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�
Abstract. We present structure preserving algorithms for the numerical computation of structured staircase

forms of skew-symmetric/symmetric matrix pencils along with the Kronecker indices of the associated skew-symme-
tric/symmetric Kronecker-like canonical form. These methods allow deflation of the singular structure and deflation
of infinite eigenvalues with index greater than one. Two algorithms are proposed: one for general skew-symme-
tric/symmetric pencils and one for pencils in which the skew-symmetric matrix is a direct sum of � and ����
	�� �	�� . We show how to use the structured staircase form to solve boundary value problems arising in control
applications and present numerical examples.
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1. Introduction. In this paper we study structure preserving numerical methods for the
computation of the structural information associated with the singular and infinite eigenvalue
parts of the Kronecker canonical form of real skew-symmetric/symmetric matrix pencils�����������(1.1)

where ��� �!�#"$�%���&�'")(+*-,/. , and 0 �1�2��34(6587#5 . Here by *-,/. 9 we denote the set
of real : 7�; matrices. In the following we adopt the notation of [31] and call pencils of this
form even pencils, since replacing 0 �$�%��3 by 0 �!�$�%��3 and transposing yields the same pencil.

Even pencils occur in the context of linear quadratic optimal control problems (see, e.g.,
[34, 38, 39, 45]), �=< control problems, (see, e.g., [4, 18, 37, 46]), and other applications
(see, e.g., [31, 35]).

For control problems of the form>@?AB�DC!AFEHGJI���KF�MLNAO�(1.2)

it has been shown in [34] that the solution of the linear quadratic optimal control problem
leads to the boundary value problem�QPR ?A ?S ?I

TU �D�QPR AS I
TU

(1.3)

( S is an auxiliary vector, typically it is a vector of Lagrange multipliers) with boundary con-
ditions A 0WVYX 3Z�[A X �]\_^_`aWb < > " S 0WV 3Z�[cd�(1.4)e

Received April 11, 2005. Accepted for publication June 27, 2006. Recommended by P. Van Dooren.�
Department of Mathematics, University of Kansas, Lawrence, KS 44045, USA. This author was partially sup-

ported by National Science Foundation grants 0098150, 0112375, 9977352 and by Deutsche Forschungsgemein-
schaft through the DFG Research Center MATHEON Mathematics for key technologies in Berlin.�

Institut für Mathematik, TU Berlin, Str. des 17. Juni 136, D-10623 Berlin, FRG
(mehrmann@math.tu-berlin.de). This author was partially supported by Deutsche Forschungsgemeinschaft,
through the DFG Research Center MATHEON Mathematics for Key Technologies in Berlin.�

Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA (xu@math.ukans.edu).
This author was partially supported by National Science Foundation grant 0314427, and the University of Kansas
General Research Fund allocation # 2301717.

1



ETNA
Kent State University 
etna@mcs.kent.edu

2 R. BYERS, V. MEHRMANN AND H. XU

where the matrix pencil associated with the boundary value problem

�����+�O�f�[�&PR c > c� > " c cc c c
TU ���gPRih Cj" kC l Gk
" GJ" m

TU �(1.5)

is even, see [34]. (In particular, h � h " , ln�Mlg" and mM�Dm4" .)
The solution of the boundary value problem can be obtained via the computation of a

structured Schur form of (1.5). Similar matrix pencils arise in the solution of optimal � <
control problems; see [4, 46]. If the control problem comes from an ordinary differential
equation, then

> ��o and if it comes from a differential-algebraic equation, then

>
is a

singular matrix.
For both theoretical and computational purposes, the pencil (1.5) should be regular and

of index at most p . In order to check this property numerically and to remove singular parts
and higher index infinite eigenvalue parts we need a staircase form. We discuss this topic in
detail in Section 5.

We derive numerical methods to compute the characteristic quantities of the Kronecker
canonical form of �����+�O� under structure preserving congruence transformations�rq�����+q�f�D��s " �#sM����s " �#sut
The motivation for preserving the even structure comes from the special properties of such
pencils. For example, even pencils have the Hamiltonian eigensymmetry, i.e., the finite eigen-
values occur in v �w�yxv pairs and v �z� v �{xv �w�|xv quadruples for non-real eigenvalues of real
pencils; see, e.g., [33, 34, 35].

As suggested by having eigenvalues with Hamiltonian symmetry, even pencils are closely
related to skew-Hamiltonian/Hamiltonian pencils. Let } , �f~ X����� � �X!� , where o , is the : 7 :
identity matrix. (We leave off the subscript : , if the dimension is clear from the context.) A
matrix � (#*-�%,/. ��, is called Hamiltonian if 0��]} 3%"+� �]} . A matrix � (#*-��,/. �%, is called
skew-Hamiltonian if 0��[} 32"��8� �[} . A matrix pencil � � ��� � is called skew-Hamiltoni-
an/Hamiltonian if � is skew-Hamiltonian and � is Hamiltonian. If the dimension of the even
pencil �����'�O� is even, then the pencil is equivalent to the skew-Hamiltonian/Hamiltonian
pencil � � ��� � �D��� } "����O� } " .

Furthermore, if �f� } , then � } "'�[o and we have a standard eigenvalue problem for
the Hamiltonian matrix � ��� } " . It is well-known (see [28, 34]) that similarity transfor-
mations with symplectic matrices preserve the Hamiltonian and skew-Hamiltonian structure.
(A matrix � (+*-�%,. �%, is called symplectic if ��}=� "r� } .) It was shown in [29], that if the
Hamiltonian matrix possesses a Hamiltonian Jordan form under symplectic similarity, then
it also admits a Hamiltonian Schur form under orthogonal symplectic transformations. This
work has been extended in [33] to skew-Hamiltonian/Hamiltonian pencils. For even pencils
there exist well-known structured Kronecker forms; see, e.g., [43]. We briefly review these
forms in Section 2.

It is the topic of this paper to construct a structured staircase form for even pencils that
displays the invariants of the structured Kronecker form, while working only with unitary
(orthogonal) transformations.

We could in theory also use an unstructured numerical method like the hJ� or the GUPTRI
algorithm to obtain this information, but this would destroy the symmetry structure in even
pencils and introduce unnecessary unstructured rounding errors. The following example il-
lustrates how such unstructured rounding errors may give misleading or even mathematically
impossible computed “eigenvalues” and Kronecker structure.
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EXAMPLE 1.1. As mentioned above, eigenvalues of even pencils have Hamiltonian
pairing. A � 7 � even pencil has at least one infinite eigenvalue. The other two eigenvalues
may be either both infinite, form a 0�v �w� v 3 pair of finite, real eigenvalues or form a complex
conjugate pair of finite eigenvalues with zero real part. If v �8c is an eigenvalue, then it has
multiplicity two.

Consider a � 7 � even pencil with matrices

�f� h PR c p c� p c�cc c�c
TU
h " � ��� h PR c�c pc p cp c�c

TU
h " �

where h is a random real orthogonal matrix generated as described in [40]. The pencil is
congruent to the pencil

�8PR c p cc�c pc�c�c
TU �+�gPR p c�cc p cc�c p

TU
so it has a triple eigenvalue at � with geometric multiplicity p and algebraic multiplicity � .

We calculated the eigenvalues of �����)�O� for several different randomly generated
orthogonal matrices h using the h|� algorithm in MATLAB [32] version 6.0.0.88 (R12) with
unit round roughly � t ��� 7 p c ���2� . MATLAB returns strikingly different approximations of
eigenvalues for different randomly generated orthogonal matrices h . For each example, we
took care that � was exactly symmetric and � exactly skew symmetric.

Out of 1000 examples, the eig function built into Matlab version 6.0.0.88 (R12) reports
that 644 have no finite eigenvalues (which is the correct result), 75 have one finite eigenvalue
of magnitude roughly p c �2� , 120 have two finite eigenvalues of magnitude roughly p c/� , and
61 have three finite eigenvalues of magnitude roughly p c � . None of the computed sets of
approximate eigenvalues that included finite eigenvalues was the set of eigenvalues of an
even pencil; none had Hamiltonian eigenvalue pairing. Often, there was a singleton finite
eigenvalue.

The hJ� algorithm is numerically stable in the sense that the computed eigenvalues
are exactly correct for some rounding-error-small perturbation of the original data matrices.
However, this rounding-error-small perturbation is not necessarily an even perturbation of an
even pencil. The unstructured rounding errors are sufficient to destroy the Hamiltonian pair-
ing and return entirely unrealistic sets of eigenvalue approximations and Kronecker structures
that do not occur in even pencils.

Recently, in [5, 11], numerical methods were developed to compute the Hamiltonian
Schur form for Hamiltonian matrices and the methods were extended to the regular pencil
case with nonsingular matrix � in [4].

An important remaining issue is a structure preserving method to compute the structural
invariants under congruence associated with the infinite eigenvalues and the singular part
of the pencil. This is of particular importance in the case of optimal control problems for
descriptor systems, where

>
is a singular matrix, [34], since typical numerical methods for

computing optimal feedback controls require the pencils to be regular and of index at most
one. If this is not the case, then the singular part and the part associated with higher index
singular blocks must be deflated first; see Section 5.

In Section 3 we derive structure preserving algorithms for the computation of structured
staircase forms for arbitrary even pencils. In particular we show how to determine the Kro-
necker indices associated with singular Kronecker blocks and with Kronecker blocks corre-
sponding to the eigenvalue infinity. The staircase form also provides a structure preserving
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way to deflate these blocks. Section 4 treats the computation of eigenvalues and deflating
subspaces for regular even pencils of index p .

If

> �[o , then �f� } ,j� c is the direct sum of } , and c . In this case it has been shown
in [10] how to preserve not only skew-symmetry but the whole } ,4� c structure.

The results and algorithms of this paper also adapt to symmetric/symmetric and Hermi-
tian/Hermitian pencils for which a similar structured Kronecker canonical form is known; see,
e.g., [36, 42]. In a similar way, the results and algorithms also adapt to skew-Hermitian/Her-
mitian pencils and to complex skew-symmetric/symmetric pencils. For brevity, however, we
will not discuss such variations here.

It should be noted that some of the ideas presented in this paper have been observed and
discussed for special cases in [12]. Similar forms for a special case of symmetric/symmetric
pencils have recently been proposed in [30].

2. Kronecker and staircase forms. In this section we review the Kronecker canonical
form and staircase forms for unstructured, asymmetric pencils.

THEOREM 2.1. Kronecker Canonical Form [19, 24]. Let

> ��C (�*- ¡. , . Then there
exist nonsingular matrices s�(�5
 j.   and h (�5-,/. , such thats 0 � > �+�OCj3 h�D¢^¤£{¥ 0§¦4¨ �%©�ª§«¬�wtztwtw�%©�ª�®�2© "¯ « �wtztwtz�2© "¯§° � �]± «��wtztwtz� �]±z² � }
³ «´�wtwtztw� }
³¶µ 3¶�(2.1)

where . . .
1. ¦4¨ �·��c ¨ �+�Oc ¨ is an ¸ 7 ¸ block of zeros;
2. each © ª�¹ is an º2» 7 0Wº2» E p 3 right singular block with right minimal index º�» and

form ¼@½¾¿BÀ Á. . . . . .À Á
Â ÃÄ�ÅÇÆ ½¾¿�Á À. . . . . .Á À

Â ÃÄ=È
3. each ©�"¯ ¹ is a 0�É » E p 3�7 É » left singular block with left minimal index É » and form¼ ½¾¾¾¾¿ À Á . . .

. . . À Á
Â ÃÃÃÃÄ ÅÇÆ

½¾¾¾¾¿ ÁÀ . . .
. . . ÁÀ

Â ÃÃÃÃÄ=Ê
4. each � ± ¹ is a Ë» 7 Ë» infinite eigenvalue block with index ËÌ» and form¼ ½¾¾¾¾¿ À Á. . . . . .

. . . ÁÀ
Â ÃÃÃÃÄ ÅÇÆ

½¾¾¾¾¿ Á . . .
. . . Á

Â ÃÃÃÃÄ È
5. each } ³ ¹ is a Í�» 7 Í�» Jordan block with finite eigenvalue vd» (�5 and form¼ ½¾¾¾¾¿ Á . . .

. . . Á
Â ÃÃÃÃÄ Å�Æ

½¾¾¾¾¿
Î´Ï Á. . . . . .

. . . ÁÎ´Ï
Â ÃÃÃÃÄ=Ð
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The Kronecker canonical form is unique up to permutation of the blocks, i. e., the kind, size
and number of the blocks are characteristic for the pencil � > �r��C . It is more common
to express ¦ ¨ as a combination of Ñ1X and Ñ "X blocks. Here, we display ¦ ¨ explicitly to
emphasize the similarities between Theorem 2.1 and the structured form in Theorem 2.3
below.

There also exists a real version of the Kronecker canonical form, where the blocks }�³ ¹
are in real Jordan form and the transformation matrices are real. A similar result also holds
for complex pencils, [19, 20].

DEFINITION 2.2.
i) An : 7 : matrix pencil � > �+�OC is called regular, if ¢ÒÔÓ 0 � > �+�OCj3NÕ�Dc for some0 �1�2��3�(�5@7F5 . Otherwise the pencil is called singular. (Singular pencils are those

whose Kronecker canonical form has either an ¦Ö¨ block with ¸]× c or an ©uª block
with º!× c or an ©�"ª block with º�× c .)

ii) If � > �+�OC is regular, then a pair of complex numbers 0 �1�2��3ÖÕ� 0 cÌ��cØ3 is an eigen-
value of � > �Ç�OC , if ¢ÒwÓ 0 � > �Ç�OCN3$�Dc . If � > �B�OC is a singular pencil, then, for
our purposes in this paper, its eigenvalues are the eigenvalues of the regular blocks
in its Kronecker canonical form, i.e., the union of the eigenvalues of the � ± ¹ and} ³ ¹ blocks in Theorem 2.1. We identify eigenvalues 0 �$�%��3 with �)Õ�·c with the finite
eigenvalue v �D�
Ù�� . Eigenvalues 0 �1�2��3 with ���[c are called infinite eigenvalues.

iii) The index of a regular matrix pencil � > ���OC is the size of the largest block � ± ¹ in
Theorem 2.1. It is denoted by ^�Úd¢ 0 > ��Cj3 .

iv) The inertia index of a symmetric matrix � is the triple In 0 �'3¡� 0�Û �ÝÜ�2Þ�3 , where Û
is the number of positive eigenvalues of � , Ü is the number of negative eigenvalues,
and Þ is the number of zero eigenvalues.

Arbitrarily small rounding errors can radically change the kind and number of the Kro-
necker blocks. Consequently, it is problematic to compute the Jordan or Kronecker canonical
form with a numerical algorithm in finite precision arithmetic [41]. Among the most success-
ful compromises in the nearly-impossible problem of calculating Kronecker canonical forms
are the staircase algorithms. Using a sequence of rank decisions, orthogonal matrix multi-
plications, and small perturbations, staircase algorithms transform a pencil into staircase or
generalized upper triangular (GUPTRI) form [13, 14, 15, 44]. The rank decisions and per-
turbations have the effect of determining the essential invariants in the Kronecker canonical
form of a “least generic” pencil within a tolerated perturbation. (A formal definition of the
term “least generic” is surprisingly complicated. See [16, 17] for a detailed discussion and a
recently developed interactive tool.) Since the GUPTRI form is built on a sequence of rank
decisions and tolerated perturbations with a built-in bias toward a nearby least generic pencil,
the computed invariants may not always agree with the invariants of the original pencil.

Example 1.1 demonstrates that otherwise excellent numerical methods can give unsat-
isfactory results when applied to even pencils, because the eigenvalues of even pencils have
a special structure that is not necessarily preserved by unstructured rounding errors. In fact,
even pencils have a special even Kronecker-like canonical form described by the following
theorem.

THEOREM 2.3. [43] If ���d�ß()*-,/. , with �à�á�!�'"
�%�à�â�#" , then there exists a
nonsingular matrix ã (�5 ,/. , such thatã " 0 �����+�O�'3 ã �D¢^_£�¥ 0Wä
å � ä�æ � ä$ç � ä
è 3Ô�(2.2)

where ä å �[¢Ì^_£�¥ 0�¦ ¨ � �êé «´�wtwtztÔ� �êé  3¶�
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6 R. BYERS, V. MEHRMANN AND H. XUä�æ �D¢^_£�¥ 0ìë � ª§«îí � �wtztwtÔ� ë � ª�ï_í � � ë � ¯ «´�wtztwtÔ� ë � ¯Yð 3��ä$ç �D¢^_£�¥ 0Wñ � ± «îí � �wtztwtÔ� ñ � ±¬² í � � ñ � ³ «´�wtztwtÔ� ñ � ³¶µ 3��ä è �D¢^_£�¥ 0�òBó «��wtztwtz� òBó�ô �2õÌö«��wtwtztÔ�îõÌö/÷/3
and the blocks have the following properties.

1. ¦ ¨ �·��c ¨ �+�Oc ¨ ;
2. each �êé ¹ is a 0�� Þ » E p 3u7 0�� Þ » E p 3 block that combines a right singular block and

a left singular block, both of minimal index Þ » . It has the form

¼ ½¾¾¾¾¾¾¾¾¿
Á À. . .

. . .

Á ÀÅ Á. . . ÀÅ Á . . .

À

Â ÃÃÃÃÃÃÃÃÄ ÅBÆ
½¾¾¾¾¾¾¾¾¿

À Á. . .
. . .

À ÁÀ. . . ÁÀ . . .

Á

Â ÃÃÃÃÃÃÃÃÄ È
3. each ë � ªW¹2í � is a 0��{º2» E p 3{7 0��{º2» E p 3 block that contains a single block corresponding

to the eigenvalue � with index �{º%» E p . It has the form

¼ ½¾¾¾¾¾¾¾¾¿
Á À. . .

. . .

Á ÀÅ Á À. . . ÀÅ Á . . .

À

Â ÃÃÃÃÃÃÃÃÄ ÅBÆ
½¾¾¾¾¾¾¾¾¿

À Á. . .
. . .

À ÁÀ ø. . . ÁÀ . . .

Á

Â ÃÃÃÃÃÃÃÃÄ Ê
where ù (+ú p �w� p�û is the sign-index or sign-characteristic of the block;

4. each ë � ¯ ¹ is a üØÉ¶» 7 ü®ÉÝ» block that combines two ��É¶» 7 ��ÉÝ» infinite eigenvalue blocks
of index É » . It has the form

¼ ½¾¾¾¾¾¾¾¾¾¾¿
Á À. . .

. . .

Á . . .

ÀÅ ÁýÀ. . .
. . .Å Á . . .

À

Â ÃÃÃÃÃÃÃÃÃÃÄ ÅBÆ
½¾¾¾¾¾¾¿ Á. . .

ÁÁ. . .

Á

Â ÃÃÃÃÃÃÄ È
5. each ñ � ± ¹ í � is a 0WüØË » E � 3d7 0WüØË » E � 3 block that combines two 0��{Ë » E p 3d7 0��{Ë » E p 3

Jordan blocks corresponding to the eigenvalue c . It has the form

¼ ½¾¾¾¾¾¾¿ Á. . .

ÁÅ Á. . .Å Á

Â ÃÃÃÃÃÃÄ ÅÇÆ
½¾¾¾¾¾¾¾¾¾¾¿

Á À. . .
. . .

Á . . .

ÀÁ À. . .
. . .

Á . . .

À

Â ÃÃÃÃÃÃÃÃÃÃÄ È
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6. each ñ � ³ ¹ is a �´Í » 7 �´Í » block that contains a single Jordan block corresponding to
the eigenvalue c . It has the form

¼ ½¾¾¾¾¾¾¿ Á. . .

ÁÅ Á. . .Å Á

Â ÃÃÃÃÃÃÄ ÅBÆ
½¾¾¾¾¾¾¾¾¾¾¿

Á À. . .
. . .

Á . . .

ø ÀÁ À. . .
. . .

Á . . .

À

Â ÃÃÃÃÃÃÃÃÃÃÄ Ê
where ù (+ú p �w� p{û is the sign characteristic of this block;

7. each òBó ¹ is a �ØþÌ» 7 ��þÌ» block that combines two þd» 7 þ» Jordan blocks correspond-
ing to nonzero real eigenvalues ÿ » and � ÿ » . It has the form

¼ ½¾¾¾¾¾¾¿ Á. . .

ÁÅ Á. . .Å Á

Â ÃÃÃÃÃÃÄ ÅBÆ
½¾¾¾¾¾¾¾¾¾¾¿

Á � Ï. . .
. . .

Á . . .� ÏÁ � Ï. . .
. . .

Á . . .� Ï
Â ÃÃÃÃÃÃÃÃÃÃÄ Ð

8. The entries õÌö ¹ take two slightly different forms.
(a) One possibility is that õdö ¹ is a � � » 7 � � » block combining two

� » 7 � » Jordan
blocks with purely imaginary eigenvalues ��� » �z� ��� » ( � » × c ). In this case it has the
form

¼ ½¾¾¾¾¾¾¿ Á. . .

ÁÅ Á. . .Å Á

Â ÃÃÃÃÃÃÄ ÅÇÆ ø
½¾¾¾¾¾¾¾¾¾¾¿

Á � Ï
. . .

. . .

Á . . .� Ï
Á � Ï

. . .
. . .

Á . . .�YÏ
Â ÃÃÃÃÃÃÃÃÃÃÄ Ê

where ù (+ú p �w� p{û is the sign characteristic.
(b) The other possibility is that õ ö ¹ is a ü � » 7 ü � » block combining

� » 7 � » Jordan
blocks for each of the complex eigenvalues ÿ®» E ����» � ÿ�» � ���%» �w� ÿ�» E ����» �z� ÿ�» � ���%»
(with ÿ�» Õ�Dc and ��» Õ�Dc ). In this case it has form

¼ ½¾¾¾¾¾¾¿
�

. . .�Å �
. . .Å �

Â ÃÃÃÃÃÃÄ Å�Æ
½¾¾¾¾¾¾¾¾¾¾¿

� ��Ï
. . .

. . .�
. . .��Ï� ��Ï

. . .
. . .�

. . .� Ï
Â ÃÃÃÃÃÃÃÃÃÃÄ

with 	 ��
 c pp c� and � » ��
 � �%» ÿ�»ÿ�» �%» � .
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This structured Kronecker canonical form is unique up to permutation of the blocks, i.e., the
kind, size and number of the blocks as well as the sign characteristics are characteristic of
the pencil �����6�O� .

A corresponding structured Kronecker form is also known for complex even pencils�������O� with ����� (]5 ,/. , and �á�&�!���J�%�f�D��� , see [43].

It was shown in [33] that the existence of the canonical form in Theorem 2.3 guarantees
that corresponding condensed forms under orthogonal transformations also exist, see also
[29].

The computation of the canonical form in Theorem 2.3 faces similar difficulties to those
discussed above for the general Kronecker canonical form. Example 1.1 and experience
with the unstructured Kronecker canonical form suggest that a successful numerical method
for computing the characteristic indices and sign characteristics should use a staircase-like
condensed form under unitary transformations that preserve the even structure of the pencil.
This is the topic of this paper.

3. Staircase algorithms for even pencils. In this section we discuss staircase algo-
rithms for even pencils of the form (1.1). One may distinguish two cases. The first method
that we discuss here deals with pencils where � is a general skew-symmetric matrix and the
second method which is discussed in [10] treats the important special case that ��� ~�� X XX��
with � � ~ X��� �X®� .

The procedures for computing staircase forms are built on a sequence of numerical rank
decisions. This is also true for the procedures for even pencils that we present below. For
general matrices the rank can be determined by the rank revealing QR factorization [21,
Sec. 5.4] or the singular value decomposition (SVD) [21, Sec. 8.6]. For more details on
determining numerical ranks, see, for example, [6, 21].

For symmetric and skew-symmetric matrices the rank can be determined via the ap-
propriate Schur forms [21, Chapter 8]. An inexpensive way is the following modified rank
revealing h m –factorization method. Let C be symmetric or skew-symmetric. Compute the
rank revealing QR factorization

h " C�� ��
 m �c�� �
where m � is of full row rank, h is real orthogonal, and � is a permutation. Compute

h " C h ��
 m � �j"c � h ��
 m �%� cc c� t
The zero 0îp � � 3 block follows from the symmetry or skew-symmetry of C . Note also that m ���
must be nonsingular. When C is skew-symmetric, m �%� must have even order.

3.1. Even staircase form. For a general even pencil we construct a symmetric variation
of the staircase form of [44]. The staircase form displays the regular, index 1 part of the
pencil. Moreover, we show below that the staircase form also displays the characteristic
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quantities describing the singular part and the eigenvalue infinity of Theorem 2.3.
THEOREM 3.1. Even staircase form. For a matrix pencil ��� �8��� with � ��!� " �����D� " (�* ,/. , , there exists a real orthogonal matrix � (]* ,/. , , such that�������! ½¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¿

�#"�" ÐÝÐ¶Ð ÐÝÐ¶Ð �$"�% & �#"�% &('�" �#"�% &('*) ÐÝÐÝÐ �#"�% )+& À...
. . .

...
...

... . . .
. . .

...
. . .

...
...

�,& � "�% &('-) . . .Å � �"�% & ./.�. ./.�. �,&0% & �,&0% &('1" ÀÅ � �"�% &2'1" ÐÝÐ¶Ð ÐÝÐ¶Ð Å � �&0% &('�" �,&('�"�% &('�"Å � �"�% &2'-) ./.�. Å � �& � "�% &('-) À... . . .
. . .Å � �"�% )+& . . .

À

Â ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÄ

3 "
...
...3 &45 &
...5 )5 "� ��6 �7 ½¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¿

6 "�" ././.�.�./. 6 "�% & 6 "�% &('�" 6 "�% &2'-) ÐÝÐ�Ð Ð¶ÐÝÐ 6 "�% )+&('1"...
. . .

...
...

... . . .

...
. . .

...
...

... . . .6 �"�% & ÐÝÐÝÐ Ð¶ÐÝÐ 6 &8% & 6 &8% &('�" 6 &0% &('*)6 �"�% &('�" ÐÝÐÝÐ Ð¶ÐÝÐ 6 �&0% &('1" 6 &('�"�% &('�"6 �"�% &('*) ÐÝÐÝÐ Ð¶ÐÝÐ 6 �&0% &('-)... . . .

... . . .6 �"�% )+&('�"

Â ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÄ

3 "
...
...3 &45 &
...
...5 "
Ê

(3.1)

where 9 �#: : �;: 9 � : : � : tztwt : 9   : :   ,� » . �%  í �¶� » (+* , ¹ . < ¹>= « � p$?7@�?BA � p ��   í � .   í � ��
DC cc c� � C �8� C " (�* ��E´. ��E �� » . �%  í � � » �GF;H » c!I (]* , ¹ . < ¹ � H » (�* , ¹ . , ¹ � pJ?7@�?KA ��   í � .   í � � 
ML ��� L � �L " � � L ��� � � L �%� � L " ��� (]* ��E´. ��E � L ��� � L "��� (�*ON � ��E{. N � ��E �
and the blocks L �%� and C and H » , @ � p �wtztwtÔ� A are nonsingular.

Proof. A formal, constructive proof is given by Algorithm 1 in Appendix A, but for
ease of explication, we present a less formal construction here. Both the formal algorithm
and the less formal construction described here are explicit but recursive procedures. During
the construction, we note the inertias of certain symmetric submatrices that will be used by
Theorem 3.3. Note also that some blocks in the partitioned matrices may be void, i.e., they
may have zero rows or zero columns or both.

Let ���i���O� be an even pencil. If �f�D���Dc , then the pencil is singular and trivially
in even staircase form. If � is nonsingular, then this is a regular pencil of index c and thus
trivially in even staircase form. If � is singular, then determine an rank revealing factorization
or skew-symmetric Schur decomposition � "� � � � � ~/P X XXØ� , with � � orthogonal and C
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nonsingular. Perform a pencil equivalence� "� 0 �������O��3 � � �D�Q
MC cc c!� �+�R
TS� �%� S� � �S� " � � S� ��� � t
If S� �%� is nonsingular, then the pencil is regular, of index at most p with U £�ÚWV S� ��� infinite
eigenvalues and the even staircase form is complete. If S� �%� is singular, determine a rank
revealing factorization or symmetric Schur decomposition � "� S� �%� � � � ~YX X XX � with � � or-
thogonal and L nonsingular.

Record the inertia 0�Û ��ÜÌ�%c®3 of L for use in Theorem 3.3 below and perform a further
pencil equivalence
 o cc � � � "Z �Q
 C cc c!� �+�R
 S� �%� S� � �S� " � � S� ��� �\[ 
 o cc � � ��D�8PR C c�cc c�cc c�c

TU �+�gPR q� ��� q� � � q� ��]q� "� � L cq� "�^] c c
TU t

Determine a rank revealing factorization or singular value decomposition� "] q� �^]`_-] � 
 H cc c!�
with � ] and _ ] orthogonal and H nonsingular. Perform another pencil equivalence

PR � ] c cc o cc c _ ] TU "bac � PR C c�cc c�cc c�c
TU ��� PR q� �%� q� � � q� �^]q� " � � L cq� " ��] c c

TU0de PR � ] c cc o cc c _ ] TU
�·� PffffR � �%� � � � � �^] c�c� � "� � � �%� c c�c� � "��] c c c�cc c c c�cc c c c�c

ThggggU �+� PffffR � ��� � � � � ��] H c� " � � � �%� � � ] c c� " �^] � "� ] L c cH " c c c cc c c c c
ThggggU

(3.2)

where C � ~�i «�«ikj«ml i «mli lnl � and � �^] � c . The � ��] block may fill with nonzero entries later in
the process, so we do not distinguish it from other blocks that may be nonzero.

Recursively apply the even staircase reduction to the central subpencil�r~ i lnlX XX�� �r�H~/o l>lo jl>p o l>pX � recording the inertias of the submatrices L as they occur. This
corresponds to performing another pencil equivalence to (3.2) that modifies rows and columns� and � typically modifying � � � , � �^] , � � � and � �^] along with the central subpencil. At that
point the pencil is in even staircase form.

REMARK 3.2. It should be noted that the rank decisions in the recursive procedure de-
scribed in the proof of Theorem 3.1 have to be carried out with great care. Ideally one would
need a structured version of the procedure for general pencils in [16, 17]. The development
of such a procedure is currently under investigation.

The recursive construction of the even staircase form also generates a sequence of inertias
of certain ephemeral symmetric submatrices that appear briefly during the construction. The
following theorem shows that the characteristic quantities describing the singular part and the
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eigenvalue infinity of �����+�O� are determined by the integer sequences ú 9 » û  »rq � , ú : » û  »rq � ,ú ÛÌ»{û   í �»rq � , ú�Ü »´û   í �»rq � and ú`s » � Û» EHS »{û   í �»rq � .
THEOREM 3.3. Suppose that an even pencil ��� �r�O� has been reduced to the con-

densed form (3.1) by Algorithm 1 with integer sequences ú ÛÌ»´û , ú�Ü »�û , and ú`s » � ÛÌ» E[Ü »{û .
Then �����+��� has the following block structures associated with the singular part and the
eigenvalue � in the even Kronecker canonical form (2.2) of Theorem 2.3.

1. For every @ � p �wtztwtÔ� A , the pencil has ��ut : » � 9Ý» í � � 0 s » í � �vs » 3+w blocks ë � »
corresponding to the eigenvalue � . (Here we set 9   í � �·c ).

2. For every @ � p �ztwtztÔ� A E p , the pencil has s » �xs » ��� odd-sized blocks ë � » ��� corre-
sponding to the eigenvalue � ,among which Û » � ÛÌ» ��� blocks have sign index p andÜ » �6Ü » �ê� blocks have sign index � p . (Here we set Û X �MÜ X �vs X �[c .)

3. The pencil has a singular block ��c < « � , «1���Oc < « � , « .
4. For every @ � � �wtwtztÔ� A , the pencil has 9 » � : » singular blocks � » ��� .
5. The subpencil ���   í � .   í � ���O�   í � .   í � is a regular pencil of index at most p . It

contains the Jordan structure associated with all finite eigenvalues of �����+�O� .
Proof. See Appendix B
EXAMPLE 3.4. This example demonstrates the effect of rank decisions and the ability

of the even staircase algorithm to determine a nearby even pencil with non-generic structure.
Our experimental MATLAB implementation of the even staircase algorithm makes rank

decisions using a singular value drop tolerance y�× c , i.e. singular values of magnitude less
than an absolute threshold y[× c are taken to be zero. In this experiment, the threshold y
varied from p c ���2� to p c ��� . (The unit round is approximately � t �Ø� 7 p c ���2� .) Oversimplifying
slightly, the algorithm searches for a “most non-generic” even pencil in the cloud of pencils
that lie within a distance of roughly y of then nominal input pencil.

We constructed even pencils ��� �+�O� where

�f� h PffffR c p c c�c� p c�c c�cc�c�c c�cc�c�c c pc�c�c � p c
T ggggU h " E º C �

�f� h PffffR c�c p c cc p c�c cp c�c�c cc�c�c p cc�c�c�c ü
ThggggU h " E º C �

where º is a positive real number varying from p c �ê�î� to p c ��� , h is a random real orthogonal
matrix generated as described in [40], and C � and C � are skew-symmetric and symmetric
matrices, respectively, whose nontrivial entries are normal 0 cÌ� p 3 random variables.

If º �[c , then these unperturbed pencils have simple finite eigenvalues z4�{� and an index 2
infinite eigenvalue. If º4× c , then the perturbed pencils typically lie at a distance of roughlyº from the º �Dc unperturbed even pencil.

In this experiment, for each value of the singular value drop tolerance y , we chose ten
random equivalence matrices h . For each y and h , we varied the perturbation magnitude º
logarithmically as º � p c ���2� , p c �ê�î�}| ~ , p c �ê�î�}| � , . . . , p c �ê� and recorded the smallest value of
the selected º ’s for which the algorithm did not find an even pencil with an index 2 infinite
eigenvalue (and two finite eigenvalues) with a distance of roughly y of the test pencil. We
plotted the recorded points 0my � º 3 in Figure 3.1. As expected the points fall near the line º � y .
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FIG. 3.1. Figure from Example 3.4. For each selected value of the singular value drop tolerance � and each of
ten random pencil equivalences, the graph plots the smallest of the selected perturbation magnitudes � for which the
even pencil staircase algorithm did not find an index 3 pencil. As expected, the points line near the line �-��� . In
every test case, for which � was significantly smaller than � , the experimental staircase algorithm successfully found
a nearby index 3 even pencil.

In every test case with perturbation magnitude º significantly smaller than the singular value
drop tolerance y , the staircase algorithm successfully located a nearby index 3 even pencil.

If the skew-symmetric matrix � in the pencil (1.5) is of the special form ~ � �X XXØ� as in
applications from linear quadratic optimal control or � < control, then from a perturbation
theory point of view it is advisable to preserve this structure as much as possible, i.e., we
would like to compute a staircase form, where the middle block associated with the finite
eigenvalues and the infinite-eigenvalue-index- p part is again of the same form as the original
pencil with a (possibly smaller) skew-symmetric part ~��/�X XXØ� . An algorithm to compute a

variant even staircase form while preserving the ~�� �X XX � structure of the skew-symmetric part
has been presented in [10].

4. The regular, index one case. It remains to determine the finite eigenvalues and indexp infinite eigenvalues contained in the central block of the even staircase form (3.1). To
avoid the hazards of introducing asymmetric rounding errors demonstrated above, a structure
preserving numerical method is necessary. In this section we outline how to modify a skew-
Hamiltonian/Hamiltonian structure preserving algorithm from [3] for regular even pencils of
index at most p . For ease of notation, in this section we assume that the even pencil is regular
of index at most p .

In order to use the skew-Hamiltonian/Hamiltonian algorithm, we must transform the
skew-symmetric/symmetric pencil into skew-Hamiltonian/Hamiltonian form. For this we
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assume that the even pencil already has the form

���������á�D� PffR c ��� c�c�,��� c c�cc c c�cc c c�c
ThggU �+� PffR � ��� � � � � �^] � ���� "� � � �%� � � ] � � ��'"�^] �#"� ] � ]Y] � ]^��'"��� �#"� � �'"]r� � �r�

ThggU �(4.1)

where � � is positive diagonal, � � �%� ��� �%� ��� ( * E´. E , and � ]Y] �%� �Y� ( *2� . � . For a general
even pencil this may be achieved, for example, by computing and reordering the real Schur
form of � �%� .

The pencil (4.1) has even size. If the size of the original pencil is odd, then add one more
index p eigenvalue infinity by appending one row and column as�Q
 � cc c!� �+�R
 � cc ��� �
where � is a nonzero scalar. The extended pencil is simply a direct sum of the original pencil
and the scalar pencil ��c��N��� . So the eigen-structure of the original pencil will not be affected
by this adding.

Let k8� ¢^¤£{¥ 0 ����cÌ�r�#�%cØ3 and : ����EQs . By interchanging the � nd and � rd columns
and rows and then multiplying with � ", from the right, the pencil (4.1) is equivalent to the
skew-Hamiltonian/Hamiltonian pencil

� � ���O�n�·�-k � , k " � ", �+� PffR � � � � ��� �!� �%� �!� �^]� � ] � ]r� �!�#"��] �!� ]Y]� �%� � � � �!�#"� � �!�'"� ]�#"� � � �Y� �!�#"��� �!� ]r�
ThggU t

We then have the following structured Schur form.
THEOREM 4.1. Let k��D¢^¤£{¥ 0 ���%cd�r����cØ3 , � � � , k
" � ", , and let � (�*-�%,. �%, be Ham-

iltonian. Then there exist orthogonal matrices h � � h � and orthogonal symplectic matrices� � � � � such that

h " � � h � � PffR � ��� � � � � ��] � ���c � ��� � � ] � � �c c � ]r] cc c � �Y] � �r� T ggU �
h " � k � � � PffR c k � � c k ���c k ��� c k � �c c c cc c c k �Y� T ggU �� "� � h � � PffR c c c cc � �%� � � ] � � �c c c cc c � �/] � �r� ThggU �(4.2)

where � �%� �Y�g"]Y] (�* � . � are upper triangular � �%� �Ýk ��� � � ��� �/� �r� ��k
"�Y� � � "�r� (�*�E{. E are upper
triangular, and � �Y� is lower quasi-triangular. Furthermore, k ��� �Ýk �r� � � ��� � � �Y� are nonsin-
gular.

The finite eigenvalues of ��k � �+�O� , and �����+� in (4.1) as well, are the same as the
finite eigenvalues of the index c pencil��C·�+�OG �·� 
 k ��� k
"�Y� cc � "�r� � �%� � �+� 
 c � ������ "�Y� c � t
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Proof. The proof appears in Appendix C, where (4.2) is proved constructively by Algo-
rithm 4.

5. Application to optimal control. Consider the linear quadratic control problem de-
scribed by (1.2)–(1.5). It is well known that if the pencil is regular then the boundary value
problem is uniquely solvable [8]. We therefore assume that the pencil (1.5) is regular. (For
the singular case, see [9].)

The following proposition shows how the even staircase form (3.1) characterizes con-
sistency of boundary conditions for the special problem (1.3). (The general theory of linear
differential-algebraic equations of [25, 26] uses a normal form to characterize consistent ini-
tial conditions.)

THEOREM 5.1. Consider the boundary value problem (1.3) with a regular matrix pen-
cil. Transform the boundary value problem to the staircase form (3.1). With � as in (3.1),
partition �

� � " PR AS I TU � F � "� tztwt � "  �
"  í �

�
"  í � twtzt

�
"�%  í � I "(5.1)

conformally. Then

�
� �wtztwtz�

�
  � c , and

?� � �wtwtztÔ� ?�   �Mc . The solution of the boundary value
problem�   í � . , í � ?

�
  í � ��
 C cc c� ?�   í � �·�   í � .   í � �   í � ��
DL ��� L � �L " � � L ��� � �   í � �

(which is of index at most p ) uniquely determines the remaining components,

�
  í � , tztwt ,�

�%  í � .
Proof. Because the pencil is regular, we have : » � 9 » and � » . ��  í � � » � H » , @ �p �ztwtztÔ� A . Hence, for @ � p �wtztwtÔ� A , we obtain recursively that�

  í » í � � H ���  � » í ���   í »�� q   í � �   � » í � . � ?
� � �   í »�� q   í � �   � » í � . �

� �m� t
The consistency of the boundary conditions in (1.3) may be checked by using the recur-

sion formulas for

�
  í � �wtwtztw�

�
��  í � , the explicit solution representation�

  í � ��
 o� L ����%� L " � � ���{��� a � a��^� F o c!I �   í � 0�V X 3¶�
with l�� C �ê� 0 L ��� � L � � L ����%� L " � � 3 , and (5.1) with

�
» �âc for @ � p �ztwtwtw� A . A similar

observation was made about more general pencils in [9].
In this way we may reduce the general linear differential-algebraic boundary value prob-

lem (1.3) in an even structured way to a smaller linear differential-algebraic boundary value
problem of index at most p , to which appropriate methods may be applied. See for example,
[2, 1, 27].

6. Conclusion. Even pencils have paired eigenvalues and a structured Kronecker-like
canonical form with paired blocks. Even otherwise numerically stable numerical methods
that allow asymmetric rounding errors can return computed “eigenvalues” that are unrealistic
in the sense that they do not have proper pairing and, hence, are not eigenvalues of an even



ETNA
Kent State University 
etna@mcs.kent.edu

A STRUCTURED STAIRCASE ALGORITHM FOR SKEW-SYMMETRIC/SYMMETRIC PENCILS 15

pencil. Numerical procedures including asymmetric staircase forms for determining Kro-
necker indices do not calculate the sign indices of the even Kronecker-like form and, if they
allow asymmetric rounding errors, can return unrealistic results.

This paper presents an even staircase form for even pencils that displays the structure
and characteristic indices of the singular and infinite eigenvalue structure of even Kronecker-
like canonical form. Using only orthogonal matrix multiplications and rank decisions, the
accompanying numerically stable numerical method preserves even structure throughout and
introduces only even rounding errors.

The use of the even staircase form is illustrated using an application to boundary value
problems arising from optimal control of differential-algebraic systems. As outlined in Sec-
tion 4, the even staircase form may be the first step in a method for calculating eigenvalues of
an even pencil.
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Appendix A. Proof of Theorem 3.1: Algorithm 1. We prove Theorem 3.1 constructively.
The proof is provided by the following algorithm. Note that in the algorithm, some blocks in
the partitioned matrices may be void, i.e., they may have zero rows or zero columns or both.

ALGORITHM 1. Staircase algorithm for even pencils.
For ��� �!�#"$�%� �8�#"@(�*-,/. , this algorithm computes an orthogonal matrix � (+*Z,/. ,
such that � "O� � , � "�� � are in the form of (3.1). In addition, the algorithm produces a
sequence of inertias 0�ÛÌ» ��Ü » ��cØ3 of nonsingular, symmetric submatrices that will be used in
Theorem 3.3.
Set flag

 À , §  3 	  5 	  ©¨ 	  À , 4  3 ,

http://etna.math.kent.edu/vol.13.2002/pp106-118.dir/pp106-118.html
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DO WHILE flag

 À
Perform a rank revealing factorization of

ª )�)�®k¯�° �\± ð % ° �²± ð
,ª )�)« !��",³�´ ÀÀ À¶µ � �" Ê

with ´ ®�¯ )m·¸% )m· . Setª "  ³ � " ÀÀ  ± ð µ � ª ³ � " ÀÀ  ± ð µ  ³�´ ÀÀ À µ Ê¬ "� ³ � " ÀÀ  ± ð µ � ¬ ³ � " ÀÀ  ± ð µ  ³º¹¬ "�" ¹¬ ">)¹¬ � ">) ¹¬ )�) µ Ê
partitioned analogously. (Here ¹¬ )�) ®»¯ ° � )m·¸% ° � )m· ).
IF ¼�½  4 THEN

Set flag
 Á and¾  ½¿ �¿ « '1À À À 'W¿ ð À ÀÀ �2" ÀÀ À /Á « '�À À À ' Á ð ÂÄ Ð

ELSE

Set §  §bÂ Á .Perform the Schur decomposition of ¹¬ )�) ,¹¬ )�)  !� ) ³kÃ ÀÀ À µ � �) Ê
where Ã ®k¯�Ä % Ä is nonsingular with inertia index ÅÇÆ & Ê�È & Ê À¸É andrank

¨�&7 ¶ÊË Æ & Â È & .Set ª )( T³ �)m· ÀÀ �Ì) µ � ª "Í³ �)m· ÀÀ �Ì) µ  ½¿ ´ À ÀÀ À ÀÀ À À
ÂÄ Ê¬ )« T³  )m· ÀÀ �Ì) µ � ¬ "Í³  )m· ÀÀ ��) µ  ½¿TÎ¬ "�" Î¬ ">) Î¬ "mÏÎ¬ � ">) Ã ÀÎ¬ � "mÏ À À

ÂÄ Ê
partitioned analogously.
IF

ÊË 4 Å ¼�½ THEN
Set flag

 Á and¹¾  Ð³ ��" ÀÀ  ± ð2Ñ « µ ³ �)m· ÀÀ � ) µ Ê¾  ½¿  ¿ « '�À À À '*¿zð2Ñ « À ÀÀ ¹¾ ÀÀ À  Á « '�À À À ' Á ð2Ñ « ÂÄ
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ELSE
Perform a rank revealing factorization or SVDÎ¬ "mÏ0 B�1ÏJ³»Ò & ÀÀ À µ«Ó �Ï Êwhere Ò &K®»¯2Ô % Ô is nonsingular.

Set 3 &! ©Õ , 5 & 4 Å ¼^½ Å Ê andª Ï8 ½¿ �1Ï À ÀÀ  Ä ÀÀ À Ó Ï
ÂÄ � ª ) ½¿ �1Ï À ÀÀ  Ä ÀÀ À Ó Ï

ÂÄ
 ½¾¾¾¾¿ ª "�" ª ">) À À ÀÅ ª �">) ª )�) À À ÀÀ À À À ÀÀ À À À ÀÀ À À À À

Â ÃÃÃÃÄ Ê

¬ Ï8 ½¿ �ÌÏ À ÀÀ  Ä ÀÀ À Ó Ï
ÂÄ � ¬ ) ½¿ �1Ï À ÀÀ  Ä ÀÀ À Ó Ï

ÂÄ
 ½¾¾¾¾¿ ¬ "�" ¬ ">) ¬ "mÏ Ò & À¬ � ">) ¬ )�) ¬ )+Ï À À¬ � "mÏ ¬ � )+Ï Ã À ÀÒ �& À À À ÀÀ À À À À

Â ÃÃÃÃÄ=Ê¹¾  ³ ��" ÀÀ  ± ð2Ñ « µ ³ �)m· ÀÀ �Ì) µ ½¿ �1Ï À ÀÀ  Ä ÀÀ À Ó Ï
ÂÄ Ê¾  ½¿ �¿ « '�À À À 'W¿¬ð2Ñ « À ÀÀ ¹¾ ÀÀ À  Á « '1À À À ' Á ð2Ñ « ÂÄ Ð

Set ª  ³ ¼^½ Å ÕÖÊ¼^½ Å Õ ª )�) ÀÊ À À µ Ê�¬  ³ ¼�½ Å Õ Ê¼^½ Å Õ ¬ )�) ¬ )+ÏÊ ¬ � )+Ï Ã µ ®�¯ ° % ° Êand
4  ¼�½ Å Õ Â Ê .

END IF

END IF

Form
6  ¾ � 6 ¾

,
�× ¾ � � ¾

, and
� !� ¾

.

END WHILE
Algorithm 1 will stop after finitely many steps, because at each recursive call, the order

of the even pencil decreases. At some stage S� ��� must be either nonsingular or void.
Our experimental MATLAB implementation of the even staircase algorithm 1 makes rank

decisions using a singular value drop tolerance y�× c , i.e. singular values of magnitude less
than an absolute threshold yB× c are set to be zero. Ordinarily, y should be slightly larger than
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the magnitude of errors or uncertainties in the data. For example, if the data are perturbed
only by rounding errors and S is the unit round, then it would not be unreasonable to usey � S8Øw�!Ø�Ù for rank decisions on submatrices of � and y � S8ØÔ�BØ`Ù for rank decisions on
submatrices of � .

Appendix B. Proof of Theorem 3.3. We prove Theorem 3.3 constructively using another
staircase algorithm to obtain a more condensed even staircase form followed by a further
reduction closer to the even Kronecker-like canonical form of Theorem 2.3. In contrast to
Algorithm 1 these reductions use extra non-orthogonal transformations, so they are theoretical
in nature and may not be well suited to finite precision computation. The extra work displays
a relationship between successive values of the inertias 0�Û » �ÝÜ » �%c®3 .

ALGORITHM 2. Given � ���!�'"Z��� � �'"D(@*�,. , , this algorithm computes a real
nonsingular matrix Ú (]*
,/. , such that Ú "�� Ú , Ú "O� Ú are in the even staircase form (3.1).

Set flag
 À , §  3 	  5 	  ©¨ 	  À , 4  3 ,ª )�)  � Ê ª  Û³ ª )�) ÀÀ À ± � µ Ê�¬ )�)  6 Ê�¬  Û³ ¬ )�) ¬ )+Ï¬ � )+Ï Ã µ Ê �! © Ê

where Ã  Ã � ®k¯ ± � % ± � , and ¬ )+Ï ®»¯ °�Ü ± � .Since
¨ 	  À , the initial last row and column of

ª
and ¬ are void.

DO WHILE flag
 ÀPerform a rank revealing factorization of

ª )�)�®k¯ ° �\± ð % ° �²± ð
,ª )�)« !��",³�´ ÀÀ À µ � �" Êwith ´ ®�¯ )m·¸% )m· . Setª "  ³ �2" ÀÀ  ± ð µ � ª ³ ��" ÀÀ  ± ð µ  ½¿ ´ À ÀÀ À ÀÀ À À

ÂÄ Ê¬ "� ³ �2" ÀÀ  ± ð µ � ¬ ³ �2" ÀÀ  ± ð µ  ½¿ ¹¬ "�" ¹¬ ">) ¹6 "mÏ¹¬ � ">) ¹¬ )�) ¹¬ )+Ï¹¬ � "mÏ ¹¬ � )+Ï Ã ÂÄ Ê
partitioned analogously. (Here ¹¬ )�) ®»¯ ° � )m· �²± ð % ° � )m· �²± ð ).
IF ¼�½  4 Å ¨�& THEN

Set flag
 Á andÝ  ½¿ �¿ « '1À À À 'W¿ ð À ÀÀ � " ÀÀ À /Á « '1À À À ' Á ð ÂÄ Ð

ELSE

Set §  §bÂ Á .Perform a congruence transformation withÞß ½¿  À ÀÀ  ÀÀ Å Ã � " ¹¬ � )+Ï  ÂÄ
to annihilate the blocks ¹¬ )+Ï and ¹¬ � )+Ï in ¬ " . Setª "�à  7Þ � ª " Þá ª " Ê�¬ "�à  ©Þ � ¬ " Þß ½¿ ¹¬ "�" â¬ ">) ¹6 "mÏâ¬ � ">) â¬ )�) À¹¬ � "mÏ À Ã ÂÄ Ð
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Perform the Schur decompositionâ¬ )�)0 !�Ì)J³�Ã & ÀÀ À µ � �) Ê
where Ã &K®k¯�ãÄ % ãÄ is nonsingular.
Let Å ÎÆ & Ê ÎÈ & Ê À¸É be the inertia index of Ã & .
Setª "mä  ½¿ �)m· À ÀÀ �Ì) ÀÀ À  ± ð2Ñ « ÂÄ � ª "�à ½¿ �)m· À ÀÀ ��) ÀÀ À  ± ð2Ñ « ÂÄ  ½¾¾¿ ´ À À ÀÀ À À ÀÀ À À ÀÀ À À À

Â ÃÃÄ Ê
¬ "mä  ½¿ �)m· À ÀÀ �Ì) ÀÀ À  ± ð2Ñ « ÂÄ � ¬ "�à ½¿ �)m· À ÀÀ �Ì) ÀÀ À  ± ð(Ñ « ÂÄ  ½¾¾¿ ¹¬ "�" å å ¹¬ "mÏå Ã & À Àå À À À¹¬ � "mÏ À À Ã Â ÃÃÄ Ê
partitioned analogously.
Let æ be the permutation that interchanges the last two columns
and rows of ¬ Ï . Setª )k æ � ª "mä æ  ½¾¾¿ ´ À À ÀÀ À À ÀÀ À À ÀÀ À À À

Â ÃÃÄ  ;ç ½¿ ´ À ÀÀ À ÀÀ À À
ÂÄ Ê

¬ )  æ � ¬ "mä æ  ½¾¾¿ Î¬ "�" å ¹¬ "mÏ åå Ã & À À¹¬ � "mÏ À Ã Àå À À À
Â ÃÃÄ ;ç ½¿ Î¬ "�" Î¬ ">) Î¬ "mÏÎ¬ � ">) Ã ÀÎ¬ � "mÏ À À

ÂÄ Ð(B.1)

Set
¨�& 7¨�& � " Â ÎÊ .IF
¨ &  4 Å ¼^½ THEN
Set flag

 Á and¹Ý  Ð³ �2" ÀÀ  ± ð2Ñ « µ Þ ½¿  )m· À ÀÀ �Ì) ÀÀ À  ± ð2Ñ « ÂÄ æ ÊÝ  ½¿ �¿ « '1À À À 'W¿¬ð2Ñ « À ÀÀ ¹Ý ÀÀ À  Á « '�À À À ' Á ð2Ñ « ÂÄ Ð
ELSE

Perform a rank revealing factorization or SVDÎ¬ "mÏ0 B�1ÏJ³»Ò & ÀÀ À µ«Ó �Ï Ê
where Ò & ®»¯2Ô % Ô is nonsingular.
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Set 3 & 7Õ , 5 &! 4 Å ¼�½ Å ¨�& , andª Ï8 ½¿ � Ï À ÀÀ  ± ð ÀÀ À Ó Ï
ÂÄ � ª ) ½¿ � Ï À ÀÀ  ± ð ÀÀ À Ó Ï

ÂÄ
 ½¾¾¾¾¿ ª "�" ª ">) À À ÀÅ ª �">) ª )�) À À ÀÀ À À À ÀÀ À À À ÀÀ À À À À

Â ÃÃÃÃÄ Ê
¬ Ï  ½¿ �ÌÏ À ÀÀ  ± ð ÀÀ À Ó Ï

ÂÄ � ¬ ) ½¿ �1Ï À ÀÀ  ± ð ÀÀ À Ó Ï
ÂÄ

 ½¾¾¾¾¿ ¬ "�" ¬ ">) ¬ "mÏ Ò & À¬ � ">) ¬ )�) ¬ )+Ï À À¬ � "mÏ ¬ � )+Ï Ã À ÀÒ �& À À À ÀÀ À À À À
Â ÃÃÃÃÄ Ê¹Ý  Û³ ��" ÀÀ  ± ð2Ñ « µ Þ ½¿ �)m· À ÀÀ � ) ÀÀ À  ± ð2Ñ « ÂÄ æ ½¿ �1Ï À ÀÀ  ± ð ÀÀ À Ó Ï

ÂÄ Ð
Set

¾  ½¿  ¿ « '�À À À 'W¿ ð2Ñ « À ÀÀ ¹Ý ÀÀ À /Á « '�À À À ' Á ð(Ñ « ÂÄ Ð
Setª  ³ ¼^½ Å Õè¨�&¼^½ Å Õ ª )�) À¨�& À À µ Ê�¬  ³ ¼^½ Å Õ ¨�&¼^½ Å Õ ¬ )�) ¬ )+Ï¨�& ¬ � )+Ï Ã µ ®�¯ ° % ° Êand

4  ¼�½ Å Õ Â ¨�& .
END IF

END IF

Form
6  Ý � 6 Ý

,
�á Ý � � Ý

, é  é Ý .
END WHILE

We now show that the subpencils generated by two algorithms are equivalent. For this
we need the following lemma.

LEMMA B.1. Suppose that Cg(�*
 ¡. , and U £�ÚWV1CD�vs . Ifã "� C Ú � ��
DL � cc c� � ã "� C Ú � ��
DL � cc c!� �
where L � � L � ('* � . � , ã � � ã � (�*- j.   , and Ú � � Ú � (+*-,/. , are nonsingular, then there exist
nonsingular matricesk6��
 k � ck � k ] � (�*  j.   � � ��
 � � c� � � ] � (]* ,/. ,
where k � � � � (�* � . � , such thatã � � ã � k-� Ú � � Ú � � � L � �Mk "� L � � � t
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In particular, if C��iCj" or C � �!Cj" and ã � � Ú � , ã � � Ú � , then k&� � and L � �� "� L � � � .Proof. Let k�� ã �ê�� ã � and � � Ú �ê�� Ú � . Then
 L � cc c � �Dk " 
 L � cc c � � t
The result follows directly by comparing the blocks on both sides.

To show the relationship between Algorithms 2 and 1 we denote the blocks in Algo-
rithm 2 by a q and in Algorithm 1 by a S .

Assume that at the beginning of the A th reduction� q� �+� q� �bê " 0 � S� �+� S� 3^ê(B.2)

for some nonsingular matrix ê � 
 ê �%� cê � � ê ��� � , where ê ��� (�* N � � ð . N � � ð , ê �%� (* � ð . � ð . Then for q� �%� and S� �%� in q� and S� , respectively, we haveq� �%� �Qê "��� S� �%� ê ��� t
Let q� "� q� �%� q� � ��
 qC cc c � � S� "� S� ��� S� � ��
 SC cc c � t
By Lemma B.1, q� � �vê ������ S� � � �
where � � 
 � �%� c� � � � �%� � is nonsingular and � ��� (r*-��E�. ��E . Then a simple calculation

yields �@q� � �+��q� � � q� " 0 � S� � �+� S� � 3|q� �
where

q�ß� 
 S� � cc o � ð � " ê 
 q� � cc o � ð � � PR � ��� c c� � � � ��� c� ]¶� � ] � � ]Y] TU
with � ]r] �bê ��� . Clearly, thenë q S� �%� q S� � ]q S� "� ] qL ì � 
 � ��� c� ] � � ]r] � " PR S S� �%� S S� � ]S S� "� ] SL TU 
 � ��� c� ] � � ]r] � t(B.3)

In Algorithm 2 we then determine a nonsingular matrix q� such that

q� " ë q S� ��� q S� � ]q S� "� ] qL ì q� ��
 qL cc c � �
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where qLví �[¢^¤£{¥ 0 L   �ÌqL 3 and in Algorithm 1 we determine an orthogonal matrix S� such thatS� " PR S S� �%� S S� � ]S S� "� ] SL TU S� ��
 SL cc c � t
By (B.3), the new qL and SL must have the same inertia and the same size s   í � 77s   í � .
Moreover, by Lemma B.1, q� ��
 � �%� c� ] � � ]r] � ��� S� Ñ �
where Ñ � 
 Ñ ��� cÑ ] � Ñ ]Y] � is nonsingular and Ñ �%� (�* � ð = « . � ð = « .

We then have �@q� � �+��q� � �áqÑ " 0 � S� � �+� S� � 3qÑ �(B.4)

where qÑ ��
 o ��E cc S� � ��� q�î
 o ��E cc q� � � PR Ñ �%� c cÑ � � Ñ �%� cÑ ]Ý� Ñ ] � Ñ ]r] TU �
with Ñ �%� �ï� ��� .

Let q� ��] be the block of q� � in (B.1) and S� ��] be the corresponding block in S� � . By
comparing the blocks in (B.4) we haveq� �^] � Ñ " ��� S� �^] Ñ ]r] t
Let q� " q� �^] q_ ��
 qH   cc c � � S� " S� �^] S_ ��
 SH   cc c �
be the computed rank revealing factorizations. Then qH   and SH   must have the same sizey 7 y . Again by Lemma B.1 q� � Ñ �ê���� S� k-� q_ � Ñ �ê�]Y] S_ � �
where k+��
 k ��� ck � � k ��� � � � ��
 � ��� c� � � � ��� � �
and k ��� � � ��� (�*�ðz. ð . Then �)q� ] ����q� ] � qk " 0 � S� ] ��� S� ] 3�qk��
where qk6� PR S� c cc o � ð = « cc c S_ TU �ê� qÑ PR q� c cc o � ð = « cc c q_ TU

� PffffR k �%� c c c ck � � k �%� c c ck ]Ý� k ] � k ]r] c ck �¶� k � � k �Y] k �Y� ck �Ý� k � � k �r] k �r� k ���
ThggggU �
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with k ]Y] � Ñ ��� and k �r� � � ��� , k �r� � � � � , and k ��� � � ��� . It is then evident that the newly
generated subpencils �)q� �+��q� and � S� �+� S� satisfy�)q� �+��q� ��
 k ��� ck ] � k ]Y] � " 0 � S� ��� S� 3J
 k ��� ck ] � k ]Y] � �
which is the same as (B.2). Since both algorithms start withq� � S� �[��� q� � S� �D���
it follows by induction that they generate the same integers :�» , 9¶» , s » . The inertia indices
satisfy qÛÌ» � ÛÌ» � Û» �ê� and qÜ » �MÜ » �6Ü » ��� .

In the following we will show that by carrying out some further block Gauß elimina-
tion steps, the staircase form computed by Algorithm 2 can be reduced close to the even
Kronecker-like form. In Algorithm 2 it is not necessary to move all the blocks L toward the
center. So the permutation with s in (B.1) does not necessarily have to be carried out. The
staircase form has the following block structure.¹�ß é � � é  ½¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¿

�#"�" Ð¶Ð�Ð Ð¶ÐÝÐ �#"�% & �#"�% &('�" �$"�% &('-) Ð�ÐÝÐ �#"�% )+& À...
. . .

...
...

... . . .
. . .

...
. . .

...
...

� & � "�% &2'-) . . .Å � �"�% & Ð¶Ð�Ð Ð¶ÐÝÐ �,&0% & �,&0% &2'1" ÀÅ � �"�% &('�" Ð¶Ð�Ð Ð¶ÐÝÐ Å � �&0% &('1" � &('1"�% &('1"Å � �"�% & Ð¶Ð�Ð Å � �& � "�% &2'-) À À... . . .
. . . . . .Å � �"�% )+& . . . . . .À À

Â ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÄ

3 "
...
...3 &4Î5 &...
...Î5 "
Ê

¹6  é �u6 é  ½¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¿

6 "�" ÐÝÐÝÐ�ÐÝÐ�Ð 6 "�% & 6 "�% &('�" 6 "�% &2'-) ÐÝÐ¶Ð ÐÝÐÝÐ 6 "�% )+&('�"
...

. . .
...

...
... . . .

...
. . .

...
...

... . . .6 �"�% & ÐÝÐÝÐ�ÐÝÐ�Ð 6 &0% & 6 &0% &2'1" 6 &0% &('*)6 �"�% &('1" ÐÝÐÝÐ�ÐÝÐ�Ð 6 �&0% &2'1" 6 &('�"�% &('�"6 �"�% &('-) ÐÝÐÝÐ�ÐÝÐ�Ð 6 �&0% &2'-) 6 &('*)r% &('*)
... . . . . . .
... . . . . . .6 �"�% )+&('1" 6 )+&('1"�% )+&('1"

Â ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÄ

3 "
...
...3 &4Î5 &...
...Î5 "
Ê

(B.5)

where for qs » �Qs » �¶s » ��� , q9¶» � 9Ý» E qs » , ( p#?©@Ë?BA ), and ñ � � �ÖE qs   í � . The blocks have
the following properties.� » . ��  í �Ý� » (6* , ¹ .óò< ¹>= « � U £{ÚWV�� » . ��  í �¶� » � q9 » í � � p#?7@�?BA � p ��   í � .   í � � 
DC cc c ò� ð = « � � C (]* ��E´. ��E �

� » . ��  í � � » � F qs » : » 9 » � : »: » � » H » c I � p$?©@�?KA �
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� ��  í � � » . ��  í � � » � 
 qs » 9¶»qs » L » c9¶» c cM� � p$?©@Ë?!A ��   í � .   í � ��
DL �%� L � �L " � �ôL   í � � � L �%� (�* ��E´. ��E � L   í � (�* ò� ð = « .õò� ð = « �
where all the blocks C � L » � H » are nonsingular. Without loss of generality, we may assume
that C � � ��E and L » �D¢^¤£{¥ 0 o òö ¹ �w�!o ò÷ ¹ 3 .

The property that � » . ��  í �Ý� » has full column rank can be shown as follows.
After the first step of reduction we have

�f� PffffR � ��� � � � c�c�c� � "� � � ��� c�c�cc c c�c�cc c c�c�cc c c�c�c
T ggggU t

In the next step, after having compressed � ��� , � is changed to

PffffffR S� �%� S� � � S� ��] c�c�c� S� "� � C c c�c�c� S� "�^] c c c�c�cc c c c�c�cc c c c�c�cc c c c�c�c
ThggggggU t

Since 
 � ��� � � �� � "� � � ��� � and C are nonsingular, S� �^] has to be of full column rank. It is easily

seen that S� ��] is equivalent to � � . ��  . So � � . ��  has full column rank. By induction, it follows
that the other blocks � » . �%  í �¶� » have full column rank as well.

We now begin further reductions on the pencil (B.5). The reduction process is described
in the following algorithm.

ALGORITHM 3. Let � í � Ú "�� Ú and � í � Ú "O� Ú be given as in (B.5).

Annihilate the blocks Ã ">) and Ã � ">) with pivot block Ã &('1" in
6 &('1"�% &('1"

.
Annihilate the blocks in

�,&0% &('�"
( Å � �&0% &('�" ) above and to the left of´ in� &('�"�% &('�"

with the pivot block ´ . Then³ �,&0% & �,&0% &('1"Å � �&0% &('�" � &('�"�% &('�" µ  ½¿ Î� &0% & À Îø &À ´ ÀÅ Îø �& À À
ÂÄ Ð

Because by the reduction procedure
³ �,&0% & ��&8% &('�"Å � �&0% &('�" � &('�"�% &('�" µ is nonsingular,Îø & has to be of full column rank. So we can determine a nonsingular matrixÞ

such that ù � Îø Ï  Û³ À ã± ð = « µ Ð Then³ ù ÀÀ  µ � ³ �,&0% & �,&0% &('�"Å � �&0% &('1" �,&('1"�% &('1" µ ³ ù ÀÀ  µ  
½¾¾¿�ú "�" ú ">) À ÀÅ ú � ">) ú )�) À Î ± ð = «À À ´ ÀÀ Å Î ± ð = « À À

Â ÃÃÄ Ð
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We then annihilate ú )�) Ê ú ">) , and Å ú � ">) by performing another block Gauß congruence
transformation with pivot blocks

 ã± ð = « and Å  ã± ð = « . Again by the nonsingularity

of
³ �,&0% & �,&0% &('1"Å � �&8% &('�" � &('�"�% &('�" µ , ú "�" has to be nonsingular.

So it can be compressed further to ú &Qç  Rûýü ¿ ð � ã± ð = «^þóÿ ) by performing one
more congruence transformation. Eventually,³ � &0% & � &0% &('1"Å � �&0% &('�" �,&('�"�% &('�" µ Å��

½¾¾¿ ú & À À ÀÀ À À  ã± ð = «À À ´ ÀÀ Å  ã± ð = « À À
Â ÃÃÄ Ð

Applying the same sequence of congruence transformations to
6
, it is easy

to check that the block structures and ranks will not change.
We now proceed by working on

6
. First we simplify Ò Ï and Ò �Ï to

 ¿ ð
in

6 &8% &('*)
and

6 �&0% &2'-)
by post-multiplying

������� Å  Ê Ò � "Ï Ê  É to 6 &8% &('*)
and pre-multiplying

its transpose to
6 �&0% &('*)

. Note that this transformation does not affect6 &('*)r% &('*)
and the blocks in

�
.

Second, we annihilate 	 & , Å 	 �& in
6 &0% &('*)

,
6 �&0% &('-)

and
6 &0% &2'1" Ê 6 �&0% &('�" Ê 6 &0% &with pivot block

�¿ ð
in

6 &0% &('*)
and

6 �&8% &('*)
.

FOR 
  § Å Á ÊÝÐ¶ÐÝÐÝÊ Áa) Annihilate the blocks
� Ï % Ï '�" ÊÝÐÝÐÝÐ�Ê � Ï % )+& � Ï as well as Å � �Ï % Ï '�" ÊÝÐÝÐ�Ð¶Ê Å � �Ï % )+& � Ïin

�
with the nonsingular blocks in Å � �Ï '�"�% )+& � Ï Ê¶ÐÝÐ�ÐÝÊ Å � �&0% &('�" , �,&('�"�% &('�"

,� &0% &('�" Ê¶ÐÝÐÝÐ�Ê � Ï '�"�% )+& � Ï as pivots.

Simplify
� Ï % )+&2'1" � Ï and Å � �Ï % )+&('�" � Ï to ³ À ãÁ ¹n= « µ and Å ³ À ãÁ ¹>= « µ � , respectively.

Annihilate the blocks in
� Ï % Ï

with pivot blocks
 ãÁ ¹>= « and Å  ãÁ ¹>= « from� Ï % )+&('�" � Ï and Å � �Ï % )+&('1" � Ï to get� Ï % Ï  Ð³ ú Ï ÀÀ À µ ÐWith the same argument as before, ú Ï must be nonsingular and thus

we reduce ú Ï to û ü ¿ ¹ � ãÁ ¹n= « þ ÿ ) .
b) Reduce the blocks Ò Ï , Ò �Ï in

6 Ï % )+&('*) � Ï and 6 �Ï % )+&('*) � Ï to  ¿ ¹ .
Annihilate the blocks

6 Ï % Ï
,
6 Ï % Ï '1" Ê�ÐÝÐ¶ÐÝÊ 6 Ï % )+&('1" � Ï , 6 �Ï % Ï '�" ÊÝÐÝÐÝÐ�Ê 6 �Ï % )+&('�" � Ï ,as well as 	 Ï , Æ �Ï in

6 Ï % )+&('*) � Ï and 6 �Ï % )+&('*) � Ï with block pivot
 ¿ ¹

from
6 Ï % )+&('-) � Ï and

6 �Ï % )+&('*) � Ï .
END FOR 


With this further reduction, the matrices � and � are transformed asÞ � �kÞº ½¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¿

�#"�" � "�% )�� À. . . . . .
. . .

. . . � & � "�% &('1" . . .�,&0% & �,&0% &('1" ÀÅ � �&8% &('�" �,&('�"�% &('�"Å � �& � "�% &('1" À À. . .
. . . . . .Å � �"�% )+& . . . . . .À À

Â ÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÃÄ

3 "
...
...3 &4Î5 &...
...Î5 "
Ê
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À 6 "�% )+&('�"

. . . . . .

À 6 &0% &('-)6 &2'1"�% &2'1"6 �&0% &('*) 6 &('*)r% &('*)
. . . . . .6 �"�% )+&('�" 6 )+&('�"�% )+&('�"

Â ÃÃÃÃÃÃÃÃÃÃÃÄ

3 "
...3 &4Î5 &...Î5 "(B.6)

for some nonsingular matrix ã , where (note that 9w» � q9Ý» � qs » )� Ï % )+&('�" � Ï  ½¿ Î¨ Ï '�" 5 Ï '1"3 Ï Å Î5 Ï '1" À ÀÎ¨ Ï '�"  À5 Ï '�" À  ÂÄ Ê Á  
  § Å Á Ê� Ï % Ï  ³ 3 Ï Å Î5 Ï '�" Î5 Ï '1"3 Ï Å Î5 Ï '1" û ÀÎ5 Ï '�" À À µ Ê Î5 &('�"2 Î¨�&('�" Ê Á  
  § Ê�,&0% &2'1"2 ³ ¼^½ Î¨�&2'1"3 & Å Î¨ &('�" À ÀÎ¨�&('�" À  µ Ê��&2'1"�% &2'1"2 Ð³k´ ÀÀ À ã± ð = « µ Ê ´  Bû`· Ê6 Ï % )+&('-) � Ï  � Î¨ Ï 3 Ï 5 Ï Å 3 Ï3 Ï À  À � Ê Á  
  § Ê6 )+&2'-) � Ï % )+&('*) � Ï  ³ Î¨ Ï 5 ÏÎ¨ Ï Ã Ï À5 Ï À À µ Ê Á  
  § Ê6 &('�"�% &('�"  Ð³�� ÀÀ Ã &('�" µ Ê �  � � ®»¯ )m·¸% )m· Ð
Note that all L » �·¢^¤£{¥ 0 o òö ¹ �w�!o ò÷ ¹ 3 , pJ?7@�?KA E p are signature matrices.

By performing a congruence transformation to the pencil with ã "�� ã � ã "�� ã in (B.6)
with an appropriate permutation, we obtain the structured Kronecker form (2.2) of ��� �|�O� .
This leads to the conclusion in Theorem 3.3.

Let us illustrate this complicated process by an example.
EXAMPLE B.2. Let

�������O�f�D�
PffffffffffffffffR
c c p c c�c�c�cc c c p c�c�c�cc p c�cC� p c� p c c c�cc � p c c�cc c c�c�c�cc c c�c�c�cc c c�c�c�cc c c�c�c�c

ThggggggggggggggggU
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���
PffffffffffffffffR
c�c c c c p c�cc�c c c c c p cc c p c�c cc p c cc�c c c cc�c � p c�c�cp c c c�c�cc p c c�c�cc�c c c�c�c

ThggggggggggggggggU �
where C is nonsingular. We have A � � , and: � � � � : � � p � : ] �[c�� 9 � � � � 9 � � � � 9 ] � p �qs � � p � qs � �DcÌ� qs ] �DcÌ� qs � �·cdt
Then 9 � � : � � p � 9 � � : � � p � 9 ] � : ] � p � (for ��» ��� ); � � 0W: � � 9 � � qs � 3�Ù � �DcÌ� ; � � 0W: � � 9 ] � qs ] 3�Ù � �DcÌ� (for ë � » ) �qs � � qÜ � � p � qs � �[cd� qs ] �DcÌ� qs � �[cÌ� (for ë � » �ê� )
By Theorem 3.3, we conclude that the pencil has one singular block ¦ � ����cF�@�Oc ; one
block � � ; one block � � ; and one block ë � with ù �&� p . The canonical structure of ���8�=�O�
associated with the finite eigenvalues is the same as that of � C ���2� .

In fact, if we rearrange the columns and rows of � and � in the order ü , � , p , � , � , � , � ,� , � , p c , p�p and let s be the corresponding permutation matrix, then

s " 0 �������O��3îs8�[�
PffffffffffffffffR
C c c c c p cc c p c�cc � p c�c�c� p c c�c�cc c c�c�c c p c� p c�cc c�c c

ThggggggggggggggggU
���
PffffffffffffffffR
� � p c c c�c pc c c p cc c c�c�cc � p c�c�c� p c c�c�c c c pc c�c� p c�c c

ThggggggggggggggggU �



ETNA
Kent State University 
etna@mcs.kent.edu

A STRUCTURED STAIRCASE ALGORITHM FOR SKEW-SYMMETRIC/SYMMETRIC PENCILS 29

which is in the structured Kronecker form.

Appendix C. A structured algorithm for computing the structured Schur form of
regular skew-symmetric/symmetric pencil of index at most p .. In this appendix we present
an algorithm for computing the structured Schur form (4.2). We call a matrix � ()*-��,/. ��,
orthogonal-symplectic if � " � � o ��, and � " � , � � � , . In this algorithm we will de-
note by �=0m� � @ 3 a Givens rotation operating in rows or columns � and @ . If � � » ( *�,. ,
then ���´0m� � @ 3 í � ¢^_£�¥ 0�� � » � � � » 3 is orthogonal-symplectic and also �=0W: � �´: 3#(&*
��,/. ��, is
orthogonal-symplectic. Finally in the algorithm we use the orthogonal-symplectic permuta-
tion matrix sg� t � , � � � �ztwtztÔ� � , �ê� � � ��, � � , í � �wtztwtÔ� � ��, �ê� w .

ALGORITHM 4. For a regular skew-Hamiltonian/Hamiltonian pencil � � ���O� of index
at most p with � �ák � , k
" � ", (D*-��,/. ��, and k ��¢^¤£{¥ 0 ����cÌ�Y���%c®3 , where � (M*OE�. E is
positive diagonal, this algorithm computes orthogonal matrices h � � h � and orthogonal sym-
plectic matrices � � � � � such that h " � � h � , h " � k � � , � "� 0�� , k
" � ", 3 h � are in the form (4.2).

Let �ß�b�gsu� h � � � � �·o ��, � h � � � � �[su�� �[s " 0�� , k " � ", 32sg�D¢^¤£{¥ 0 cÌ�Y���%c , � E �ê� �%cd�r����c , � E ��� 3Ôt
Step 1. Reduce � ��k
� � to a form that is as (4.2) with the exception
that � �r� is lower Hessenberg.
FOR ;F� p �ztwtztÔ� :
% Annihilate A , í 9¬. 9 �ztwtztw� A ��, ��� . 9

FOR @ � : E ;��wtztwtz� �´: � p
Determine �=0 @ � @ E p 3 to annihilate AB» 9 . Set�n� � " 0 @ � @ E p 3^� � k�� � " 0 @ � @ E p 32k
� h � � h � �=0 @ � @ E p 3Ôt
Determine � � 0 @ � : � @ � : E p 3 to annihilate ùÔ» . » í � . Setk��Dk ����0 @ � : � @ � : E p 3Ô� � � � � � ���´0ó@ � : � @ � : E p 3¶t
Determine �=0 @ � : � @ � : E p 3 to annihilate ùÔ» � , í � . » � , . Set�n� � " 0 @ � : � @ � : E p 3r� � k6� � " 0ó@ � : � @ � : E p 32k
�h � � h � �=0ó@ � : � @ � : E p 3¶t

END FOR
% Annihilate A �%,/. 9

Determine �=0W: � �´: 3 to annihilate A ��,/. 9 . Set�n� � " 0�: � �´: 3^� � k6� � " 0W: � �´: 3%k-� h � � h � �=0W: � �´: 3Ôt
Determine another �=0�: � �´: 3 to annihilate ù ��,/. , . Setk6�Mk �=0�: � �´: 3¶� � � � � � �=0�: � �´: 3Ôt

% Annihilate A ,/. 9 �wtztwtÔ� A 9 í � . 9
FOR @ � : �wtwtztÔ��; E p
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Determine �=0 @ � p � @ 3 to annihilate A » . 9 . Set�ß� � " 0ó@ � p � @ 3^� � k�� � " 0 @ � p � @ 32k-� h � � h � �=0 @ � p � @ 3¶t
Determine ���´0ó@ � p � @ 3 to annihilate ù » . » í � . Setk��[k � � 0ó@ � p � @ 3Ô� � � � � � � � 0 @ � p � @ 3¶t
Determine �=0�: E @ � p � : E @ 3 to annihilate ù , í » ��� . , í » . Set�ß� � " 0�: E @ � p � : E @ 3r� � k�� � " 0�: E @ � p � : E @ 3%k-�h � � h � �=0�: E @ � p � : E @ 3Ôt

END FOR
% Annihilate A , í 9¬. 9 í � �wtwtztÔ� A , í 9�. , ���

FOR @ �M; E p �wtwtztÔ� : � p
Determine �=0 @ � @ E p 3 to annihilate A , í 9¬. » . Set�ß�ï� �=0 @ � @ E p 3¶� � � ���=0 @ � @ E p 3¶� h � � h � �=0ó@ � @ E p 3¶t
Determine � � 0ó@ � @ E p 3 to annihilate V�» í � . » . Set� � � " � 0ó@ � @ E p 3 � � � � � � � ���´0 @ � @ E p 3¶t
Determine �=0�: E @ � : E @ E p 3 to annihilate V , í » . , í » í � . Set�ß�ï� �=0�: E @ � : E @ E p 3¶� � � ���=0W: E @ � : E @ E p 3¶�h � � h � �=0W: E @ � : E @ E p 3¶t

END FOR
% Annihilate A , í 9¬. ,

Determine �=0W: � �{: 3 to annihilate A , í 9¬. , . Set�ß�b� �=0W: � �´: 3Ô� � � ���=0�: � �´: 3Ô� h � � h � �=0�: � �{: 3¶t
Determine another �=0�: � �´: 3 to annihilate V ��,/. , . Set� � � " 0�: � �{: 3 � � � � � � � �=0�: � �´: 3¶t

% Annihilate A , í 9¬. ��, �ztwtwtz� A , í 9¬. , í 9 í �
FOR @ � �´: �ztwtwtw� : Er; E �

Determine �=0 @ � p � @ 3 to annihilate A , í 9¬. » . Set�n�ï� �=0 @ � p � @ 3¶� � � ���=0ó@ � p � @ 3Ô� h � � h � �=0 @ � p � @ 3Ôt
Determine � � 0ó@ � : � p � @ � : 3 to annihilate V§» ��� . » . Set� � � " � 0 @ � : � p � @ � : 3 � � � � � � � � � 0 @ � : � p � @ � : 3Ôt
Determine �=0 @ � : � p � @ � : 3 to annihilate V§» � ,. » � , �ê� . Set�n�v� �=0 @ � : � p � @ � : 3¶� � � ���=0ó@ � : � p � @ � : 3¶�h � � h � �=0ó@ � : � p � @ � : 3¶t
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END FOR
END FOR
(Note that the (3,3) block of � now is zero.)
% Annihilate A , í � . , í � �ztwtztw� A , í E´. , í E í �
FOR ;F� : E p �wtwtztÔ� : E��

Determine �=0 ;���;ÖE p 3 to annihilate A 9¬. 9 í � . Set�ß�ï� �=0 ;���; E p 3¶� � � ���=0 ;���; E p 3Ô� h � � h � �=0 ;��Ý;ÖE p 3¶t
END FOR
Step 2. Reduce � �r� to lower quasi-triangular form.

Partition the matrices � ��k-� � as in (4.2). Apply the periodic hJ� -algorithm,see e.g. ([7, 22, 23]) to the formal productk � "�Y� k ������ � ��� � ����%� � � "�r� �g"�r� to determine orthogonal matrices l » , @ � p �ztwtztÔ� �
such that lg"� k �Y� l � and lg"� � �Y� l � are lower triangular, l8"] k ��� l � andlg"] � ��� l � , lg"� � �%� l � are upper triangular, and l8"� � �Y� l � is lower
quasi-triangular.
Let � � �[¢^_£�¥ 0 o E ��l ] ��o E ��l � 3Ô� � � �D¢^¤£{¥ 0 o E ��l � ��o E ��l � 3Ô�� � �[¢^_£�¥ 0 o E ��l � ��o E ��l � 3Ô� � � �D¢^_£�¥ 0 o E ��l � ��o E ��l � 3¶t
Set �n� � " � � � � � k�� � " � k � � � � � � "� � � � �h � � h � � � � h � � h � � � � � � � � � � � � � � � � � � � t
Once the form (4.2) has been obtained, we introduceSk6� h " � k � � � S� � � "� � h � and S�n� h "� � h � t(C.1)

Because � � � , k
" � ", , �ß�8� � , � � ", , � � � , � � , � � , and � � � , � � , � � , we have� "� �J0�� , h � � ", 3Z� � , Sk " � ", �0�� , h � � ", 3 " k � � � � , S� " � ", �0�� , h � � ", 3 " � 0�� , h " � � , 3 " �8� � , S� " � ",(C.2)

and from � �Mk � , we haveh " � � 0�� , h � � ", 3$� h " � k � � � "� �J0�� , h � � ", 3Z� Sk � , Sk " � ", �0�� , h � � ", 3 " �jh � � 0�� , h � � ", 3%k � � � "� � h � � � , S�#� ", S� t(C.3)

It was shown in [3] that the finite eigenvalues of � � �+�O� are exactly the finite eigenvalues
of � ñ �+�! �·� 
 � cc � � �+� 
 c �� c �
(with doubled algebraic multiplicity). Let

� � �·¢^¤£{¥ 0 h � � � , h � � ", �Ý3 , � � �D¢^¤£{¥ 0�� , h � � ", � h � 3 .If follows from (C.1), (C.2), (C.3), and (4.2) that� " � 0 � ñ �+�! f3 � � �[�Q
 Sk � , Sk
" � ", cc � , S�#� ",BS� � �+�Q
 c S�� � , S�g" � ", c �
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�D�
PffffffffffR
c " " "c�k �%� k
"�Y� " "c c c cc c " k �r� k
"��� c " " "c � "�r� � ��� " "c c c cc c " � "�%� � �Y�

ThggggggggggU
���
PffffffffffR

� �%� " " "c � �%� " "c c � ]Y] cc c " � �Y����g"]Y] " " "c ���g"�r� " "c c ���g"��� cc c " ���g"���
T ggggggggggU t

Rearranging the rows and columns by a block permutation in the order p , � , � , � , � , � , ü , � ,
the pencil is equivalent to the pencil

� PffR c " " "c$# " "c c c cc c "%# "
ThggU ��� PffR õ " " "c ä " "c c �uõê" cc c " � ä "

ThggU �
where the asterisks indicate (possibly) nonzero blocks and

#�� 
 k ��� k "�Y� cc � "�r� � ��� � � ä � 
 c � �%����g"�Y� c � �Qõ#� 
 c � ������g"]r] c � t
The finite eigenvalues of � ñ �+�! are exactly those of �&#g�6� ä and �&#|"]EH� ä " . It

is easily verified that 
 o cc �!o � 0 �&#DE�� ä 3 
 o cc �!o � �[�&#g�+� ä �
the eigenvalues of �&#â�·� ä and �&# " E � ä " are the same. Therefore, � � �·��� and�&#g��� ä have the same finite eigenvalues with the same algebraic multiplicity.

Since k ��� �Ýk �r� � � ��� � � �Y� are nonsingular, the pencil �'#g�+� ä is equivalent to

# ��� ä � 
 c k � "�Y� k ������ � �%�� � ������ � � "�Y� �g"�Y� c � t
Then, obviously, the eigenvalues of # ��� ä are the square roots of the eigenvalues of the
matrix 0 # ��� ä 3 � �8� 
 k � "�Y� k ������ � ��� � �ê��%� � � "�r� �g"�r� cc � ������ � � "�Y� �g"�Y� k � "�r� k �ê���� � ��� � t
Note that the two diagonal blocks have the same eigenvalues. Using the triangular forms of
these blocks, the eigenvalues of 0 # ��� ä 32� can be computed from the diagonal blocks of the
upper quasi-triangular matrix �¡k � "�Y� k ����%� � �%� � ����%� � � "�Y� � "�r� t
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This then allows to compute the eigenvalues of �&#g�+� ä .
Because �����6�O� is equivalent to � � �6�O� , the finite eigenvalues of �����+��� can

be obtained from �'#g�+� ä , as well.


