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Abstract. We derive a criterion for uniqueness of a critical point in ��� rational approximation of degree 1.
Although narrowly restricted in scope because it deals with degree 1 only, this criterion is interesting because it
addresses a large class of functions. The method elaborates on the topological approach in [15] and [12].
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1. Introduction. Rational approximation to holomorphic functions on compact subsets
of their domain of holomorphy is a most classical aspect of function theory. From the very
possibility of approximation asserted by Runge’s theorem (at least in the finitely connected
case), the emphasis has gradually moved towards determining optimal error rates as the de-
gree (hereafter denoted by � ) growths large, and constructive means to achieve them. Inter-
polation theory and logarithmic potential theory have been cornerstones of this development,
resulting in a fairly general treatment of asymptotic � -th root error estimates in the sup norm,
namely a sharp upper bound on its 	�
������� [33] and an upper bound on its 	
���
���� [28, 30]
(formerly Gonchar’s conjecture) whose sharpness was later established in [23] using results
from [32]. Besides, strong asymptotic error estimates in the sup norm have been derived for
more specific functions. Let us mention in particular the case of the exponential function [16]
and that of Markov functions [22]; strong asymptotic error estimates for Markov functions
were also obtained in � �

-norm on the disk [14], see [6] for a generalization to meromor-
phic approximation in the ��� norm. In the cases just mentioned, asymptotically optimal se-
quences of rational approximants can be constructed as Padé approximants or multipoint Padé
approximants whose interpolation points, when arranged into a triangular scheme, converge
in distribution to some appropriate equilibrium measure arising from a potential-theoretic
minimum energy problem.

In contrast, the actual computation of a best or near-best approximant of given degree on
a given compact set is still much of an open problem. On the disk, for the uniform norm, a
generalization of Remez-like algorithms was proposed in [25, 24], which is however subject
to combinatorial choices on the number of points where the error is maximal, to the occur-
rence of local minima, and for which issues of convergence are apparently still not settled.
Suboptimal rational approximants in the uniform norm may be obtained from AAK-theory,
but their quality depends on the smallness of the sum of the higher singular values of the
Hankel operator having as a symbol the function to be approximated [21], and this sum need
neither be small nor even efficiently computable. Finally for

� � -norms, where the criterion is
differentiable, methods from optimization are flawed by local minima.

For the case of the � �
-norm on the disk, which is protypical of a smooth criterion, a topo-

logical approach was taken in [15] to find conditions under which there is no local minimum
except the global one. This property makes for constructive algorithms, because it ensures
the convergence of a numerical search. In [15], it was applied to Markov functions: for such
functions, it was shown in essence that uniqueness of a critical point holds if the Green ca-�
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pacity of the support of the defining measure is less than an absolute constant. But it is in [12]
that the connection of the method with interpolation theory was realized and exploited, to the
effect that normality and regular error decay of certain multipoint Padé interpolants imply the
desired uniqueness property. In particular, it was proved in [12] that uniqueness of a critical
point in � �

-rational approximation to the exponential function holds in all degree sufficiently
large. The same result was established for Markov functions whose defining measure satisfies
the Szegö condition [13], see [4] for a more extensive discussion. Contrary to [15], however,
these last two results are not fully constructive in that no lower bound was given on the degree
that ensures uniqueness.

The modest objective of the present paper is to give a criterion for uniqueness of a critical
point in rational � �

approximation of degree 1. Although narrowly restricted in scope, the
criterion is interesting in that it is easily checked and addresses a large class of functions. It
is to be hoped that suitable generalizations of the estimates below will allow one to handle
higher degree as well.

The method is still that of [15] and [12], except that the estimation of the second deriva-
tive proceeds differently. The organization of the paper is as follows. In the next section we
set up the notations, and in section 3 we state the rational approximation problem under study.
The critical point theory that we need is recalled in section 4, while section 5 is devoted to
the proof of our uniqueness criterion in degree 1.

2. Notations and preliminaries. We let � be the unit circle and � the open unit disk
in the complex plane. We further denote by

� ��� � � � �"! the familiar Lebesgue space with
respect to normalized arclength measure on � . The Hardy space � �

of the unit disk is the
closed subspace of

� �
consisting of those functions whose Fourier coefficients of strictly

negative index do vanish. By definition � �
is thus a Hilbert subspace of

� �
.

It is a classical fact [18, 26, 20] that members of � �
are in one-to-one correspondence

with nontangential limits of those functions # holomorphic in � whose
� �

means remain
uniformly bounded over all circles centered at $ of radius less than 1 :���%�&('*)+'-, . �0/& 1 # �32547698 ! 1 �;:=<?>�@BA
(2.1)

This allows one to alternatively regard members of � �
as holomorphic functions in the vari-

able CEDF� ; the extension from � to � is actually obtained through a Cauchy as well as a
Poisson integral. Without further notice, we shall consider Hardy functions either as functions
of

4 68 DG� or as functions of C�DH� , whichever is more convenient.
From (2.1) and Parseval’s theorem, it follows by easily that# � CI!JDG� � 
�KL# � CM! �ONPQ0R &TS Q C QVUXW 
�Y0Z NPQ0R & 1 S Q 1 ��>F@FA
Next, we introduce the Hardy space � �& of the complement of the disk, consisting of� �

functions whose Fourier coefficients of non-negative index do vanish; these are precisely
the complex conjugates of � �

-functions with zero mean, and they can in turn be viewed as
nontangential limits of those functions holomorphic in []\ � that vanish at infinity and have
uniformly bounded

� �
means over all circles centered at $ of radius bigger than ^ . Note that

a function belongs to � �& if, and only if it is of the form
4I_ 68 # �`4 68 ! for some #aDG� �

. In other
words, the map bacdb*e , where b e � CI!�f � ^C b � ^ gC ! U(2.2)
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is a bijection from � �
onto � �& . Clearly, this correspondence is involutive and isometric. In

particular, it holds thath � CM!JD � �& 
iK h � CM! � NPj R ,�k j C _ j UXW 
�Y0Z NPj R , 1 k j 1 �l>B@ U
and by Parseval’s theorem again we have the orthogonal decomposition:� � � � ��m � �& A(2.3)

Note in passing that the scalar product in
� �

can be rewritten as a line integral:> h U #an �o^pVq . �0/& h �`47698 ! # �34 68 ! :=< � ^pVrsq .It h �vu !w# e �vu ! : u A(2.4)

Restricting to functions with real Fourier coefficients, one defines analogously
� �x , � �x ,

and � �&(y x ; these are real Hilbert spaces. All the previous considerations apply, in particular it

is still true that bacdb e is an involutive isometry from � �x onto � �&(y x .
We will denote by z|{ the space of algebraic polynomials with complex coefficients of

degree at most � , and by }~{ the set of monic polynomials of exact degree � whose roots
lie in � . Taking the coefficients –except the leading one which is 1– as coordinates, }�{
becomes an open subset of [ { . Its closure }~{ consists of monic polynomials whose roots
lie in � ; its boundary ��}~{ is the set of monic polynomials whose roots have modulus at
most 1 and at least one of them has modulus 1. For �]D�z { , we denote by �� the reciprocal
polynomial of � : �� � CI!��� C { � � ^�� gC=! U ��D�z|{ U(2.5)

whose roots are reflected from those of � across the unit circle and whose modulus on � is
the same as the modulus of � . We offer a word of warning about this notation: if ����n��
and ��D�z { is considered as a member of z {V� whose leading coefficients do vanish, the two
definitions of �� are inconsistent. For that reason, we always specify the value of � under
consideration, as was done in equation (2.5).

The symbols z { y x , } { y x , } { y x and ��} { y x refer to the preceding notions for polyno-
mials with real coefficients. This time, of course, } { y x , } { y x , and ��} { y x are regarded as
subsets of � { rather than [ {

We further let ��� y { be the set of rational functions of type
�v� U �T! , i.e. that can be written

in the form ���5� where ��D�z�� and ��D�z|{�\���$�� ; we write �a� y { y x for rational functions
with real coefficients, that is if we can choose ��D�z�� y x and ��D�z|{ y x . By definition, the
degree of a rational function is �?�V�*� � U ��� where

�
, � are such that the function belongs to� � y { but not to � ��� y {V� whenever

� � > �
or �T� > � .

Note that a rational function belongs to � �
if, and only if its poles lie in [�\ � , and to� �x if, in addition, it has real coefficients. A rational function belongs to � �& (resp. � �&(y x ) if,

and only if it lies in � { _ , y { (resp. � { _ , y { y x ) for some � and its poles lie in � .

3.
� �

rational approximation. We consider the following rational approximation prob-
lem:¡ � h U �T! : Given

h D � �& and some positive integer � , minimize¢¢¢¢ ha£ � � ¢¢¢¢+¤�¥(3.1)
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as �-�5� ranges over ��{ _ ,¦y { .
The version with real coefficients is¡ x � h U �T! : Given

h D � �&(y x and some positive integer � , minimize¢¢¢¢ h§£ � � ¢¢¢¢ ¤�¥(3.2)

as �-�5� ranges over ��{ _ ,¦y { y x .
On applying (2.2), problems

¡ � h U �T! and

¡ x � h U �T! are immediately seen to be respec-
tively equivalent to¡ � � # U �T! : Given #aDH� �

and some positive integer � , minimize¢¢¢¢ # £ � � ¢¢¢¢+¤�¥
as �-�5� ranges over ��{ _ ,¦y {

and¡ � x � # U �T! : Given #aDH� �x and some positive integer � , minimize¢¢¢¢ # £ � � ¢¢¢¢+¤ ¥
as �-�5� ranges over ��{ _ ,¦y { y x .

Although

¡ � � # U �T! and

¡ � x � # U �T! may look more natural than

¡ � h U �T! and

¡ x � h U �T! ,
we rather deal with the latter which are slightly easier to handle. Indeed, by partial fraction
expansion, it is easily checked from (2.3) that a solution to

¡ � h U �T! (resp.

¡ x � h U �T! ) must lie
in �a{ _ ,¦y {©¨ � �& (resp. �a{ _ ,¦y { y x ¨ � �&(y x ), therefore its poles (which are the most important
quantities) remain in a bounded set, namely � . We also mention that, surprisingly perhaps,
¡ � h U �T! does not supersede

¡ x � h U �T! in that a best approximant from � { _ ,¦y { to
h D � �&(y x

may fail to belong to � { _ , y { y x . However, the two problems can be approached in a parallel
manner so we often dispense with explanations on both cases, leaving it to the reader to
transpose the arguments from one case to the other.

The first issue to be addressed is that of existence. The following proposition can be
gathered from [19, 27, 33, 31, 17, 8, 7] but we provide a proof for the ease of the reader.

PROPOSITION 3.1. Problems

¡ � h U �T! and

¡ x � h U �T! have a solution; moreover, any
solution has exact degree � unless

h DH� { _*� y { _ , .
Proof. We restrict ourselves to

¡ � h U �T! , the case of

¡ x � h U �T! being argued the same
way. Let �;ª j « �5�Iª j¬« be a minimizing sequence for

¡ � h U �T! . For fixed �§D�} { , the minimum
in (3.1) (resp. (3.2)) is attained when � is the orthogonal projection of

h
onto the linear

subspace z|{ _ , �5� of rational functions in � �& with denominator � . Therefore, we may as well
assume for each  that �Tª j « �5�Iª j « is the orthogonal projection of

h
onto z®{ _ , �V�Iª j « , and in

particular that ¢¢¢¢ �;ª j¬«� ª j « ¢¢¢¢+¤�¥l¯±° h ° ¤�¥ A
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It follows that �Tª j « �V�Iª j « is bounded in � �& and therefore it has a weak limit point, say, b�D � �& .
By the weak-compactness of balls we get° b ° ¤ ¥ ¯ 	�
��
����j¬² N ¢¢¢¢ �;ª j «� ª j¬« ¢¢¢¢+¤ ¥ U
so that b will be a solution to Problem

¡ � h U �T! as soon as we have shown that b�D�� { _ , y { .
This in turn follows from the fact that � { _ , y { is weakly closed because, by a theorem of
Kronecker [29, th.3.11], the membership to � { _ , y { can be characterized solely in terms of
(infinitely many) algebraic relations between the Fourier coefficients upon writing that the
Hankel matrix has rank at most � .

Next, assume that b³D���{ _�� y { _ , . Then, it holds for each S D³� and k D³[ thatbµ´ k � � C £ S !�D��a{ _ ,¦y { and therefore, by definition of b , that° h§£ b ° �¤ ¥ ¯¶° h?£ b £ k � � C £ S ! ° �¤ ¥ A(3.3)

Expanding (3.3) by bilinearity we obtain$ ¯ 1 k 1 � ° ^5� � C £ S ! ° �¤ ¥ £ p ·a¸ k > ^�� � C £ S ! U ha£ bGn U
and taking 1 k 1 very small we see that this is possible only if$ � > ^�� � C £ S ! U ha£ bGn �¹� ha£ bº! e � S ! U
where the second equality comes from (2.4) and the residue formula. Now, the � �

-function� hH£ b*! e is identically zero since S D�� was arbitrary, and therefore
h � b�D�� { _*� y { _ , as

announced.
REMARK 1. Let us agree that a local minimum in Problem

¡ � h U �T! (resp.

¡ x � h U �T! ) is a
member of � { _ , y { (resp. � { _ ,¦y { y x ) that minimizes ���5��»c ° h§£ ���V� ° over a neighborhood
of itself in � �& ¨H� { _ , y { (resp. � �&(y x ¨H� { _ ,¦y { y x ). Then, because it is enough to deal with
arbitrary small 1 k 1 , the argument in the second part of the above proof generalizes to local
minima in Problems

¡ � h U �T! and

¡ x � h U �T! , showing that these have exact degree � unlessh D�� { _*� y { _ , (in which case there is no other local minimum than the global one which is
just

h
itself, see [10]).

A solution to Problem

¡ � h U �T! or

¡ x � h U �T! needs not be unique: for example, any non-
rational even function in � �& (resp. � �&(y x ) has at least two best approximants from � { _ , y {
(resp. �a{ _ ,¦y { y x ) when � is odd [31, 8, 7]. In the case of

¡ � h U �T! , an extreme example of
a function with infinitely many best approximants of given order can even be obtained [17].
All the above examples exploit some symmetry of the function

h
. In another vein, relying

on topological methods, one can adapt [16, ch. 5, thm 1.6] to the present situation and show
that any

� ��´¼^7! -dimensional subspace of � �& (resp. � �&(y x ) containing no non-zero member
of �a{ _ ,¦y { (resp. ��{ _ , y { y x ) must contain a function with at least two best approximants.

Nevertheless, by a general theorem of Stechkin on Banach space approximation from
approximately compact sets [16], the solution to

¡ � h U �T! (resp.

¡ x � h U �T! ) is unique for
h

in
a dense subset of � �& (resp. � �&+y x ). Reference [9] improves this in the case of

¡ x � h U �T! to the
effect that the dense subset in question contains an open set; the argument there would carry
over to

¡ � h U �T! as well. Even if the solution to

¡ � h U �T! or

¡ x � h U �T! ) is unique, though, there
may be several local minima that impede a numerical search for a solution. This is why it is
of particular importance to set up conditions on

h
that ensure uniqueness of a local minimum.

However, from first principles in differential topology, local minima turn out to be difficult
to analyse independently from other critical points, namely saddles and local maxima. In
the next section, we gather some facts from the critical point theory of problems

¡ � h U �T! and
¡ x � h U �T! .
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4. Critical points. For fixed �]D¼}~{ (resp. }½{ y x ), as noticed already in the proof
of Proposition 3.1, the minimum in (3.1) (resp. (3.2)) is attained when � is the orthogonal
projection of

h
onto the subspace z�{ _ , �5� of rational functions in � �& (resp. � �&+y x ) with

denominator � . Write
�J¾{ � �V!¿�5� for this projection, where

��¾{ � �V!�D±z { _ , is a function of� parametrized by
h

and � . Here, there is no need to adopt a special notation like
� ¾{ y x � �V!

when
h D � �&(y x and �µDG}½{ y x , because then the projection of

h
onto z®{ _ , �5� in � �& and the

projection of
h

onto z�{ _ , y x �5� in � �&+y x coincide.
The next proposition formulates in terms of division a characterization of

�|¾{ � �V! which
in essence goes back to [33].

PROPOSITION 4.1. For
h D � �& and ��D�} { , let

2 D�z { _ , be the remainder of the
division of

h e��� by � : h e �� ��À �|´ 2 U À D�� � U 2 D�z|{ _ , A(4.1)

Then it holds that
�J¾{ � �V! � �2 . Moreover, we can write�� ¾{ � �V! � CM! � ^pVrwq .MÁ h e �3u !¿�� �3u !� �vu ! � �3u ! £ � � CI!u £ C : u A

(4.2)

Proof. Applying (2.2) to (4.1), we see that the latter is equivalent to the relationh§£ �2 �5� �FÀ e �� �5� A(4.3)

Hence if we pick ��DHz { _ , , we get> h§£ �2 �5� U ���V��n � > À e �� �5� U ���5�µn U
and since multiplication by � � �� is an isometry of

� �
–because � � �� has modulus 1 on � – we

obtain > h§£ �2 �5� U ���5�µn � > À e U ���=��µn A
Now, � has its roots in � so that �� has its roots outside � , which entails that ���=��µDG� �

whileÀ e D � �& . As (2.3) is an orthogonal sum, we therefore deduce that> ha£ �2 �V� U ���V�©n � $
meaning that

�J¾{ � �V! � �2 . The representation (4.2) now follows from the Hermite formula for
the remainder of polynomial division [33].

By definition of
� ¾{ � �V! , the minimization in (3.1) (resp. (3.2)) can be replaced by the

minimization over }~{ (resp. }½{ y x ) of the function:Â ¾{ � �V! �� ° h?£ � ¾{ � �V!0�5� ° �¤ ¥(4.4)

which depends on � only. The notation
Â©¾{ will refer to the function (4.4) defined on }~{ ,

whereas if
h D � �&(y x and ��D�} { y x we shall write

Â ¾{ y x to mean the restriction of
Â©¾{ to} { y x .

Differentiating under the integral sign, one deduces from (2.4) and (4.2) that
Â�¾{ (resp.Â ¾{ y x ) is a smooth function of � . By definition, a critical point is any � where the gradient ofÂl¾{ (resp.

Â ¾{ y x ) vanishes (recall � is coordinatized by its coefficients except the leading one).
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Denominators of solutions to

¡ � h U �T! (resp.

¡ x � h U �T! ) are critical points of
Â�¾{ (resp.

Â ¾{ y x )
but there may be more, e.g. local minima, saddles and maxima.

It is worth characterizing critical points in terms of divisibility, as is done in the next
proposition, which appears in [12] for the case of

¡ x � h U �T! .
PROPOSITION 4.2. Let

h D � �& (resp. � �&+y x ) and �ÃD�} { (resp. } { y x ). In view of
Proposition 4.1, write the division of

h e �� by � in the formh e �� �FÀ ��´ �� ¾{ U À DG� � U � ¾{ Daz { _ , A(4.5)

Then � is a critical point of
Â�¾{ (resp.

Â ¾{ y x ) if, and only if � divides
��¾{ À in � �

(resp. in� �x ).
Proof. Write � � CI! � C { ´�� { _ , C { _ , ´ A+A(A ´�� &

and put � j �ÅÄ j ´ rwÆ j for the real and imaginary parts of the coefficients. Introduce the
differential operator ��ÇÉÈ � ^p � �;�5� Ä j £ r �-�V� Æ j ! A
Because

Âl¾{ is real-valued, to say that � is critical for
Â©¾{ amounts to say that� ÇÉÈ Â ¾{ � �V! � $ U $ ¯  ¯ � £ ^ A

On differentiating under the integral sign, this equality in turn yields:pV·a¸ > � ÇÉÈ ��¾{ � �V!0�V� £ ��¾{ � �V!ÊC j �5� � U ha£ �J¾{ � �V!0�V�Ën� £ p ·a¸ > ��¾{ � �V!�C j �V� � U h§£ ��¾{ � �V!0�5�Ën � $ U $ ¯  ¯ � £ ^ U
where the first equality comes from the characteristic property of the orthogonal projection
and the fact that ��ÇÉÈ ��¾{ � �V!|DG} { _ , . Substituting (4.3) where �2©� �J¾{ � �V! (compare Proposi-
tion 4.1) we obtain ·�¸ > � ¾{ � �V!�C j �V� � U À e �� �V�©n � $ U $ ¯  ¯ � £ ^ U
and multiplying throughout by � � �� while forming arbitrary linear combinations of these equa-
tions gives us ·a¸ > � ¾{ � �V!Ì�-� � �V��V! U À e n � $ U �vÍ=Î�� 	�	��GDHz�{ _ , A(4.6)

Let
:

be the monic # A ÏVA :ºA of � and
��¾{ � �V! , and

u , U A+A(A u(Ð be the roots of � � : with multiplicities,
say,

� , U A+A(A U ��Ð
. When � range over the family of polynomials�vr !ÉÑ � C £ u j !ÉÒ È�Ó Q�ÔR j � C £ u Q ! �JÕ UOÖ � $ U ^ U ^ ¯  ¯�× U $ ¯]Ø j ¯ � j £ ^ U(4.7)

we see on computing (4.6) via the residue formula using (2.4) –where # �ÙÀ e –that it is
equivalent to À ª Ò È « �vu j ! � $ U ^ ¯  ¯ : U $ ¯�Ø j ¯ � j £ ^ U
where the superscript

� Ø j ! indicates the Ø j -th derivative. In other words, � is critical if, and
only if �V� : divides

À
, that is to say if, and only if � divides

��¾{ À as desired. The argument for
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necessary and the real part does not occur in (4.6) so that the factor

�vr ! Ñ can be omitted from
(4.7).

Proposition 4.2 allows one to connect Problems

¡ � h U �T! and

¡ x � h U �T! with interpolation
theory. Indeed, suppose that �ÚD�} { is such that � and

� ¾{ � �V! have g.c.d.
: D�} j for some�D��7$ U A+A(A U ��� (if  � $ then

: � ^ and if  � � then
: � � while

��¾{ � �V! � $ ). Then, if we
write for simplicity � � : � , and

��¾{ � �V! � : � , , we get from (4.3) and Proposition 4.1 thatha£ � ¾{ � �V!¿�5� � ha£ � , �V� , �FÀ e �� �V� A(4.8)

Now, if � is a critical point of
Â�¾{ (resp.

Â ¾{ y x ), it follows from Proposition 4.2 that the right-

hand side of (4.8) is divisible by � , � ^5� C ! � � ^�� C=! in � �& (resp. � �&+y x ) so that
�J¾{ � �V!0�5� , which is

of type
� � £  £ ^ U � £ %! , interpolates

h
in at least

p � £  points of [ counting multiplicities,
notwithstanding one structural interpolation condition at

@
where all the functions involved

do vanish. Since
p � £ �Û p � £ p  , it follows that

�J¾{ � �V!0�V� is a multipoint Padé approximant
to

h
[2]. Of course, the difference with classical interpolation theory is that the interpolation

points are not known in advance but rather depend on the interpolant (they must include the
reflections of its poles across � , each of them with multiplicity twice the multiplicity of that
pole). This implicit determination of the interpolation points accounts for the nonlinearity
of the problem and capsulizes its difficulty. In the particular case of best approximants, we
obtain the following corollary that appears already in [19, 27, 17] (the first of these references
deals with simple poles only).

COROLLARY 4.3. Let
h D � �& (resp. � �&(y x ). If ���V� is a solution to

¡ � h U �T! (resp.
¡ x � h U �T! ), then ���V� interpolates

h
with order two at the reflections of its poles across the

unit circle.
Proof. If

h DH� { _ , y { (resp.
h DH� { _ ,¦y { y x ), then ���5� � h

and there is nothing to prove.
Otherwise, we know from Proposition (3.1) that a solution to

¡ � h U �T! (resp.

¡ x � h U �T! ) has
exact degree � , so the result follows from the previous discussion where  � $ .

Note that, in view of the remark after Proposition 3.1, the corollary is still valid for local
minima in Problems

¡ � h U �T! and

¡ x � h U �T! , and more generally for any irreducible critical
point, that is any critical point such that � and

��¾{ � �V! are coprime. This was importantly
used in [12] and [14, 13], where the interpolation properties of the critical points team up
with somewhat ad hoc bootstrap propositions on the behaviour of the poles in order to obtain
asymptotic error estimates for critical points in

¡ � x �34�Ü U �T! and

¡ x � h U �T! respectively, with
h

a
Markov function. In [12] and [13], these estimates were used to prove asymptotic uniqueness
of a critical point in the cases just mentioned, using Theorem 4.6 below, see the remark after
that theorem.

In order to study the critical points of
Â©¾{ or

Â ¾{ y x using classical tools from differential
topology (centering around the notion of topological degree), we need to compactify the
domain of definition of these functions. This requires additional assumptions on

h
. The one

below could be weakened but is convenient to work with and already general enough for
many applications:

HYPOTHESIS (H): the function
h

is analytic in 1 C 1 n±^ £ Ö
for some

Ö n�$ .
LEMMA 4.4. Let

h D � �& (resp. � �&+y x ) satisfy hypothesis (H). Then
Â©¾{ (resp.

Â ¾{ y x )
extends smoothly to a neighborhood of }Ý{ (resp. }Þ{ y x ) in [ { (resp. � { ).

Proof. By Pythagora’s theorem and the characteristic property of the orthogonal projec-
tion, we can writeÂ ¾{ � �V! � ° h ° �¤ ¥ £ ° � ¾{ � �V!0�5� ° �¤ ¥ � ° h ° �¤ ¥ £ > � ¾{ � �V!0�V� U h n(4.9)
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so that it is enough to smoothly extend
> ��¾{ � �V!0�V� U h n . But using (2.4) we have that> � ¾{ � �V!¿�5� U h n � ^p5rwq . t � ¾{� �3u ! h e �vu ! : u U

and since
h e is holomorphic for 1 C 1 > ^*´ Ö

by hypothesis (H) we may, by Cauchy’s theorem,
deform � into a slightly larger circle, say, of radius ^�´ Ö � p , without changing the value of
the integral. The new expression is nonsingular as long as the zeros of � remain of modulus
strictly less than ^�´ Ö � p , and this provides us with the desired extension of

Âµ¾{ . The argument
applies to

Â ¾{ y x as well.
When

h
satisfies hypothesis (H), Lemma 4.4 allows us to define critical points of

Â�¾{
(resp.

Â ¾{ y x ) in }½{ (resp. }~{ y x ) and not just in }~{ (resp. }~{ y x ). In particular, it will
make sense to talk about critical points lying on ��}Ý{ (resp. ��}½{ y x ). For these, the char-
acterization in Proposition 4.2 no longer holds, essentially because zeros of � with modulus
1 must cancel automatically with a zero of

�|¾{ � �V! (since the
� �

-norm of
�J¾{ � �V!0�V� remains

finite). Characterizing critical points lying on ��} { or ��} { y x is a technical exercise that
we can safely dispense with here. We simply state the result for completeness and refer the
interested reader to [12] for an argument in the case of

Â ¾{ y x which is easily carried over toÂ ¾{ .
PROPOSITION 4.5. Let

h D � �& (resp. � �&+y x ) and ��D���} { (resp. ��} { y x ). In view of
Proposition 4.1, write the division of

h e �� by � in the formh e �� �FÀ ��´ �� ¾{ U À DG� � U � ¾{ Daz { _ , A(4.10)

Decompose � into � � � ,¬ß where � , D¹} { _ j (resp. � , D¹} { _ j y x ) and ß is a monic
polynomial of degree ¹Dà�=^ U A+A(A U ��� , each root of which has modulus 1 (if  � � then� , � ^ ). Let á , U A(A+A U á Ò Dâ� be the roots of ß , and ã Q be the multiplicity of á Q so thatä Q ã Q �  . Form the polynomialå � CM! � Ó ÒQ0R , � C £ á Q ! æ ª ,ÊçTè Õ «`é ��ê U
where the brackets in ë � ^J´�ã Q !0� p�ì indicate the integer part. Then, � is a critical point of

Â©¾{
(resp.

Â ¾{ y x ) if, and only if � å divides
�J¾{ À in � �

(resp. in � �x ).
A critical point is said to be nondegenerate if the second derivative at that point is a

nondegenerate quadratic form. In this case, the number of negative eigenvalues of the second
derivative is called the Morse index of the critical point and it is invariant by smooth changes
of coordinates. The theorem below lies a little too deep in differential topology for us to prove
it here. It was established in [3] for the case of

Â ¾{ y x (see also [10]) and substantially outlined
in ([4]) for the case of

Âl¾{ .
THEOREM 4.6. (The Index Theorem) Let

h D � �& (resp. � �&(y x ) satisfy hypothesis (H),
and assume that

Â�¾{ (resp.
Â ¾{ y x ) has only nondegenerate critical points } { (resp. } { y x )

none of which lies on ��} { (resp. ��} { y x ). Let í be the collection of these critical points
and

Ö � �V! designate the Morse index of �µD�í . Then í is finite andPÇ îVï � £ ^�! Ñ ª Ç « � ^ A
REMARK 2. The nondegeneracy of all critical points is a generic (i.e. open and dense)

property with respect to
h

in various function spaces, see [3] for a discussion of
Â ¾{ y x on
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trigonometric polynomials of sufficiently large degree or on functions analytic in 1 C 1 n±^ £ Ö
endowed with the topology of uniform convergence on compact sets. One can in fact prove
that critical points on ��} { (resp. ��} { y x ) are necessarily degenerate, so that the hypotheses
we made in the above theorem are somewhat redundant, but this is of no importance to us.

The index theorem provides us with a criterion for uniqueness of a critical point: if no
critical point lies on ��} { (resp. �*} { y x ) and if each of them is nondegenerate with even
Morse index –or, equivalently, if the second derivative at each of them has strictly positive
determinant – then there can be only one. This is what we use in the forthcoming section.

5. A uniqueness theorem in degree 1. This section, which constitutes the truly original
contribution of the paper, is devoted to proving the following theorem.

THEOREM 5.1. Let
h D � �& (resp. � �&+y x ) satisfy hypothesis (H). Assume that

h e has
no zero on � and that 1 � h e !Ê�v� h e 1 ¯ ^ on � , where the superscript “prime” indicates the
derivative. Then

Â ¾ , (resp.
Â ¾ , y x ) has a unique critical point in } , (resp. } , y x ). In

particular,

¡ � h U ^�! (resp.

¡ x � h U ^�! ) has a unique solution which is also the unique local
minimizer of (3.1) (resp. (3.2)) in degree 1.

Proof. Let us consider
Â ¾ , and put for simplicity # � h e . For �µDG} , , write � � CI! � C £ Swith S DH� , S �BÄ ´ rwÆ

; then �� � CM! � ^ £ S C , and from Proposition 4.1 we deduce that� ¾ , � # � S ! � ^ £ 1 S 1 � !(5.1)

(note that
� ¾ , is indeed a complex number since it is a polynomial of degree $ ). Subsequently,

as it is immediate from (2.4) and the residue formula that¢¢¢¢ ^C £ S ¢¢¢¢ �¤�¥ � > ^C £ S U ^C £ S n �ð� ^ £ 1 S 1 � ! _ ,5U
we see from (5.1) and the first equality in (4.9) thatÂ ¾ , � �V! � ° h ° �¤ ¥ £ 1 # � S ! 1 � � ^ £ 1 S 1 � ! A(5.2)

As predicted by Lemma 4.4, this formula extends smoothly to ��D } , (that is: to S D � ) ifh
satisfies hypothesis (H).

Consider the differential operators��ñ � ^p � �;�5� Ä £ r �;�V� Æ ! U � ñ � ^p � �;�V� Ä ´ r �;�5� Æ ! U
having the property that ��ñ S � � ñ S � $ , and observe from (5.2), since ��ñ # � S ! � $ by the
holomorphy of # , that �Mñ Â ¾ , � £ # � S !=ò¬# � � S ! � ^ £ 1 S 1 � ! £ # � S ! SIó A(5.3)

Because
Â ¾ , is real-valued, S is critical if, and only if � ñ Â ¾ , � $ , because the real and imagi-

nary parts of ��ñ Â ¾ , are respectively half and minus half of the components of the gradient ofÂ ¾ , in the coordinates
Ä U Æ

. Thus, as # has no zero on � by assumption, we deduce from (5.3)
that S is critical if, and only if # � � S ! � ^ £ 1 S 1 � ! £ # � S ! S � $ A(5.4)



ETNA
Kent State University 
etna@mcs.kent.edu

64 L. BARATCHART

In particular S cannot be critical if 1 S 1 � ^ , that is to say no critical point lies on ��} , . Next,
it is clear that p �� Ä"��ñ � � �� Ä � £ r � �� Ä � Æ Upa�� Æ � ñ � � �� Ä � Æ £ r®� �� Æ � U
hence the determinant of the second derivative of the real-valued function

Â ¾ , at � – computed
in the coordinates

Ä U Æ
– is given by� � Â ¾ ,� Ä � � � Â ¾ ,� Æ � £âô � � Â ¾ ,� Ä � Æ"õ � ��öI÷¬øúù �� Ä ��ñ Â ¾ , �� Æ ��ñ Â ¾ ,5û A

(5.5)

Now, assume that S is critical so that (5.4) holds, or equivalently:#�� � S !# � S ! £ S� ^ £ 1 S 1 � ! � $ A(5.6)

Let us put for simplicity ü � S ! � #�� � S !0��# � S ! . In view of (5.3) and (5.6), we compute�� Ä � ñ Â ¾ , �ý� � ñ ´�� ñ !�� ñ Â ¾ ,� £§þ �Mñ�´�� ñ ÿ ù 1 # � S ! 1 � � ^ £ 1 S 1 � !§ò7ü � S ! £ S� ^ £ 1 S 1 � ! ó û� £ 1 # � S ! 1 � � ^ £ 1 S 1 � ! ù ü � � S ! £ S �� ^ £ 1 S 1 � ! � £ ^� ^ £ 1 S 1 � ! � û� £ 1 # � S ! 1 � � ^ £ 1 S 1 � ! ù ü � � S ! £ ü � � S ! £ ^� ^ £ 1 S 1 � ! � û
(5.7)

where we have used in the next-to-last equality that � S ü � S ! � $ by holomorphy. Similarly,
we get that �� Æ �Mñ Â ¾ , �Fr � ��ñ £ � ñ5!���ñ Â ¾ ,� £ r þ � ñ £ � ñ5ÿ ù 1 # � S ! 1 � � ^ £ 1 S 1 � ! ò ü � S ! £ S� ^ £ 1 S 1 � ! ó û� £ r 1 # � S ! 1 � � ^ £ 1 S 1 � ! ù ü � � S ! £ ü � � S !T´ ^� ^ £ 1 S 1 � ! � û A(5.8)

Therefore, from (5.7), (5.8), and (5.5), we see that the determinant of the second derivative
of

Â ¾ , at the critical point � � CM! � C £ S is equal toö 1 # � S ! 1 � � ^ £ 1 S 1 � ! � ù ^� ^ £ 1 S 1 � ! � £ 1 ü � � S ! £ ü � � S ! 1 � û
whose strict positivity is equivalent to^� ^ £ 1 S 1 � ! � n 1 ü � � S ! £ ü � � S ! 1 A(5.9)

By assumption 1 ü 1 ¯ ^ on � hence also on � by the maximum principle. Hence by the
Schwarz-Pick lemma (see e.g. [1]) it holds that1 ü � � S ! 1 ¯ ^ £ 1 ü � S ! 1 �^ £ 1 S 1 � A
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Consequently 1 ü � � S ! £ ü � � S ! 1 ¯ ^ £ 1 ü � S ! 1 �^ £ 1 S 1 � ´ 1 ü � S ! 1 � �Þ^ £ 1 S ü � S ! 1 �^ £ 1 S 1 � U
so that clearly � ^ £ 1 S 1 � ! � 1 ü � � S ! £ ü � � S ! 1 ¯ � ^ £ 1 S ü � S ! 1 � ! � ^ £ 1 S 1 � ! > ^
which implies (5.9). The result now follows from the index theorem. The case of

Â ¾ ,¦y x is
similar but simpler, since then S D¶ë £ ^ U ^ ì hence the computation becomes 1-dimensional.

In [12], it was shown that

¡ � x �34 Ü U �T! has a unique critical point for � large enough (no
estimate on how large is available). To estimate the index of a critical point, [12] makes use
of error estimates in interpolation to

45Ü
at a conjugate-symmetric set of points that were pre-

viously given in [11]. The case of

¡ � �`47Ü U �T! has apparently not been studied so far, although
the same result could be obtained by the same technique using instead of [11] the results of
[34] that relax the assumption of conjugate-symmetry. From Theorem 5.1, we deduce one
more (modest) piece of information:

COROLLARY 5.2. Problems

¡ � �`47Ü U ^�! and

¡ � x �34�Ü U ^7! have a unique critical point, hence
a unique local minimum which is also, of necessity, the solution to the problem.

Proof. It is equivalent to prove uniqueness of a critical point in Problems

¡ �`4 , é Ü �5C U ^�!
and

¡ x �34 , é Ü �5C U ^�! . But if
h � CM! �¹4 , é Ü �VC then

h e � CI! �ý4�Ü
, and since the exponential is its

own derivative and has no zeros we can apply the theorem.

6. Conclusion. In this paper, we have shown that uniqueness in
� �

-rational approxima-
tion of order 1 on the unit circle, to a function holomorphic in the complement of a compact
subset of the open unit disk, will hold if only the reflected function has no zeros in the closed
disk and has a logarithmic derivative which is bounded by 1 in modulus there. Although ex-
tremely limited in scope since it only deals with degree 1, this criterion is interesting because
it can be checked explicitly from the function and qualifies an open subset of the class of
holomorphic functions in 1 C 1 n 2

(for some fixed
2

such that $ > 2 > ^ ) endowed with the
topology of uniform convergence on compact sets. These features make the present criterion
unique. It is to be hoped that suitable refinements of the estimates of the present paper will
enable one to address the problem in higher degree.
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Université de Nice, 1987.
[4] L. BARATCHART, Rational and meromorphic approximation in ��� of the circle : system-theoretic motiva-

tions, critical points and error rates, in Computational Methods and Function Theory, N. Papamichael,
St. Ruscheweyh, and E.B. Saff, eds., World Scientific Publish. Co, 1999, pp. 45–78.

[5] L. BARATCHART, M. OLIVI, AND F. WIELONSKY, On a rational approximation problem in the real Hardy
space � � , Theoret. Comput. Sci., 94 (1992), pp. 175–197.

[6] L. BARATCHART, V. PROKHOROV, AND E.B. SAFF, Best meromorphic approximation of Markov functions
on the unit circle, Foundations of Constructive Math, 1 (2001), pp. 385–416.

[7] L. BARATCHART AND F. SEYFERT, An � � analog to AAK theory for ����� , J. Funct. Anal., 191 (2002),
pp. 52–122.

[8] L. BARATCHART, Existence and generic properties for �-� approximants of linear systems, IMA J. of Math.
Control Inform., 3 (1986), pp. 89–101.



ETNA
Kent State University 
etna@mcs.kent.edu

66 L. BARATCHART

[9] L. BARATCHART, Recent and new results in rational � � -approximation, in Modelling, Robustness and
Sensitivity Reduction in Control Systems, R.F. Curtain, ed., NATO ASI Series, F34, Springer-Verlag,
1987, pp. 119–126.

[10] L. BARATCHART AND M. OLIVI, Index of critical points in 	 � -approximation, Systems Control Lett., (10)
1988, pp. 167–174.

[11] L. BARATCHART, E.B. SAFF, AND F. WIELONSKY, Rational approximation of the exponential function, J.
Anal. Math., 70 (1996), pp. 225–266.

[12] L. BARATCHART, E.B. SAFF, AND F. WIELONSKY, A criterion for uniqueness of a critical points in �©�
rational approximation, Canad. J. Math., 47 (1995), pp. 1121–1147.

[13] L. BARATCHART, H. STAHL, AND F. WIELONSKY, Asymptotic uniqueness of best rational approximants of
given degree to Markov functions in � � of the circle, Constr. Approx., 17 (2001), pp. 103–138.

[14] L. BARATCHART, H. STAHL, AND F. WIELONSKY, Asymptotic error estimates for � � best rational approx-
imants to Markov functions on the unit circle, J. Approx. Theory, 108 (2001), pp. 53–96.

[15] L. BARATCHART AND F. WIELONSKY, Rational approximation in the real Hardy space � � and Stieltjes
integrals: a uniqueness theorem, Constr. Approx., 9 (1993), pp. 1–21.

[16] D. BRAESS, Nonlinear Approximation Theory, Springer Series in Computational Mathematics, 7, Springer,
Berlin, 1986.
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