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Dedicated to Ed Saff on the occasion of his 60th birthday

Abstract. Let �����	��

������� be continuous. Bernstein’s approximation problem, posed in 1924, dealt with
approximation by polynomials in the norm ����� � � � ��� � � ����� ���
 
The qualitative form of this problem was solved by Achieser, Mergelyan, and Pollard, in the 1950’s. Quantitative
forms of the problem were actively investigated starting from the 1960’s. We survey old and recent aspects of this
topic. One recent finding is that there are weights for which the polynomials are dense, but which do not admit a
Jackson-Favard inequality. In fact the weight �!
#"%$&�('�)�*+
-,/. "0. $ exhibits this peculiarity. Moreover, not all 132
spaces are the same when degree of approximation is considered. We also pose some open problems.

Key words. weighted approximation, polynomial approximation, Jackson-Bernstein theorems
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1. Introduction. Suppose we wish to approximate by polynomials on the whole real
line, obtaining analogues of Weierstrass’ Theorem. Then we have to deal with the unbound-
edness of polynomials on unbounded intervals. To cope with this difficulty, that distinguished
approximator S. N. Bernstein multiplied by a weight, considering weighted polynomials such
as 4658739�:<;�=?>�@A73BDC+E 7	FG�HE
where

4
is a polynomial, or more generally,4I5J739LKM58739ON

Here
K

decays sufficiently fast at PRQ to counteract the growth of every polynomial.
The most intriguing question is what can be approximated, and in what sense. This

problem is known as Bernstein’s approximation problem, after it was posed by Bernstein in
1924. A more precise statement is as follows: let

KTS��VUW58X0EDY[Z
be continuous. When is it

true that for every continuous \ S%�]U^�
with_#`bac d�c egf 5 \ Kh9i587i9kj]XLE

there exists a sequence of polynomials l 4+m3n fmporq with_b`#am egf]s 5 \ @t4 m 90K s[u �wvyxiz j{X}|
We say then that the polynomials are dense. The restriction that \ K has limit

X
at PRQ is

essential: if
73~%KM58739

is bounded on the real line for every non-negative � , then
7O~�K�5-739

has
limit

X
at PRQ for every such � , and so the same is true of every weighted polynomial

4gK
.

So we could not hope to approximate in the uniform norm, any function \ for which \ K
does not have limit

X
at PRQ . The version of Bernstein’s problem considered here is not the�
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most general form: in some versions,
K

is not assumed to be continuous, or defined on all of�
, allowing (for example), a weight defined on a countable set of points.

Bernstein’s approximation problem was solved independently by Achieser, Mergelyan,
and Pollard, in the 1950’s. Their solutions involve regularization of the weight. For example
[10, p. 153] Mergelyan showed that there is a positive answer to Bernstein’s problem iff� f� f _#�%��� 58��9Y���� B�� ��j Q E
where Mergelyan’s regularization of

K
is� 58��9+j{���0=/�A� 4I58��9<��S%4

a polynomial and
���0=��� x � 4I58��90K�5J��9��� Y���� B � YL��N

In another formulation, there is a positive answer iff� 58��9�j Q
for at least one non-real

�
(and then

� 58��9�j Q for all non-real
�
).

Akhiezer [10, p. 158] used instead the regularizationK � 58��9�j]���0=��i� 465��}9[��S%4 a polynomial with s 4gK s<u � v�xiz � Y} ¡N
He showed that the polynomials are dense iff� f� f _b��� K � 5J��9Y���� B � �kj Q N
Finally, Pollard [10, p. 164] showed that the polynomials are dense essentially iff���L= � � f� f _#�%� � 4I5J7i9D�Y���7 B¢� 7	S%4 a polynomial with s 4gK s<u � v xiz � Y � j Q N

Of course, these are not very transparent criteria. When the weight is in some sense
regular, simplifications are possible. If

K
is even, and

_#£ Y¥¤%K�5-¦ d 9
is even and convex, a

simpler necessary and sufficient condition for density of the polynomials is [10, p. 170]� f§ _b£ Y¨¤pKM587i9Yk��7 B � 7Gj Q N
In particular, for Kª©R5J7i9kj]:<;�=«5�@�� 7¬� © 9iE
the polynomials are dense iff ­�® Y . As regards necessary conditions, Hall showed that� f� f _b��� K�5J��9Y��¯� B�� ��j Q
is necessary for density. When density fails, only a limited class of entire functions can be
approximated. A comprehensive treatment of this topic is given in Koosis’ book [10]. A
concise elegant exposition appears in [9, p. 28 ff.].

In the 1950’s the search began for a quantitative form of Bernstein’s Theorem. Bernstein
and Jackson had provided quantitative forms of Weierstrass’ Theorem before the first World
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War, and it is natural to look for analogues in the weighted setting. Let us first recall the
classical unweighted case. Jackson and Bernstein independently proved that

(1.1) ° m«± \ Z f S�j `b£�²³<´�µ vb¶Oz�· m s \ @t4 s[u �¹¸ � q»º q�¼ �¾½ ¿ s \iÀ s[u �w¸ � qÁº q�¼ E
with ½ independent of \ and ¿ , and the inf being over (algebraic) polynomials of degree
at most ¿ . The rate is best possible amongst absolutely continuous functions \ on

±b@RY%E<Y<Z
whose derivative is bounded. More generally, if \ has a bounded � th derivative, then the rate
is Â > qm%Ã C . In addition, Jackson obtained general results involving moduli of continuity: for
example, if \ is continuous, and its modulus of continuity isÄ 5 \rÅÇÆ 9�j{���0= l � \ 5J7i9¬@ \ 58È�9D��Sp7ÉE�È�F¯±b@RY%EDY[Z and

� 7�@ÊÈO� � Æ n�E
then ° m ± \ Z f � ½ Ä{Ë \rÅ Y¿AÌ E
where ½ is independent of \ and ¿ .

Bernstein also obtained remarkable converse theorems, which show that the rate (or de-
gree) of approximation is determined by the smoothness of \ . These are best stated for
trigonometric polynomial approximation: let

X¯Í ­ ÍÎY
. Bernstein showed that the error

of approximation of a ÏpÐ @ periodic function Ñ on
± X0E ÏpÐ Z by trigonometric polynomials of

degree at most ¿ decays with rate ¿ � © iff Ñ satisfies a Lipschitz condition of order ­ . For
non-integer ­ÓÒ Y

, the error decays with rate Â 5 ¿ � © 9 iff the
± ­ Z th derivative of \ satisfies

a Lipschitz condition of order lD­ n . (Here
± ­ Z�E lD­ n respectively denote the integer and frac-

tional parts of ­ ). Bernstein never resolved the exact smoothness required for a rate of decay
of ¿ � q ; that was solved much later in 1945 by A. Zygmund (the father of the Chicago school
of harmonic analysis, and author of the classic “Trigonometric Series” [24]). Zygmund used
a second order modulus of continuity.

For approximation by algebraic polynomials, converse theorems are more complicated,
as better approximation is possible near the endpoints of the interval of approximation. Only
in the 1980’s were complete characterizations obtained, with the aid of the Ditzian-Totik
modulus of continuity [6]. An earlier alternative approach is that of Brudnyi-Dzadyk-Timan
[3]. We shall discuss only the Ditzian-Totik approach, since that has been adopted in weighted
polynomial approximation. Define the symmetric differencesÔ/Õ \ 58739kj \ Ë 7Ö�Ø×Ï Ì @ \ Ë 7Ù@h×Ï Ì ÅÔ B Õ \ 58739kj ÔÖÕ 5 Ô/Õ \ 58739Ç9 Å

...Ô ~Õ \ 58739kj Ô Õ > Ô ~ � qÕ \ 58739ÇC
so that Ô ~Õ \ 5J7i9kj ~Ú Û o § Ë � Ü Ì 5�@RY�9

Û \ Ë 7Ö� � ×Ï @ Ü × Ì N
If any of the arguments of \ lies outside the interval of approximation —

±b@RY%EDY[Z
in this setting

— we adopt the convention that the difference is
X
. The Ý th order Ditzian-Totik modulus of
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continuity in Þ+ß is Äkàá 5 \rÅ × 9 ß jâ���L=§Dã Õ · � s Ô à Õ¨ä q � d�å \ 5J739 s[u�æ ¸ � q»º q�¼ N
Note the factor ç 5J7i9kjhè YA@Ê7 B
multiplying the increment × . This forces a smaller increment near the endpoints P Y of±é@RY�E<Y<Z

, reflecting the possibility of better approximation rates there.
For

Y �ªêë� Q , Ditzian and Totik [6, p. 79] proved the estimate° m ± \ Z ß S�j `#£�²³<´�µ vb¶Oz�· m s \ @ª4 s<u�æ ¸ � q»º q�¼ � ½ Ä àá Ë \rÅ Y¿AÌ ß E
with ½ independent of \ and ¿ . This implies the Jackson (or Jackson-Favard) estimate [3,
p. 260] ° m ± \ Z ß � ½ ¿ � à s

ç à \ v à z s[u�æ ¸ � q»º q�¼ E¿ ®ìÝ , provided \ v à � q z is absolutely continuous, and the norm on the right-hand side is finite.
Moreover, they showed that if

X/Í ­ Í Ý , then [3, p. 265]

(1.2) ° m«± \ Z ß j Â > ¿ � © C E ¿ U Q E
iff Äkàá 5 \rÅ × 9 ß j Â 5 × © 9&E × UíXw�{N
For example, if (1.2) holds with ­ j�î qB , this implies that \ has 3 continuous derivatives
inside

5ï@RY�E<Y¥9
and \ À À À satisfies a Lipschitz condition of order 1/2 in each compact subinterval

of
5ï@RY%EDY�9

.
This equivalence is easily deduced from the Jackson inequality above, and the general

converse inequality [6, Theorem 7.2.4, p. 83]Ä àá 5 \rÅ ��9 ß �Ið � à Ú§Dã m ã¹ñò 5 ¿ �{Y�9 à � q ° m ± \ Z ß N
The constant ð depends on Ý , but is independent of \ and

�
.

For weights on the whole real line, the first attempts at general Jackson theorems seem
due to Dzrbasjan. In the 1960’s and 1970’s, Freud and Nevai made major strides in this topic
[22]. Let us review some of the fundamental features discovered by Freud, in the case of the
weight

K © 5J739¹jh:[;�=g5ï@�� 7r� © 9
, ­]Ò Y . A little calculus shows that the weighted monomial7 m K © 58739

attains its maximum modulus on the real line ató mÙjØ5 ¿ ¤ ­ 9 q�ô © N
Thereafter it decays quickly to zero. With this in mind, Freud and Nevai proved that there are
constants ½ q and ½ B such that for all polynomials

4¬m
of degree at most ¿ ,

(1.3) s 4rm0K © s<u æ v�xiz � ½ q s 4rm0K © s[u æ ¸ �iõ ñ�ö�÷ º õ ñ�ö�÷ ¼ N
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The constants ½ q and ½ B can be taken independent of ¿ EÇ4 m and even the Þ�ß parameterê FI±éY�E Q Z . Outside the interval
±b@ ½ q ó m E ½ q ó m Z , 4 m Kª© decays quickly to zero. This meant

that one cannot hope to approximate \ K by
4+m0K

outside
±é@ ½ q ó miE ½ q ó m}Z . So either a “tail

term” s \ K © s[u�æ ¸ c d}c ø õ ñ ö ÷ ¼ must appear in the error estimate, or be handled some other way.
Inequalities of the form (1.3) are called restricted range inequalities, or infinite-finite range
inequalities.

The sharp form of these was found later by Mhaskar and Saff, using potential theory
[19], [21], [23]. For example, they showed that if ­�Ò X , andù m jûú Ï © � BLü 5 ­ ¤ Ï 9 Bü 5 ­ 9 ¿Aý q�ô © E
then for not identically zero polynomials

4¬m
of degree at most ¿ ,s 4Ém0K © s<u � v�x&z j s 4rm0K © s[u �w¸ �&þ ÷ º þ ÷ ¼ Ås 4rm0K © s[u � v�x&ÿ ¸ �iþ ÷ º þ ÷ ¼ z Í s 4rm0K © s[u �w¸ �&þ ÷ º þ ÷ ¼ N

Moreover, ù m is asymptotically the “smallest” such number. There are various Þ�ß analogues
of these; obviously one can no longer have equality of the norm over the real line and that
over a finite interval. One form, valid for all ê Ò X , is [14, Thm. 4.1, p. 95], [19, Thm. 6.2.4,
p. 142] s 4rm0K © s[u�æ v�x&z � Ï s 4Ém�K © s u � ± �&þ ÷�� å�� æ º þ ÷�� å�� æ Z Ås 4rm0K © s u � 5 x&ÿ ± �iþ ÷�� å�� æ º þ ÷�� å�� æ Z 9 Í s 4rm0K © s u � ± �iþ ÷�� å�� æ º þ ÷�� å�� æ Z N
If instead one fixes � Ò X and takes the “tail” over

���A±-@ ù m 5ïY�� � 9iE ù m«5ïY�� � 9�Z , one obtains
for some ½ independent of ¿ and

4¬m
, [19, Thm. 6.2.4, p. 142]s 4 m KÊ© s[u �Avyx&ÿ ¸ �iþ ÷ v q
	�� z º þ ÷ v q
	�� z ¼ z � ¦ �iõ m s 4 m Kª© s u � ± �&þ ÷�� å�� æ º þ ÷�� å�� æ Z N

The number ù m is called the Mhaskar-Rakhmanov-Saff number for
K¯©

. It plays an important
descriptive role in asymptotics of orthogonal polynomials for the weights

K�©
. It may be

defined for very general weights
K j]:<;�=«5�@��g9

as the positive root of the formula¿ j�ÏÐ � q§ ù m �
� À 5 ù m ��9� YA@ª� B � �»N
In the case of

K ©
, Freud’s number ó m and ù m differ by a multiplicative constant, and we may

confine ourselves to ó m . However, especially when
�

grows faster than any polynomial, there
need not be such a simple relation. In the remainder of this paper we use only ó m .

The next task is to determine what happens on
±é@ ½ q ó m&E ½ q ó m}Z . Now if we had to ap-

proximate in the unweighted setting on this interval, a scale change in the Jackson-Bernstein
estimate (1.1) gives`#£�²³D´�µ vb¶Oz�· m s \ @t4 s[u � ¸ �iõ ñ ö ÷ º õ ñ ö ÷ ¼ �û½R½ q ó m¿ s \iÀ s<u � ¸ �3õ ñ ö ÷ º õ ñ ö ÷ ¼ N
Remarkably, the same is true when we insert the weight

K¯©
in both norms:

(1.4)
`#£�²³<´�µ vb¶Oz�· m s 5 \ @t4g90K © s[u �w¸ �iõ ñïö�÷ º õ ñ�ö�÷ ¼ �û½�� ó m¿ s \iÀ K © s[u �w¸ �3õ ñïö�÷ º õ ñ�ö�÷ ¼ N
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Very roughly, this works for the following reason: it seems that if ½ q is small enough, we can
approximate

Y¥¤pKt©
on
±b@ ½ q ó m E ½ q ó m Z by a polynomial � m%ô B of degree � ¿ ¤ Ï E and then use

the remaining part ¿ ¤ Ï degree polynomial in
4

to approximate \ K © itself on
±b@ ½ q ó miE ½ q ó m}Z .In real terms, this approach works only for a small class of weights. Nevertheless, it at least

indicated the form that general results should take. To obtain an estimate over the whole real
line, Freud then proved a “tail inequality,” such as

(1.5) s \ Kª© s[u�æ ¸ c d}c ø õ ñ ö ÷ ¼ � ½�� ó m¿ s \ À Kª© s<u�æ v�xiz E
with ½ � independent of \ and ¿ . Combining (1.4), (1.5), and that suitable weighted polyno-
mials are tiny outside

±b@ ½ q ó m E ½ q ó m Z yielded an estimate of the form

(1.6) ° m ± \rÅ K © Z ß Syj `#£�²³<´�µ vb¶Oz�· m s 5 \ @ª4g9LK © s[u�æ v�x&z �û½�� ó m¿ s \iÀ K © s[u�æ v�x&z E
with ½�� independent of \ and ¿ .

While this might illustrate some of the ideas, we emphasize the technical details under-
lying proper proofs of this Jackson (or Jackson-Favard) inequality are formidable. Freud and
Nevai developed an original theory of orthogonal polynomials for the weights

K B© partly to
use in this approximation theory. In this short paper, we shall not present all the technical
details. We note that Freud proved (1.6) for

Kª©
for ­ì®VÏ . The technical estimates required

to extend this to the case
Y/Í ­ Í Ï were provided by the author and Eli Levin [13]. What

about ­ � Y ? Well, recall that the polynomials are only dense if ­I® Y , so there is no point
in considering ­ Í Y . But ­ jhY is still worth consideration, and we shall discuss that below.

One consequence of (1.6) is an estimate of the rate of weighted polynomial approxima-
tion of \ in terms of that of \ À . Indeed if

4rm
is any polynomial of degree � ¿ @6Y , then° m ± \rÅ Kª©�Z ß j ° m ± \ @ª4 m Å Kª©0Z ß �û½�� ó m¿ s 5 \ @ª4 m 9 À KÊ© s[u�æ vyxiz E

and since
4 Àm may be any polynomial of degree � ¿ @ìY , we obtain

(1.7) ° m ± \rÅ Kª©0Z ß � ½�� ó m¿ ° m � q ± \ À Å Kª©�Z ß E
which can be iterated. The inequality (1.7) (and sometime even (1.6)) is called a Favard or
Jackson-Favard inequality.

Freud also obtained estimates involving moduli of continuity. Here one cannot avoid
the tail term, and has to build it directly into the modulus. Partly for this reason, there are
many forms of the modulus, and more than one way to decide which interval is the principal
interval, and over what interval we take the tail. We shall follow essentially the modulus used
by Ditzian and Totik [6], Ditzian and the author [4], and Mhaskar [19].

The first order modulus for the weight
Kt©

has the formÄ q»º ß 5 \ EÇK © E���9�j ���0=§Dã Õ · � s K © 5 Ô/Õ \ 9 s u æ ¸ � Õ ññ���� º Õ ññ���� ¼� `#£�²� � x s 5 \ @��D90K © s u�æ�� xOÿ ¸ � � ññ���� º � ññ���� ¼�� N
Why the inf over the constant

�
in the tail term? It ensures that if \ is constant, then the

modulus vanishes identically, as one expects from a first order modulus. Why the strange
interval

±é@ × ññ���� E × ññ���� Z ? It ensures that when we substitute× j ó m¿ j ­ � q�ô © ¿ � q
	Éq�ô © E
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then ±b@ × ññ���� E × ññ���� ZijØ±b@ ½ ó miE ½ ó m�Z%E
for an appropriate constant ½ (independent of ¿ ). More generally if Ý ® Y

, the Ý th order
modulus isÄ à º ß 5 \ EÁK © E���9�jâ���0=§<ã Õ · � s K © 5 Ô à Õ \ 9 s u�æ ¸ � Õ ññ���� º Õ ññ���� ¼� `#£�²³<´�µ vb¶Oz�· à � q s 5 \ @t4g90K © s u�æ � x&ÿ ¸ � � ññ���� º � ññ���� ¼!� N(1.8)

Again the inf in the tail term ensures that if \ is a polynomial of degree � Ý @VY , then the
modulus of continuity vanishes identically, as is expected from an Ý th order modulus. The
Jackson theorem takes the form

(1.9) ° m ± \rÅ K © Z ß � ½ Ä à º ß 5 \ EÇK © E ¿ � q
	 ñ� 9»N
This is valid for

Y �ªêë� Q , and the constant ½ is independent of \ and ¿ (but depends on ê
and

Kª©
).

One can consider more general weights than
K¯©

of course. Almost invariably the weight
considered has the form

K jV:[;�=g5ï@��g9
, and the rate of growth of

�
has a major impact on

the form of the modulus. Let us suppose for example, that
�

is of polynomial growth at Q ,
the so-called Freud case. The most general class of such weights for which a Jackson theorem
is known is the following:

DEFINITION 1.1 (Freud Weights). Let
KTjh:[;�=R5�@��g9

, where
��S0�hU��

is even,
� À

exists and is positive in
5-X0E Q 9 . Moreover, assume that

7"� À 58739 is strictly increasing, with
right limit

X
at
X
, and for some # E%$gE%& Ò Y , ½ Ò X ,$ � � À 5 # 739� À 5J739 � &?E 7 ® ½ N

Then we write
K F('

.
For such

K
, we take ó m to be the positive root of the equation¿ j ó m � À 5 ó m 9iN

Again, this is the point where
7 m K�58739

assumes its maximum modulus on the real line. To
replace the function

� ññ���� , we can use the function) 5J��9HSyj `b£�²�* ó m S ó m¿ � ��+ E � Ò X0N
The modulus of continuity becomesÄ à º ß 5 \ EÇKtE���9kjâ���0=§<ã Õ · � s K�5 Ô àÕ \ 9 s[u�æ ¸ �", v Õ z º , v Õ z ¼� `#£�²³<´�µ vb¶Oz�· à � q s 5 \ @t4g90K s[u�æ vyx&ÿ ¸ �", v � z º , v � z ¼ z N
The Jackson theorem is the obvious analogue of (1.9) [4, Theorem 1.2, p. 102]:

(1.10) ° m ± \rÅ K Z ß � ½ Ä à º ß 5 \ EÇK¯E ó m¿ 9»N
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Moreover, if
K

satisfies a mild additional condition on
� À À , or admits an appropriate

Markov-Bernstein inequality, and ­ Í Ý , then there is the equivalence [4, p. 105]° m ± \rÅ K Z ß j Â.-�- ó m¿0/ © / E ¿ U Q132 Ä à º ß 5 \ EÇK¯E���9�j Â 5-� © 9&E ��UíXw�{N
This equivalence is an easy consequence of the Jackson inequality (1.10) and the converse
inequality [4, Cor. 1.6, p. 105]Ä à º ß 5 \ EÁKtE���9 � ½ - ó m¿0/ à Ú� q ·�4[·"5 6 µ å m Ë Ï 4ó B87 Ì à ° B
7 ± \rÅ K Z ß N
Here ° B �}ñ Syj ° § and ½ is independent of \ and ¿ . One of the important tools in establishing
this is 9 @ functionals and the concept of realization. This is a topic on its own. In the setting
of weighted polynomial approximation, it has been explored by Freud and Mhaskar, and later
Ditzian and Totik, Damelin and the the author. See [1], [2], [4], [19], [20] for references.

In the (technical) proof of the Jackson theorem (1.10), the function \ is first approx-
imated by a piecewise polynomial (or spline). Then special polynomials that approximate
characteristic functions, and Whitney’s theorem on local polynomial approximation are used
to turn the spline approximation into a polynomial approximation. For the case where

�
is

of faster than polynomial growth, the modulus of continuity becomes more complicated, as
again there are endpoint effects, close to P ½ ó m . We refer the reader to [2]. There are also
analogous developments for exponential weights on

±é@RY�E<Y[Z
[15].

In recent years, there has been less focus on this type of weighted approximation. In-
stead much of the focus has been on Saff’s Polynomial Approximation Problem, which in-
volves varying weights, rather than a fixed weight. Thus one might seek to approximate
by weighted polynomials of the form

4 m 58739 KM58739 m
or
4 m 58739LKM5 ù m 7i9 , where ù m is the

Mhaskar-Rakhmanov-Saff number for
�

defined above. Saff’s approximation problem and
its circle of ideas has applications in asymptotics of orthogonal and extremal polynomials,
mathematical physics, random matrices

N<NDN
— see for example [19], [14], [23].

Recall that we left discussion of
K¯q+58739�j�:[;�=g5ï@�� 7r� 9

till later. Curiously it is issues
close to that weight that have arisen most recently — and have served to renew at least the
author’s interest in classical weighted approximation. While investigating asymptotics of
Sobolev orthogonal polynomials, the question arose of which weights admit some form of
the Jackson inequality (1.6). Curiously, these inequalities enable one to relate asymptotic be-
havior of derivatives of Sobolev orthogonal polynomials to classical orthogonal polynomials
[8].

This forced the author to revisit some very old results of Freud. In 1978, Freud, Giroux
and Rahman [7, p. 360] proved that° m&± \rÅ Ktq»ZJqAj `#£�²³<´�µ vb¶Oz�· m s 5 \ @ª4g9LKªq s[u ñ v�xiz

� ½ : Ä{Ë \ E Y_b��� ¿¡Ì � � c d}c ø ä m � \ K q �[5J7i9 � 7<;ÙE
where Ä 5 \ E � 9�j ���L=c Õ c · � � f� f �é5 \ Kªq<9&5-7Ö� × 9r@I5 \ Ktq[9&58739�� � 7Ö� � � f� f � \ Ktqp�[N
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Here ½ is independent of \ and ¿ , and
� ¿ could be replaced by ¿ q �"= for any fixed Æ Ft5-X0EDY�9 .

Ditzian, the author, Nevai and Totik [5] later extended this result to a characterization in Þ q .
The technique used by Freud, Giroux and Rahman was essentially an Þ q technique, using
the relation between one-sided weighted approximation, Gauss quadratures, and Christoffel
functions. Only recently has it been possible to establish the analogous results in Þ ß E ê Ò Y
[16]. The author modified the spline method from [4]. As the peaking polynomials used there
do not work for

Ktq
, they were replaced by the reproducing kernel for orthogonal polynomi-

als for
K Bq , and in the proofs, the author needed bounds for these orthogonal polynomials,

implied by recent work of Kriecherbauer and McLaughlin [12].
If we examine the modulus used in (1.8) for

K © E ­�Ò Y
, we see that the interval±b@ × ññ���� E × ññ���� Z is no longer meaningful for ­ jhY . It turns out to be replaced by > @G:[;�=Ù> q � �Õ C+E:[;�=?> q � �Õ C@? , for some fixed � Ft5-XLE<Y¥9 . The modulus becomesÄ à º ß 5 \ EÇKtqpE���9�jâ���0=§Dã Õ · � s Kªq+5 Ô à Õ \ 9 s u�æ ± � ´�A@B 5 ñ��DCò 9 º ´�A@B 5 ñ��DCò 9�Z� `#£�²³<´�µ vb¶Oz�· à � q s 5 \ @t4g90K q s u�æ 5 x&ÿ ¸ � ´�A@B 5 ñ��DCò 9 	Éq»º � ´�A@B 5 ñ��DCò 9 	Éq�¼ 9 N

The author proved [16] that for
X/Í êG� Q E and ¿ ® ½ � E

(1.11) ° m«± \rÅ KtqÁZ ß � ½ q Ä à º ß Ë \ EÇKtE Y_b��� 5 ½ B ¿ 9 Ì N
Here ½ qpE ½ B E ½�� are independent of \ and ¿ .

While this may be a technical achievement, it is scarcely surprising, given that Freud,
Giroux and Rahman already had the rate Â - q5 6 µ m / . What is perhaps more interesting is that

the rate ¿ � q
	Éq�ô © for
K © E ­6Ò Y , becomes

q5 6 µ m as ­ U Y¨�
. This suggests that we ought to

obtain an analogue of (1.6) of the form° m ± \rÅ K q Z ß � ½_b��� ¿ s \ À K q s[u�æ vyxiz N
Remarkably enough this is false, and there is no Jackson-Favard inequality for

Kìq
, not even

if we replace
q5 6 µ m by a sequence decreasing arbitrarily slowly to

X
. More generally we

answered in [17] the question: which weights admit a Jackson type theorem, of the form
(1.6), with l ó m ¤ ¿ n fmporq replaced by some sequence l�E m n fm%oÉq with limit

X
? We proved:

THEOREM 1.2. Let
K S��]U 58XLE Q 9 be continuous. The following are equivalent:

(a) There exists a sequence lFE m n fmpoÉq of positive numbers with limit
X

and with the following
property. For each

Y �¯ê(� Q , and for all absolutely continuous \ with s \ À K s<u�æ v�xiz finite,
we have

(1.12)
`#£�²³D´�µ vb¶ z�· m s 5 \ @t4g90K s<u æ v�xiz � E m s \iÀ K s<u æ v�xiz E ¿ ® Y%N

(b) Both

(1.13)
_#`bad¥egf KM587i9 � d§ K � q jVX

and

(1.14)
_#`bad¥egf K�5J739 � q � fd K j]X0E
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with analogous limits as
7 U�@ Q . Two fairly direct corollaries of this are:

COROLLARY 1.3. Let
KTS��{U 5�X0E Q 9 be continuous, with

K j ¦ �"G , where
�I5J739

is
differentiable for large

� 7r�
, and_#`#ad�e�f � À 58739kj Q and

_b`#ad¥e � f � À 5J7i9kj!@ Q N
Then there exists a sequence lFE min fmporq of positive numbers with limit

X
such that for eachY �Êêë� Q , and for all absolutely continuous \ with s \ À K s[u�æ vyxiz finite, we have (1.12).

COROLLARY 1.4. Let
K S&� UT58XLE Q 9 be continuous, with

K j¾¦ �HG , where
�I5J7i9

is differentiable for large
� 7r�

, and
� À 5J7i9 is bounded for large

� 7r�
. Then for both ê j�Y

andê j Q , there does not exist a sequence l�E m3n fmpoÉq of positive numbers with limit
X

satisfying
(1.12) for all absolutely continuous \ with s \ À K s<u æ v�xiz finite.

In particular for
Ktq

, there is no Jackson-Favard inequality, since both (1.13) and (1.14)
are false. Thus there is a real difference between density of weighted polynomials, and
weighted Jackson-Favard theorems. It is possible to have the former without the latter.

Essentially (1.13) is necessary and sufficient for an Þ f Jackson theorem, and (1.14) is
necessary and sufficient for an Þ q Jackson theorem. An obvious question is the independence
of these conditions (1.13) and (1.14). Does either imply the other? In fact they are indepen-
dent. Moreover, there are weights satisfying one but not the other, and also admitting an Þ q
Jackson theorem but not an Þ f Jackson theorem (or conversely). This is a highly unusual oc-
currence in weighted approximation - in fact the first occurrence of this phenomenon known
to this author. Density of polynomials, and the degree of approximation is almost invariably
the same for any Þ ß space (suitably weighted of course). Koosis [10, pp. 210–211] makes a
lengthy remark about the latter. We proved:

THEOREM 1.5. (a) There exists continuous
K S��IU 5�X0E Q 9 withY � K�5J7393¤r:[;�=Ù>�@A7 B C � Ï 5ïY��V� 7r� 9iE 7	FG��E

admitting an Þ f Jackson theorem, but not an Þ q Jackson theorem. That is, for ê j Q , there
exist l�E m3n fmpoÉq with limit

X
at Q satisfying (1.12), but there does not exist such a sequence

for ê j!Y .
(b) There exists continuous

K S%�]U 58XLE Q 9 withY ® KM587393¤r:[;�=Ù>�@A73BDC ®]Ï ¤A5�Y��V� 7r� 9iE 7ëFë�HE
admitting an Þ q Jackson theorem, but not an Þ f Jackson theorem. That is, for ê j¾Y , there
exist l�E m3n fmpoÉq with limit

X
at Q satisfying (1.12), but there does not exist such a sequence

for ê j Q .
We note that the weights in this result are equal to the Hermite weight

K B 587i9�j]:<;�= > @A7 B C
“most” of the time, with spikes upwards or downwards in small intervals. The weights we
construct are not decreasing in

± X0E Q 9 , though they can be made infinitely differentiable. We
expect that with more work one can construct decreasing

K
in
± X0E Q 9 still satisfying these

conclusions.
A key ingredient in the above theorem is an estimate for tails:
THEOREM 1.6. Assume that

K S%�IU 58X0E Q 9 is continuous.
(a) Assume

K
satisfies (1.13) and (1.14), with analogous limits at

@ Q . Then there exists a
decreasing positive function E SL± XLE Q 9�U 58XLE Q 9 with limit

X
at Q such that for

Y �(êë� Q
and #ë® X ,
(1.15) s \ K s<u æ v�x&ÿ ¸ �HI º I ¼ z � E 5 # 9 s \iÀ K s[u æ v�x&z
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for all absolutely continuous functions \ S&�ØU �
for which \ 58X}9�j¾X and the right-hand

side is finite.
(b) Conversely assume that (1.15) holds for ê j!Y and for ê j Q , for large enough # . Then
the limits (1.13) and (1.14) in Theorem 1.2 are valid, with analogous limits at

@ Q .
The above results deal with Þ+ß for all

Y �ªêë� Q . What happens if we focus on a singleÞ¬ß space? We recently proved [18]:
THEOREM 1.7. Let

K S%�IU 5-X0E Q 9 be continuous and let
Y �(êë� Q and

qß � qö j!Y .
The following are equivalent:
(a) There exists a sequence lFE m n fmpoÉq of positive numbers with limit

X
and with the following

property. For all absolutely continuous \ with s \ À K s[u�æ vyxiz finite, we have`#£�²³<´�µ vb¶Oz�· m s 5 \ @ª4g9LK s[u æ v�x&z � E m s \ À K s[u æ v�x&z E ¿ ® Y�N
(b)

(1.16)
_#`#ad¥egfKJJ K � q JJ uML ¸ § º d ¼ s K s u�æ ¸ d º f z j{X0E

with analogous limits as
7 U�@ Q .

As a consequence one can construct weights that admit a Jackson theorem in Þ ß but not
in Þ+ß@N for any

Y � ê E ê À � Q with êPOj ê À . Finally, we note that weights close to
K q

are
worthwhile candidates for investigating Jackson theorems involving moduli of continuity. To
be explicit, we pose:

PROBLEM 1. Find the analogue of (1.11) for the weightKM587i9�j]:<;�= - @�� 7r�%> _#�%� > Ï ��7 B¥CDC þ / E ù Ò @RY%N
For ù � @RY

, Bernstein’s polynomial approximation problem does not have a positive so-
lution, and so there cannot be an analogue of (1.11). Even for ù Ò @RY

, there can be no
Jackson-Favard inequality (1.12), since these weights violate both (1.13) and (1.14).

One shortcoming of (1.12) is that no information is given regarding the rate of decay ofl�E m n fmpoÉq . One could recast it in the form of a Jackson-Favard inequality, and iterate to obtain`#£�²³<´�µ vb¶Oz�· m s 5 \ @t4g9�K s<u æ v�xiz � E m `b£�²³<´�µ vb¶Oz�· m � q s 5 \ @ª4g9 À K s<u æ v�xiz �RQ�QFQ� E m E m � q QFQ�Q E m � ~ 	Éq `#£�²³<´�µ vb¶Oz�· m � ~ s 5 \ @ª4g9 v ~ z K s[u�æ v�x&z E
provided the right-hand side is meaningful. However, this does not really help without infor-
mation on the size of E m . Accordingly, we pose:

PROBLEM 2. What is the best choice of E m in (1.12), for a given
K

satisfying (1.13) and
(1.14)?

While our proof of (1.12) gives no information, we know that for fairly general Freud
weights, the correct E m is ó m ¤ ¿ .

REFERENCES

[1] S. B. DAMELIN, Converse and Smoothness Theorems for Erdös Weights in 1 2 

�TS(UWVYX�$ , J. Approx.
Theory, 93 (1998), pp. 349–398.

[2] S. B. DAMELIN AND D. S. LUBINSKY, Jackson Theorems for Erdös Weights in 1 2¬
#��SZU[V\X?$ , J. Ap-
prox. Theory, 94 (1998), pp. 333–382.

[3] R. DEVORE AND G. G. LORENTZ, Constructive Approximation, Springer, Berlin, 1993.



ETNA
Kent State University 
etna@mcs.kent.edu

WEIGHTED APPROXIMATION 177

[4] Z. DITZIAN AND D. LUBINSKY, Jackson and Smoothness Theorems for Freud Weights in 132�
#��SZU[V\X?$ ,
Constr. Approx., 13 (1997), pp. 99–152.

[5] Z. DITZIAN, D. S. LUBINSKY, P. NEVAI, AND V. TOTIK, Polynomial Approximation with Exponential
Weights, Acta Math. Hung., 50 (1987), pp. 165–175.

[6] Z. DITZIAN AND V. TOTIK, Moduli of Smoothness, Springer, New York, 1987.
[7] G. FREUD, A. GIROUX, AND Q. I. RAHMAN, Sur l’ approximation polynomiale avec poids exp 
�,Ö. "0. $ ,

Canadian J. Math., 30 (1978), pp. 358–372.
[8] J. S. GERONIMO, D. S. LUBINSKY, AND F. MARCELLAN, Asymptotics for Sobolev Orthogonal Polynomials

for Exponential Weights, Constr. Approx., 22 (2005), pp. 309–346.
[9] G. G. LORENTZ, M. V. GOLITSCHEK, AND Y. MAKOVOZ, Constructive Approximation: Advanced Prob-

lems, Grundlehren der mathematischen Wissenschaften, Springer, 1996.
[10] P. KOOSIS, The Logarithmic Integral I, Cambridge University Press, Cambridge, 1988.
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