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INVERSE SOURCE PROBLEM IN A 3D BALL FROM BEST MEROMORPHIC
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Abstract. We show that the inverse monopolar or dipolar source problem in a 3D ball from overdetermined
Dirichlet-Neumann data on the boundary sphere reduces to a family of 2D inverse branchpoint problems in cross
sections of the sphere, at least when there are finitely many sources. We adapt from [7] an approach to these 2D
inverse problem which is based on meromorphic approximation, and we present numerical results.
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1. Introduction. In this paper we consider a classical inverse problem for the Laplace
operator, that consists in recovering finitely many pointwise sources located in a 3D domain
from measurements of their potential and its normal derivative on the boundary. This type
of inverse problem dates back to Newton, and it has received renewed interest from the sci-
entific community in recent years. For instance in medical engineering, the inverse EEG
(ElectroEncephaloGraphy) problem consists in detecting pointwise dipolar current sources
(modeling epileptic foci) located in the brain, from measures of the electric potential on the
scalp [14, 17, 18, 19, 22, 33]. We shall study more generally the mixed case of monopolar
and dipolar sources, which is reasonably comprehensive with respect to such applications.

We will show that if the 3D domain is a ball, then the above issue is equivalent to a se-
quence of 2D inverse problems each of which consists in recovering the branchpoints that a
holomorphic function � has in a disk from the knowledge of � on the boundary circle. Sub-
sequently, we apply to these 2D problems the technique of [7] that rests with approximating� on the boundary circle by a meromorphic function with � poles, and locating the branch-
points from the cluster of the poles when � goes large; initially, this technique was proposed
for crack detection [9, 10]. Finally, we provide numerical experiments to illustrate our results.

The meromorphic approximants that we used for the experiments are local best approx-
imants with � poles for the ��� -norm on the circle [4]. Several other kinds of approximants
would do as well: a noteworthy alternative is best uniform approximation on the circle by
meromorphic functions with � -poles, which is made constructive by the Adamjan-Arov-
Krein theory [1].

The approach can be extended to smooth 3D domains whose sections along some axis
are so called � -domains [16], but we shall not carry out such generalization here.

The outline is as follows. In section 2 we state the inverse source problem on the 3D
ball, and in section 3 we perform the computations needed to reduce it to a family of inverse
problems on 2D planar cross-sections of the ball. These 2D problems are in fact inverse
branchpoint problems. To approach them in the style of [7], we recall in section 4 a few
facts from potential theory and some results from [8, 11, 31, 32]. Numerical examples are
presented in section 5.	
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2. An inverse source problem. Let 
����� be the open unit ball and ������

the unit sphere. The electric potential � generated by ��� pointwise monopolar sources� ������� ��� �"!$#

with intensities % �&����� �'� % !$#)(  and � � dipolar sources * �&��� ���'� * !,+
with

moments - ����� ����� - !,+.( /� , is the unique solution that vanishes at infinity of the equation021 �3�54 �
where 1 � �6���7 � 8 �6���9 � 8 �6��6: �
is the standard Laplacian, and 4 is the distribution:4;� !$#<=?> � % =A@ BDC 8 !E+<F > � - F �HG @�I6J �(2.1)

Assume now that all the sources
� = and * F are located in 
 , assumed to be filled with a

homogeneous medium. From outside 
 , one can usually observe � only up to the addition
of a harmonic function, which is the potential generated by other sources located outside 
 .
This additive combination, denoted by K , satisfies an equation of the form:

(PS)

LM N 021 KO�P4 in 
��K�"Q$R S �5T � K R S �VU W XY
where T and U are the boundary conditions and Q represents the outward unit normal vector
to � (normalized radius, in spherical coordinates).

The direct Neumann problem is that of finding K given T and 4 . By Green’s formula,
the compatibility condition: Z [ T2\^].� 0 !$#<=?> � % = �(2.2)

must hold for K to exist, and then it is unique up to an additive constant.
The inverse Dirichlet-Neumann problem is that of recovering 4 given T and U . More

precisely, postulating that T and U are linked by a relation of the form (PS) where 4 is as in
(2.1), we want to recover � � , � � , � = , * F , % = and - F for _a`)bc`d� � , _e`gfO`h� � .

Uniqueness of a solution (i.e. identifiability) is established in [17], while stability results
are available from [28, 33].

For applications to EEG like those mentioned above, one actually needs to handle a
more involved situation. In fact, a simplified spherical model of the head [14, 17, 18, 19]
assumes that it is a ball 
jik�5/� centered at l of radius � , which is the union of 3 disjoint
homogeneous layers m,n , m$� , m � , namely the scalp, the skull, and the brain. Up to a rescaling,
we may assume that m n �o
 , that m � �p
jqer 
 , and that m � �o
 i r 
"q where _tsPuvs5� .
The conductivity in each mxw will be constant and known, equal to y�w . Then, if we define
a piecewise constant function y on 
 i by y R z|{ �}y|w , we find (again up to the addition of
a harmonic function) that the potential created by the monopolar sources ~ � = � % =�� and the
dipolar sources ~�* F � - F � located inside m n is a solution toL��M ��N 0 Gk� ~�y G K � ��4 in 
 i��K�"Q R S�� �5T iK R S�� �VU�i �
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of which (PS) is a sub-equation whose boundary conditions T and U on � have to be computed
from T�i and U�i by solving recursively the Cauchy problem for the Laplace equation in the
layers m � and m � . Moreover, it is often the case that K cannot be measured on the whole of� i , but rather on some subset ���g� i .

The full inverse problem to be solved in this context is then the following:
Given measurements of U i and T i on � , find the number and the location of unknown

pointwise monopolar and dipolar sources
� = � * F ( 
 together with their intensities % = ( 

and their moments - F ( /� .
Actually, classical EEG models assume that there are only dipolar sources so that � � �l , and that the system is isolated so that T i ��l . These simplifications do not essentially

modify the complexity of the problem.
Hereafter, we shall not consider the more general formulation given above that involves

several layers m = , and we shall stick to (PS) by simply assuming that T and U have been
computed on � from the knowledge of T"i and U�i . Let us merely point out that such a com-
putation is nontrivial, because the Cauchy problem for the Laplace equation is the prototype
of an ill-posed problem. Regularisation schemes have been proposed in [24], see also [2] for
an approach based on extremal problems for harmonic fields.

3. About the solution K . The radial fundamental solution of Laplace’s equation in ��
is ~��������d� ��� � [15, 21] hence the solution to (PS) assumes the form:K�~�� � ����~�� � 0 !$#<=?> � % =���c�'� 0 � = � 8 !,+<F > � s�- F � � 0 * Ft�������� 0 * F � �(3.1)

where � is harmonic.
The first step that we take is to recover � R S from the knowledge of K R S �gU and ����D� R S �pT .

For this we use the well-known fact [3, 15] that K , which is harmonic in a neighborhood of �
by assumption, can be uniquely written there in spherical coordinates as:K/~�u � y � � �<F > n ¡ u F�� F�¢ �< w > �¤£ wF�¥ wF ~¦y � 8 u �A§ F�¢ ��¨ � F�¢ �< w > �¤© wFD¥ wF ~¦y �«ª � u � l � y ( � �
where ~ ¥ wF � ��¬ w ¬ � F'¢ � is an orthonormal basis of the spherical harmonics of order f in  � .
Thus if the boundary data on � areU"~�y � � �<F > n � F�¢ �< w > �t wF�¥ wF ~�y � and T�~¦y � � �<F > n � F�¢ �< w > � T w F�¥ wF ~�y � �
it follows from Euler’s equation for homogeneous functions, and the fact that the normal to
the sphere at � is � itself, that the boundary relations in (PS) become:£ w F 8 © wF �  wF and f £ w F 0 ~�f 8 _ � © wF �®T wF �

hence £ w F � ~�f 8 _ �  wF 8 T w F¯ f 8 _ �
This allows one to compute � and K 0 � on � ; indeed, because � is harmonic in 
 , it has
vanishing coefficients of u �A§ F'¢ ��¨ ¥ wF for f±°Pl , and similarly for K 0 � , harmonic in ��.r 
 ,
with vanishing coefficients of u F ¥ wF . Thus:��~�y � � �<F > n � F'¢ �< w > � £ w F�¥ wF ~�y � � ~�K 0 � � ~�y � � �<F > n � F'¢ �< w > � © wF�¥ wF ~�y � �(3.2)
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Subsequently, on replacing K by K 0 � , we assume throughout that �c�5l .
Next, we put:~�7|² � 9&² � : ² �´³ �¶µ � ² for ·A�¸b¤�3_ ��� ���'� � ���*�² for ·A�5f¹�P� � 8 _ � ��� �'� � � 8 � � �

and, for ·j�k_ � ������� � � 8 � � , we letº ²"��7|² 8¸» 9�² (½¼ ²��g¾(3.3)

be the complex coordinate of the source
� ² or *�² in the disk

¼ ² centered at 0 of radiusu�²A�¿~�_ 0 :��² � �?À � . We also denote the dipolar moments in Euclidean coordinates by:- F �3~Á- F�Â Ã � - FDÂ Ä � - FDÂ Å � �
When we slice the ball 
 along a generic horizontal plane Æ�:Ç�5:�È^É , the intersection with � is
a circle Ê È of radius u È �k~´_ 0 :��È � �´À � . Throughout, the square-root is understood to be positive
for positive arguments. We further let ��² Â È �Ë: È 0 : ² for · ( Æ�b � f�É¹��ÆÌ_ ��� ���'� � � 8 � � É ,
and we put

º ��7 8Í» 9 to mean the complex variable in the generic plane ÆD:Î�P: È É .
LEMMA 3.1. If

º = � º FÐÏ�;l for _t`gb±`�� � and _¹`ofÐ`5� � , then the restriction K R Ñ«Ò
of K given by (3.1) is the trace on Ê È of the function� È ~ º � � »�Ó�oÔÖÕ× ! #<=?> � Ø = Â ÈÙ~

º �~ º 0 º �= Â È � �?À � 0 ! +<F > � � F�Â È|~ º �~ º 0 º �F�Â È � � À �^ÚÛ � º ( ¾¸rxÆ º�Ü² Â È É �(3.4)

whereº Ü² Â È � º ²¯$Ý º ² Ý �hÞ Ý º ² Ý � 8 u �È 8 � �² Â È$ß5à á ~ Ý º ² Ý 8 u'È � � 8 � �² Â È�â á ~ Ý º ² Ý 0 u'È � � 8 � �² Â È�â´ã � · ( Æ�b � f�É �
and

Ø = Â Èä~
º � � % =Då º

à º = ~ º 0 º ¢= Â È � �(3.5)

while � F�Â È|~ º � � å ºtæHç- F º � 8 ¯ ~è- F�Â Å � FDÂ È 0 Re Æ ç- F º F É � º 8 ç- F u��È&é¯�ê º F ~ º 0 º ¢F�Â È �«ë � À �(3.6)

with ç- F �Í- F�Â Ã 0 » - F�Â Ä �
If

º = �ìl , that is if the monopolar source
� = lies on the vertical axis, then the correspond-

ing term of the first sum appearing in the bracket on the right hand side of (3.4) becomes
independent of

º
and given by » % =à u �È 8 � �= Â È �(3.7)



ETNA
Kent State University 
etna@mcs.kent.edu

CONSTRUCTIVE SOLUTIONS TO INVERSE SOURCES PROBLEMS 45

If

º F �5l , that is if the dipolar source * F lies on the vertical axis, then the corresponding term
of the second sum appearing in the bracket on the right hand side of (3.4) becomes rational
in

º
and is given by » ç- F º � 8 ¯ - F�Â Å � F�Â È º 8 ç- F u��È¯ º ~�u �È 8 � � FDÂ È � � À � �(3.8)

Proof. Put çí ² Â ÈÙ~�7 � 9 � �k~�7 0 7 ² � � 8 ~�9 0 9 ² � � 8 � �² Â È � · ( Æ�b � f�É �
for the trace of ��� 0 � ² �'� or ��� 0 * ² �'� at :Î��:�È , andç� F�Â È|~�7 � 9 � �î- F�Â Ã ~�7 0 7 F�� 8 - F�Â Ä ~�9 0 9 F�� 8 - F�Â Å �^È Â F �
From (3.1), we getK�~�7 � 9 � : È � � _�Ó�oÔ�Õ× 0 ! #<=?> � % =à çí = Â ÈÙ~�7 � 9 � 8 ! +<F > �

ç� FDÂ ÈÙ~�7 � 9 �à çí � F�Â È ~�7 � 9 � ÚÛ �(3.9)

Now, for

º ( Ê È we have that

º �Pu&�È^ï º , henceçí ² Â È ~�7 � 9 � � Ý º 0 º ² Ý � 8 � �² Â È¹ð� í ² Â È ~ º � � · ( Æ�b � f�É �(3.10)

and if

º ² Ï��l this gives usí ² Â È|~ º � � 0 º ²º ¡ º � 0}ñ _ 8 u��È 8 �ò�² Â ÈÝ º ² Ý �ôó º ² º 8 uD�È º �²Ý º ² Ý � ª � 0 º ²º ~ º 0 º �² Â È � ~ º 0 º ¢² Â È �(3.11)

where

º Ü² Â È is as stated above. Similarly, we observe that for

º ( ÊäÈç� FDÂ È ~�7 � 9 � � _¯ º æ ç- F º � 8 ¯ ~è- F�Â Å � F�Â È 0 Re Æ ç- F º F É � º 8 ç- F u �È&é ð�P� F�Â È ~ º � �
and if we put � F�Â È ~ º � � � F�Â È ~ º �~ º 0 º ¢= Â È � � À �Ðõ

ºº F6ö � À �
(3.12)

we see that (3.6) holds. Then (3.4) follows upon substituting (3.11) and (3.12) in (3.9).
If

º ²/�ol , then
í ² Â È ~ º � � Ý º Ý � 8 �ò�² Â È �ou��È 8 �ò�² Â È for

º ( Ê È , and the conclusion in this
case follows from a similar computation.

When there is a single source, that is if � � 8 � � �;_ , then we see from Lemma 3.1 that�6�È is a rational function of

º
. When there are several sources it is no longer the case, and this

is why we introduce a class of analytic functions as follows.
Let ÷ be the unit disk and, for ø � l , define ùÎú to be the annulus:ùaú2�;Æ�:òû�_ 0 øÎs Ý : Ý sp_�É �(3.13)

Consider the class of functions:ü�ý ð�ÇÆD4�þ'ÿ�� ��� ���Ùÿ���� � � ùÇú
	�����Ùÿ�� ÿ��¹ÿ������ � þ � �¤ùaú���ÿ����?ÿ����Óø � l � 	���Î4Pþ�	������þ�ÿ�� ��� ����� �!	���	��#" ��� þ�	��#�$" � �t÷%�'&Ùþ���� � ��ÿ��)(�� �#� � �#"��*	��+"���ÿ��$� ��	��������,	��|þ,���òÿ � � � �'É �
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PROPOSITION 3.2. For each : È ( ~ 0 _ � _ � , the function � È in (3.4) is such that �6�È ~ º ï u'È �
belongs to

ü�ý
, with poles and branchpoints at the points

º �² Â È ï u È only.
Proof. The hypothesis that : È ( ~ 0 _ � _ � is to the effect that u'È Ï�5l . Now, by (3.11), we

see that for · ( Æ�b � f�É
---
º ¢² Â È º �² Â È --- � -----

u��È º �²Ý º ² Ý � ----- �Pu �È �
and since

º ¢² Â È and

º �² Â È are zeros of
í ² Â È ~ º � it follows from (3.10) that none of them has

modulus u È because this would imply
Ý º ² Ý � u È , a contradiction since the

� = and the * F
lie inside 
 by assumption. Consequently one of the two complex numbers

º Ü² Â È must have
modulus bigger than u È , and the other modulus smaller than u È ; by the formula for

º Ü² Â È in
Lemma 3.1, the biggest modulus is in fact that of

º ¢² Â È hence
---
º �² Â È --- sVu�È¤s ---

º ¢² Â È --- �(3.14)

From this and (3.5)–(3.6), it follows when no

º = nor

º F is zero that, for any quadruple of in-
dices b � b+. ( ÆÌ_ � ������� �Ð��É and f � f/. ( ÆÌ_ � ������� � � É , the three functions Ø = Â È Ø =�0 Â È , � F�Â È�� F 0 Â È ,
and Ø = Â È�� F�Â È are holomorphic in the disk of radius u�È , because the terms å º

in the numera-
tors of (3.5)-(3.6) get multiplied, while

º 0 º ¢= Â È does not vanish in
Ý º Ý sVu È and therefore has

a well-defined square-root there. Expanding �j�È using (3.4) now shows that �"�È ~ º ï u'È � (�ü�ý
with branchpoints in ÷ at the

º �² Â È only. Finally, if some of the

º = or

º F are zero, the cor-
responding terms in the right hand-side of (3.4) have to be replaced by (3.7) or (3.8). The
previous reasoning still applies, except this time that multiplying (3.7) (resp. (3.8)) by terms
like (3.5) or (3.6) will generate a branchpoint at l of order _ ï ¯ (resp. 0 _ ï ¯ ), and that multi-
plying together terms like (3.7) and (3.8) will generate poles at l .

The next proposition connects the location of the singularities

º �² Â È , that the analytic func-
tion �6�È ~ º � has in the disk of radius u È , with the original sources

� = and * F :
PROPOSITION 3.3. Assume that

º ² Ï��l . Then, for :�È ( ~ 0 _ � _ � , the argument of the
complex number

º �² Â È defined in the statement of Lemma 3.1 is independent of :�È , and equal to
the argument of

º ² defined in (3.3). The modulus of

º �² Â È increases monotonically for : È sP:�² ,
decreases monotonically for :D² sË: È , and attains a maximum when : È � : ² in which case
one has

º �² Â È � º ² .
Proof. Put

º �21
º ² ï Ý º ² Ý in (3.11); this gives usí ² Â ÈÙ~ º � � 0 º ²º 3 ² Â È|~41 � �65 �7� � 3 ² Â ÈÙ~41 � ð�21 � 0Öñ _ 8 uD�È 8 �ò�² Â ÈÝ º ² Ý �ôó Ý º ² Ý 1 8 u �È �(3.15)

Let 1
Ü² Â È denote the roots of 3 ² Â È ~41 � . Obviously 1

Ü² Â È � º Ü² Â È Ý º ² Ý ï º ² , thus by Lemma 3.1

1
Ü² Â È � _¯$Ý º ² Ý Þ Ý º ² Ý � 8 u �È 8 � �² Â È ß à á ~ Ý º ² Ý 8 u È � � 8 � �² Â È�â á ~ Ý º ² Ý 0 u È � � 8 � �² Â ÈDâ ã �(3.16)

and by (3.14), --- 1 �² Â È --- sVu È s --- 1 ¢² Â È --- �(3.17)

But the polynomial 3 ² Â È has real coefficients while (3.17) indicates that its roots have distinct
moduli, hence they must be real as well. Also, they are positive as their sum and their product
is positive. By the very definition of 1

Ü² Â È this impliesÝ º �² Â È Ý �81 �² Â È 	����
º Ü² Â È ï º ² (  ¢ �
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which entails that the argument of

º �² Â È is the same as the argument of

º ² . Moreover, since3 ² Â ÈÙ~41 � is monic while

3 ² Â È ~ Ý º ² Ý � � 0 � �² Â È `Vl �(3.18)

we necessarily have that 1 �² Â È ` Ý º ² Ý `91 ¢² Â È , and it is easily seen from (3.16) that equality holds
on the left if, and only if � ² Â ÈÇ�Pl . Therefore 1 �² Â È � Ý º ² Ý is a maximum value for 1 �² Â È , and it is
attained for : Èa�5: ² .

Finally we observe that 1 �² Â È is differentiable with respect to : È because the roots of a
polynomial ( 3 ² Â È ~41 � in our case) are smooth functions of the coefficients away from multiple
roots. Differentiating with respect to : È the equality

3 ² Â ÈÙ~41 �² Â È � �5l �
we obtain in view of (3.15) on taking into account the relation u��È 8 :Ì�È �k_ that:

3 .² Â È ~:1 �² Â È � \�1 �² Â È\Ì: È 8 ¯ : ²Ý º ² Ý41 �² Â È 0 ¯ : È �Pl �(3.19)

Because 3 ² Â È ~41 � is monic and 1 �² Â È is its smallest root, it holds that 3 .² Â È ~:1 �² Â È � sVl , and since we
saw that lcs81 �² Â È ï Ý º ² Ý `3_ it follows from (3.19) that \�1 �² Â È ï \Ì: È s�l when : È � : ² . Then, on
changing : È into 0 : È and :�² into 0 :�² (i.e. reflecting the geometry across the ~�7 � 9 � -plane),
the same argument shows that \�1 �² Â È ï \Ì: È � l when : È sP:�² . Hence 1 �² Â È increases with : È for: È sV:�² and decreases for : È � :�² , as desired.

When no source lies on the vertical axis, Propositions 3.2 and 3.3 show that the inverse
source problem stated in section 2 can be traded for a family of inverse 2D problems, each
of which consists in recovering the branchpoints of an analytic function in a disk. Indeed, if
we were able to locate the

º �² Â È given � È and : È , then we could use dichotomy on the latter to
estimate : ² as a maximal place for

Ý º �² Â È Ý , and for :�È �ì: ² we would compute

º ² � º �² Â È . Of
course, by spherical symmetry, the vertical axis can be chosen arbitrarily, so the preceding
situation is generic with respect to that choice unless there is a source at the origin.

If some of the sources lie on the vertical axis, we saw in the proof of Proposition 3.2
that �6�È has branchpoints and/or poles at l . In this case the previous approach remains valid to
locate the other sources, and the occurrence of a branchpoint or a pole at l indicates that there
is at least one source on the vertical axis, but it gives no direct clue about its exact location.
Chasing the sources located on the vertical axis, if any, is outside the scope of the present
paper, as it would require slightly more refined tools in singularity detection than we intend
to use. Thus, we stick to the generic case which amounts to a family of inverse branchpoint
problems.

To the authors knowledge, this inverse branchpoint problem has received little attention
so far. In the next section we develop an approach to it which is based on meromorphic
approximation.

4. Best meromorphic approximation and the behaviour of poles. In this section,
we discuss without proofs some results from meromorphic approximation that we use to
approach the inverse branchpoint problem in the style of [7]. We begin with standard facts
from potential theory for which the reader may want to consult [29].

4.1. Some potential theory. Recall that ÷ stands for the unit disk and let ; be the unit
circle. The Green capacity of a compact set ���3÷ is the non-negative real number *=< Â >
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such that _* < Â > � � �/�?+@�A�B

Z�Z
� ÿ�C ---- _ 0ED1�:: 0 1

---- \�FÓ~41 � \�FÓ~�7 � �(4.1)

where
ý > stands for the set of all probability measures supported on � . Some sets are so thin

that * < Â > �kl , and they are referred to as polar sets. A countable set is polar, but there are
also uncountable polar sets. A polar set has to look bad from the topological viewpoint: for
instance it is totally disconnected, and no positive measure of finite energy (i.e. no measure
F)°Vl such that the integral in the right-hand side of (4.1) is finite) can have nonzero mass on
it. In particular polar sets have zero planar Lebesgue measure.

If � is non-polar, that is if *G< Â >5� l , then there is a unique measure H > (±ý > to meet
the above infimum, and it is called the Green equilibrium measure of � . For example, the
Green equilibrium measure of a segment á I ��J â �p~¦l � _ � is given by\�HLK M Â N:O ~:1 � � *e\�1P ~�_ 0 J 1 � ~ J 0 1 � ~�_ 0 I 1 � ~41 0 I �(4.2)

where * is a normalizing constant. The measure H > is difficult to compute in general, but
it charges more the edges of � , in particular it charges the endpoints of a system of arcs
(compare (4.2) where the density is infinite at the endpoints I and J ).

We shall need the notion of extremal domain, which is specialized below to the case of a
disk. To interpret the statement, one should recall definition (3.13).

THEOREM 4.1 ([31]). Let 4 be holomorphic in ùÎú and continuous in ùÇú . Set

QSR �;ÆUT¹û�T5þ'ÿ������ þ � �V�Çÿ������ � � ÷ 5 �#� � ù ú �2T � 42��& � ������W�|ÿ�� ÿ��¹ÿ������ � þ�	��#" � ÿ�T¹É �
Then, there is a unique T R ( Q R

satisfying* < Â X�Y[ZV\ � � �/�Z @�] \ * < Â X'Y[Z
and containing every other member of

Q R
with this property.

For functions in
ü�ý

(see the definition before Proposition 3.2), more is known on the
structure of extremal domains.

THEOREM 4.2 ([32]). If 4 (hü�ý
, then ÷Vr^T R consists of its poles, its branchpoints,

and finitely many analytic cuts. A cut ends up either at a branchpoint or at an end of another
cut. The diagram thus formed has no loop.

When 4 has only two branchpoints and possibly poles, ÷pr_T R consists of the poles
and of a hyperbolic geodesic arc joining the branchpoints. For more than two branchpoints,÷gr`T R is, apart from the poles, a trajectory of a rational quadratic differential, but there is
no easy computation. The situation is similar to that in problems of Tchebotarev-Lavrentiev
type, where one must find the continuum of minimal capacity that connects prescribed groups
of points [25, 26]. The difference here is that the connectivity is not known a priori, but rather
induced by the function 4 .

4.2. Best meromorphic approximation. We need some more notations.
Let

ýba
be the space of algebraic polynomials of degree `5� with complex coefficients,c � and

c � the familiar Hardy spaces of the disk. We introduce a set of meromorphic
function with � poles in ÷ by setting:

c Èa �oÆ�� ï 3 a û�� ( c È � 3 a (vý a É � -O� ¯ �[dP�
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By a best meromorphic approximant with at most � poles of 4 in the � È ~:; � -sense, we
mean some U aO( c Èa such that :��4 0 U a �'e Ò § < ¨ � � ���fV@�g Òh �'4 0 U"��e Ò § < ¨ �
Such approximants are studied more generally in [5] for every -½° ¯

.
For -d� d , by the Adamjan-Arov-Krein theory [1], a best meromorphic approximant

with at most � poles uniquely exists provided that 4 ( *¹~i; � . Moreover, it can be computed
from the singular value decomposition of the Hankel operator with symbol 4 .

For -½� ¯
, existence and non-uniqueness are discussed in [6, 4, 12, 13] for 4 ( ����~:; � .

Concerning constructive aspects, algorithms to generate local minima can be obtained using
Schur parameterization [27].

If U a is the sequence of best meromorphic approximants with at most � poles of 4 in the� È ~:; � -sense, whose poles are \ a in number, \ a `o� , and denoted by j = Â a for _�`�b½`3\ a ,
we form the sequence of counting probability measures

F a � k h<=?> � @ l�Cnm h ï \ a �
The next theorem refers to weak* convergence of the sequence F a . Recall that a sequence Q a
of (generally complex) measures converges weak* to the measure Q if, and only ifZ �$\^Q a a�o �0�p Z �$\^Q
for each complex continuous function � with compact support. When it comes to the se-
quence of counting probability measures F a introduced above, this definition is equivalent to
the fact that, for any open subset q¶��¾ , the proportion of j = Â a contained in q converges to
FÓ~iq � , where F is the weak* limit (which is necessarily a probability measure as well).

THEOREM 4.3 ([11]). If 4 (gü�ý
is not single-valued, then with the above notations

the measure F a converges weak* to the Green equilibrium distribution of ÷¸rbT R . Moreover,
only finitely many poles can remain in a fixed compact subset of T R as � p d .

This result can be used to approach the inverse branchpoint problem in that the counting
measure F a can be computed for increasing values of � , and will asymptotically charge the
endpoints of ÷�r�T R that include the branchpoints by Theorem 4.2, for the equilibrium density
is infinite there.

In fact, it can be shown that the equilibrium density is infinite exactly at the branchpoints
of 4 . When -�� ¯

the result remains valid for local best approximants and not just for best
approximants, which is important from the computational viewpoint since local minima is all
one can guarantee in general from a numerical search. Convergence results of the same type,
together with sharper estimates, are carried out in [8, 10] for the case of two branchpoints.

The weak spot of the method is of course that one can only compute meromorphic ap-
proximants for limited values of � , so the efficiency of the approach depends crucially on
how fast the poles do converge. When there are two branchpoints, non-asymptotic bounds
to be found in [8] remedy this situation to some extent, by bounding from below the angles
under which the poles “see” the set ÷ r�T R . In the general case, however, no estimates of this
kind are available at present.

5. Algorithms and numerical experiments. The following examples numerically il-
lustrate the results of sections 3 and 4.
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Sources are only dipoles inside the unit ball, defined by their support * F ( �� and their
moment - F ( /� (see expression (2.1) with �Ð�x�5l ).

The unit ball 
 is intersected by r�s equidistant parallel planes, orthogonal to the : -axis,
so that we handle a family of 2D-disks

¼ È^� -O� 0 _Vs ��� ����� _ s .
Each of the following figures shows two views of 
 and of the circles ÊÙÈ (dashed lines):

the left hand side one is seen from a distant point of the ~�7 � 9 � -plane, while the right hand
side one is taken from above, at a point of the : axis.

For the examples of figures 5.1, 5.2, 5.3, we computed the solution K from its expression
(3.1) with �O��l (and � � �5l ) so that on each circle Ê È , we get K R Ñ Ò �5� È ��� in (3.4).

In figures 5.4 and 5.5, the solution K of the Neumann problem associated to (PS) with TO�l is numerically computed using an external solver for Laplace equation [23]. The trace of K
on � is projected on a finite basis of spherical harmonics ( \�t U^uutute� ¯ l � \ » �vt��A] »xw �±�����ò_ ),
and the harmonic part � is removed accordingly to equations (3.2) so that we get ~�K 0 � � R Ñ�Ò �� È �p� as in previous examples.

In all cases, we then compute for each - a best meromorphic approximant to the function�6� on Ê È . More precisely, we use here local best approximants with � poles for the �x� -norm
on the circle that are computed using a descent algorithm1 [27].

For a number � � of dipoles, � � �3_ � ¯ � � , figures 5.1, 5.2, 5.3 show the sources positions
(big dots) and their (exactly known for these simulations) associated branching lines (linking
the

º �F�Â È for -O� 0 _ s ��� ���'� _ s . The poles (small dots) of the rational approximants accumulate
near the branching lines when � � � ¯ � � , while they exactly match the branching line in the
case � � �3_ , where �6� is rational.

In figures 5.4 and 5.5, because � � �¶_ , �6� is again a rational function of degree r , and
the localisation of the source can be performed “automatically”, using Proposition 3.3, pretty
efficiently. Figure 5.4 shows the 3 poles of each 2D-approximant, when figure 5.5, for the
same example, shows only one point in each disk, which is the barycenter of the poles.

FIG. 5.1. One source - exact potential - y{z}| rational approximant - all poles

6. Conclusion. In this paper, we have shown and numerically illustrated how the inverse
branchpoint problem in 2D can be used to approach the inverse source problem in 3D for a
sphere.

It would be quite interesting to single out other classes of 3D domains for which the
same approach may work. A natural extension is to domains whose slices along some axis

1A brief description of the numerical procedure is available at
http://www-sop.inria.fr/apics/RARL2/fichetechnique.html.

http://www-sop.inria.fr/apics/RARL2/fichetechnique.html
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FIG. 5.2. Two sources - exact potential - y{z}~ rational approximant - all poles

FIG. 5.3. Four sources - exact potential - y{zv� rational approximant - all poles

FIG. 5.4. One source - PDE simulated data - y�zv| rational approximant - all poles

FIG. 5.5. One source - PDE simulated data - y{z}| rational approximant - poles barycenters
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are 2D domains, the boundary of which are Jordan curves with algebraic Schwarz function
[16, 30]. Actually, the reader can check this is the crucial property which is used (in the case
of a disk the Schwarz function is rational). In this connection, one may hope that the theory
of quadrature domains can be applied efficiently to 3D inverse source problems, although the
theoretical and computational difficulties facing the approach are yet far from being solved
[20].

REFERENCES
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