Electronic Transactions on Numerical Analysis. ETNA
Volume 26, pp. 1-33, 2007. Kent State University
Copyright © 2007, Kent State University. etna@mcs.kent.edu
ISSN 1068-9613.

A STRUCTURED STAIRCASE ALGORITHM FOR
SKEW-SYMMETRIC/SYMMETRIC PENCILS*

RALPH BYERSY, VOLKER MEHRMANN? AND HONGGUO XU}

Abstract. We present structure preserving algorithms for the numerical computation of structured staircase
forms of skew-symmetric/symmetric matrix pencils along with the Kronecker indices of the associated skew-symme-
tric/symmetric Kronecker-like canonical form. These methods allow deflation of the singular structure and deflation
of infinite eigenvalues with index greater than one. Two algorithms are proposed: one for general skew-symme-

tric/symmetric pencils and one for pencils in which the skew-symmetric matrix is a direct sum of 0 and J =
[_OI é] We show how to use the structured staircase form to solve boundary value problems arising in control
applications and present numerical examples.
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1. Introduction. In this paper we study structure preserving numerical methods for the
computation of the structural information associated with the singular and infinite eigenvalue
parts of the Kronecker canonical form of real skew-symmetric/symmetric matrix pencils

(1.1) aN — 8H,

where N = —NT H = HT € R™" and (o, 8) € C x C. Here by R™* we denote the set
of real n x k matrices. In the following we adopt the notation of [31] and call pencils of this
form even pencils, since replacing (a, 8) by (—a, 3) and transposing yields the same pencil.
Even pencils occur in the context of linear quadratic optimal control problems (see, e.g.,
[34, 38, 39, 45]), Hy control problems, (see, e.g., [4, 18, 37, 46]), and other applications
(see, e.g., [31, 35]).
For control problems of the form

(1.2) Ei = Az + Bu, y = Cu,

it has been shown in [34] that the solution of the linear quadratic optimal control problem
leads to the boundary value problem

T T
(1.3) N|lpl|=H|p
U u

(u is an auxiliary vector, typically it is a vector of Lagrange multipliers) with boundary con-
ditions

(1.4) z(to) = o, lim E¥u(t) =0,
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where the matrix pencil associated with the boundary value problem

0 E 0 Q AT S
(1.5) aN—-BH=a| -E* 0 0|-8| A W B |,
0 0 0 ST BT R

is even, see [34]. (In particular, Q = QT,W = WT and R = RT))

The solution of the boundary value problem can be obtained via the computation of a
structured Schur form of (1.5). Similar matrix pencils arise in the solution of optimal H,
control problems; see [4, 46]. If the control problem comes from an ordinary differential
equation, then £ = T and if it comes from a differential-algebraic equation, then E is a
singular matrix.

For both theoretical and computational purposes, the pencil (1.5) should be regular and
of index at most 1. In order to check this property numerically and to remove singular parts
and higher index infinite eigenvalue parts we need a staircase form. We discuss this topic in
detail in Section 5.

We derive numerical methods to compute the characteristic quantities of the Kronecker
canonical form of N — BH under structure preserving congruence transformations

aN — BH = aPTNP — BPTHP.

The motivation for preserving the even structure comes from the special properties of such
pencils. For example, even pencils have the Hamiltonian eigensymmetry, i.e., the finite eigen-
values occur in A, —\ pairs and A, —\, A\, —\ quadruples for non-real eigenvalues of real
pencils; see, e.g., [33, 34, 35].

As suggested by having eigenvalues with Hamiltonian symmetry, even pencils are closely

related to skew-Hamiltonian/Hamiltonian pencils. Let 7,, = [_‘} Ig ] , where I,, isthe n xn

identity matrix. (We leave off the subscript n, if the dimension is clear from the context.) A
matrix H# € R?™27 is called Hamiltonian if (HJ)T = HJ. A matrix N € R2™2" is called
skew-Hamiltonian if (N J)T = —N'J. A matrix pencil aN — BH is called skew-Hamiltoni-
an/Hamiltonian if N is skew-Hamiltonian and # is Hamiltonian. If the dimension of the even
pencil N — BH is even, then the pencil is equivalent to the skew-Hamiltonian/Hamiltonian
pencilaN — fH =aNJT - BHJT.

Furthermore, if N = 7, then NJT = I and we have a standard eigenvalue problem for
the Hamiltonian matrix # = HJ7T. It is well-known (see [28, 34]) that similarity transfor-
mations with symplectic matrices preserve the Hamiltonian and skew-Hamiltonian structure.
(A matrix S € R?™2" is called symplectic if STST = J.) It was shown in [29], that if the
Hamiltonian matrix possesses a Hamiltonian Jordan form under symplectic similarity, then
it also admits a Hamiltonian Schur form under orthogonal symplectic transformations. This
work has been extended in [33] to skew-Hamiltonian/Hamiltonian pencils. For even pencils
there exist well-known structured Kronecker forms; see, e.g., [43]. We briefly review these
forms in Section 2.

It is the topic of this paper to construct a structured staircase form for even pencils that
displays the invariants of the structured Kronecker form, while working only with unitary
(orthogonal) transformations.

We could in theory also use an unstructured numerical method like the Q Z or the GUPTRI
algorithm to obtain this information, but this would destroy the symmetry structure in even
pencils and introduce unnecessary unstructured rounding errors. The following example il-
lustrates how such unstructured rounding errors may give misleading or even mathematically
impossible computed “eigenvalues” and Kronecker structure.
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EXAMPLE 1.1. As mentioned above, eigenvalues of even pencils have Hamiltonian
pairing. A 3 X 3 even pencil has at least one infinite eigenvalue. The other two eigenvalues
may be either both infinite, form a (A, —\) pair of finite, real eigenvalues or form a complex
conjugate pair of finite eigenvalues with zero real part. If A = 0 is an eigenvalue, then it has
multiplicity two.

Consider a 3 x 3 even pencil with matrices

0 1 0 0 0 1
N=Q| -1 0 0 |Q7, H=Q|0 1 0 |Q7T,
0 0 0 1 00

where () is a random real orthogonal matrix generated as described in [40]. The pencil is
congruent to the pencil

010 100
al0 0 1|=8l0 10
00 0 00 1

so it has a triple eigenvalue at oo with geometric multiplicity 1 and algebraic multiplicity 3.

We calculated the eigenvalues of aN — BH for several different randomly generated
orthogonal matrices () using the () Z algorithm in MATLAB [32] version 6.0.0.88 (R12) with
unit round roughly 2.22 x 10716, MATLAB returns strikingly different approximations of
eigenvalues for different randomly generated orthogonal matrices (). For each example, we
took care that H was exactly symmetric and IV exactly skew symmetric.

Out of 1000 examples, the e 1g function built into Matlab version 6.0.0.88 (R12) reports
that 644 have no finite eigenvalues (which is the correct result), 75 have one finite eigenvalue
of magnitude roughly 105, 120 have two finite eigenvalues of magnitude roughly 107, and
61 have three finite eigenvalues of magnitude roughly 10°. None of the computed sets of
approximate eigenvalues that included finite eigenvalues was the set of eigenvalues of an
even pencil; none had Hamiltonian eigenvalue pairing. Often, there was a singleton finite
eigenvalue.

The (QZ algorithm is numerically stable in the sense that the computed eigenvalues
are exactly correct for some rounding-error-small perturbation of the original data matrices.
However, this rounding-error-small perturbation is not necessarily an even perturbation of an
even pencil. The unstructured rounding errors are sufficient to destroy the Hamiltonian pair-
ing and return entirely unrealistic sets of eigenvalue approximations and Kronecker structures
that do not occur in even pencils.

Recently, in [5, 11], numerical methods were developed to compute the Hamiltonian
Schur form for Hamiltonian matrices and the methods were extended to the regular pencil
case with nonsingular matrix N in [4].

An important remaining issue is a structure preserving method to compute the structural
invariants under congruence associated with the infinite eigenvalues and the singular part
of the pencil. This is of particular importance in the case of optimal control problems for
descriptor systems, where E is a singular matrix, [34], since typical numerical methods for
computing optimal feedback controls require the pencils to be regular and of index at most
one. If this is not the case, then the singular part and the part associated with higher index
singular blocks must be deflated first; see Section 5.

In Section 3 we derive structure preserving algorithms for the computation of structured
staircase forms for arbitrary even pencils. In particular we show how to determine the Kro-
necker indices associated with singular Kronecker blocks and with Kronecker blocks corre-
sponding to the eigenvalue infinity. The staircase form also provides a structure preserving
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way to deflate these blocks. Section 4 treats the computation of eigenvalues and deflating
subspaces for regular even pencils of index 1.

If E =1,then N = 7, & 0is the direct sum of .7, and 0. In this case it has been shown
in [10] how to preserve not only skew-symmetry but the whole 7,, @ 0 structure.

The results and algorithms of this paper also adapt to symmetric/symmetric and Hermi-
tian/Hermitian pencils for which a similar structured Kronecker canonical form is known; see,
e.g., [36, 42]. In a similar way, the results and algorithms also adapt to skew-Hermitian/Her-
mitian pencils and to complex skew-symmetric/symmetric pencils. For brevity, however, we
will not discuss such variations here.

It should be noted that some of the ideas presented in this paper have been observed and
discussed for special cases in [12]. Similar forms for a special case of symmetric/symmetric
pencils have recently been proposed in [30].

2. Kronecker and staircase forms. In this section we review the Kronecker canonical
form and staircase forms for unstructured, asymmetric pencils.

THEOREM 2.1. Kronecker Canonical Form [19, 24]. Let E, A € R™™". Then there
exist nonsingular matrices P € C™™ and ) € C™" such that

P(aE — BA)Q
2.1) =diag(Op, Leys s Loy Lgseo s L3 Noyy oo s No s Tons -, Tl

where ...
1. O, = a0, — B0, is ann x 1 block of zeros;
2. each L; is an €; x (€5 + 1) right singular block with right minimal index €; and
form
0 1 1 0

a .y ;
0 1 1 0
3. each Eg; is a (§; + 1) x §; left singular block with left minimal index 0; and form

4. each Ngj is a 0 X o infinite eigenvalue block with index o; and form

0 1 1

1
5. each J,, is a pj x pj Jordan block with finite eigenvalue \; € C and form

1 A1

1 Aj
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The Kronecker canonical form is unique up to permutation of the blocks, i. e., the kind, size
and number of the blocks are characteristic for the pencil o — BA. It is more common
to express O, as a combination of Lo and LT blocks. Here, we display O, explicitly to
emphasize the similarities between Theorem 2.1 and the structured form in Theorem 2.3
below.

There also exists a real version of the Kronecker canonical form, where the blocks 7, ;
are in real Jordan form and the transformation matrices are real. A similar result also holds
for complex pencils, [19, 20].

DEFINITION 2.2.

i) Ann X n matrix pencil o FE — S A is called regular, if det(aE — BA) # 0 for some
(a, B) € C x C. Otherwise the pencil is called singular. (Singular pencils are those
whose Kronecker canonical form has either an Oy, block withn > 0 or an L, block
with € > 0 or an LT block with € > 0.)

ii) If o E — BA is regular, then a pair of complex numbers (a, 8) # (0,0) is an eigen-
value of aE — BA, ifdet(aE — BA) = 0. If o E — B A is a singular pencil, then, for
our purposes in this paper, its eigenvalues are the eigenvalues of the regular blocks
in its Kronecker canonical form, i.e., the union of the eigenvalues of the N, ; and
Jp; blocks in Theorem 2.1. We identify eigenvalues (o, 3) with 8 # 0 with the finite
eigenvalue A = o/ B. Eigenvalues (o, ) with 8 = 0 are called infinite eigenvalues.

iii) The index of a regular matrix pencil aE — A is the size of the largest block Ny, in
Theorem 2.1. It is denoted by ind (E, A).

iv) The inertia index of a symmetric matrix H is the triple In(H) = (m,v,§), where w
is the number of positive eigenvalues of H, v is the number of negative eigenvalues,
and & is the number of zero eigenvalues.

Arbitrarily small rounding errors can radically change the kind and number of the Kro-
necker blocks. Consequently, it is problematic to compute the Jordan or Kronecker canonical
form with a numerical algorithm in finite precision arithmetic [41]. Among the most success-
ful compromises in the nearly-impossible problem of calculating Kronecker canonical forms
are the staircase algorithms. Using a sequence of rank decisions, orthogonal matrix multi-
plications, and small perturbations, staircase algorithms transform a pencil into staircase or
generalized upper triangular (GUPTRI) form [13, 14, 15, 44]. The rank decisions and per-
turbations have the effect of determining the essential invariants in the Kronecker canonical
form of a “least generic” pencil within a tolerated perturbation. (A formal definition of the
term “least generic” is surprisingly complicated. See [16, 17] for a detailed discussion and a
recently developed interactive tool.) Since the GUPTRI form is built on a sequence of rank
decisions and tolerated perturbations with a built-in bias toward a nearby least generic pencil,
the computed invariants may not always agree with the invariants of the original pencil.

Example 1.1 demonstrates that otherwise excellent numerical methods can give unsat-
isfactory results when applied to even pencils, because the eigenvalues of even pencils have
a special structure that is not necessarily preserved by unstructured rounding errors. In fact,
even pencils have a special even Kronecker-like canonical form described by the following
theorem.

THEOREM 2.3. [43]1If N, H € R®" with N = —NT H = H7, then there exists a
nonsingular matrix X € C»" such that

2.2) X" (aN — BH)X = diag(Bs, Bz, Bz, Br),
where

Bs = diag((?,,,Sgl,. .. ,Sgk),
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BI = dlag (1261-‘1-17 ... ,1—2614_1,1—251 PR 71.257”) )
BZ = dlag (2201+17 R Z20r+17 Z2p17' B Z2ps) J
B]-' = diag(R¢1, cee ,R¢t,C¢1, cee ,C¢u)

and the blocks have the following properties.
1. Oy = a0y, — B0y,
2. each Sg; is a (2&; + 1) x (2&; + 1) block that combines a right singular block and
a left singular block, both of minimal index &;. It has the form

0

0
1

3. each Ty, 1 is a (2€4+1) x (2€;+1) block that contains a single block corresponding

to the eigenvalue oo with index 2¢; + 1. It has the form

1

0

-1 .- 0
0 1

where s € {1, —1} is the sign-index or sign-characteristic of the block;
4. eachIys; is a 4d; x 40; block that combines two 20; x 28; infinite eigenvalue blocks
of index ;. It has the form

5. each 234,41 is a (40;+2) X (40 +2) block that combines two (20;+1) x (20;+1)
Jordan blocks corresponding to the eigenvalue Q. It has the form
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6. each Zs,; is a 2p; X 2p; block that contains a single Jordan block corresponding to
the eigenvalue Q. It has the form

1
0

where s € {1, —1} is the sign characteristic of this block;
7. each Ry, is a 2¢; X 2¢; block that combines two ¢; X ¢; Jordan blocks correspond-
ing to nonzero real eigenvalues aj and —a;. It has the form

[ 1 a;

aj

1
aj

8. The entries Cy, take two slightly different forms.
(a) One possibility is that Cy; is a 21p; X 2tp; block combining two v; x v; Jordan
blocks with purely imaginary eigenvalues ib;, —ib; (b; > 0). In this case it has the
form

1‘ b;

1
b;

-1

where s € {1, —1} is the sign characteristic.

(b) The other possibility is that Cy; is a 43; x 41p; block combining v X v; Jordan
blocks for each of the complex eigenvalues aj + ib;, a; — ibj, —a; + ibj, —a; — ib;
(with aj # 0 and bj # 0). In this case it has form

_ Q A7
Q
Q A
“ —Q -8 QA
-0 Q
L A _
. o 0 1 o —bJ Clj
wzthﬂ—{l O]andA]—[ a; bj]
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This structured Kronecker canonical form is unique up to permutation of the blocks, i.e., the
kind, size and number of the blocks as well as the sign characteristics are characteristic of
the pencil aN — BH.

A corresponding structured Kronecker form is also known for complex even pencils
aN — BH with N,H € C*" and N = —N7 H = HH  see [43].

It was shown in [33] that the existence of the canonical form in Theorem 2.3 guarantees
that corresponding condensed forms under orthogonal transformations also exist, see also
[29].

The computation of the canonical form in Theorem 2.3 faces similar difficulties to those
discussed above for the general Kronecker canonical form. Example 1.1 and experience
with the unstructured Kronecker canonical form suggest that a successful numerical method
for computing the characteristic indices and sign characteristics should use a staircase-like
condensed form under unitary transformations that preserve the even structure of the pencil.
This is the topic of this paper.

3. Staircase algorithms for even pencils. In this section we discuss staircase algo-
rithms for even pencils of the form (1.1). One may distinguish two cases. The first method
that we discuss here deals with pencils where NNV is a general skew-symmetric matrix and the

second method which is discussed in [10] treats the important special case that N = [J 0]

00
with J = [ 7).

The procedures for computing staircase forms are built on a sequence of numerical rank
decisions. This is also true for the procedures for even pencils that we present below. For
general matrices the rank can be determined by the rank revealing QR factorization [21,
Sec. 5.4] or the singular value decomposition (SVD) [21, Sec. 8.6]. For more details on
determining numerical ranks, see, for example, [6, 21].

For symmetric and skew-symmetric matrices the rank can be determined via the ap-
propriate Schur forms [21, Chapter 8]. An inexpensive way is the following modified rank
revealing () R—factorization method. Let A be symmetric or skew-symmetric. Compute the
rank revealing QR factorization

R
QTAnz[ 01],

where R; is of full row rank, @) is real orthogonal, and II is a permutation. Compute
QTAQ = ROt Q= Ry 0
0 0 0]

The zero (1, 2) block follows from the symmetry or skew-symmetry of A. Note also that R
must be nonsingular. When A is skew-symmetric, R11 must have even order.

3.1. Even staircase form. For a general even pencil we construct a symmetric variation
of the staircase form of [44]. The staircase form displays the regular, index 1 part of the
pencil. Moreover, we show below that the staircase form also displays the characteristic
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quantities describing the singular part and the eigenvalue infinity of Theorem 2.3.
THEOREM 3.1. Even staircase form. For a matrix pencil aN — fH with N =
—NT H = HT € R™", there exists a real orthogonal matrix U € R™™, such that
U'NU =
[ Nu Nim Nim+1 Nim+2 Nigm 07 m
. Nm—l,m+2
_lezm Nm,m Nm,m+1 0 Nm
_qu:m+1 _Nm,m+1 Nm+1,m+1 l
_qu:m+2 - 77;;—1,m+2 0 dm
_N11:2m q2
L 0 1l a
UTHU =
[ Hi Him Himi1 Himy2 Hiomi1 i ni
Hljjm Hm,m Hm,m+1 Hm,m+2 Nm,
H HY i1 | Hogi,ms1 o,
HlT,m+2 ng,m+2 dm
Hil:2m+l ] @
(3.1
where g >2n1 > g2 202 2 ... 2 gm > Nim,
Njam41—; € R+, I<j<m—1,
A 0
Nopp1mar = , A= -AT € ]R2p,2p’
' 0 0
Hjomiz—j=[T; 0] eRY%, T;eR%™M, 1<j<m,
by b) . o
Hyrim1 = %‘1 2 , B = E1T1 ERPP T, = E%; S
’ Yip Yo
and the blocks Y22 and A andT';, j =1,...,m are nonsingular.

Proof. A formal, constructive proof is given by Algorithm 1 in Appendix A, but for

ease of explication, we present a less formal construction here. Both the formal algorithm
and the less formal construction described here are explicit but recursive procedures. During
the construction, we note the inertias of certain symmetric submatrices that will be used by
Theorem 3.3. Note also that some blocks in the partitioned matrices may be void, i.e., they

may have zero rows or zero columns or both.

Let alN — S H be an even pencil. If N = H = 0, then the pencil is singular and trivially
in even staircase form. If IV is nonsingular, then this is a regular pencil of index O and thus
trivially in even staircase form. If IV is singular, then determine an rank revealing factorization

or skew-symmetric Schur decomposition Ui NU;

A0
00

[

], with U; orthogonal and A
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nonsingular. Perform a pencil equivalence

T _ _ A0 _ 7‘111 7;[12

If ’}sz is nonsingular, then the pencil is regular, of index at most 1 with rank 7:122 infinite
eigenvalues and the even staircase form is complete. If a9 is singular, determine a rank

revealing factorization or symmetric Schur decomposition U2T 7-[22 Us = [% g] with Us or-

thogonal and ¥ nonsingular.
Record the inertia (m,»,0) of ¥ for use in Theorem 3.3 below and perform a further
pencil equivalence

IOTaAO_ﬂ?-:lu’l-:[u I 0
0U2 0 0 H%’Q H22 0U2

A 0 0 75111 7:112 ﬁls
=a|l 0 0 0|-8|HL % 0
0 0O %3’3 0 0

Determine a rank revealing factorization or singular value decomposition
~ r o

T —
with Us and V3 orthogonal and I' nonsingular. Perform another pencil equivalence

T

Us 0 0 A 00 Hiw Hiz Hais Us 0 0
0 I 0 al 0 0 0|=-8|H#H, = 0 0 I 0
0 0 Vs 0 00 HL 0 0 0 0 W
NMi N2 N3z 00 Hinw Hiz Hiz T 0
~NE Naa 0 00 HE, Hoa Hoz 0 O
B2 =a|-N§E 0 0 0 O0|-B|HE HL ¥ 0 0
0 0 0 00 T 0 0 00
0 0 0 00 0 0 0 00

where A = [%1% ﬁgi] and Aq3 = 0. The N;3 block may fill with nonzero entries later in
12

the process, so we do not distinguish it from other blocks that may be nonzero.
Recursively apply the even staircase reduction to the central subpencil

a [A{f"’ 8] - B [zii 7{223] recording the inertias of the submatrices ¥ as they occur. This
corresponds to performing another pencil equivalence to (3.2) that modifies rows and columns
2 and 3 typically modifying N2, N13, H12 and H;3 along with the central subpencil. At that
point the pencil is in even staircase form. 0O

REMARK 3.2. It should be noted that the rank decisions in the recursive procedure de-
scribed in the proof of Theorem 3.1 have to be carried out with great care. Ideally one would
need a structured version of the procedure for general pencils in [16, 17]. The development
of such a procedure is currently under investigation.

The recursive construction of the even staircase form also generates a sequence of inertias
of certain ephemeral symmetric submatrices that appear briefly during the construction. The
following theorem shows that the characteristic quantities describing the singular part and the
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eigenvalue infinity of aN — BH are determined by the integer sequences {g; }72,, {n;}7-,,
{m 7t s}t and {rj = m; + py } 74

THEOREM 3.3. Suppose that an even pencil a N — BH has been reduced to the con-
densed form (3.1) by Algorithm 1 with integer sequences {m;}, {v;}, and {r; = ©; + v;}.
Then alN — B H has the following block structures associated with the singular part and the
eigenvalue 0o in the even Kronecker canonical form (2.2) of Theorem 2.3.

1. For every j = 1,...,m, the pencil has 3[n; — gj41 — (rj41 — r;)] blocks I»;
corresponding to the eigenvalue cc. (Here we set qm4+1 = 0).
2. Foreveryj=1,...,m+1, the pencil has r; — r;_1 odd-sized blocks I>j_1 corre-

sponding to the eigenvalue oo,among which w; — mj_1 blocks have sign index 1 and
v; — vj_1 blocks have sign index —1. (Here we set mg = vg =19 = 0.)
3. The pencil has a singular block 00q, —n, — 04, —p,.
4. Foreveryj =2,...,m, the pencil has q; — n; singular blocks S;_1.
5. The subpencil N pi1,m+1 — BHm+1,m+1 is a regular pencil of index at most 1. It
contains the Jordan structure associated with all finite eigenvalues of aN — BH.
Proof. See Appendix B O
EXAMPLE 3.4. This example demonstrates the effect of rank decisions and the ability
of the even staircase algorithm to determine a nearby even pencil with non-generic structure.
Our experimental MATLAB implementation of the even staircase algorithm makes rank
decisions using a singular value drop tolerance 7 > 0, i.e. singular values of magnitude less
than an absolute threshold 7 > 0 are taken to be zero. In this experiment, the threshold 7
varied from 10716 to 10~1. (The unit round is approximately 2.22 x 10~16.) Oversimplifying
slightly, the algorithm searches for a “most non-generic” even pencil in the cloud of pencils
that lie within a distance of roughly 7 of then nominal input pencil.
We constructed even pencils N — SH where

010 00
-1 00 00

N=Q| 0 0 0 0 0][|QT+eAN
000 01
. 000 -10
[0 0 1 0 0
01000

H=Q|1 0 0 0 0 |QT+eAH
00010
|00 0 0 4

where € is a positive real number varying from 10716 to 107, @ is a random real orthogonal
matrix generated as described in [40], and AN and AH are skew-symmetric and symmetric
matrices, respectively, whose nontrivial entries are normal (0, 1) random variables.

If € = 0, then these unperturbed pencils have simple finite eigenvalues £27 and an index 2
infinite eigenvalue. If € > 0, then the perturbed pencils typically lie at a distance of roughly
€ from the € = 0 unperturbed even pencil.

In this experiment, for each value of the singular value drop tolerance 7, we chose ten
random equivalence matrices (). For each 7 and (), we varied the perturbation magnitude e
logarithmically as e = 10716, 10715-°, 1058 ... 10! and recorded the smallest value of
the selected €’s for which the algorithm did not find an even pencil with an index 2 infinite
eigenvalue (and two finite eigenvalues) with a distance of roughly 7 of the test pencil. We
plotted the recorded points (T, €) in Figure 3.1. As expected the points fall near the line € = 7.
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F1G. 3.1. Figure from Example 3.4. For each selected value of the singular value drop tolerance T and each of
ten random pencil equivalences, the graph plots the smallest of the selected perturbation magnitudes € for which the
even pencil staircase algorithm did not find an index 3 pencil. As expected, the points line near the line € = 7. In
every test case, for which € was significantly smaller than T, the experimental staircase algorithm successfully found
a nearby index 3 even pencil.

In every test case with perturbation magnitude € significantly smaller than the singular value
drop tolerance T, the staircase algorithm successfully located a nearby index 3 even pencil.

Jn 0O
0 o
applications from linear quadratic optimal control or H, control, then from a perturbation
theory point of view it is advisable to preserve this structure as much as possible, i.e., we
would like to compute a staircase form, where the middle block associated with the finite
eigenvalues and the infinite-eigenvalue-index-1 part is again of the same form as the original

Jp 0
0 0

If the skew-symmetric matrix N in the pencil (1.5) is of the special form [ ] as in

pencil with a (possibly smaller) skew-symmetric part [ ] An algorithm to compute a

variant even staircase form while preserving the [JOP 8} structure of the skew-symmetric part

has been presented in [10].

4. The regular, index one case. It remains to determine the finite eigenvalues and index
1 infinite eigenvalues contained in the central block of the even staircase form (3.1). To
avoid the hazards of introducing asymmetric rounding errors demonstrated above, a structure
preserving numerical method is necessary. In this section we outline how to modify a skew-
Hamiltonian/Hamiltonian structure preserving algorithm from [3] for regular even pencils of
index at most 1. For ease of notation, in this section we assume that the even pencil is regular
of index at most 1.

In order to use the skew-Hamiltonian/Hamiltonian algorithm, we must transform the
skew-symmetric/symmetric pencil into skew-Hamiltonian/Hamiltonian form. For this we
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assume that the even pencil already has the form

0 D2 0 0 Hy, Hy» Hiz Hu
-D> 0 0 0] _ 5 H{, Hy; Hy Ha

0 0 00 HEL HL Hss Hs |’

0 0 00 HY, H], H}Y Huy

(4.1) aN—BH =«

where D? is positive diagonal, D2, Hi1,Hy € RPP and Hss, Hyy € R™". For a general
even pencil this may be achieved, for example, by computing and reordering the real Schur
form of Nyy.

The pencil (4.1) has even size. If the size of the original pencil is odd, then add one more
index 1 eigenvalue infinity by appending one row and column as

N 0 H 0
“[vol-215 6]
where © is a nonzero scalar. The extended pencil is simply a direct sum of the original pencil
and the scalar pencil ®0—30. So the eigen-structure of the original pencil will not be affected
by this adding.
Let S = diag(D,0,D,0) and n = p + r. By interchanging the 2nd and 3rd columns

and rows and then multiplying with JI' from the right, the pencil (4.1) is equivalent to the
skew-Hamiltonian/Hamiltonian pencil

Hy, Hys | —Hu —His

_gr _
07 — BM = a8, 5" I} — |
H}, Hy | —-Hl, —Hs

We then have the following structured Schur form.
THEOREM 4.1. Let S = diag(D,0,D,0), T = J,STJY, and let M € R*™2" be Ham-
iltonian. Then there exist orthogonal matrices QQ1, Q2 and orthogonal symplectic matrices

U1, Us such that

[ Mix Mis | Mg My
T _ 0 My | Mys Moy
GiM@= =55 M 0 |
L 0 0 Myz Myy
[0 S12]0 Sis
T _ 0 Sy |0 Sou
Ql SUI - 0 0 0 0 )
(0 0|0 Su
[0 O 0 0
T _ | 0 Ty | Togs T2
|0 0 | Tuzs Ty

where M1, ML € R™" are upper triangular Mas, Soo, Tos, Mya, Sty, Tl € RPP are upper
triangular, and My is lower quasi-triangular. Furthermore, Soa,S44, T2, T44 are nonsin-
gular.

The finite eigenvalues of ST — M, and aN — H in (4.1) as well, are the same as the
finite eigenvalues of the index 0 pencil
S228fy 0 ]_ [ 0 Mn]

ad - fB=o 0  TILT -ML 0
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Proof. The proof appears in Appendix C, where (4.2) is proved constructively by Algo-
rithm4. 0O

5. Application to optimal control. Consider the linear quadratic control problem de-
scribed by (1.2)—(1.5). It is well known that if the pencil is regular then the boundary value
problem is uniquely solvable [8]. We therefore assume that the pencil (1.5) is regular. (For
the singular case, see [9].)

The following proposition shows how the even staircase form (3.1) characterizes con-
sistency of boundary conditions for the special problem (1.3). (The general theory of linear
differential-algebraic equations of [25, 26] uses a normal form to characterize consistent ini-
tial conditions.)

THEOREM 5.1. Consider the boundary value problem (1.3) with a regular matrix pen-
cil. Transform the boundary value problem to the staircase form (3.1). With U as in (3.1),
partition

x
T
5.1) z=UT | p|=[2F .. 2L 2L, 2T, ... 2l ]
u
conformally. Then z1,...,2,m =0, and 21, . . ., 2y = 0. The solution of the boundary value

problem

N, Z'—Aoz'—H z—EHElzz
m—+1,n+14m+1 — 0 0 m+1 — Hdm+1,m+14m+1 — 2{2 222 m+1,

(which is of index at most 1) uniquely determines the remaining components, Zm+42, -- -

Z2m41-
Proof. Because the pencil is regular, we have n; = ¢; and Hjopmqo—; = T';, §j =
1,...,m. Hence, for j = 1,...,m, we obtain recursively that
m-+j m+j
—1 .
Zm+j+1 = Fm—j—i—l Z N jy1,i2i — Z Hy_jy142 . 0O
i=m+1 i=m+1

The consistency of the boundary conditions in (1.3) may be checked by using the recur-
sion formulas for z,,42,.. ., 22m+1, the explicit solution representation

I _
Fm1 = [ —Ez_zlzﬂ ] eW(t ) [ I 0 ]an-l(tO)a

with W = A7Y(2; — %1255, %75), and (5.1) with z; = 0 for j = 1,...,m. A similar
observation was made about more general pencils in [9].

In this way we may reduce the general linear differential-algebraic boundary value prob-
lem (1.3) in an even structured way to a smaller linear differential-algebraic boundary value
problem of index at most 1, to which appropriate methods may be applied. See for example,
[2, 1, 27].

6. Conclusion. Even pencils have paired eigenvalues and a structured Kronecker-like
canonical form with paired blocks. Even otherwise numerically stable numerical methods
that allow asymmetric rounding errors can return computed “eigenvalues” that are unrealistic
in the sense that they do not have proper pairing and, hence, are not eigenvalues of an even
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pencil. Numerical procedures including asymmetric staircase forms for determining Kro-
necker indices do not calculate the sign indices of the even Kronecker-like form and, if they
allow asymmetric rounding errors, can return unrealistic results.

This paper presents an even staircase form for even pencils that displays the structure
and characteristic indices of the singular and infinite eigenvalue structure of even Kronecker-
like canonical form. Using only orthogonal matrix multiplications and rank decisions, the
accompanying numerically stable numerical method preserves even structure throughout and
introduces only even rounding errors.

The use of the even staircase form is illustrated using an application to boundary value
problems arising from optimal control of differential-algebraic systems. As outlined in Sec-
tion 4, the even staircase form may be the first step in a method for calculating eigenvalues of
an even pencil.
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Appendix A. Proof of Theorem 3.1: Algorithm 1. We prove Theorem 3.1 constructively.
The proof is provided by the following algorithm. Note that in the algorithm, some blocks in
the partitioned matrices may be void, i.e., they may have zero rows or zero columns or both.
ALGORITHM 1. Staircase algorithm for even pencils.
For N = —NT H = HT € R™" this algorithm computes an orthogonal matrix U € R™"
such that UTNU, UTHU are in the form of (3.1). In addition, the algorithm produces a
sequence of inertias (7, v;,0) of nonsingular, symmetric submatrices that will be used in
Theorem 3.3.

Set flag =0, m=no=q =r0=0, l=n,
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N=Ny=N, H=H, U=I

DO WHILE flag =0

Perform a rank revealing factorization of MNag € RiZ7msli=mm

A
N22=U1[ 0 g:|U1Ta

with A € R?? get

T
w0 Ui 0] [A 0
Nl_[o Irm]N[O I,m]_[o 0]’
e 5 ATl O] [
0o I, 0 I, HE,  Hoa
partitioned analogously. (Here oo € RIZ2PI=20)
IF 2p =1 THEN
Set flag =1 and
In1+...+nm 0 0
U= 0 Uy 0
0 0 Ioi+. +am

ELSE

Set m=m+1.
Perform the Schur decomposition of Haz,

N b
H22=U2[ o 8]U2T

where X € R** is nonsingular with inertia index (mm,V¥m,0) and
rank rm =@ =Tm +Vn .

Set
T A 0 0
sz[%”g]M[Iz”Ua]: 0 0 0|,
? ? 0 0 0
T Hir Hix Has
H2 = [ 1(2)11 l;] ] Hl [ I(Q)Z) 13 :| = ?E[%; E 0 ;
2 2 HE 0 0
partitioned analogously.
IF p=1—2p THEN
Set flag =1 and
S 0 I, 0
U= [ 0o I, _, ] [ 0 U ] ’

In1+---+nm_1 9 0
U= 0 U 0
0 0 To+. 4am_:
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ELSE
Perform a rank revealing factorization or SVD

[ Twm 0]z
HIS—US[ 0 O]VP,,

where I';, ER™™ is nonsingular.

Set npm =7, gmn =1—2p—p and

uvs 0 o 1" Us 0 0
N3 = 0 I, 0 No| O I, O
L0 0 Vs 0 0 Vs
[ N1 [Nz 0]0 O
—NL [Naa 0[]0 0O
= 0 0 ofo0 o,
0 0 0|0 o
. 0 0 0l0 0
Tus 0 o0 1" Us 0 0
Hz=| 0 I, 0O Ha| O I, ©
L0 0 W 0 0 Vs
[ Hi1 | Hi2 Hizs |[Tm O
HE | Hoe Hos 0 0
=|H3|H = |0 0|,
rZ | o 0 0 0
L 0 0 0 0 0
~ [ 0 L, 0 Us 0 0
U=149 1 0 U 0 I, 04,
- m—1 2 0 0 Vs
[ o4ty O 0
U= 0 u 0
L 0 0 It 4gm_s
Set
20—17 p 2p—7 p
2p—7 [ Nao 0 2p—7 [ Ha Has 1,1
A el M S B i
and l=2p—T7+pu.
END IF
END IF
Form H=UTHU, N=UTNU, and U =UlU.

END WHILE

Algorithm 1 will stop after finitely many steps, because at each recursive call, the order
of the even pencil decreases. At some stage H,» must be either nonsingular or void.

Our experimental MATLAB implementation of the even staircase algorithm 1 makes rank
decisions using a singular value drop tolerance 7 > 0, i.e. singular values of magnitude less
than an absolute threshold 7 > 0 are set to be zero. Ordinarily, 7 should be slightly larger than
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the magnitude of errors or uncertainties in the data. For example, if the data are perturbed
only by rounding errors and g is the unit round, then it would not be unreasonable to use
T = p||N||F for rank decisions on submatrices of N and 7 = u||H||r for rank decisions on
submatrices of H.

Appendix B. Proof of Theorem 3.3. We prove Theorem 3.3 constructively using another
staircase algorithm to obtain a more condensed even staircase form followed by a further
reduction closer to the even Kronecker-like canonical form of Theorem 2.3. In contrast to
Algorithm 1 these reductions use extra non-orthogonal transformations, so they are theoretical
in nature and may not be well suited to finite precision computation. The extra work displays
a relationship between successive values of the inertias (7, v;,0).

ALGORITHM 2. Given N = —NT H = HT € R™", this algorithm computes a real
nonsingular matrix Y € R™" such that YT NY, YTHY are in the even staircase form (3.1).

Set flag =0, m=no=q=ro=0, l=mn,

Nay 0
0 0r

Haz Hos

Nas = N, ./\/=[ 'Hg‘g s

], Ha2 = H, H=[ ]; U=1I,

where ¥ =37 € R, and Has € R*"0.
Since ro = 0, the initial last row and column of N and H are void.
DO WHILE flag =0

Perform a rank revealing factorization of MNap € RIT™m:l=mm

A 07,0
N22—U1[0 0:|U1!

with A € R, set

T A 0 O
le[UOI IO]N[U(; IO]: 0 0 0],
rm m 0 0 O
T 7"111 ﬂlZ ﬁlB
U 0 U 0 ~ ~ ~
Hl = [ 01 Irm :| H [ 01 I’I‘m :| = Hg; ?fZZ H23 )

HT, HI, =

partitioned analogously. (Here oo € RITZP—Tmol=2p=rm )
IF 2p=1—r, THEN
Set flag =1 and

In1+...+nm 0 0
y= 0 U 0
0 0 Iq1+---+qm

ELSE
Set m=m+1.
Perform a congruence transformation with

I 0 0
X=10 I 0
0 —Z7'HIL, I
to annihilate the blocks 7:[23 and 71;;”3 in Hi. Set
7@11 7?12 fIls
Nig=X"MX =N, Hia=X"HiX=| H] Hz 0
Hi; 0 b)
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Perform the Schur decomposition
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Hao = Us [

Xm

0

where X, € RME g nonsingular.
Let (#fm,Pm,0) be the inertia index of X,.

Set

Ny =

Hip =

- Inp

0
0

- Inp

0
0

0
Us
0

0
U,
0

0
0
I,

0
0

LE——

Tm-1 |

Nla

partitioned analogously.
Let P be the permutation that interchanges

and rows of Hs.

(B.1)

N

Ha

= PTNwP =

Set

P HuP =

ﬁll
i,
i,

Set Trm =Tm—1+[t.
IF 7 =1 —2p THEN
flag

Set

ELSE

y

=1 and

[Ul

0 I

- Tnp

0
0

_ Iy

0
0

0

0
U,
0

0
Us
0

O]UE,

0
0
I

0
0

Loy

In1+---+nm_1

Tm—-1 |
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A 0 0 0
10 000
- 0 0 0 0|’
L0 0 0 0
[ 7:[11 * * 7?113
. * Y¥m O 0
- * 0 0 0 ’
| H, 0 0 X
the last two columns

Al0 0|0 A0 0
010 0]0
= 0 0 0],
0(0 010 0 0 0
0(0 010
7:[11 * 7:[1 *
* Ym 0 0
#HL|1 0o = |0
* 0 0 0
His
0
0
0 I, 0 0
]X 0 U 0 P,
fm—1 0 o I, .
0 0
0 hY 0
0 0 Tot4gm—

Perform a rank revealing factorization or SVD

where I';, € RTT

Hiz = Us [

%

is nonsingular.

0
0

]V?,T,
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Set N =7, gm =1—2p—1ryn, and

rTvs o o0 1" Us 0 0
N; = 0 I, O N, 0o L, O
L0 0 W 0 0 W
[ N1 [Nz 0[]0 0
NG [ Naa 0[]0 0
= 0 0 010 0},
0 0 010 O
L0 0 o0l0 0
rvs 0o o0 1" Us 0 0
Hs = 0 I, O Ho 0 I, O
0 0 V3 0 0 V3
[ Hir | Hie Hizs | T 0O
Hiy [ Haz Has | O O
=| Hiz|Hiz = 0 0],
I’% 0 0 0 0
L O 0 0 0 0
- I, O 0 Us 0 0
$= %1 IO ]X o U» o0 |P| O I, o0
L rm—1 0 0 I _, 0 0 Vs
Set
Inytotnmoy 0 0
U= 0 Yy 0 .
0 0 Iq1+---+qm—1
Set
20 —T T 20 —T T
2p—7 [ Na 0 _2p—T Hoo  Hoas 1
M= [ 0 0]’ = [7@3 E]ER ’
and l=2p—T+7Tm.
END IF
END IF
Form H=Y"HY, N=Y'NY, Y =Y.

END WHILE

We now show that the subpencils generated by two algorithms are equivalent. For this
we need the following lemma.

LEMMA B.1. Suppose that A € R™™ andrank A = r. If
¥ 0 ¥ 0 ]

0 0

XlTAYlZ[ 0 0

| o

where ¥1,%9 € R™", X7, Xo € R™™, and Y1,Ys € R™™ are nonsingular, then there exist
nonsingular matrices

. Si 0 m,m . Z1 0 n,n
S_[Sz 53]€R ’ Z_[Zz Zs]ER

where S1,Z1 € R™", such that

X = X»S, Y, =Y2, o =857,
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In particular, if A = AT or A = —AT and X, = Y1), Xo = Yo, then S = Z and ¥, =
VAT VAR
Proof. Let S = X; ' X; and Z = Y, 'Y;. Then

EIO_TEQO
ERIRAE I

The result follows directly by comparing the blocks on both sides. 0O

To show the relationship between Algorithms 2 and 1 we denote the blocks in Algo-
rithm 2 by a ~ and in Algorithm 1 by a ~.

Assume that at the beginning of the mth reduction

(B.2) aN — BH = KT (aN — BH)K
. . _ Ky, 0 I —Tm Sl —Tm
for some nonsingular matrix K = , where K;; € R ’ , Koy €
Ky Ky

R ™= Then for N 99 and N 99 In N and N , respectively, we have

Noy = K1T1/\722K11-

Let
e~ A 0 A e A A 0
U N Uy = [ 0 0], Ul NaolUs = [ 0 0]
By Lemma B.1,
ﬁl = Kl_llﬁlM,
where M = [ My ] is nonsingular and M;; € R??P, Then a simple calculation
Mo Mo
yields
alNy — BHy = M™(aNy — BH1)M,
where
A T ~ M11 0 0
o U1 0 Ul 0 —
=[G 0 kB 0 ] =] e atal o

Mz, Msy | Mss

with M33 = Kas. Clearly, then

(B.3) 7‘122 7:[23 _|:M22 0 :|T 7:[22 7‘223 |:M22 0 :|
’ f;‘[; s | | M2 Mss 7:1;3 $ Msy Mss |°

In Algorithm 2 we then determine a nonsingular matrix Z such that

ZT[”:lzT2 7:123]22[5] 0]
oy S 0 0]
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where ¥ := diag(X,, f]) and in Algorithm | we determine an orthogonal matrix Z such that

~

Hog 5

A 7:122 7?123 A 3 0
zT | 7= :
T [0 0

By (B.3), the new ¥ and £ must have the same inertia and the same size Tm41 X Tmtl-
Moreover, by Lemma B.1,

where L = [ L ] is nonsingular and Loy € Rrm+1:"m+1,
L3y L33
We then have
(B.4) alNy — BHy = LT (aNy — BH,)L,
where
-1 L 0 0
- I 0 ~ | I 0
L=|: (2)1) ZA:| M[ (2)1) Z:|: L21 L22 0 )
L3y L3y Lss

with L1 = M. . ) )
Let H13 be the block of Hs in (B.1) and H13 be the corresponding block in Hy. By
comparing the blocks in (B.4) we have

Hiz = LT, Hi3Lss.
Let

T A o _ fm 0 ST Ay A_ f‘m 0
U’H13V—[ 0 0], U’ngv—[ 0 0]

be the computed rank revealing factorizations. Then T',, and I',, must have the same size
T X 7. Again by Lemma B. 1

U=L;'US, V=L3VT,

where

Si1 0 T O
= T =
s [ Sa1 Sz ] ’ [ To1 T ] ’

and 511, Ti1 € R™7. Then
alNs — /37;(3 = ST(G-/% - /37%3)5;

where

[T o0 o1 [T 0o 0

=0 Ly 0| L]0 L, ©
0 0 TV o 0 v
[ Si1 0 0 0 0
So1 S92 0 0 0

=| S31 S32 Ss3 O 0 |,
Sy Saz Saz S O
| Ss1 Ss2 Ssz Ssa Sss
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with S33 = Lgo and 544~: Thy, Ssq = Tzl, and Sys = T It is then evident that the newly
generated subpencils aN — SH and aN — SH satisfy

a/v—m=[

Sao 0
S3z Sa3

]Tw_ﬁf;-z)[

which is the same as (B.2). Since both algorithms start with

N=N=N, H=H=H,

Sa9 0
S3z  Sa3

|\

it follows by induction that they generate the same integers n;, q;j, r;. The inertia indices

satlsfy Mj =Tj — Tj—1 aHde =V; —Vj_1. O

In the following we will show that by carrying out some further block Gauf§ elimina-
tion steps, the staircase form computed by Algorithm 2 can be reduced close to the even
Kronecker-like form. In Algorithm 2 it is not necessary to move all the blocks ¥ toward the
center. So the permutation with P in (B.1) does not necessarily have to be carried out. The

staircase form has the following block structure.

N=Y"NYy =
N1 Nim Nim+1 Nimt2 Niam 0 n1
. . . Nm_1,m+2 .
T
—4iV1l,m Nm,m Nm,m+1 0 Nm,
T T
—Ni 1 —Npm+1 | Nmt1,m+1 l
T T ~
—iVl,m e T A Vm—1,m+2 0 0 dm
T .
—4V1,2m .
| 0 0] @
T
H=Y HY =
Hiq H1,m H1,m+1 Hl,m+2 H1,2m+1 ni
: :
Hi,, ee Hyom Hyyms Hyymi2 Nom
T T
Hl,m+1 e . Hm,m+1 Hm+1,m+1 1 s
T T —~
Hl,m+2 ree e Hm,m+2 Hm+2,m+2 dm
T -
| Hizmi1 Homt12m+1 | @
(B.5)

where for 7; =r; —rj_1,4; = ¢; + 75, (1 < j <m),and | = 2p + F,,41. The blocks have

the following properties.
R di+1

A
Nm+1,m+1 = |: 0 0

Njom+y1—j €

Tj

Hjomyoj=n; [I;

) rank Njom 15 = Gj+1,

0

Tm+1

nj o gj—n

r, 0

], 1<j<m,
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Y
r; |X; 0 .
H2m+2—j72m+2—j = qj_ [ OJ 0 :|a 1<j<m,

Yiu Yo

2p,2 Fm \Pm
Hm+1,m+1: |:ET :|’ EHERP,P’ Em_HE]RT 41,7 +1
12

z:m+1

where all the blocks A, 3;,T'; are nonsingular. Without loss of generality, we may assume
that A = Jp, and X; = diag(Z;, —I;).

The property that N 2y,1—; has full column rank can be shown as follows.

After the first step of reduction we have

Nll N].2

—Ni5 | Moo
N = 0 0
0 0
0 0

O O Ol
O O OoOlo|Io

Nll N12 NlS
_Nl"lz’
N

0

0

0

o
o

0

0
0
0
0
0
In the next step, after having compressed N2, N is changed to
0
0
0
0
0
0

o o olo b
oo olo

oo oo oo
oo oo o

Since [ N“T e ] and A are nonsingular, Ni3 has to be of full column rank. It is easily
—Niz Nao

seen that A 13 is equivalent to N1 25,. S0 N1 2, has full column rank. By induction, it follows

that the other blocks INj 2y,41—; have full column rank as well.

We now begin further reductions on the pencil (B.5). The reduction process is described
in the following algorithm.

ALGORITHM 3. Let N := YTNY and H := YT HY be given as in (B.5).

Annihilate the blocks Y12 and 27 with pivot block Zmt1 in Hmiil,mil-

Annihilate the blocks in Nm,mt1 (—Nm my1) above and to the left of
A in
Npm+1,m+1 with the pivot block A. Then
N, 0o @
Nm,m Nm,m+1 _ sl | A T
—NZ Nottm+1 | 0 0
m,m+1 m+1,m _CDE;L 0 0
Nm,m Nm,m+1

Because by the reduction procedure [ ] is nonsingular,

T
_Nm,m+1 Nm+1,m+1
®,, has to be of full column rank. So we can determine a nonsingular matrix

X such that ZT&)J- = 0 . Then
I,y
LT RSP 0 0
Z 01" Num Nonmt1 zZ 0] _ | -vL Wy ‘ 0 In..,
[ 0 I] [ —NE mt1 Nmgtmtt ] [ 0 I ] - 0 0 A 0
0 I, |0 0
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We then annihilate Was,W¥i2, and —\II1T2 by performing another block Gaub congruence
transformation with pivot blocks Iz and —I;m+1. Again by the nonsingularity
Nm,m Nm,m+1
of T
_Nm,m+1 Nm+1,m+1
So it can be compressed further to Wm := J(u, —#,,,)/2 by performing one
more congruence transformation. Eventually,

m41

], ¥i; has to be nonsingular.

U, 0 ‘ 0 0
Nmm Nm m+1 0 0 0 IF +1
s , N m
[ - 72,m+1 Nm+1,m+1 :| 0 0 A 0
0 —Iip i |00

Applying the same sequence of congruence transformations to H, it is easy
to check that the block structures and ranks will not change.

We now proceed by working on H. First we simplify I'; and P]-T to In,,
in Hpym42 and H,E,,,H_Q by post-multiplying diag(Z, F]-_I,I) to Hm,m+2 and pre-multiplying
its transpose to HZWLH. Note that this transformation does not affect
Hy42,m4+2 and the blocks in N.

Second, we annihilate M, —T5 in Hpmete, Hg,,m_,_? and Hm,m+1,H£,m+1,Hm,m
with pivot block I, in Hm,m42 and HZ,:,mH.

FOR j=m—1,...,1

a) Annihilate the blocks Njjt1,...,Nj2m—; as well as —NjT,j_l_l,...,—NjT,Zm_j
in N with the nonsingular blocks in —Nf+1,2m—j7---a—NZ,m+1r Npt1,m+1,

Nm,m+1,--+,Njt1,2m—j as pivots.

0 T
] and —[ ] , respectively.
Ig; 4 Ig;.,

Annihilate the blocks in Nj; with pivot blocks Ig,, and —Ij,, from

Slmpllfy N',2m+1_]' and _NjI,‘Zm-i-lfj to [

T
Njomt1—j and —Njapmy1_; to get

With the same argument as before, ¥; must be nonsingular and thus
we reduce ¥; to Jum;-giq)/2-

b) Reduce the blocks Ty, I"J-T in Hj2m42-; and Hf2m+2,j to In;.
Annihilate the blocks Hjj;, Hjjt1,...,Hjomy1-j, Hjj:j_;,_l,...,HjT,‘Qm_,_l_j,
as well as IIj, ﬂf in Hj2m42-; and H}:2m+2_j with block pivot Iy,
from Hjam42-; and Hf2m+2—j-

END FOR j
With this further reduction, the matrices N and H are transformed as
XTNX =
Nn Nigs 07 m
Nm—l,m+1 .
Nm,m Nm,m+1 0 Nm
—qur:,m+1 Nmit1,m+1 l ,
—Ni_1mt1 0 0 m
T
—4V1,2m
L 0 01 a
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XTHX =
I 0 Hiomy1 | m
0 Hm,m+2 Nim
Hpyp1,m+1
T ~
Hm,m+2 H‘m+2,m+2 dm
T ~
L Hiom+1 Homt12m+1 | @O
(B.6)

for some nonsingular matrix X, where (note that ¢; = §; — 7;)

Tj+1  gj+1
nj—Gi+1 | 0 0
Njom+1-j = i1 I 0 |, 1<j<m—1,
gj+1 0 I
nj — gi+1  gj+1
n; — qj J 0 - . .
Nj,; :q~jj+1 it [ 0 0 ]a Gm+1 = Pm+1, 1<j5<m,
2p Tm+1
M —Fmg1 [00
Nm,m+1 _'Fm+1 [ 0 I :|,
A 0
Nmt1,m+1 = [ 0 0 ] ; A = Jp,
Tm+1

L LY B R L]

Hjomyr—j =n; [0 1 0 ], 1<j<m,
Ti 9
. T |50 i<
Homt2—j,2m+2—j =4 [ 0 0 ], 1<j53<m,
Hm+1,m+1 = [ ? 273+1 :| , 6 — (_)T € R2p,‘2p_

Note that all ¥; = diag(Iz,, —I5;), 1 < j < m + 1 are signature matrices.

By performing a congruence transformation to the pencil with XTNX, XTHX in (B.6)
with an appropriate permutation, we obtain the structured Kronecker form (2.2) of aN — 5 H.
This leads to the conclusion in Theorem 3.3.

Let us illustrate this complicated process by an example.

EXAMPLE B.2. Let

0 0 1 0/0 0 0 07
0 O 0 10 0 0 O
0 1]0
A
-1 0
aN—fH=a| -1 0| 0 0 0
0 —-1]0 0 0
0 0 0 00O
0 O 0 00O
0 O 0 00O
0 O 0 00O
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0 0 0 0,0 1 0 017
0 0 00|00 O1O0
0 0|1 O
(¢S]
0 0
- 0|1 0 0 ,
0 0|0 0 0
0 0 -1 0 0 0
1 0 0 0 0 O
01 0 0 0 O
L0 0 0 0 0 0|

where A is nonsingular. We have m = 3, and
n=2 mny=1 mn3=0 =3, ¢=2 g¢g=1,
=1, 79=0, 73=0, 74=0.

Then

G—m=1 g¢g-ny=1 g¢g3—n3=1, (for S;_1)
ki=(n1—q—7)/2=0, ky=(n2—q3—73)/2=0, (for Zy;),
Fl = 171 = 1, fg = 0, 1:3 = 0, 7~'4 = 0, (fOl‘Igj,l)

By Theorem 3.3, we conclude that the pencil has one singular block O; = a0 — 30; one
block &7 ; one block Ss; and one block Z; with s = —1. The canonical structure of aN — BH
associated with the finite eigenvalues is the same as that of A — 50.

In fact, if we rearrange the columns and rows of NV and H in the order 4, 8, 1, 3, 5, 6, 9,
2,7,10, 11 and let P be the corresponding permutation matrix, then

- A -
0
0 0 010
0 0 100
0 -1.0 00
PT(aN - BH)P = a -1 0 0 0 0
0 0 000
0 1 0
-1 0 0
0 0 0
L 0_
SN -
-1
0 0 0 0 1
0 0 0 10
0 0 000
-8 0 -1.0 00 ,
-1 0 000
0 0 1
0 0 0
-1 0 0
L 0
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which is in the structured Kronecker form.

Appendix C. A structured algorithm for computing the structured Schur form of
regular skew-symmetric/symmetric pencil of index at most 1.. In this appendix we present
an algorithm for computing the structured Schur form (4.2). We call a matrix U € R?™2"
orthogonal-symplectic if UTU = I, and UTJ,U = J,. In this algorithm we will de-
note by G(i,j) a Givens rotation operating in rows or columns i and j. If G;; € R™"
then G;(i,j) := diag(Gi;,Gyj) is orthogonal-symplectic and also G(n,2n) € R*™?" s
orthogonal-symplectic. Finally in the algorithm we use the orthogonal-symplectic permuta-
tion matrix P = [en,€1,---,€n—1,€2n, €ntl,--->€2n—1]-

ALGORITHM 4. For a regular skew-Hamiltonian/Hamiltonian pencil «Z — S M of index
at most 1 with Z = SJ,STJI € R?*™2" and S = diag(D,0, D,0), where D € RP? is
positive diagonal, this algorithm computes orthogonal matrices ()1, )2 and orthogonal sym-
plectic matrices Uy, Uz such that QT M Q2, QT SUy, UT (J.STJT)Q, are in the form (4.2).

Let

M=MP, Qi=U=1I, @Q=U;=PF,
T = PT(J,STJ)P = diag(0, D,0p—p—1,0, D, 0 p_1)-

Stepl. Reduce M,S,T to a form that is as (4.2) with the exception
that My4 is lower Hessenberg.
FOR k=1,...,n
% Annihilate My gy - -, Mon—1k
FOR j=n+k,...,2n—-1
Determine G(j,j+1) to annihilate mj;. Set

M=G"(j,j+1)M, S=G"(j,j+1)S, Qi=@Q:G(,j+1).
Determine Gs(j —n,j—n+1) to annihilate sjj+1. Set
S=8G,(j—n,j—n+1), U =UGs(j—n,j—n+1).
Determine G(j—n,j—n+1) to annihilate Sj_p41,j—n. Set

M=G"(j—n,j—n+1)M, S=G"(j—n,j—n+1)8S,
Q1 =Q:1G(G—n,j—n+1).

END FOR
% Annihilate map i,

Determine G(n,2n) to annihilate mank. Set
M =GT(n,2n)M, S=GT(n,2n)S, Qi=Q.G(n,2n).
Determine another G(n,2n) to annihilate Sapn. Set
S =8G(n,2n), Uy =UiG(n,2n).

S Annihilate My, - - ., Mp41,k
FOR j=m,...,k+1
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Determine G(j —1,j) to annihilate mj ;. Set
M=G"(j-1j)M, S=G"(j-1,7)8, Qi=@QG([-1j).
Determine G4(j —1,j) to annihilate sj 41. Set
S=15G,(j—1,j), Ui=U1Gs(j—1,5).
Determine G(n+j—1,n+j) to annihilate Sptj—1ntj. Set

M=GTn+j-1,n+)M, S=GT(n+j—-1,n+j)S,
Q1=Q:1G(n+j—1,n+j).

END FOR
% Annihilate M4k k415 -« -, Mptk,n—1
FOR j=k+1,...,n—-1
Determine G(j,j+1) to annihilate mgpyg,;. Set

Determine G4(j,j+1) to annihilate tj4q,;. Set
T=Gl(,j+1)T, Us=UGs(j,j+1).
Determine G(n+j,n+j+1) to annihilate tpyjnyjp1. Set

M=MGn+jn+j+1), T=TGn+jn+j+1),
Q2= Q2G(n+j,n+j+1).

END FOR
% Annihilate My g p
Determine G(n,2n) to annihilate Myyrn. Set

M=MG(n,2n), T=TGMn,2n), Q2= Q2G(n,2n).
Determine another G(n,2n) to annihilate tsp,. Set
T =GT(n,2n)T, U, = UsG(n,2n).

% Annihilate Mp4 k20, -« - s Mgk, ntk+2
FOR j=2n,...,n+k+2
Determine G(j —1,j) to annihilate Mp4k;. Set

M=MG(G—-1,j), T=TG({-1j), Q2=Q2G(—-1L7j).
Determine Gs(j —n—1,j—n) to annihilate tj_1;. Set
T=GT(j—-n—-1,j—n)T, Us=UsGs(j —n—1,j—n).
Determine G(j—n—1,j—n) to annihilate ¢j_pj_pn-1. Set

M:MG(j—’I’L—].,j—’I'L), T:TG(J—’I’L—I,J—’I’L),
Q2=Q2G(j—n—1,j—n).
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END FOR
END FOR
(Note that the (3,3) block of T now is zero.)
% Annihilate Mp41,n42, - - -, Mptpntptl

FOR k=n+1,...,n+p
Determine G(k,k+1) to annihilate mpgq1. Set

M= MGk, k+1), T=TG(kk+1), Q2=0QG(kk+1).

END FOR
Step2. Reduce My to lower quasi-triangular form.

Partition the matrices M,S,T as in (4.2). Apply the periodic QZ-algorithm,
see e.g. ([7, 22, 23]) to the formal product
SA;LTS2721M22T2721T471TM;11; to determine orthogonal matrices W;, j=1,...,6

such that W{ISyuW, and WITuWs are lower triangular, Wi SW, and
W3TM22W4, W5TT22W4 are upper triangular, and W{MyuWs is lower
quasi-triangular.

Let

O = diag(Ipa W35IP5 Wl)a Qs = diag(Ip’W‘l’Ip’Wﬁi)a
L{l = diag(Ip, WQ, Ip, Wz), L{Q = diag(Ip, W5, Ip, W5)

Set

M=0TMQ,  S=0TSu,, T=UlTQ,,
Ql = QlQl; Q2 = Q2Q27 Ul = U].ul; UZ = U2u2-

Once the form (4.2) has been obtained, we introduce

(C.1) S=QTsv,, T=UITQ, and M =QTMQ,.

Because T' = JnSTJE, M = —JnMJE, U J, = J,U1, and Us J,, = J,Us, we have
UI'T(J,Q1JF) = J,87J7,
(JnQ2JYTSU, = J,TTJE,

and from Z = ST, we have

QT Z(Ja@rJy) = QT SU\UIT(1,Q1J7) = 87,57 I,
(C.3) (JnQ2IVT ZQy = (JuQ2JD)SULUFTQ,y = J,TJIT.

It was shown in [3] that the finite eigenvalues of Z — BM are exactly the finite eigenvalues

of
Z 0 0 M
O‘Z_ﬂM—O‘[ 0 Z]_’B[M 0 ]
(with doubled algebraic multiplicity). Let Q; = diag(Q1, J,Q2JL,), Q2 = diag(J,Q1JL,Q2).
If follows from (C.1), (C.2), (C.3), and (4.2) that
8J,8TJF 0 ] 8 [ 0 M ]

T _ — R n ~
Qi (@2 = M) 0‘[ 0 JnTJTT J.MTJT 0
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[0 * * * 1
0 SQQS}; * *
0 0 0 0
0 0 * 544521’2
-a 0 * * *
0 T47:1T22 * *
0 0 0 0
L 0 0 * T2€T44 i
[ My, * * x|
0 M22 * %
0 0 Mss 0
0 0 * M44
-8 —M37; * * *
0 —MZ; * *
0 0 -ML 0
|0 0 * - M3, i

Rearranging the rows and columns by a block permutation in the order 1, 5, 2, 6, 3, 7, 4, 8,
the pencil is equivalent to the pencil

0 % | *x % C x *
0 A|lx =« 0 B| x  «x
“l5 oo o | Plool=er 0 |
0 0% AT 00‘*—BT

where the asterisks indicate (possibly) nonzero blocks and

A= S2251, 0 B— 0 My C— 0 My,
0 THT |0 T T | -MEL 0 |0 T | =ML 0 |°

The finite eigenvalues of «Z — 3M are exactly those of a.Ad — BB and a AT + BBT . 1t
is easily verified that

[é _OI](aA+BB) [é o ] — aA - 8B,

the eigenvalues of a.A — B and aA” + BBT are the same. Therefore, «Z — M and
aA — BB have the same finite eigenvalues with the same algebraic multiplicity.
Since S22, S44, Ta2, Th4 are nonsingular, the pencil aA — BB is equivalent to
0 Sii’ Sy M
-1 — 44 P22 122
A= [ —T5' Ty M 0 ] '
Then, obviously, the eigenvalues of A~!B are the square roots of the eigenvalues of the
matrix
(AilB)z — |: S&TSQZIMZQT2721T474TMZ‘; T 0 T :| .
0 T3 Tiy' MiySsy' S5 Moo
Note that the two diagonal blocks have the same eigenvalues. Using the triangular forms of
these blocks, the eigenvalues of (A~1B)? can be computed from the diagonal blocks of the
upper quasi-triangular matrix

=St Syt Moo T T T ML
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This then allows to compute the eigenvalues of a4 — BB.
Because aN — BH is equivalent to aZ — S M, the finite eigenvalues of a N — SH can
be obtained from a4 — 5B, as well.



