We can
conclude that using nonuniform mesh sizes, that are finer for smaller coefficients, is more
practical for the model problem with discontinuous coefficients considering the presented
errors and the number of iterations.

In Table 5.3, we present the performance varying the selection of mortar and nonmortar
sides. Here we have used smaller mesh sizes for smaller coefficients. The first case is when
the subdomain with smaller ��< i y § y " L is the nonmortar side. This selection satisfies Assump-
tion 4.5. We also consider the reversed selection to see how it affects the performance. The
reversed selection shows poor performance. The errors are also larger compared to the regu-
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FIG. 5.3. Plot of ( [Z\,I^] ! �M�©�`_ \�a � HJI &M& ' ) as the increase of the maximum number of nodes HJI ,
� �

: constant
coefficient B �.C *ADF*#EÁ&bF �

,
� N : discontinuous B �.C *#D%*AEÁ& , uniform meshes,

� � : discontinuous B �.C *#D%*AE¦& , non-
uniform meshes,

� H : discontinuous B �0C *AD%*#EÁ& , reversed non-uniform meshes

TABLE 5.3
The number of CG iterations (Iter), corresponding condition numbers (Cond), and the broken

� �
-norm error,�c2 ��465�7d5 : 4 '; l

<>= �#? & �A@ ' , of the FETI-DP algorithm as the decrease of the largest mesh size
� ! � HJI & for the model

problem with a discontinuous coefficient B �.C *#D%*AE¦& and the subdomain partition
K ' � K FONZ& ; regular selection (the

subdomain with the smaller B �.C *�DF* C & is the nonmortar), reversed selection (the opposite).

regular selection reversed selection) Æ Iter Cond H 6
-error Iter Cond H 6

-error
8 12 4.15 5.5494e-03 31 73.67 6.2726e-03

16 14 5.31 2.8130e-03 102 1.79e+03 3.7076e-03
24 14 6.06 1.8698e-03 147 2.14e+03 2.3687e-03
32 15 6.66 1.3991e-03 162 2.41e+03 1.8248e-03

lar selection at the same discretization level. We can conclude that the selection of nonmortar
sides is important in obtaining a good performance of the Neumann-Dirichlet preconditioner
while the selection of mesh sizes is not. A good mortar approximation can also be obtained
from the regular selection.

In Table 5.4, we present the scalability of the algorithm as the increase of the number of
subdomains when the local problem size is fixed. The number of iterations and the estimated
condition numbers are shown. We perform tests varying the type of meshes; uniform meshes,
non-uniform meshes, and reversed non-uniform meshes. In addition we perform tests varying
the selection of the nonmortar sides; the regular selection and the reversed selection. The
results also show that the performance depends on the selection of the nonmortar side and
seem to be not affected by the type of meshes. Except the reversed selection of the nonmortar
side, all gives a good scalability in terms of the number of subdomains.

In conclusion, the FETI-DP algorithm works efficiently for elliptic problems with jump
coefficients when the selection of nonmortar sides satisfies Assumption 4.5. It even gives
smaller condition numbers and the number of iterations than the case with �[< i y § y " L d > , see
Figure 5.3.
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TABLE 5.4
The number of CG iterations (Iter) and corresponding condition numbers (Cond) of the FETI-DP algorithm

as the increase of the number of subdomains for the model problem with a discontinuous coefficient B �.C *#D%*AEÁ& ; top
(varying the type of meshes), bottom (varying the selection of the nonmortar).

uniform nonuniform reversed nonuniform1�U Iter Cond Iter Cond Iter CondàFU 14 6.11 12 4.15 10 2.96) U 14 5.63 14 5.03 13 4.00/ U 15 5.73 14 5.10 13 4.04

regular selection reversed selection1�U Iter Cond Iter CondàFU 12 4.15 31 73.67) U 14 5.03 52 92.26/ U 14 5.10 56 91.60
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