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Dedicated to Ed Saff on the occasion of his 60th birthday

Abstract. Weighted polynomial approximation of derivatives on the half line � �����	� is considered. The weight
function will be of the form 
��������� , a “folded” Freud weight. That is, that ����������� �!���"� , where 
#��$%�'&(� is a Freud
weight on �*)+�,�-�.� . Linear processes which can be used for approximation of derivatives include interpolation, in
particular using node-sets recently developed by J. Szabados.
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1. Approximation of derivatives with folded Freud weights on / 0%1�243 . Let 5768:9; / <=1>2?3 , that is, let 5A@CBEDE1�F#F#F�1E5+@ 9 D be continuous and GIH ; @�JKD 5 @ML�D(NPO 3	QR< as O QS2 forTVU <=1#F�F#F#1EWXF The goal is to approximate 5A@CB>D>1#F#F�F(1E5+@ 9 D in the same weighted norm, using
a linear projection, and using only data about 5 . The weighted norms will involve folded
Freud weights on / <Y1>2?3 , which are related to Freud weights. The function G H[Z @�\�D is a Freud
weight on the interval N^] 2_1�243 if the function ` is even, twice continuously differentiable
on N <Y1�243 , with `ba NPc 3ed?< on the same interval, and ` also satisfies therefhgiNPc `:a NKc 3^3ja` a NPc 3 glk
for two constants

f 1 k dnm .
The notation 5o6 8:9Z N^] 2_1�243 means that 5A@CB>D>1#F�F#F#1>5+@ 9 D are continuous and G H�Z @�\�D5+@ML�D NPc 3pQq< as c Qsr:2 for

TtU <Y1#F�F#F(1EWXF
On the interval / <=1>2?3 , the weight function G H ; @CJKD will be called a folded Freud weight, if

there exists a function ` on Nj] 2u1>2?3 such that v NPc�w 3 U ` NKc 3 and G H[Z @�\�D is a Freud weight.
In Balázs and Kilgore [5], the weights v NKO 3 were called split Freud weights, but calling them
folded Freud weights seems to be better.

Relevant both to Freud weights and to folded Freud weights are the Freud numbers Wyx
which are defined for z{d|< as the least positive solution of the equation W}x�` a N W#x=3 U z . From
their definition it follows (Mhaskar [8], (4.1.3)) that there exist positive constants ~}��1�~ w 1�~(�"1�~��
depending on ` , such that ~��>z���*�I�K�,� W x � ~(��z���*�I��� F(1.1)

Also, we use the notations ��x N 5A��G H ; @CJKD�3 for a 5�6 8 ; / <Y1>2?3 and ��x N�� ��G H[Z @�\�D-3 for� 6 8 Z Nj] 2u1>2?3 to denote the error in the best weighted approximation.
The following Theorem gives an estimate for the weighted approximation of 5�@ML(D , T�U<Y1�F#F#F#1�W , based upon the approximation of 5 .
THEOREM 1.1. Let 5�6 8�9; / <=1>2?3 . For any given

T 6{��<=1#F�F#F(1EWI� let � be a polynomial
of degree at most z�� T such that O H��� N 5 NPO 3 ] � NPO 3^3 has a removable singularity at < and
such that for some �

O H � � G H ; @CJKD(� 5 NKO 3 ] � NKO 3 � g � � W xz�� L � x N 5 @ML�D �EG H ; @CJKD 3(F�
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Then there is a constant   L such thatG H ; @CJKD � 5 @ML�D NPO 3 ] � @ML�D NPO 3 � g   L �¡�ex N 5 @ML�D �EG H ; @CJKD 3�F
LEMMA 1.2 (cf. Mhaskar [8], Theorem 4.1.1). There exists a constant ¢ such that if� 6 8 �Z N^] 2_1�243 then�ex N�� ��G�H�Z @�\�D 3 g ¢ N W�x�£}z¤3^�ex H � N���a ��G�H[Z @�\�D 3(F
LEMMA 1.3 (cf. Mhaskar [8], Theorem 4.1.7). If � 6 8 �Z Nj] 2u1>2?3 and if � x is a

polynomial of degree at most z{¥¦m with§ G"H�Z @�\�D>N���NKc 3 ] � x NPc 3^3 § g 8 W#xz � x NK�Xa ��G�H�Z @�\�D 3�1
then there exists a constant ¨ , such that,§ G�H[Z @�\�D>NK�Xa�NKc 3 ] � ax NPc 3^3 § g 8 ¨+�ex H � N���a ��G�H[Z @�\�D 3(F

Here, we give in detail the proof of Theorem 1.1 for W U m . The result is true for arbitraryW , but the details are quite involved and lengthy.
Proof of Theorem 1.1 for the case W U m . Without loss of generality, the proof may be

simplified immediately by assuming that 5 N <�3 U � N <I3 U < . For, if 5 N <I3�©U < one can replace5 NKO 3 by 5 NKO 3 ] 5 N <I3 and, as it is already assumed that 5 N <�3 ] � N <I3 U < , also replace � NPc 3
by � NKc 3 ] � N <�3 . Then, proceeding with the assumption that5 N <I3 U � N <�3 U < , the transformation O«ª�c�w induces an isometric isomorphism between8 ; / <=1>2?3 and the even part of

8 Z Nj] 2u1>2?3 . Furthermore, let O H �� 5 NPO 3 U ��NPc 3 . It follows
easily that � is an odd function, � 6 8 �Z N^] 2_1�243 and O H �� � NKO 3 is mapped to an odd polyno-
mial ¬ NKc 3 . Also,G�H[Z @�\�D � ��NKc 3 ] ¬ NKc 3 � U O H �� G�H ; @CJKD � 5 NKO 3 ] � NKO 3 � g � W xz �ex N 5 a ��G�H ; @CJKD 3�F(1.2)

Furthermore,

5 a�NKO 3 U m N���a�NKc 3A� ��NKc 3c 3 U m¯® ��a*NPc 3¤� 5 NKO 3O±°(1.3)

and � a�NKO 3 U m N ¬ a*NPc 3A� ¬ NKc 3c 3 U m²® ¬ a�NKc 3¤� � NPO 3O³° F
Combining these observations, we see that

5 a NKO 3 ] � a NPO 3 U m²® � a NKc 3 ] ¬ a NKc 3A� ��NKc 3 ] ¬ NKc 3c ° F
Now, if c ©U < , there is c � between < and c such that, using the Mean Value Theorem and the
monotonicity of ` , we have

G H[Z @M\�D � ��NPc 3 ] ¬ NPc 3c � U G H�Z @�\�D � � a NKc � 3 ] ¬ a NKc � 3 � g G H�Z @�\ � D � � a NKc � 3 ] ¬ a NKc � 3 � 1
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and thus G H ; @CJKD � 5 a NPO 3 ] � a NPO 3 � g § G H�Z @�\�D N�� a NPc 3 ] ¬ a NKc 3^3 § F
Importantly, from this inequality and from (1.2) we see also that the hypothesisO H �� G�H ; @CJKD � 5 NPO 3 ] � NKO 3 � g � W#xz ��x N 5 a ��G�H ; @CJKD 3
implies § G�H�Z @�\�D>N���NKc 3 ] ¬ NKc 3�3 § g � W xz �ex NK�Xa ��G�H[Z @�\�D 3�1
and by Lemma 1.3 there exists a constant ¨ such thatG�H[Z @�\�D � ��a*NPc 3 ] ¬ a�NKc 3 � g ¨«�7�ex N���a ��G�H[Z @�\�D 3(F
Therefore, G�H ; @CJKD � 5 a�NKO 3 ] � a*NPO 3 � g ¨«�¡� x NK�Xa ��G�H[Z @�\�D 3(F(1.4)

From (1.3) we have �Xa�NKc 3 U  5 aPNPO 3 ] 5 NPO 3O 1
from which it follows that�ex NK� a ��G H[Z @�\�D 3 g  ��x N 5 a ��G H ; @�JKD 3%�V�ex N 5 NKO 3O ��G H ; @�JKD 3�F(1.5)

Furthermore, it is the case that�ex ® 5 NPO 3O �EG"H ; @CJKD ° g ��x N 5 a ��G�H ; @CJKD 3(F(1.6)

To see this, let ´� be any polynomial of degree at most z���m such that ´� N <I3 U < and let O dl< .
Then, using the Mean Value Theorem, there is a O � between < and O such that

G�H ; @CJKD 5 NPO 3 ] ´� NPO 3O U G�H ; @CJKD�N 5 a�NKO � 3 ] ´� a*NPO � 3^3(1
and, since v NKO � 3 � v NPO 3 , it follows that

G�H ; J � 5 NKO 3 ] ´� NKO 3O � U G�H ; @CJ � D � 5 a�NKO � 3 ] ´� a�NKO � 3 � F
Since O dl< is arbitrary and since O U < presents no additional difficulty, it follows that§ G H ; @�JKD 5 NPO 3 ] ´� NKO 3O § g § G H ; @CJKD N 5 a NKO 3 ] ´� a NPO 3^3 § F
As ´� N <�3 U < , it is clearly true that any polynomial of degree at most z can be written as ´�:a ,
given a suitable choice of ´� , which establishes (1.6).

Combining (1.5) with (1.6) now results in� x NK� a ��G H�Z @�\�D 3 g?µ � x N 5 a ��G H ; @�JKD 3�1(1.7)

and combining (1.4) with (1.7) givesG"H ; @CJKD � 5 a*NPO 3 ] � a�NKO 3 � glµ ¨b�7�ex N 5 a ��G�H ; @CJKD 3�F
which completes the proof of Theorem 1.1 for the case W U m , with   � U µ ¨ .
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2. Approximation of a derivative by interpolation. As a concrete method for choos-
ing an approximating polynomial for our function 5 , we consider Lagrange interpolation in
particular. First we need some definitions:

The set ¶�x U � O B 1�F#F#F�1 O x[� , where < U O B � O � F#F�F � O x , will be a set of nodes in / <Y1�243 .
The interpolation operator for 5�6 8 ; / <Y1>2?3 on the nodes ¶�x is given by· x N 5[1 O 3 U x¸

L�¹%B 5 NKO L 3-º L NPO 3�1
in which the functions º L are the fundamental polynomials, defined for

TtU <Y1#F�F#F(1�z by» L NKO 3 U x¼½ U <½ ©U¦T
O¾]¿O ½O L ]{O�À 1(2.1)

It is easily seen that § · x § ; U § G H ; @CJKD x¸L�¹�B G
; @�J � D � º L NKO 3 � § F

A second interpolation operator based upon the node-set ¶ x is also useful here. The operator·!�x is defined only for those 5?6 8 ; / <Y1�243 which satisfy 5 N <�3 U 5 NPO B 3 U < . Its range will
consist of the span of its fundamental functions º �L , defined for

TÁU m"1�F#F#F#1^z by» �L NPO 3 U O ��O ��L
x¼½ U m½ ©UÂT

OA]{O ½O L ]¿O�À 1(2.2)

after which · �x N 5[1 O 3 U x¸
L�¹ � 5 NKO L 3-º �L NPO 3�F

We note that
·Ã�x N 5[1 O 3 is not a polynomial unless its output is zero, but O �� ·!�x N 5[1 O 3 is a poly-

nomial.
Also, naturally related to the nodes ¶ x are the nodes Ä w x U � c B 1 c[Å �}1#F�F#F�1 c[Å x � satis-

fying c B U < and c L UÂÆ O L and c H L U ]�c L F(2.3)

On the nodes Ä w x there is also a Lagrange interpolation operator � w x . Denoting the
T

th
fundamental polynomial for � w x by Ç L for

TtU ] z�1�F#F�F(1^z , we have

Ç L NKO 3 U x¼½ U ] z½ ©U¦T
c	]{c�Àc L ]{c�À 1(2.4)

and for � 6 8 Z Nj] 2u1>2?3 � w x N�� 1 c 3 U x¸
L(¹ H x ��NKc L 3^Ç L NPc 3�1
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with § � w x § Z U § G H�Z @�\�D x¸L�¹ H x G Z @�\ � D(� Ç L NKc 3 � § F
THEOREM 2.1. Let G H ; @�JKD be a folded Freud weight and G H[Z @M\�D the related Freud

weight, and let the node-sets ¶%x and Ä w x be related as in (2.3). Then for 5Â6 8 �; / <Y1�243 ,
such that 5 N <I3 U < , the following estimates hold:� G H ; @�JKD N 5 NKO 3 ] · x N 5[1 O 3�3 � g N mÃ� § · x § ; 3j� x N 5A��G H ; @CJKD 3�F(2.5)

� G�H ; @CJKD�N 5 NKO 3 ] · x N 5[1 O 3�3 � g N m!� § � w x § Z 3^�ex N 5A�EG"H ; @CJKD 3�F(2.6)

Also, O H �� 5 NPO 3!6 8 ; / <Y1�243 , and� O H �� G�H ; @CJKD�N 5 NKO 3 ] · x N 5[1 O 3^3 � g N mÈ� § · �x § ; 3^�ex NPO H �� 5 NKO 3��EG�H ; @CJKD 3(F(2.7)

Furthermore, there is a constant   such that� O H �� G�H ; @CJKD�N 5 NKO 3 ] · x N 5[1 O 3^3 � g   W xz N m!� § · �x § ; 3^�ex H � N 5 a*NPO 3���G�H ; @CJKD 3(2.8)

and � O H �� G H ; @CJKD N 5 NPO 3 ] · x N 5[1 O 3^3 � g   W xz N mÈ� § � w x § Z 3j�ex H � N 5 a �EG H ; @CJKD 3(F(2.9)

There is a constant
8

such that for every 5�6 8 �; / <Y1>2?3 satisfying 5 N <I3 U <§ G�H ; @�JKDEN 5 a*NPO 3 ]lN · xY5 NPO 3^3 a 3 § g 8 N mÈ� § · �x §(É 3^�ex N 5 a �EG"H ; @CJKD 3�1(2.10) § G�H ; @CJKD�N 5 a*NPO 3 ]lN · xY5 NPO 3^3 a 3 § g 8 N m!� § � w x § Z 3j�ex N 5 a �EG�H ; @CJKD 3�1(2.11)

If 5 N <I3 is not assumed to be < , then all of these results remain valid, as 5 NPO 3 can then be
replaced by 5 NKO 3 ] 5 N <I3 .

Proof. (2.5) follows easily from the Lebesgue’s theorem on bounded linear projection
operators.

(2.6) follows by combining (2.5) with the fact that
§ · x § ; g § � w x § Z , which is true

because
8 ; / <Y1>2?3 corresponds naturally to the even part of

8 Z N^] 2_1�243 and the output of· x , which operates only on
8 ; / <Y1�243 , also naturally corresponds to the output of � w x oper-

ating on the even functions in
8 Z N^] 2_1�243 . More explicitly, if � is defined on Nj] 2u1>2?3 by��NPc 3 U 5 NKc[w 3 , and if 5 N <�3 U < , then (2.6) follows from the fact that

· x N 5[1 O 3 U · x N 5[1 c�w 3 U� w x N�� 1 c 3 .
Now, let 5�� NPO 3 U O H �� 5 NKO 3 , with 5"� N <�3 U < . That 5"� is continuous should be clear, as 5

itself is differentiable and 5 N <�3 U < . For the same reasons, 5X� is clearly bounded on / <Y1�m(Ê .
Also, � 5 � NKO 3 � g � 5 NKO 3 � whenever O ¥Ëm . Therefore, O H �� 5 NPO 3 U 5 � is in

8 ; / <=1>2?3 . Important
in what follows is the identityO H �� G�H ; @CJKD�N 5 NPO 3 ] · x N 5[1 O 3�3 U O H �� G�H ; @CJKD�N 5 NPO 3 ]¿O �� · �x N 5 � 1 O 3^3�F(2.12)

This is true because
· x N 5[1 O 3 U O �� ·!�x N 5��}1 O 3�3 , following from5 NKO L 3�º L NKO 3 U O �� 5 � NKO L 3-º �L NPO 3�1 for

TtU m"1�F#F#F#1^z�1
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a consequence of (2.1) and (2.2). Therefore, (2.7) follows from Lebesgue’s theorem on
bounded linear projections. For,

·��x defines a bounded linear projection whose domain is
the set of functions in

8 ; / <Y1�243 which are zero at < , and by (2.12) the inequality in (2.7) is
equivalent to the statementG H ; @CJKD(� 5"� NPO 3 ] · �x N 5��}1 O 3 � g N m!� § · �x § ; 3j� x N 5"� NPO 3��EG H ; @CJKD 3�F

To prove (2.8) and (2.7), we now define a function � � by c=� � NPc 3 U 5 NKc[w 3 , noticing that� � is odd. Since 5 N <I3 U < and 5l6 8 ; / <Y1>2?3 , it follows that � � is defined and continuous
on Nj] 2u1>2?3 . In particular, � � is defined and continuous at < , with � � N <�3 U < . Indeed, � � is
the odd extension of 5 � NPc w 3 , and it follows that � � 6 8 Z Nj] 2u1>2?3 , with

§ G H[Z @�\�D � � NPc 3 § U§ G H ; @CJKD�5 � NPO 3 § .
(2.8) follows from (2.7). Specifically, we have�ex NPO H �� 5 NKO 3(��G�H ; @CJKD 3 U �ex NK� � ��G�H�Z @�\�D 3�1

and, by using Lemma 1.2 followed by (1.7), we get�ex NPO H �� 5 NPO 3��EG"H ; @CJKD 3 g ¢ N W#x�£yz¤3j�ex H � NK�Xa� �EG"H�Z @�\�D 3 g|µ ¢ N W#x=£yz¤3j�ex H � N 5 a*NPO 3��EG"H ; @CJKD 3�1
and (2.8) follows, with   U µ ¢ .

(2.9) follows from (2.8). To see this, recall that � � NPc 3 is the odd extension of 5I� NPc�w 3
and that � �Á6 8 Z N^] 2_1�243 . Thus

§ G H[Z @�\�D � � NKc 3 § U § G H ; @CJKDj5"� NKO 3 § , and � w x NK� �}1 c 3 exists.
Furthermore, from (2.2) and (2.4) we have for every 5V6 8 ; / <=1>2?3 such that 5 N <�3 U < and
for � the odd extension of 5 NPc[w 3 , that � G H ; @�\ � D ·!�x N 5[1 c[w 3 � U � G H[Z @�\�D�� w x N�� 1 c 3 � for every c .
Therefore,

§ ·Ã�x § ; g § � w x § Z . The estimate (2.9) follows.
(2.10) follows directly now from the application of Theorem 1.1 to the inequality (2.8),

using � U   N m!� § ·Ã�x § ; 3 and, also (2.11) follows by the application of Theorem 1.1 to the
inequality (2.9), using here � U   N mÈ� § � w x § Z 3 .

The final statement of the theorem involves preconditioning of a function 5 which does
not satisfy 5 N <�3 U < ; the statement should be obvious.

This concludes the proof of Theorem 2.1.
REMARK 1. The relationship (2.3) which gives the nodes Ä	x in terms of the nodes ¶%x

is obviously reversible, and it is clearly possible to define operators
· x and

·!�x for use in8 ; / <=1>2?3 based upon an operator � w x defined on
8 Z Nj] 2u1>2?3 with better-known proper-

ties. The only requirement is that � w x should be based upon nodes which are symmetric with
respect to < . If this construction is carried out, then the three estimates (2.6), (2.9), and
(2.11), which are all given in terms of

§ � w x § Z , can be very useful.
In the next section, we carry out precisely such a construction, based upon a node-setÄ x and obtain error estimates and convergence estimates, which use these estimates from

Theorem 2.1.

3. A convergence result for approximation of derivatives in Ì	ÍÎ / 0%1�243 . Here, we
give a particular set of nodes ¶%x for the approximation of derivatives, using the methods of
the previous section.

The construction of these nodes of interpolation requires the Mhaskar-Rahmanov-Saff
numbers ÏXx , defined by the equationÐ�Ñ �B Ï x O `:a N Ï x O 3�Ò OÆ m ]¿O w U z for z{¥nm"F
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It is known (see Mhaskar [8], (6.1.21), p. 131) that W x g Ï x g Æ  W w x .
THEOREM 3.1. Let G H ; @CJKD be a folded Freud weight, and let ` NKc 3 U v NPc�w 3 . For z{¥Âm

let the node-set Ä w x be defined by c x U Ï w x H � and c H x U ] Ï w x H � , with c H x"Ó � 1�F#F�F(1 c x H �
chosen as the

 z ] m zeroes of the N  z ] m}3 st-degree orthogonal polynomial with respect to
the Freud weight G H w Z @�\�D .

Let the nodes ¶%x be derived from the nodes Ä w x by means of (2.3), and let the interpo-
lation operator

· x be defined upon the nodes ¶¤x .
Then, the following estimates hold for interpolation of any function 5�6 8 �; / <Y1�243 , with

the constants
8

and
8 � depending only upon v NKO 3 :§ G H ; @CJKD N 5 NKO 3 ] · x N 5[1 O 3�3 § g 8¿Ô�Õ�Ö z%� x N 5A�EG H ; @CJKD 3

and § G�H ; @CJKD�N 5 a�NKO 3 ]lN · x N 5[1 O 3^3 a 3 § g 8 � ÔMÕ"Ö z%� x N 5 a ��G�H ; @CJKD 3(F
Thus, § G�H ; @CJKD�N 5 NPO 3 ] · x N 5[1 O 3�3 § Q³< as z Q×2(3.1)

and § G H ; @CJKD N 5 a NKO 3 ]lN · x N 5[1 O 3^3 a 3 § Qs< if
ÔMÕ"Ö z%� x N 5 a ��G H ; @CJKD 3�Qq< as z�Qs2uF(3.2)

Proof. For the interpolation operator � w x upon the node-set Ä w x in the Theorem there
exists a constant ~ independent of z such that§ � w x § Z g ~ ÔMÕ"Ö z�F
This estimate is proved in Szabados [9], along with the construction of the node-sets Ä w x .
Using this estimate for

§ � w x § Z , the first two estimates given here follow from Theorem 2.1.
In particular, the inequalities (2.6) and (2.11) give estimates directly in terms of

§ � w x § Z .
Now, the estimate (3.1) also follows from (2.9), combined with the observation thatW#xz ÔMÕ"Ö z�Qq< as z�Qs2u1

which follows from (1.1).
The estimate (3.2) is a straightforward application of the second estimate in the Theorem,

already established.
REMARK 2. For the operators � w x the lower estimate ~ ÔMÕ"Ö z for growth rate is also

shown to hold in general, in the presence of any Freud weight (Vértesi [10]), and thus the
estimates for the growth of

§ � w x § Z cannot be improved here. For the particular case that the
Freud weight is the Hermite weight and the folded weight is the Laguerre weight, the lower
estimates for growth rate of both

§ · x § ; and
§ � w x § Z which appear in Theorem 3.1 are sharp.

For these two weight functions the lower estimate follows from the fact that the weighted
operator of interpolation obeys the Bernstein-Erdős conditions (Kilgore [6]), combined with
the fact that in any space where the Bernstein-Erdős conditions characterize minimal norm
interpolation, the lower estimate ~ ÔMÕ"Ö z must hold (Kilgore [7]).
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