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Abstract. The classical Haar wavelet system of �����	��
� is commonly considered to be very local in space. We
introduce and study in this paper piecewise-constant framelets (PCF) that include the Haar system as a special case.
We show that any bi-framelet pair consisting of PCFs provides the same Besov space characterizations as the Haar
system. In particular, it has Jackson-type performance ������� and Bernstein-type performance ��������� � . We then
construct two PCF systems that are either, in high spatial dimensions, far more local than Haar, or are as local as
Haar while delivering better performance: ��������� �!� . Both representations are computed and inverted by fast
algorithms.
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1. Introduction.

1.1. Local wavelet representation. In a recent paper, [4], we develop a novel method-
ology for wavelet constructions (under the acronym CAMP) that yields very local wavelet
systems in arbitrarily high spatial dimensions. The most local construction of [4] is based
on piecewise-linear box splines. In order to develop “the most local possible construction”,
we employ in this paper a piecewise-constant setup. Since the general “performance anal-
ysis” of [4] does not cover piecewise-constants, we precede the actual construction with a
general analysis of redundant piecewise-constant wavelet representations. We then introduce
and analyse two types of local piecewise-constant wavelet systems. The high-pass filters in
both constructions are mostly " -tap (in the decomposition, as well as in the inversion), hence
are the shortest possible. One of the systems is exact, i.e., bi-orthogonal, and the other one is
slightly redundant, i.e., a bi-frame.

1.2. Notations. For #%$'&(#�)+*-,�,�,-*.#0/214365 / , we let 7 #�798	$;: #0<)>=6?-?�?�= # </ . The inner
product of two vectors #@*.A in 5 / is denoted by # ? A . We use the following normalization of
the Fourier transform (for, e.g., BC3�DE)F&(5 / 1 ):GBH&JIK1L8	$NMPORQ9BH&S#.1.TVURWYX[Z \^]P#@,
We denote by _`&a5 / 1 the Schwartz space of test functions, and by _cbd&(5 / 1 its dual, the space
of tempered distributions. Given a function space whose elements are defined on 5 / , we
sometimes omit the domain 5 / in our notation. Also, we denote by _ bSegf the space of
equivalence classes of (tempered) distributions modulo polynomials. For any B[*.hC3iD < , we
define j B[*0h2kL8l$ M O QHBH&(#.1 h�&S#.1m]P#@,n
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For any B�3o_Lb and ho3o_ , we define

j B[*.hmkp8l$qBH& hm1 with the usual extensions, by means of
duality, to the various subspaces of _cb .

Given B�8V5 /Cr 5 , we denoteB-s�t u�8	$v" s Q w BH&a" s ?Vxpy 1@*{z|3~}%* y 3o} / ,
Also, we use the notation � for the characteristic function of the unit cube � �2*-��1 / .

Throughout the paper, � stands for a generic constant that may change with every occur-
rence. We use the notation �4�v� to mean that there is a constant �`��� such that �������g, We
use the notation �4��� to denote two quantities that satisfy � ) ���6����� < � , for some positive
constants. The specific dependence of the constants � ) *�� < on the problem’s parameters is
explained in the text, whenever such an explanation is required.

1.3. The performance of piecewise-constant framelets. Let � be a finite subset ofD < &(5 / 1 . The wavelet system generated by the mother wavelets � is the family� &d��1L8	$q��� s�t u 8`�63o��*�z�3�}�* y 3�} /P� ,
The analysis operator is defined as� ��`����� 8PB~�r & j B[*�A[k�10�V� �p������ 
the entries of

����`���¡� B are the wavelet coefficients of B (with respect to the system
� &d��1 ).

The system
� &d��1 is a frame if the analysis operator is bounded above and below, viz., if

there exist two positive constants ¢�*�£ such that¢¥¤�B9¤ <¦ w � O Q � � §�F� �`����� 7
j B[*�A[k�7 < ��£¨¤�B9¤ <¦ w � O Q � * for all Bo3oD < &(5 / 1 .(1.1)

The sharpest constants ¢ and £ are called the frame bounds.
� &©��1 is a Bessel system if����p����� is bounded, i.e., the right-hand side of (1.1) is valid.

We are interested in wavelet frames that are derived from a multiresolution analysis
(MRA) ([6],[8],[1]). One begins with the selection of a function ªq3ND < &(5 / 1 . With ª in
hand, one defines «¬ 8	$ «¬ &dªR1
to be the closed linear span of the shifts of ª , i.e.,

« ¬
is the smallest closed subspace ofD < &(5 / 1 that contains ®|&dª[1�8	$¯�gª°& ?±x²y 1�8 y 3³} / � . Then, with ´ the operator of dyadic

dilation: &(´�B�1�&S#.1c8	$N" Q w BH&a"F#.1@*
one sets « s 8	$ « s &dª[1E8l$µ´ s «2¬ &aªR1¶*·z�3�}�,
The primary condition of the MRA setup is that the & « sg1ds sequence is nested:?�?-?2¸ « U ) ¸ « ¬ ¸ « ) ¸�?�?-? ,
Whenever this condition holds, one refers to ª as a refinable function. In addition, one re-
quires that the union ¹ s « s is dense in D < &(5 / 1 . However, if ª is compactly supported and
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is the support function � of the unit cube:

DEFINITION 1.1. Let & « s 1 s be the MRA associated with � . A wavelet system
� &d��1 is

said to be piecewise-constant if � ¸ « ) . If, in addition, the system
� &d��1 is a frame, we

refer to it, as well as to each of its elements, as a piecewise-constant framelet (PCF).
The classical Haar (orthonormal) wavelet is clearly a special case of a PCF.

Next, we illustrate the way the “performance” of a wavelet frame
� &d��1 may be graded,

and use the D < -setup to this end. For ½q�¾� , let ¿¾À< &(5 / 1 be the usual Sobolev space. We
would like first the wavelet system

� &d��1 to be a frame and to satisfy¤ � ��`����� B9¤�Á w � À � �²¢ À ¤�B9¤�Â�Ãw � O�Q � *ÅÄ�Bo3o¿ À< &(5 / 1¶,(1.2)

Here,

¤ � ��`����� B9¤@Á w � À � 8l$ÇÆÈ�§É t s�t ucÊ � = " < s À[Ë 7
j B[*�� s�t u k-7 <�ÌÍ6Îw ,

The supremum ÏgÐ 8	$6Ñ�Ò2Ó��g½ÕÔÖ�48 � &d��1 satisfies (1.2) for the given ½ � *
is one way to quantify the “performance-grade” of a frame

� &d��1 . Since the inequality (1.2)
is the counterpart of the Jackson-type inequalities in Approximation Theory, we refer to the
above

ÏgÐ
as the Jackson-type performance of

� &©��1 . It is known that the essential condition� needs to satisfy for having “performance-grade”

ÏFÐ
is that each �¥3Ö� has

ÏgÐ
vanishing

moments : G�²$µ×4&�7 ? 7 Ø.Ù±1 near the origin *¡Ä[��3���,
Another way to measure the performance of

� &d��1 is to insist that, in addition to (1.2), the
inverse inequality holds as well:¤ � ��`����� B9¤�Á w � À � Ô�£ À ¤�B9¤�Â�Ãw � O Q � *ÅÄ�BC3�¿ À< &(5 / 1¶,(1.3)

For a frame
� &©��1 , we denoteÏ�Ú 8	$µÑ�Ò2Ó��g½ÕÔ²�48 � &d��1 satisfies (1.2) and (1.3) for the given ½ � ,

The inequality (1.3) is the counterpart of the Bernstein-type inequalities in Approximation
Theory, and therefore we refer to the above

Ï+Ú
as the Bernstein-type performance of

� &©��1 .
Obviously,

Ï�Ú � Ï Ð , and usually strict inequality holds. The value of

Ï+Ú
is not connected

directly to any easy-to-check property of the system
� &©��1 . As a matter of fact, the value of

Ï�Ú
is related to the smoothness of the dual frame

� &d��ÛV1 , which we now introduce.
First, one defines a map �¼Ü��²�r �KÛ43�D < &a5 / 1 , and extends it naturally to

� &d��1 (i.e.,&S�Ýs�t uF1^ÛC8	$Þ&S�KÛP1ds�t u ). Assume that
� &©�`ÛV1 with �`Ûo8	$¯�-�>Û�8ß�à3Ö� � is also a frame. The

frame
� &d�`ÛV1 is then said to be dual to

� &d��1 if one has the perfect reconstruction property :B~$ � �`���¡á@� � ��`���¡� B�$ §�F� �`�����
j B[*.ARk^A Û *âBC3�D < &(5 / 1¶,
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Here,
� �`����� is the synthesis operator:� �`����� 8Vã �`����� Ü��»�r §�V� �`����� �R&SA[10A¡,

Thus, one strives to build wavelet frames that have a high number of vanishing moments,
and can be associated with smooth dual frames. This brings us to the question of how wavelet
systems are constructed. The most general recipe in this regard is known as the Oblique
Extension Principle (OEP, [1]). However, in this paper we will need its special, and simpler,
case, the Unitary Extension Principle (UEP). Both lead to the simultaneous construction of a
frame and its dual frame. We describe now the UEP.

The refinability assumption on the function ª is equivalent to the condition thatGªÝ&d" ? 1ä$6å Gª°*
for some "+æ -periodic function å , called the refinement mask. Let us assume for simplicity thatå is a trigonometric polynomial. The assumption that �¾8l$¼�-�L)+*�,-,�,�*�� ¦ � ¸ « )+&dªR1 amounts
to the existence of "Fæ -periodic functions (=:wavelet masks) &(å W 1 ¦W�ç ) such thatG� W &a" ? 1ä$µå W GªÝ*éè9$¼�P* ?�?-? *�Dp,
Again, we assume for simplicity that &Så W 1 ¦W�ç ) are trigonometric polynomials. Next, let us
assume that the dual refinable function ª Û has a trigonometric polynomial refinement maskåmÛ . The assumption that ��ÛÕ8l$'�-�KÛ) *�,-,�,¶*��>Û¦ � ¸ « )V&aªßÛP1 amounts to the existence of "Fæ -
periodic functions &(å2ÛW 1 ¦W�ç ) such thatG� ÛW &a" ? 1ä$6å ÛW Gª Û *éè9$q�V* ?�?-? *�Dp,
Again, we assume that the masks &SåÛW 1 are trigonometric polynomials.

Suppose now that the two systems
� &d��1 and

� &d��ÛV1 are known to be, each, a Bessel
system, and they satisfy the Mixed Unitary Extension Principle (MUEP) :

å2å Û & ?�=Õê 1 = ¦§ W�ç ) å W å ÛW & ?+=Õê 1ä$ìë �P* ê $v� ,�* ê 3i���*.æ � /mí � ,(1.4)

and
GªÝ&a�P1�$ GªßÛ&a�P1p$¯� . Then

� &d��1 and
� &d��ÛV1 form a pair of a wavelet frame and a dual

wavelet frame [9]. We refer then to the pair & � &©��1@* � &d��ÛF1�1 as a (UEP) bi-framelet.

In î 2, we explore the function space characterizations that are provided by PCFs. As an
illustration, we list here our result for the special case of the Sobolev spaces ¿àÀ< &(5 / 1 , ½Õ�Ö� .The result follows from Theorems 2.12 and 2.13, and is essentially known, at least for the
case of when the frames in the bi-framelet pair are Riesz bases and not only frames (in this
case, the pair is more customarily referred to as a bi-orthogonal pair.)

THEOREM 1.2. Suppose that & � &©��1@* � &d��ÛV1�1 is a bi-framelet, and both
� &d��1 and� &d� Û 1 are PCFs. Then

Ï Ð $¼� and

Ï�Ú $µ�, ï .
In î 3, we describe two PCF constructions that are valid in all spatial dimensions and

are, both, extremely local: Perhaps as local as any wavelet construction can be. One of the
constructions is of a bi-orthogonal system (hence uses Dv$¥" / x � mother wavelets), while
the other, closely related, one is an honest PCF (and employs D�$¼" / mother wavelets). We
use then the results of î 2 to identify the performance of the two systems. Their Jackson-type



ETNA
Kent State University 
etna@mcs.kent.edu

142 Y. HUR AND A. RON

performance is proved to be same, while the redundant system is proved to yield a higher
Bernstein-performance grade: its

Ï Ú
equals � , too.

It may be worth noting that our performance criteria are based on isotropic Besov spaces.
This setup is particularly suitable for analysing functions with isolated singularities. As a rule,
wavelet representations that are based on isotropic dilations may fail to be optimally sparse
for functions with other types of singularities. This drawback of the wavelet representation is
well-known, and is only very partially offset by a good selection of the mother wavelets. All
that said, one must also keep in mind that, in many instances, the single most important prop-
erty of a representation, especially when dealing with high dimensional data, is its feasibility,
which is primarily determined by the complexity of the transform and its inverse. The linear
complexity of our representation, and the associated very small constants in the linear bound
may prove to be very valuable to this end.

2. Characterization of Besov spaces using PCFs.

2.1. Besov spaces. We recall first (one of) the (equivalent) definition(s) of Besov spaces
[10]. Let ð²3�_ be such thatÑ�Ò2Ó2Ó Gð ¸ � �" �q7 I`7±�6" � *7 GðL&SIK1�7±Ô����Ö�*òñï ��7 I`7±� ïñ *(2.1) 7 GðL&SIK1�7 < = 7 Gðc& I " 1-7 < $¼�P*ó��ôq7 I`7mô�"2,
Let ð s 8l$v" s / ðc&d" s ? 1 , for z�3�} .

For

Ï 3�5 , ��ôiõ��Nö , ��ô6÷4�µö , the (homogeneous) Besov space ø£ Øù�ú 8l$ûø£ Øù-ú &(5 / 1
is defined to be the set of all Bo3~_Lb egf such that

¤-B9¤LüÚHýþ�ÿ � O Q � 8	$ ÆÈ §s � � &a" s Ø ¤¶ð s�� B9¤ ¦ þ � O Q � 1 ú ÌÍ Îÿ ôµö6*
with the usual modification for ÷�$Nö .

In [2], M. Frazier and B. Jawerth showed that the convolution operator in the above
definition of ø£ Øù-ú can be discretized. In order to present their result, we will need the discrete
analog, ø� Øù-ú , of the Besov space which is defined as the space of all sequences

� 8	$¥& � &�zV* y 1c8z�3�}�* y 3�} / 1 that satisfy

¤ � ¤Pü� ýþ�ÿ 8	$ ÆÈ §s � � � " U s / §u � � Q 7 " s � Ø�� Q w � � &�zP* y 1�7 ù
	 ÿþ ÌÍ Îÿ ô6ö6,
PROPOSITION 2.1. Let ð!3~_ be as in (2.1). If B�3�_Lb e�f , thenB�$�§s � � §u � � Q j B[*�ð¡s�t uFk.ð�s�t u

in the sense of _Lb e�f . Moreover,¤-B9¤LüÚ ýþ�ÿ � ORQ � �à¤ � ��`���� B9¤ü� ýþ�ÿ &d$à¤F& j B[*�ð s�t u kL8-z|3�}�* y 3~} / 1-¤Pü� ýþ�ÿ 1@,
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For

Ï � � , ���;õÞ� ö and �àô ÷¥� ö , we define the inhomogeneous Besov
space £ Øù�ú 8l$ £ Øù-ú &(5 / 1 to be the set of all Bv3Ö_Lb such that ¤-B9¤ Ú ýþ�ÿ � ORQ � 8	$ ¤�B9¤ ¦ þ � ORQ � =¤�B9¤cüÚ ýþ�ÿ � O Q � ôµö .

We note that many of the traditional smoothness spaces can be captured by choosing
suitably the parameters in a Besov space. The D < -space is ø£ ¬<�< . The Sobolev space ¿ Ø< ,Ï �Ö� , is £ Ø<�< . Also, £ ) t  is the Zygmund space, while, more generally, for

Ï �Ö� , £ Ø� is
the Hölder space.

2.2. Auxiliary results. We develop in this subsection the technical backbone for the
PCF function space characterizations. The main results on this subject are proved in the next
subsection. We start with the definition of a regularity class :

DEFINITION 2.2. Let �!��� . We define � ¬� 8	$�� ¬� &(5 / 1 to be the set of all functions B
such that 7 BH&(#.1�7P�¥&.� = 7 #�7 1 U

�
,

For �4ô���ô�� , we define ���� to be the set of all functions BC3�� ¬� * such that7 BH&��±1 x BH&S#.1�7P�¾7 � x #�7 � Ñ.Ò2Ó� ��� ��� � Uß\ � &.� = 7  x #�7 1 U
�
* 7 � x #�7m� ñ ,

The set of all the compactly supported functions in � � � is denoted by � � (and is trivially
independent of � ).

Throughout the entire subsection, we assume that !�3�D < &(5 / 1 is a piecewise-constant
mother wavelet (more precisely, a finite linear combination of integer translates of �L&a" ? 1 ) with
one (or more) vanishing moment(s), and that " is a function with one (or more) vanishing
moment(s), satisfying "�3�� �� for all �»�#�iô�� and for all � 3%$ . We let& 8	$¾& & s�t ' & y *)(�1L8	$ & &�zP* y  +* *)(�1K8-zP* * 3o}�* y *,( 3o} / 1@*
with

& &�zP* y  +* *,(o1�8l$.- s�t u0/ 'Jt 1 j ! s�t u *," 'St 1 k¶*2- s�t u0/ 'Jt 1 3N�43�� � . Our objective here is to prove
that

&
, as well as its adjoint operator

& �
, are well-defined bounded endomorphisms of ø� Øù�ú

for suitable choices of

Ï
, õ , and ÷ . To this end, we recall two pertinent results from [4]:

PROPOSITION 2.3. Let

Ï 3v5 and �!ô¥õ�� ö . Let 5 be a complex-valued matrix
whose rows and columns are indexed by }�6�} / :5 8l$¾&�5�s�t '.& y *,(o1L8l$75�&�zP* y  +* *,(o1L8-zP* * 3o}�* y *,(ì3�} / 1@,
Suppose that there exists a constant 8%8	$982&	õÝ* Ï 1L��� such that, for all zP* * ,¤:5 s�t ' ¤ ù 8l$à¤:5 s�t ' ¤@Á þ �;� Q ��< Á þ �;� Q � �v" � ' U s �©� Ø=� Q w U Q þ � " U � ' U s � > ,
Then 5 is a bounded endomorphism of ø� Øù-ú for all �»ô�÷%�µö .

PROPOSITION 2.4. Let zV* * 3�} ,

Ï 3�5 , �»ô õo�6ö andê 8	$ ?@BA�C �P�P*(õ � ,
Suppose that there exist constants ��� ê and ��3~5 such that for all y *,('3�} / ,
7 5 s�t ' & y *,(o1�7V� " � ' U s �©� Ø=� Q w � " U � ' U s � �" � ' U s �ED� � � = 7 " ' U s y%x (Õ7" ' U s� 	 U

�
*â"GF� 8	$ @IH4J �g"KFP*�� � ,
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Then we have, for all �4ô�õo�µö ,¤05 s�t ' ¤ ù �v" � ' U s �©� Ø=� Q w U Q þ � "±U � ' U s � � ,
We further need a result from [3]. We actually list below a special and simplified version

of that result which suffices for our purposes.
PROPOSITION 2.5. Let z�� * and ��� ? = � . Suppose that L2*NM43�� ¬� . Then

7 j L s�t u *+M 'Jt 1 k�7�v" U � ' U s � Q wPO � = 7 " ' U s y�x (�7" ' U s Q U
�
,(2.2)

If, in addition, M has one vanishing moment and L�3�� �� for some �4ôR�Õôv� , then

7 j L-s�t u2*+M�'Jt 1�k�7V�N" U � ' U s �©� � � Q w � O � = 7 " ' U s y�x (Õ7" ' U s Q U
�
,

Finally, we need the following simple result (see e.g. [5]) :
PROPOSITION 2.6. Let * 3�} . If y 3�} / and �C� ? , then

§1 � � Q O � = 7 " ' y%x (Õ7" ' � Q U
�
�µ" ' /� ,

In the rest of this subsection, the letter � is used for a suitably large integer. More precisely,
given �»ô õo�µö , one can choose � to be any integer � /SUT VXW ) t ùXY = ? = � .

Our immediate objective is to provide estimates on the õ -norm of the operator
& s�t ' .

To this end, we observe that when ziÔ * , the magnitude of 7 & s�t '0& y *,(o1�7�$ 7 j !@s�t um*)"
'Jt 1�k�7 is
governed by the vanishing moment of ! and the smoothness of " . Since " is (minimally)
smooth, the single vanishing moment of ! delivers to us the bound we need:

LEMMA 2.7. Let

Ï ô � and z�Ô * . Then we have, with 8)!8	$Z8P)+& Ï 1��;� , for all�4ô�õo�µö , ¤ & s�t ' ¤ ù �v" � ' U s �^� Ø=� Q w U Q þ � " U � ' U s � > Î ,(2.3)

Proof. For any fixed

Ï ôq� , we choose  so that @BH
J � Ï *�� � ô# iôq� . From Proposition
2.5 (for L48l$[" , M48	$\! and �Õ8	$9 ), we get, with 8 ) 8l$[ x Ï �²� ,7 & s�t ' & y *,(o1�7V�N"±U � s U ' �^� � � Q w � O � = 7 " s U ' ( x�y 7" s U ' Q U

�
$N" � ' U s �©� Ø�� Q w � " U � ' U s � > Î Ê � = 7 " ' U s y�x (Õ7 Ë U

�
,

Thus by Proposition 2.4 (for �i8	$\8P) ), we obtain (2.3).
In the opposite case, when * �Nz , the size of 7 & s�t ' & y *,(o1�7�$'7 j ! s�t u *," 'Jt 1 k-7 is governed

by the moment condition of " and the smoothness of ! . Since ! is not so smooth, we need
to be a bit more careful in arguing this case. We use, to this end, the fact that ! is a linear
combination of a finite number of translates of �K&d" ? 1 , and that " decays rapidly and has one
vanishing moment.
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LEMMA 2.8. Let * �iz . Then¤ & s�t ' ¤ ù �µ" � ' U s �^� U Q w � for �»ôiõo�v�P* and ¤ & s�t ' ¤  �N" � ' U s �©� Q w U ) � ,
Therefore, by interpolation, we get for ����õo�µö¤ & s�t ' ¤ ù �N" � ' U s �©� Q w U Q þ � " U � ' U s �©� ) U Îþ � ,

Proof. We first note that by (2.2) of Proposition 2.5 (for L48l$[! and M»8	$\" )7 & s�t ' & y *)(�1-7V$à7 j ! s�t u *)" 'Jt 1 k�7P�v" U � ' U s � Q w O � = 7 " ' U s y�x (Õ7" ' U s Q U
�

$ " � ' U s � Q w " U � ' U s � � / U D+�" � ' U s ��D O � = 7 " ' U s y»x (Õ7" ' U s Q U
�
*

where ê 8	$ /SUT VXW ) t ùXY , Thus by Proposition 2.4 (for ��8l$ ? x�ê and

Ï 8l$µ� ), we obtain, for all�»ô õo�µö , ¤ & s�t '.¤ ù �µ" � ' U s �©� Q w U Q þ � " U � ' U s � � / U D+� ,
In particular, we have¤ & s�t '0¤ ù �N" � ' U s �©� U Q w � * for �»ôiõo�N�P* and ¤ & s�t '.¤  �N" � ' U s � Q w ,
Note that this estimation is good enough for ¤ & s�t '.¤ ù , �~ô²õ�� � , but not for ¤ & s�t '.¤  . To
improve the estimation of ¤ & s�t '.¤  , we compute 7 j !@s�t u±*,"G'Jt 1�k-7 directly. Without loss, we can
replace !@s�t u by ��s�t u . That is, we estimate ] 1 � � Q 7 j ��s�t u±*)"
'Jt 1�k�7 . In fact, for later use, we look
at the more general expression §1 � � Q 7 j ��s�t u±*)"
'Jt 1�k�7 À *é½!���2,

We first note that, with ^ ¬ 8	$¾� �*���1 / ,j ��s�t u±*)"
'Jt 1�kä$ j ��s U 'Jt ¬ *)" ¬ t 1 U <+_a`
b u kä$v" � s U ' � Q w M < b=`K_ � �Gced "�&�� = " ' U s y�x (�1.]K�$v" � s U ' � Q w M � � < _a`
b � u � cfd � "�&�� x (o10]g�,
Therefore, with ^à8	$µ" ' U s & y�= ^ ¬ 1 , we have§1 � � Q 7 j ��s�t u±*)"
'Jt 1�k�7 À $µ" � s U ' � Q w À §1 � � Qihhhh M � �Gc "�&�� x (o10]g� hhhh À ,
Now, with jk^ being the boundary of ^ , we define lnm , o 3p$ ¬ 8	$\$Õ¹~� , as follows:l ¬ 8l$¼�q(;3~} / 8Gr A Ñ,sÝ&E(i*)jk^�1K��� � *ltm¼8l$¼�q(;3~} / 8P" m U ) ô#r A Ñ,sÝ&E(i*)jk^�1L��" m%� *uo 3%$L,
Then, we have §1 � � Qvhhhh M � �Gc "�&�� x (o10]g� hhhh À $ §mxw ¬ §1 �Gy{z hhhh M � �Gc "�&�� x (�1�]g� hhhh À ,
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Now we claim that if ('3Pl|m , thenhhhh M � �Gc "R&}� x (�1.]K� hhhh �µ" U m �
�
U / � ,

When o;$N� the estimation is trivial from the fact that DE) -norm of " is finite, so we assume
that o 3p$ . If ('3~l m is outside ^ , then for every �43~^ , 7 � x (�7mÔ�r A Ñ�s°&E(i*)jk^�1L�6" m U ) ,
thus we gethhhh M � �Gc "�&�� x (o10]g� hhhh � M � �Gc U 1 7 "�&��±1�7 ]K�4� M � ��� w < z ` Î �&0� = 7 �R7 1 � ]K�%�N" U m �

�
U / � ,

If ( 3�l m is inside ^ , we first recall that ��"�&}�1.]K�³$;� , thus by the same argument as
above, we get with ^�� 8l$v5 /Ýí ^ ,hhhh M � �Gc "�&�� x (o10]g� hhhh $ hhhh M � �Gc�� "R&}� x (�1.]K� hhhh �6M � �Gc�� U 1 7 "�&}�1-7 ]g��6M � �X� w < z ` Î �&.� = 7 �[7 1 � ]g�%�v"mU m �

�
U / � ,

Since ��ltmN�¾&a" m 1 / " � ' U s �©� / U ) � , we obtain, with ��8l$v�F& ? *,��1 ,§1 � � Q hhhh M � �Gc "�&�� x (�1.]K� hhhh À �²� §mxw ¬t� " � ' U s �^� / U ) � "mU m � À �
�
U / � U / ��� �N" � ' U s �©� / U ) � *

provided that ��� ? &0� = )À 1 . Therefore we getÑ�Ò2Óu � � Q §1 � � Q 7 & s�t ' & y *,(o1�7 À �µ" � s U ' � Q Ãw " � ' U s �©� / U ) � $v" � ' U s �©� / � ) U Ã w � U ) � ,(2.4)

Using this estimate for ½ $¥� , we obtain the desired bound for ¤ & s�t '.¤  :¤ & s�t ' ¤  �'Ñ.ÒÓu � � Q §1 � � Q 7 & s�t ' & y *)(�1-7V�N" � ' U s �©� Q w U ) � ,
From the above lemma, we get that for * �Õz , �4ôiõ��6ö and

Ï 3~5 , there exists 8 < �Ö�
such that ¤ & s�t '.¤ ù �v" � ' U s �©� Ø�� Q w U Q þ � " U � ' U s � > w * for � Ï � ? & )ù x ��1¶* if õo��� ,Ï � )ù x �V* if õoÔ�� .
This bound, when combined with Proposition 2.3 and (2.3), leads to the following bound on&

: &
is a bounded endomorphism of ø� Øù-ú for �4ô�õÝ*�÷��6ö and

Ï
satisfying(2.5)

� ? & )ù x ��1Lô Ï ôN�P* if õo�N� ,)ù x ��ô Ï ôv�P* if õoÔN� .(2.6)
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Our next objective is to establish complementary bounds on the operator
&¨�

. We start
with the case * Ôiz .

LEMMA 2.9. Let

Ï 3o5 , �4ô�õo�µö , and� 8	$ ? & �@�A�C ��V*aõ � x �g1 x Ï ,
Suppose that

� ôv� and * ÔÕz . Then we have, with 8±)`8	$#8P)+&Yõ¡* Ï 1L��� , for all �4ô õo�6ö ,¤ & �s�t ' ¤ ù �N" � ' U s �©� Ø=� Q w U Q þ � " U � ' U s � > Î ,
Proof. For any fixed

� ô�� , we choose  so that @IH4J � � *�� � ô�  ôN� . From Proposition
2.5 (for L»8	$[" , M48l$[! and �Õ8l$\ ), we get, with 8)`8	$9 x � �Ö� ,7 & �s�t ' & y *,(o1�7V�N" U � ' U s �©� � � Q w � O � = 7 " ' U s y»x (Õ7" ' U s Q U

�
$ " � ' U s �©� Ø=� Q w � " U � ' U s � > Î" � ' U s �©��� � / �¡Ø � O � = 7 " ' U s y»x (Õ7" ' U s Q U

�
,

Thus by Proposition 2.4 (for ��8	$98 ) ), we obtain the stated result.
From the above lemma, we get that for * Ô�z , �4ôiõ��6ö and

Ï 3~5 , there exists 8 ) �²�
such that¤ & �s�t ' ¤ ù �v" � ' U s �©� Ø=� Q w U Q þ � " U � ' U s � > Î * for ë Ï � ? & )ù x ��1 x �V* if õo��� ,Ï � x �V* if õoÔ�� .(2.7)

We need also to estimate ¤ & �s�t ' ¤ ù when zo� * . Using a similar argument to the one used in
Lemma 2.8, we obtain the following result:

LEMMA 2.10. For z�� * we have¤ & �s�t ' ¤ ù �N" � ' U s �©� Q w U Q þ � Îþ � for �4ô�õo���V* ¤ & �s�t ' ¤  �µ" � ' U s � Q w ,
Therefore, by interpolation, we get for ����õo�µö¤ & �s�t ' ¤ ù �µ" � ' U s �©� Q w U Q þ � " � ' U s � Îþ ,

Proof. By (2.2) of Proposition 2.5 (for L48	$\! and M48	$9" ), we have7 & �s�t ' & y *,(o1�7V�N" U � s U ' � Q w~O � = 7 " s U ' ( xÕy 7" s U ' Q U
�

$N" � ' U s � Q w Ê � = 7 " ' U s y�x (�7 Ë U
�
,

Thus by Proposition 2.4 (for ��8	$µ� and

Ï 8	$µ� ), we obtain, for all �4ô�õo�µö ,¤ & �s�t ' ¤ ù �v" � ' U s �©� Q w U Q þ � ,
Note that this time we need to improve the estimation of ¤ &ì�s�t ' ¤ ù , �¾ô;õ � � , not of¤ &à�s�t ' ¤  . By (2.4) (with ½!8	$�õ ), we get¤ & �s�t ' ¤ ùù �{Ñ�Ò2Ó1 � � Q §u � � Q 7 & �s�t ' & y *)(�1-7 ù �v" � s U ' �©� / � ) U þ w � U ) � $v" � ' U s �©� Q w U Q þ � Îþ � ù ,
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Thus, by the above lemma, we get that for z¾� * , �qô õ¨� ö ,

Ï 3ì5 , and with8 < 8l$ )ù x Ï , ¤ & �s�t ' ¤ ù �v" � ' U s �^� Ø=� Q w U Q þ � "mU � ' U s � > w ,(2.8)

By combining (2.7) and (2.8), and by applying Proposition 2.3, we get the following:&à�
is bounded endomorphism on ø� Øù-ú for �»ôiõ¡*�÷%�6ö and

Ï
satisfying(2.9)

� ? & )ù x ��1 x ��ô Ï ô )ù * if õo�v� ,x ��ô Ï ô )ù * if õoÔv� .(2.10)

We now recall (2.5), which, together with (2.9), yields:&
and

&à�
are bounded endomorphisms on ø� Øù-ú for �»ôiõ¡*�÷%�µö and

Ï
satisfying

� ? & )ù x ��1Lô Ï ôN�P* if õo�N� ,)ù x ��ô Ï ô )ù * if õoÔN� .(2.11)

We also need the following related corollary:
COROLLARY 2.11. Let �³ô¼õ¡*�÷�� ö . If

Ï 3v5 satisfies (2.6), then for every
� 8l$& � & * *,(o1L8 * 3�}�*,(ì3o} / 1L3�ø� Øù-ú ,§ 'Jt 1 7 � & * *,(o1�7�7 j !m*,"
'St 1�k-7môµö6,(2.12)

Also, if

Ï 3�5 satisfies (2.10), then for every
� 8	$¥& � & * *,(o1L8 * 3�}�*,(ì3o} / 1c3Öø� Øù-ú ,§ 'Jt 1 7 � & * *,(o1�7�7 j "R*,! 'Jt 1 k-7±ô6öµ,(2.13)

Proof. We note that the sequence &�7 j !m*," 'Jt 1 k�7 1 'Jt 1 comprises the &�z³$ y $ �1 -row of
the matrix

&
. Since (2.5) gives the boundedness of

&
, the number

& & � b 1�&(�*��P1 must be
finite for every

� b 3 ø� Øù-ú . However, for the choice
� bp8l$ 7 � 7 , we have that

& & � b 1¶&a�2*��1%$] 'Jt 1 7 � & * *)(�1-7�7 j !m*)" 'Jt 1 k�7 , hence (2.12) is true.
Similarly, (2.13) is obtained by inspecting

& �
instead of

&
, and using (2.9) instead of

(2.5).

2.3. Characterizations of Besov spaces using PCFs. In this subsection, we obtain
Besov space characterizations in terms of the wavelet coefficients of a piecewise-constant
system by using the results obtained in the previous subsection. Throughout this subsection,
we let ð63C_ be a function satisfying the conditions in (2.1). We derive the characterization
in two steps. The first step involves a Jackson-type inequality:

THEOREM 2.12. Let �iôNõ¡*�÷ � ö , and let

Ï 3�5 satisfy (2.6). Suppose that � is a
piecewise-constant wavelet with one vanishing moment. Then¤ � ��`��É2� B9¤Pü� ýþ�ÿ �¾¤�B9¤cüÚ ýþ�ÿ � O�Q � ,
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Remark. Following the discussion in [3] and [4], the expression

j B[*.�ck , for B²3Åø£ Øù�ú and a
piecewise-constant � , is defined byj B[*��Lkc8	$�§ 'Jt 1 j ð�'Jt 1�*.�Lk j B[*�ðf'St 1�k¶,
The definition makes sense, since the sum in the right-hand side converges absolutely, by
virtue of (2.12) of Corollary 2.11 (for !�8	$µ� and "�8	$vð ) and Proposition 2.1.

Proof of Theorem 2.12. By the previous remark, the expression

j B[*�� s�t u k is well defined.
That means the (suggestive) identity� ��`��É2� B�$¼& � ��p��É2� � �p���P� 1 � ��`���� B
is valid for every B¯3 ø£ Øù-ú , Since

����`��É2� � �`���� is bounded on ø� Øù�ú (by (2.5), for !N8	$ �
and "Õ8	$àð ) and

����`���� is a bijection from ø£ Øù�ú to ø� Øù-ú by Proposition 2.1, we conclude that����p��É2� 8oø£ Øù-ú r ø� Øù-ú is bounded :¤ � ��`��É� B9¤ü� ýþ�ÿ �¾¤ � ��`���� B9¤Pü� ýþ�ÿ �à¤�B9¤cüÚ ýþ�ÿ � O Q � *âBo3Çø£ Øù�ú ,
We now state and prove the full-fledged characterization:
THEOREM 2.13. Let �¾ô õ¡*�÷¥� ö , and let

Ï 3Þ5 satisfy (2.11). Suppose that& � &©��1@* � &d�`ÛF1.1 is a bi-framelet, and both
� &©��1 and

� &©��ÛV1 are PCFs. Then for everyBC3 ø£ Øù�ú , we have §É � � ¤ � ��`��É2� B9¤ü� ýþ�ÿ �à¤�B9¤cüÚ ýþ�ÿ � O�Q � ,
Proof. It was already proved in Theorem 2.12 that the expression

j B[*.� s�t u k is well-defined
for every � 3¥� , z63q}�* y 3q} / , and that ¤ ����`��É2� B9¤Pü� ýþ�ÿ � ¤�B9¤cüÚHýþ�ÿ � O Q � ô ö , for every�63o� .

For the other direction, we prove that, for every B�3 ø£ Øù�ú ,§É � � § 'Jt 1 j B[*.��'Jt 1�k±� Û'Jt 1 $NB[*(2.14)

in the sense of _Lb e�f . To this end, let _  8l$ �X"Õ3Õ_ 8 � O�Q #.À�"�&S#.10]P#�$ì�2*^Ä�½v3#$ /¬ � . We
need to show that j §É � � § 'St 1 j B[*.��'Jt 1�k±� Û'Jt 1 *,"2kä$ j B[*,"2k¶*ÅÄ{"�3�_  ,
By (2.13) of Corollary 2.11 (for !48l$v�KÛ ), ����`��É2� B 3 ø� Øù-ú , and the definition of

j B[*��U'Jt 1�k , we
get j §É � � § 'St 1 j B[*.� 'Jt 1 k±� Û'Jt 1 *,"2k>$Þ§É � � § 'Jt 1 j B[*.� 'Jt 1 k j � Û'Jt 1 *,"2k$Þ§É � � § 'Jt 1 § s�t u j B[*�ð s�t u k j ð s�t u *.� 'Jt 1 k j � Û'Jt 1 *)"2k@,
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Next, we note that

§É � � § 'St 1 ÆÈ § s�t u 7 j B[*�ð s�t u k-7�7 j ð s�t u *.� 'Jt 1 k�7 ÌÍ 7 j � Û'Jt 1 *,"2k-7mô�öµ*
which follows from the facts that &�7 j � s�t u *ð 'Jt 1 k�7°82zP* * 3Ö}�* y *)( 3�} / 1 is bounded on ø� Øù-ú
by (2.5) (for !²8	$;� , "N8l$;ð ) and that &�7 j B[*�ðÝs�t uVk-7 1©s�t uÖ3 ø� Øù-ú , and by Corollary 2.11 (for!»8l$µ�>Û ). Thus we havej §É � � § 'Jt 1 j B[*�� 'St 1 km� Û'St 1 *)"mkä$�§ s�t u j B[*�ð s�t u kL§É � � § 'Jt 1 j ð s�t u *�� 'Jt 1 k j � Û'Jt 1 *,"2k$�§ s�t u

j B[*�ð s�t u k j ð s�t u *,"2k$ j B[*)"2k@,
For the second equality, we used that ] É � � � �`��É á � ����`��É2� ð¡s�t u�$vð¡s�t u in the sense of D < , and
thus in the sense of _Lb . Finally, the last equality is due to the fact that ] s�t u j B[*�ð s�t u k0ð s�t u $µB
in the sense of _ b e�f (cf. Proposition 2.1).

Now that (2.14) is verified, we use it to conclude that, for every Bo3 ø£ Øù�ú ,j B[*�ð s�t u kä$ §É � � § 'Jt 1 j � Û'Jt 1 *�ð s�t u k j B[*�� 'Jt 1 k@*ÅÄmzP* y ,
That is, � ��`���� B~$ §É � � & � ��`���� � �p��É á � 1 � ��`��É2� B[,
Since, for each �KÛ , ����`���� � �p��É á � is bounded ø� Øù-ú by (2.9) (for !²8	$ �KÛ and "N8l$;ð ), we
obtain¤ � ��`���� B9¤Pü� ýþ�ÿ � §É � � ¤F& � ��`���� � �`��É á � 1 � ��`��É2� B9¤ü� ýþ�ÿ �Þ§É � � ¤ � ��p��É2� B9¤Pü� ýþ�ÿ *âBC3 ø£»Øù-ú ,
Invoking Proposition 2.1, we obtain the stated result.

The range of parameters &	õÝ* Ï 1 for which Theorem 2.12 and Theorem 2.13 hold is de-
picted in Fig. 2.1.

3. Extremely local PCFs. The classical Haar wavelet system is commonly considered
to be very local in space. In this section, we construct two PCFs that, in high spatial dimen-
sions, are either far more local than Haar (the first construction) or are as local as Haar while
delivering better performance (the second construction). Both representations are computed
and inverted very fast, as we now explain.

3.1. Extremely local PCFs: the algorithms. Let � 8l$ ���*�� � / . We begin with a se-
quence � ¬ 8ß} /4r ã , which is considered to be “the data at full resolution”. We derive the
MRA representation of the data iteratively:� s U )V& y 1L8	$N"±U / §� �
� � s &a" y�=�� 1¶*{z�$v�2* x �V*�,-,�,@* y 3�} / ,
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FIG. 2.1. For � ���d��� inside the polygon with thick boundary, we have the Jackson-type performance of Theorem
2.12. For � ���d��� in smaller lined region, we have the Bernstein-type performance of Theorem 2.13.

This resulted MRA &E� s 1 s � ¬ is the MRA associated with � , i.e., assuming � ¬ & y 1K$ j B[*.� ¬ t u k ,y 3~} / , for some function B , it follows that� s & y 1K$µ" s Q w j B[*.� s�t u k¶*{z�ô��2* y 3o} / ,
(I) Bi-orthogonal construction.
Each �+s is associated with a sequence ]Vs%8} /�r ã of detail coefficients, that are defined as
follows:

Bi-orthogonal construction, decomposition:] s &a" y�=�� 1L8	$[� s &a" y�=�� 1 x � s &d" y 1¶* y 3~} / * � 3P� ,
The inversion (reconstruction) is iterative. At each iteration, it accepts � s U ) and ] s as its
input and recovers �+s :

Bi-orthogonal construction, reconstruction: First, we compute �PsP&a" y 1 , y 3o} / by:� s &a" y 1ä$9� s U )V& y 1 x " U / §� �
�2� ¬ ] s &a" y�=�� 1@,
It is easy to see that this recovers correctly � s at the even integers. The rest is trivial, since� s &a" y�=�� 1>$6] s &a" y�=�� 1 = � s &a" y 1@* y 3�} / * � 3p� í �2,

Complexity. We measure complexity by counting the number of “operations” needed in
order to fully derive � U ) and ] ¬ from � ¬ , and add the number of operations needed for the
inversion. Here, we define “an operation” as the need to fetch an entry from some of our
arrays/vectors. Thus, for example, computing one entry in � U ) requires " / operations. Note
that ] s vanishes on "F} / , hence that those coefficients can be ignored.
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With that definition in mind, it is quite trivial to observe that the number of operation
required to process the portion of � ¬ that lies in a cube of lengthsize o is about ��6�o / . This
means that the cost of performing one complete cycle of decomposition/inversion is about� operations per one detail coefficient; in particular, this cost is independent of the spatial
dimension ? .

(II) Frame construction.
With ��8l$¾&0� ?�?-? ��1L3P� , the detail coefficients ]Vs are defined as follows:

Frame construction, decomposition:]+sP&d" y 1L8	$\�+sP&a" y�x �±1 x "±U / §� �
�2� ¬ �+s U ) & y�=���x �m1@* y 3o} / *]+sP&d" y�=�� 1L8	$\�+sP&a" y�=��|x �±1 x �gsV&a" y�x �m1@* y 3o} / * � 3%� í �2,
The inversion (reconstruction) is iterative. At each iteration, it accepts � s U ) and ] s as its
input and recovers � s :

Frame construction, reconstruction: First, we recover � s &d" y�x �±1 , y 3�} / by� s &a" y�x �m1ä$µ] s &a" y 1 = "±U / §� �
� � s U )V& y�=���x �±1¶,
The rest is trivial, since�+sF&d" y�=���x �±1ä$µ]+s&d" y�=�� 1 = �gsP&a" y�x �m1@* y 3�} / * � 3P� í �2,

Complexity. With complexity defined as before, the only difference here is the need to
compute ]Fs at the even integers. This adds about one operation per each detail coefficient.
Switching between the two reconstruction algorithms does not affect complexity. Altogether,
the cost here is about   operations per one detail coefficient.

3.2. Extremely local bi-orthogonal systems. We now provide the details of the bi-
orthogonal wavelet system that underlies the first algorithm from the previous subsection.

We note that
G�K&d" ? 1>$�å G� with

å�&JIK1L8	$ /¡s ç ) O � = T U[W�X b" Q $N" U / §� �
� T U � &SIK1@* T � 8+I r T W � Z X ,(3.1)

Let ½°/~8l$v" U /K¢ < . For each � 3P� í � , we define å � and åmÛ� aså � 8	$µ½ / &(T U � x �g1@* å Û� 8	$µ½ / &(T U � x å1¶*
and G� � &d" ? 1ä$6å � G�>* G� Û� &a" ? 1ä$µå Û� G�K,
That is, � � $v½ / " / &S�L&a" ?Vx|� 1 x �K&a" ? 1�1R*é� Û� $v½ / " / Ê �L&a" ?Fx|� 1 x " U / � Ë ,
Let
� &d��1 and

� &d��ÛV1 be the wavelet systems with mother wavelets �¨8	$ ��� � 8 � 3�� í � �
and dual mother wavelets ��Û�8	$ ���>Û� 8 � 3\� í � � . We note that each � � is supported on
two cubes each of volume " U / . Considering the fact that each of the mother wavelets in the
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our � is extremely local in high dimensions. In fact, even the convex hull of the support of� � is small: the sum of the volumes of the convex hulls of the supports of � does not exceed/ � << .

Next, we show that the two PCF systems
� &d��1 and

� &d��ÛV1 are in fact bi-orthogonal.
THEOREM 3.1. Suppose that

� &d��1 and
� &©��ÛV1 are defined as above. Then

� &d��1 and� &d�`ÛV1 are Bessel systems, and
����`����� � �`��� á � $9£�r Á w ���`��� á �S� ,

Proof. Note that, for
� 8l$ � &©��1 or

� 8	$ � &d��ÛV1 , ¤ ���� ¤ <¦ w � ORQ �}< Á w ���c� $ ¤ ���� � � ¤ < ,
the norm of

� �� � � as an endomorphism of ¤ < & � 1 . Thus, to see that
� &d��1 is a Bessel system,

we estimate ¤ ����`����� � �`����� ¤ < . It is easy to see that
����`����� � �`����� is block-diagonal, with each

block being

j � � *.� ��¥ k , for � * � bR3P� í � . Since direct computation givesj � � *.� ��¥ kä$ìë "m* � $ � b ,�V* � º$ � b ,
we need to find the spectrum of the matrix¦ =�§ \ § *
where

¦
is the identity matrix of size " / x � and § is the row vector ��� ?-?�? �0¨ of length " / x � .

Thus we get ¤ ����`����� � �`����� ¤ < $µ" / , hence we see that
� &d��1 is Bessel.

Similarly, since j � Û� *.� Û� ¥ kä$ ë � x " U / * � $ � b ,x " U / * � º$ � b ,
the value ¤ ����`��� á � � �`��� á � ¤ < is the spectral radius of the matrix¦ x "±U / § \ § *
which is � . Thus

� &d��ÛV1 is Bessel.
To verify that

����`����� � �`��� á � $7£�r Á w ���p��� á �S� , we use the fact that
����p����� � �`��� á � is block-

diagonal, too, with each block being

j �LÛ� *�� � ¥ k , � * � b�3p� í � . Since direct computation givesj � Û� *.� ��¥ k>$ ë �V* � $ � b ,�2* � º$ � b ,
we obtain the bi-orthogonality.

Note that we computed in the proof the exact frame bounds for each system, viz., for
every Bo3oD < &a5 / 1 , ¤�B9¤ <¦ w � O Q � � §�F� �`����� 7

j B[*�A[k�7 < �6" / ¤�B9¤ <¦ w � O Q � *" U / ¤�B9¤ <¦ w � O Q � � §� á � �`��� á � 7
j B[*�A Û k-7 < �¼¤�B9¤ <¦ w � O Q � ,

The condition number of the basis
� &d��1 is thus " Q w . The dual basis, obviously, must have

the same condition number.
Finally, the performance of the above bi-orthogonal system is according to Theorems

2.12 and 2.13.
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3.3. Extremely local PCF : bi-frames. The bi-orthogonal piecewise-constant system
that was constructed in the previous subsection performs as every system with piecewise-
constant decomposition and reconstruction mother wavelets. We will now show that, by
adding one additional mother wavelet to the construction, we can improve substantially the
Bernstein-type performance (Theorem 2.13). The new system is no more bi-orthogonal, but
a frame. The algorithms associated with this frame representation were detailed in î 3.1. Here
are the system details.

Let ½°/~8l$v" U /K¢ < and ��8	$¥&.� ?-?�? �g1>3P� . For each � 3P� , we define å � aså ¬ 8	$µ½ / T
©±&0� x T
©�å�&d" ? 1^å1@* å � 8	$µ½ / T
©m&aT U � x ��1@* � 3p� í �2*(3.2)

and let � ¬ 8l$¼�-� � � � �
� where
G� � &a" ? 1ä$µå � G�>, That is,� ¬ 8	$v½Ý/2" / Ê �K&d" ?�= �m1 x " U < / �K&.& ?g= �±1 e "P1 Ë *� � 8	$v½Ý/2" / &(�K&d" ?Vx|��= �±1 x �K&d" ?g= �m1.1[* � 3P� í �2,

Note that
� &d� ¬ 1 is Bessel. Since each � � 3Õ� ¬ is a piecewise-constant with one vanishing

moment, the fact that
� &(� � 1 is Bessel follows from Theorem 2.12 with

Ï 8	$��2*aõ�8	$�÷48l$q"
(noting that ø£ ¬<�< $vD < , and ø� ¬ <�< $#¤ < &(}#6�} / 1 ).

We show next that the Bernstein-type inequality ¤-B9¤ üÚ ýþ�ÿ �¯¤ ����`��� d � B9¤ü� ýþ�ÿ is valid for a
broader range of spaces. The improvement is particularly notable for large values of õ (e.g.,õ�$vö ).

THEOREM 3.2. Let ��ô�õÝ*�÷»�Nö , and let

Ï 3C5 satisfy (2.6). Then for every B 3 ø£ Øù�ú ,
we have §É � � d ¤ � ��p��É2� B9¤Pü� ýþ�ÿ �¥¤-B9¤LüÚ ýþ�ÿ � ORQ � ,

Thus, remarkably, the Bernstein-type performance of the system
� &d� ¬ 1 is identical to

its Jackson-type performance! The &	õÝ* Ï 1 -region for which Theorem 3.2 holds is depicted in
Fig. 3.1.

Discussion. The addition of the mother wavelet � ¬ is not only enhancing the performance of
the representation, but also degrades its extreme locality: whereas the sum of the volumes of
the supports of " / x � mother wavelets ��� � � � �
�2� ¬ never exceeds " , � ¬ alone is supported
in a cube of volume " / . That said, the average volume of the supports of the wavelets in the
current PCF is &a" / = "V1 e " / �¼�P*
which is on par with the tensor Haar system. However, the tensor Haar system performs only
according to Theorem 2.13, hence is lagging in performance behind our current system.

To prove Theorem 3.2, we first find a dual frame
� &d��Û¬ 1 for

� &©� ¬ 1 .
LEMMA 3.3. Let ! be any trigonometric polynomial that satisfies !2&(�1p$¯� . We define

the dual refinement mask å2Û and dual wavelet masks &Så2Û� 1 � �
� byå Û 8l$vT U © åÝ&a" ? 1^å Ê � = !«ªJ� x 7 å�&d" ? 1�7 <q¬ Ë *å Û¬ 8l$v½°/2" / T © å�&0� x !7 å�&a" ? 1-7 < 1@*(3.3) å Û� 8l$v½°/mT © &(T U � x T U < � ! å�&d" ? 1^å1�* � 3P� í �,
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FIG. 3.1. By Theorem 3.2, the Bernstein-type performance is now valid for the same range of parameters as
the Jackson-type performance. Compare this graph with Fig. 2.1.

Then the masks &Så2*�&Så � 1 � �
� 1 and &Så2Û*-&(åmÛ� 1 � �
� 1 satisfy the MUEP condition (1.4), i.e.å2å Û & ?�=³ê 1 = §� �
� å � å Û� & ?�=!ê 1>$ ë �V* ê $v� ,�2* ê 3i���*.æ � /2í � .
Proof. For ê 3 ���*.æ � / , we haveå�&JIK1.å Û &JI =!ê 1 = å ¬ &SIK1^å Û¬ &SI =!ê 1 = §� �
�2� ¬ å � &SIK1^å Û� &JI =Õê 1$ å�&JIK1�[T URW © Z � X � D+� å�&d"gIK1^å�&SI =Õê 1 Ê � = !2&JI =Õê 1��Y� x 7 å�&a"+IK1�7 < ¨ Ë�®= ½ </ " / T U[W © Z X &0� x T U[W © Z X å�&a"gIK1 å�&JIK1�1  T W © Z � X � D+� å�&JI =!ê 1 Ê � x !2&SI =!ê 1�7 å�&a"+IK1�7 < Ë�®= ½ </ TVURW © Z X'§� �
�2� ¬ &aT�W � Z X x ��1  T�W © Z � X � D+�6 � T U[W � Z � X � D+� x T U < W � Z � X � D+� !2&SI =!ê 1 å�&d"gIK10å�&JI =Õê 1 � ®$µT W © Z D å�&JI =Õê 1 x T W © Z D 7 å�&a"gIK1-7 < å�&JI =!ê 1=!2&SI =!ê 1= TgW © Z D TVURW © Z X å�&JIK1 å�&d"gIK1^å�&SI =Õê 1�!2&JI =Õê 1= T W © Z D " U / � §� �
� T URW � Z D x � 	 x T W © Z D " U / � §� �
� T U[W � Z � X � D+� x � 	x T W © Z D å�&a"gIK1.å�&JI =!ê 1=!2&SI =!ê 1." U / � §� �
� T URW � Z � X � < D+� x � 	= TgW © Z D å�&a"gIK1.å�&JI =!ê 1=!2&SI =!ê 1."mU / � §� �
� TPURW � Z � < X � < D+� x � 	



ETNA
Kent State University 
etna@mcs.kent.edu

156 Y. HUR AND A. RON$6T W © Z D " U / §� �
� T U[W � Z D $ ë �V* if ê $v� ,�2* if ê 3 ���2*�æ � /2í � ,
where, for the second to last equality, we used (3.1) and the identity T U © å�$6å .

Now we show that the pair & � &©� ¬ 1¶* � &©�`Û¬ 1.1 is a bi-framelet.
LEMMA 3.4. Let �oô¯�µô � . Let �-å � � � �
� be as in (3.2). Then there exists a framelet

system
� &©�`Û¬ 1 associated with a refinable function ª[ÛC3°� � and corresponding å2Û so that

the pair & � &©� ¬ 1@* � &d�`Û¬ 1.1 is a bi-framelet.
To prove the above lemma, we first recall a result from [4]. In fact, we state a simplified

version of it.
PROPOSITION 3.5. Suppose that M is some fixed trigonometric polynomial which has a

zero of order " at the origin. Let ±ª be some refinable function with a refinement mask ±å that
satisfies ±ªÖ3���À for some ��ô¥½�ô¨� . Then, for every 8��à� , there exists a trigonometric
polynomial ! such that !2&a�P1>$¥� , and such that the refinable function ª with mask ±åÝ&0� = !GMV1
belongs to �~À U > .

We also need the following (again simplified) result from [7] :
PROPOSITION 3.6. Suppose that B 3²� À , for some �Nô;½ ô � . Then the system&aB�s�t u�8Lz|3~}�* y 3~} / 1 is Bessel if

GB°&(�1>$6�,
Proof of Lemma 3.4. First we note that the refinable function ±ª whose mask is T U © å�&a" ? 10å ,

with å being as in (3.1), is a continuous piecewise-linear function, hence satisfies ±ªC3���À for
any �Côq½Nô � . For any given �oô³�µô � , we choose ½ so that �µô¼½vô � . Then we use
Proposition 3.5 to conclude that there exists ! which gives the refinable function ªRÛ 3°� � .
Here we used the fact that M48l$¥� x 7 å�&d" ? 1�7 < has zero of order " at the origin.

Now we argue that the dual wavelet system
� &d� Û¬ 1 determined by the above ! is Bessel.

For that, it suffices to show that
� &S�LÛ� 1 is Bessel, for each � 3\� , which will follow once

we verify that �KÛ� satisfies the assumptions needed in Proposition 3.6. Since all the dual
masks (cf. (3.3)) are trigonometric polynomials, ªRÛ¥3´� � implies that �KÛ� 3´� � . The
condition

G�KÛ� &(�1 $q� is equivalent to å2Û� &(�1E$¼� . This latter condition trivially follows from
the assumption å�&a�P1>$[!2&(�1ä$¼� .

By combining the above results with Lemma 3.3 and the fact that
� &d� ¬ 1 is Bessel, we

see that all the requirements for & � &d� ¬ 1@* � &d�`Û¬ 1�1 to be a UEP bi-framelet are satisfied.

Proof of Theorem 3.2. For any fixed

Ï ô � , we let  be such that @BH
J � Ï *�� � ô¯ !ô � .
Then by Lemma 3.4, we can construct a dual framelet system

� &©� Û¬ 1 in a way that ª Û 3�� � .
For each �KÛ43o�`Û¬ , we let& � 8l$¾& & �s�t ' & y *)(�1L8	$ & � &�zP* y  +* *,(o1L8-zP* * 3o}�* y *)('3�} / 1@*
with

&à� &�zP* y  +* *)(�1c8	$7-�s�t uq/ 'St 1 j "gs�t u±*��>Û'Jt 1 k¶*2-�s�t u0/ 'Jt 1à3 �
3�� � , where " is a function with one
(or more) vanishing moment and satisfying "�3���À� for any �4�Ö½!ôN� and for any �C3p$ .

Since �KÛÕ39� � , by Proposition 2.5 (for L!8	$¯�>Û , M!8l$." and �¥8	$. ), we get, for a
suitably large � and for z�� * , and with 8Gµ�8	$\ x Ï ,7 & �s�t ' & y *,(o1�7V�N"±U � s U ' �^� � � Q w � O � = 7 " s U ' ( x�y 7" s U ' Q U

�
$N" � ' U s �©� Ø�� Q w � " U � ' U s � >,¶ Ê � = 7 " ' U s y�x (Õ7 Ë U

�
,

Thus by Proposition 2.4 (for �³8	$78
µ ), we obtain (2.8) with 8 < there replaced by 8Gµ%�µ� , for
any

Ï ô¥� . The rest of the proof is identical to the proof of Theorem 2.13. Therefore we get
the improved Bernstein result with

Ï
satisfying (2.6) instead of

Ï
satisfying (2.11).
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