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Abstract. A bidirectional orthogonalization algorithm is applied to construct sequences of polynomials, which
are orthogonal over the interval [0, 1] with the weighting function 1. Functional and recurrent relations are derived for
the sequences that are the result of inverse orthogonalization procedure. Quadratures, generating by the sequences,
are described. An example on approximation of the Cauchy problem is given.
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1. Introduction. Family of the classical orthogonal polynomials originates from a prob-
lem on the differential equation of the hypergeometric type, which solution is subjected to
certain additional requirements [8]. The polynomials also may be defined by an orthogonal-
ization procedure, if it is applied to the fundamental sequence

�������
in the order of power

increase. Generalizing this approach, one can develop the orthogonalization procedure be-
ginning with an arbitrary number of the sequence, both in the direct and inverse order. The
bidirectional algorithm of orthogonalization was introduced in [2] for defining orthogonal se-
quences of exponents. It was also mentioned there that the algorithm may be applied to the
fundamental sequence under various orthogonality relations, and, for the polynomials con-
structed, the inverse algorithm retains the properties of the original sequence as

�
	��
, if���� �������

. Here we describe an example of such alternative sequences and show some appli-
cations. The alternative orthogonal polynomials obtained are not solutions of the equation of
the hypergeometric type, but they can be expressed in terms of the Jacobi polynomials.

2. � -Sequences. Let � be a fixed whole number, ��� and P � are sequences of polyno-
mials ����� ��� � � ��� �! � �"� � �$# � � �&% �(' � �) *  ��,+ � � * � * �(2.1)

P ��� ��- � � �/.�! � �0- � �1# - � �2% �3' � �)*  �54 � � * � *(2.2)

that satisfy the orthogonality relationships687� � � � � � *:9 � �<; ����/= %?>$@BA�@ �/'!� >DC� A �> � A � > � A � �E���F��GHGIGH� � �(2.3)

687� - � � - � * 9 � � ; ����/= %?>$@JA�@ ��'K� >�C� A �> � A � > � A �
� � � @ �L��GIGHGI�(2.4)M
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and standardizations

sign % + � � � ' � %ON �/' �&P � � sign % 4 � �K� ' � %QN ��' � P(� G(2.5)

The coefficients + � � * and 4 � � * of the polynomials
� � � and

- � � are defined uniquely by re-
quirements (2.3) - (2.5) and the Gram-Schmidt orthogonalization procedure (without normal-
ization), which is realized in the order of decreasing > from � to 0 for sequences (2.1), and in
the order of increasing > , originating from > �R� , for sequences (2.2). The sequences ��� and
P � have different properties if

�TSU�
. For fixed � and

�T	V�W� � �2% �('5S
�(�2� > � �E���L��GIGHG � ,
and

- � � % �('XSY� � � > �Y� � � @ �F��GIGIG . The sequence P � represents the shifted to the in-
terval

� �E�����
Legendre polynomials; P � � �[Z �E�

is considered as an auxiliary sequence of
incomplete polynomials, and the sequence � � is introduced here as the alternative Legendre
polynomials (ALP).

The polynomials
� � � and

- � � have properties, which are analogous to the properties of
the classical orthogonal polynomials.

Since � is fixed, by verifying property (2.4) and (2.5), the polynomials
- � � % �(' can be

immediately connected to a fixed set of the Jacobi polynomials
-]\I^E_ `Lab %:c ' [9]. Precisely,- � � % �3' � � � -d\He � _ � a� P(� % � Ngf �('KG(2.6)

This relation can be used directly to describe the properties of
- � � , and one of the formulas

that follow from (2.6) is the integral representation- � �E% �(' � �fihkj �� � 6lnm �!o � % � N m 'Q� P3�% m N �(' � P(� o 7
9 m G(2.7)

Here p is a closed curve, which encloses the point m � ��G
Representation (2.7) will be

employed below.
The orthogonalization procedure is the only starting point for examining polynomials� � � . Realizing the procedure one can suppose that the explicit definition of the polynomials� � � is � � � % �(' � �&P �)q  � %ON ��' q$r � Ng>s t r � @B>u@ � @ s� N�> t � �!o q � > � �����L��GIGHGI� � G

This yields the Rodrigues’ type representation,� � �2% �3' � �% � Ng> 'Kv �� �!o 7 9 �&P �9 � �&P � % � � o��!o 7 % � N �(' �&P � '!� > � �E���F��GHGIGH� � �(2.8)

and orthogonality relationships (2.3) are confirmed by applying last formula. It also follows
from (2.8) that 76 � � � � % �(' 9 � � 76 � � � 9 � � �� @ � G(2.9)

Making use of formula (2.8), the Cauchy integral formula for derivatives of an analytic func-
tion and reciprocal substitutions one can obtain the integral representation� � � % �(' � �fwhkj �� � o e 6l3x m P \ � o��!o eya % � N m ' �&P �% m N � P 7 ' �&P �!o 7

9 m �(2.10)
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where p 7 is a closed curve, which encloses the point m � � P 7 . Employing the theory devel-
oped in [8] and representation (2.10) one may complete description of

� � � . However, there
is more simple way to do it.

Representations (2.7) and (2.10) lead directly to the reciprocity relation� � � % �(' � � P 7 - P \ � o 7 az_ P \ �Ko 7 a % � P 7 'K�(2.11)

which is the result of the bidirectional orthogonalization. Relationship, similar to (2.11),
holds also for orthogonal exponential polynomials [2].

Identity (2.11) facilitates description of the ALP, and the results that are shown below
can be obtained making use of the auxiliary sequences

- � �E% �(' and relationship (2.11). In
particular, � �i� � � � ��� � _ �&P 7 � f � � �&P 7 N8%{f � @ �/'|� � �
and the following recurrence relations and differentiation formulas hold:} � � � � _ � P 7 � %?~ � � � P 7 N�� � � 'z� � � N 9 � � � � _ �!o 7(2.12) � � � � % � N �('|��� � � � %:� � ��ND� � � �3'z� � ��Ng� � � ��� � _ �!o 7 �� � � � % � N �/'z��� � � � %?� � � N�� � � �3'z� � � Ng� � � �E� � _ � P 7 �
where } � � � %?>$@ ��' % � Ng>$@ ��' % � @B>u@ ��'K� ~ � � � >k%{fF>$@ ��' %{fF>$@�f '!�� � � � %{fF>$@ ��' %y% � @ ��' e @�> e @�> 'K� 9 � � � >k% � N�> ' % � @�>$@Bf '!�� � � � fE%{>$@ �/'!� � � � � fF>�%?>1@ �/'!� � � � ��� e @�> e @�f � �� � � � % � N�> ' % � @B>$@�f 'K� � � � � fF> � � � � � fL>k%?>$@ ��'K�� � � � % � @ ��' e @B> e � � � � � % � Ng>u@ ��' % � @B>$@ ��'!G

The polynomial
�E� � � % �3' is a solution of the differential equation� e % � N �('Q� � � N � e � � @
%y% � @ �/' e � Ng>�%?>$@ �/'Q'y� � ��� > � �����L��GIGHGI� �(2.13)

that also follows from the constructions developed. Making use of the substitution
� % �3' ��(�/� % �3' one can represent the polynomial solution of equation (2.13) in terms of the hyperge-

ometric function � , and the following relationships hold� � � % �(' � %ON �/' �&P � � � � %?>�N � � >$@ � @�f2� � � � N �3'!�� � � % �(' � %ON �/' �&P � � � -d\ � _ e �!o 7 a�&P � %?f � N �/'!� > � �E���F��GHGIGH� � G(2.14)

Thus, the ALP are related to different families of the Jacoby polynomials.
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Properties of the zeros of the Jacobi polynomials [9] and the last relationship give the
following result.

COROLLARY 2.1. Polynomials
� � �2% �(' have > multiple zeros

� � � and � NJ> distinct
real zeros in the interval

� �������
.

Recurrence relation (2.12) can be represented in the form that shows polynomial %?fF>u@��'O� P 7 � � � % �3' explicitly; then, regular transformations ([7], for example) lead to the Christoffel-
Darboux identityr �� N � � t �)�! 7 %?fF>$@ ��'�� � �&% �('z� � ��% � ' � � % � @�f 'f % � � � % �('z� � 7 % � ' N � � 7 % �('z� � � % � 'y'kG
The identity facilitates calculating coefficients in approximate integration formulas.

3. Quadratures. Let � % �(' be a continuous function on the interval
� �E�����

and � % ��' � � .
LEMMA 3.1. The polynomial of degree � interpolating the function � % �(' at � @ � distinct

points
� � � � , � q  % �E�����{� s � �F� f ��GIGIGH� � can be defined as� � % �3' � �)q  7�� q % �(' � % � q '!�(3.1)

where � q % �3' are the Lagrange polynomials

� q % �3' � �� q]� � � % �('% � N � q ' � � � % � q ' � � � (
�(' � % � N � 7 '!GIGIG % � N � � '!G

Proof. The term that includes the factor � � % �3' is absent in (3.1), because � % � � ' � �
.

Let 76 � � % �(' 9 ��� �) �  7�� � � % � � '(3.2)

be an interpolatory quadrature rule, thus the weighting coefficients can be found by substitu-
tion � � % �(' for � % �(' and

� � � 76 � � � % �(' 9 ��G(3.3)

Let indices � and > show the power range >¡ �A,  � of a polynomial, say ¢ � � % �3' , with the
terms

� *
.

THEOREM 3.2. Quadrature rule (3.2),(3.3) is interpolatory iff it is exact for any polyno-
mial ¢ � 7 % �3' .

THEOREM 3.3. Quadrature rule (3.2),(3.3) is exact for any polynomial ¢ e � _ 7 % �(' iff the
polynomial � � % �3' is orthogonal to any polynomial ¢ � 7 % �(' .

Comparatively to the regular case, the theorems expose the shift in the power range, but
it does not introduce peculiarities in their proofs. Proofs for the regular case can be found,
for example, in

�
7
�
.
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Being subjected to the requirement of the last theorem, polynomial � � % �(' differs poly-
nomial

� � � % �(' by a constant factor that results in the definition of the weighting coefficients
as follows

� � � 76 � �� � � � � � % �3'% � N � � '|� �� � % � � ' 9 ��G(3.4)

Now, the above described Christoffel-Darboux identity can be involved in evaluating the in-
tegral in (3.4) that leads to the following result.

COROLLARY 3.4. Quadrature (3.2) is exact for any polynomial ¢ e � _ 7 % �(' iff
� �

are the
zeros of the polynomial

� � � % �3' and the weight factors are

� � � N f� % � @ �/' % � @�f ' � �£�K 7 %{fF>$@ ��'L� � � % �
� '� e � � � 7 % � � '|� �� � % � � ' G(3.5)

Although alternative Gauss quadrature (3.2),(3.5) is developed for approximate integra-
tion of a function � % �(' subjected to the requirement � % ��' � �

, it can be easily extended to
the general case.

Let ¤ % �(' be a continuous function on the interval
� �E���K�

, and76 � ¤ % �(' 9 ��� � � ¤ % ��' @ �) �  7�� � ¤ % � � '!G(3.6)

COROLLARY 3.5. Quadrature (3.6),(3.5) is exact for any polynomial ¢ e � _ � % �3' iff
� �

are
the zeros of the polynomial

� � � % �(' and

� � � � N �) �  7 � � G(3.7)

Proof. Let � % �(' ��¤ % �3' N ¤ % �L' , then the quadrature rule (3.2) can be shown in the form
(3.6), (3.7).

It may be noticed in (2.14) that the abscissas of the Radau quadrature [7] inside of the
interval

� �����/'
are the zeros

� �
of the equation

� � � % �(' � � . Thus, quadrature rule (3.6), (3.5)
and (3.7) represents differently the Radau quadrature.

The same abscissas
� �

can be employed to generate one more quadrature. Let us ap-
proximate the function ¤ % �3' by almost orthogonal sequence of polynomials

�L�L�O� � � � 7�! � as
follows ¤ % �3'5� } � � � @ �)q  7 } q � � q % �('KG(3.8)

To find coefficients } q � s � �E��GHGIGI� � we examine (3.8) at the abscissas
��� � ���F� ��  7 , � ��¥� � o 7 . Making use of the polynomial values

� � q % ��' � %QN ��' �2P q one can immediately show
that } � � N �)q  7 %ON �/' �&P q } q @ ¤ % ��'!�(3.9)
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and ¤ % �3',� �)q  7 } q % � � q % �(' NR%ON �/' �&P q ' @ ¤ % �/'!G(3.10)

Below we apply the discrete form of integral relationships (2.3)�) �  7�� � � � q % � � 'z� � * % � � ' � � q * = %?>$@JA�@ ��'(3.11)

and the discrete form of calculation of the first integral in (2.9)�) �  7E� � � � * % � � ' � �/= % � @ �/'(3.12)

that follow from the alternative Gauss quadrature for > � A � �F��GIGIGH� � ; � q * is the Kronecker
delta.

Multiplying (3.10) by � � � � * % � � ' , adding them, making use of (3.11), (3.12) and invert-
ing the matrix in the right hand side of the equation obtained, one can solve problem (3.8) as
follows } q � %?f s @ ��'§¦ �) *  7©¨ q * �) �  7 � � * % � � ' � � ¤ % � � ' NR%ON �/' � ¤ % �/'|ªR�(3.13)

¨ q * � %ON �/' *X«¬ ¬® fFAE@ �L�fiA �fE%?AE@ �/'!�
s C� As � A �s � A � A oddA even.

(3.14)

Approximation (3.8), (3.9), (3.13), (3.14) results in a quadrature formula. Indeed, inte-
grating (3.8) and making use of coefficients (3.9), (3.13) one can obtain76 � ¤ % �(' 9 �T� �) �  7 � � � � ¤ % � � ' @J� � o 7 ¤ % �/'!�(3.15)

� � � �) *  7
� * � � * % � � '!�(3.16)

� � o 7 � %ON �/' �� @ � �
� * �<; fE%?fFAE@ �/'y= % � @ ��'K��E� A oddA even.

(3.17)

Obviously, quadrature rule (3.15) - (3.17) is exact for any polynomial ¯ � � % �(' , but it has no
nice properties of the Gauss and the Radau quadratures. In particular, for ��� �� 7 � f =i°E� � 7 � � 7 � °�= f �0� e � �F� � e � N �/= fE�
for ��� f
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and thus the weights in (3.15) have mixed signs.

Once one of the quadratures described above has been chosen, the polynomials
� � q % �('

provide evaluation of an antiderivative of a continuous function on the interval
� �����K�

. Let us
illustrate it for (3.15). Integrating approximation (3.8) and making use of the formula»6 � � � q % � ' 9 � � �E� � q % �3's @ � @ �)b  q o 7 %?f§@ �/=w¼¡' �E� � b % �('¼ @ �
one can represent the result as follows»6 � ¤ % � ' 9 � � �) �  7 p � % �3' � � ¤ % � � ' @ p � o 7 % �(' ¤ % �/'!�
where the functions p � % �3' , p½� o 7 % �(' easily can be found by substitution of known coefficients
(3.9) and (3.13) in (3.8).

Quadratures (3.6) and (3.15) may be associated with spectral approaches for solving the
Cauchy problem. The endpoint abscissas in (3.6) and (3.15) are different, but both quadra-
tures can be applied for constructing algorithms. In this study, we chose (3.15) to develop a
discrete analogue of the initial value problem.

4. Approximation of the solution of the initial value problem. The Cauchy problem
often is considered as an extension of a problem on integration. This results in high order
implicit collocation algorithms based on known quadrature rules ([1], [6], for example).

Still another approach is approximation of the solution by a sequence of functions, i.e.
application of spectral methods that usually involve transformations both in the spectral space
and in the space of the original variables. Advantage of such an approach is in the opportunity
to integrate the Cauchy problem on any subinterval

� � � � @g¾�¿ �{� ¾2¿� �¾ without recomputing
its right hand side, if the solution has been approximated on the subinterval. It allows ex-
plicit recurrence algorithms and algorithms with translation of the integration interval to be
developed.

Recurrence algorithms can be employed to compute a trial vector for approximation of
the non-linear initial value problem. In addition, preliminary computations show that the re-
currence algorithms itself expose better stability properties than explicit Runge-Kutta meth-
ods and may be applied independently.

Algorithms with partial translation might push forward implementation of fully implicit
Runge-Kutta methods, making them competitive with multistep methods. Indeed, a transla-
tion may involve only a few non-equidistant abscissas.

First fully spectral approach for the Cauchy problem solving that includes the recurrence
algorithm was elaborated for arbitrary � in [4], where the sequences ÀÁ��� ��Â � �2% � 'Ã� 7�! � of
alternatively constructed orthogonal polynomials of exponents [2] were exploited as the basis
functions. (One may mention that the system of functions

Â � ��Ä À � generates the Gauss-type
quadratures for exponents on the semi-axis [3].)

We develop here an algorithm of discretization of the initial value problem analogous to
that one in [4]. The sequences

� � � are applied for the solution approximation. A preliminary
result, the procedure for ��� � , is revealed. It shows that well known low order methods [5]
are the components of the spectral approach.
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Let us consider the initial value problemÅ � % �(' �Æ� (
�©� Å % �3'Q'!� Å (

�
) � Å �(4.1)

for the function Å on the interval
��g� � � � @�¾ ��� ¾ Z � , where the function � is known, and it

has the properties that are necessary for the following constructions. Given vector Å � and the
functions Å and � have dimension Ç . Substitutions� � � @B¾ + � cE% + ' � Å % � @�¾ + '!�È� % + , cE% + 'y' � ¾ � % � @�¾ + � Å % � @�¾ + 'y'(4.2)

reduce the original problem to the followingc � ( + ) � � ( + , c ( + ))
� c (0) � Å � � + �� � , �!��G(4.3)

Approximation c � ( + )
� c ( + ) to problem (4.3) in the spectral formc � ( + ) � Å � @ � � + @ �)q  7kÉ � q ( Ê � q ( � � � + ) N ( N � ) �&P q + ),(4.4)

Ê�� q %?� � � + ' � Ë6 � � � q %Ì� � % � N�Í 'y' 9 Í � � �]� �(4.5)

satisfies the initial conditions in (4.3) and the initial conditions for the derivative of the un-
known variable c . Here

� � � � % ��� cE% �L'Q' , and É � q are the unknown vector coefficients with
dimension Ç .

To find the coefficients É � q , one can substitute approximation (4.4) to the differential
equation in (4.3) and examine its discrete formc � � ( � � � ) � � ( � � � , c � ( � � � ))
at the abscissas

� � � � � � �  7 , � � � ¥ � � _ � o 7 , which are the zeros of the polynomial
� � � % � N �(' .

Making use of spectral representations (4.4), (4.5) and the results of the previous section one
can obtain � functional equations for the vectors É � q as follows

É � q � %?f s @ ��' ¦ �) *  7Î¨ q * �) �  7 � � * % � N�� � � ' � �&P � o 7 � � � NR%ON �/' � � � ª �(4.6) � � � # � %?� � � � c � %{� � � 'Q'KG
Equation (4.6) together with (4.4) at + � � � � are the spectral form of initial value problem
(4.1); the form allows to return to the space of original variables.

Substitution of (4.6) in (4.4) results in approximationc � ( + ) � Å � @BÏ � � % + 'y� � @ �) �  7 Ï � � % + ' � �&P � o 7 � � � �(4.7)

where the functions Ï � � % + ' and Ï � � % + ' areÏ � � % + ' � %QN ��' ��ÐÑ % � @ ��' + N �)q  7 %?f s @ ��' Ê�� q ( � � � + ) ÒÓ �
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Vector c � in (4.7) can be calculated at any + �� �E���K� , if values of

� � � are known.
Equating (4.7) at + � � � � � ���F� ��  7 and making use of substitutions (4.2) we finally obtain

the discrete analogue of the Cauchy problem (4.1) that represents an implicit Runge-Kutta
method as follows � ¿ � � @BÕ�¿L¾ � Å ¿ � Å (

� ¿ ) �Å ¿ � Å � @�Ö ¿ � ¾ � (

�
, Å � ) @B¾ �) �  7 Ö ¿ � � (

� �
, Å � ) � � � �F� f ��GHGIG � �(4.8)

Å % � @�¾ ',� Å � @B× � ¾ � (

�
, Å � ) @B¾ �) �  7 × � � (

� �
, Å � ) G(4.9)

We dropped index � in (4.8), (4.9) introducing coefficientsÕ ¿ � � � ¿ � Ö ¿ � � Ï � � %?� � ¿ '!� Ö ¿ � � Ï � � %?� � ¿ '!� × � � � � o 7 � × � � � �2P � o 7 � �&P � o 7 G
Solving equations (4.8) is a difficult problem, and trial values for the vectors Å ¿ are

necessary. It follows from (2.14) that the zeros � � � of
� � � % � N �3' thicken near

� � �
when increasing � . This indicates that for fixed � computation can originate in low degree
approximation and then can be extended from point to point by drawing in the polynomials
with successively increasing degree. Following [4], one can develop an explicit recurrence
algorithm for evaluating trial values on the given interval.

Here we complete the description of algorithm (4.2) - (4.9) by considering the case ��� �
that can be shown as followsÅ % � @�Õ 7 ¾ ' � Å % � ' @gÖ 7 � ¾ � % � � Å % � 'Q' @�Ö 7³7 ¾ � % � @BÕ 7 ¾ � Å % � @�Õ 7 ¾ 'Q'k�(4.10) Õ 7 � �w=w°�� Ö 7 � � �/= ± � Ö 7³7 � �w= ± �Å % � @B¾ '5� Å % � ' @J× � ¾ � % � � Å % � 'y' @B× 7 ¾ � % � @BÕ 7 ¾ � Å % � @BÕ 7 ¾ 'y'3�(4.11) × � � N �/= f � × 7 � °&= f G
The trapezoidal rule (4.10) [5] with ¾ � � Õ 7 ¾ coupled with completion (4.11) has the order
of Ø %?¾ º ' and requires one calculation of the right hand side of the initial value problem and
solving one nonlinear equation.

Procedure (4.10), (4.11) is not A-stable; however, its core (4.10) possesses this stability
property. It also may be the case for greater � , when the last abscissa is much closer to the
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end of the integration interval, and procedures without completion might be better for solving
stiff problems.

It appears that the recurrence algorithmÅ2Ù % � @�Õ 7 ¾ ' � Å % � ' @BÕ 7 ¾ � % � � Å % � 'y'3�(4.12) Å&Ú % � @�Õ 7 ¾ ' � Å % � ' @�Ö 7 � ¾ � % � � Å % � 'y' @�Ö 7³7 ¾ �ÜÛ � @BÕ 7 ¾ � Å&Ù % � @�Õ 7 ¾ 'yÝÞ�(4.13) Å % � @�¾ ',� Å % � ' @B× � ¾ � % � � Å % � 'Q' @B× 7 ¾ � Û � @�Õ 7 ¾ � Å Ú % � @BÕ 7 ¾ ' Ý(4.14)

represents explicit Runge-Kutta method of the order of Ø %{¾ º ' , and its part (4.12), (4.13) is
the Heun method with ¾ � � Õ 7 ¾ [5]. Together with completion (4.14), it has better charac-
teristics of stability and monotonicity comparatively to the standard Runge-Kutta method of
the order of Ø %{¾�ß ' . The vector Å Ú may be employed as an initial guess for solving equation
(4.10).

In general, the recurrence algorithms are not the Runge-Kutta methods, because they
are not subjected to the requirement of elimination of low order terms in asymptotic error
estimates. However, special collocation of abscissas may result in reducing coefficients in
the estimates when increasing � . Convergence of the recurrence algorithms for chosen � and
small step of size ¾ may be proven following theorems described in [5].

In addition to the procedures without completion mentioned above, there is another way
to consider stiff problems. Approximation c � in (4.4),(4.5) can be set in the formc � ( + ) � Å � @ � 7 + @ �)q  7 É � q Ê�� q ( �L� + )

�
(4.15)

where
� 7 � � % �L� cE% �/'Q' . This leads to a spectral method based exactly on the Radau abscissas.

It is known that for ��� f the implicit Runge-Kutta procedure corresponding to (4.15) is both
A- and L-stable (3-stage algorithm Radau IIA, or Ehle method, [1, 6]).

Abscissas for approximation (4.15) differ from those ones in Runge-Kutta method (4.8),
(4.9) only at the endpoints of the interval

� �E���K�
, and the explicit version of (4.8), (4.9) may be

applied to compute trial values for c � ( + ) in (4.15) on a shifted interval of integration.

5. Conclusions. The alternative orthogonal polynomials keep distinctively attributes of
the classical orthogonal polynomials. In particular, the algorithm of inverse orthogonalization
of the fundamental sequence results in redistribution of the zeros. The polynomials may be
applied to different problems on approximation.

REFERENCES

[1] J. C. BUTCHER, Numerical Methods for Ordinary Differential Equations, John Wiley & Sons, Chichester,
2003.

[2] V. S. CHELYSHKOV, Sequences of exponential polynomials, which are orthogonal on the semi-axis, (in Rus-
sian), Reports of the Academy of Sciences of the UkSSR, (Doklady AN UkSSR), ser. A, 1(1987), pp. 14–
17.

[3] , A variant of spectral method in the theory of hydrodynamic stability, (in Russian), Hydromechanics
(Gidromekhanika), N 68 (1994), pp. 105–109.

[4] , A spectral method for the Cauchy problem solving, in Proceedings of MCME International Conference,
Problems of Modern Applied Mathematics, N. Mastorakis, ed., WSES Press, 2000, pp. 227–232.

[5] C. W. GEAR, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Inc., Engle-
wood Cliffs, N.J., 1971.

[6] E. HAIRER AND G. WANNER, Solving Ordinary Differential Equations II, Springer, Berlin, 1996.
[7] V. I. KRYLOV, Approximate Calculation of Integrals, The Macmillan Company, New York, 1962.
[8] A. F. NIKIFOROV AND V.B. UVAROV, Special Functions of Mathematical Physics, Birkhaeuser Verlag, 1988.
[9] G. SZEGO, Orthogonal Polynomials, AMS, Providence, 1975.


