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NUMERICAL COMPUTATION OF THE EIGENVALUES
FOR THE SPHEROIDAL WAVE EQUATION WITH
ACCURATE ERROR ESTIMATION BY MATRIX METHOD*

YOSHINORI MIYAZAKI!, NOBUYOSHI ASAIY, DONGSHENG CAIS, AND YASUHIKO IKEBEY

Abstract. A method to compute the eigenvalues of the spheroidal wave equations is proposed, as an application
of a theorem on eigenvalues of certain classes of infinite matrices. The computation of its inverse problem (namely,
solving another parameter ¢2 for given eigenvalue \) is likewise given. As a result, precise and explicit error
estimates are obtained for the approximated eigenvalues.
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1. Introduction. The spheroidal wave equation

d o, dw 9 9 m? B
(1.1 dz{(l z)dz}+()\mn 'z =52 w =0,

with m an integer and c real, is obtained when the Helmholtz equation is expressed in prolate
spheroidal coordinates followed by separation of variables. In the oblate (spheroidal coordi-
nates) case, c? is replaced by (—c?) in (1.1). In this paper, we assume m > 0 and the prolate
case (m < 0 or the oblate case may be dealt with likewise). The eigenvalue problem of the
spheroidal wave equation is to find A, such that w(z), the solution of (1.1), is regular in
[—1,1]. We call \,,,, an eigenvalue and w(z) a spheroidal wave function denoted by pel(z).
As will be stated later, A, is real. Eigenvalues sorted in an increasing order correspond to
havingn=m,n=m+1, ...

The spheroidal wave functions occur in the solution of equations involving separation
of variables in spheroidal coordinates. The solution of the spheroidal wave equation plays
a significant role in the study of light scattering problem in optics, atomic and molecular
physics, and the like. Although there is abundant literature on this function, there are far
fewer publications on the eigenvalues of the differential equation. The paper [4] applies
an asymptotic iteration method to calculate the angular spheroidal eigenvalues, whereas [7]
discusses different methods for the solution of the differential equation depending on the
value of the parameter c2.

In the present paper we propose a matrix method for determining the eigenvalues, which
applies for all values of ¢2, and we furthermore obtain an accurate estimate of the error of our
approximation. In addition, our method also enables the solution of an inverse problem, i.e.,
the determination of ¢? corresponding to a given eigenvalue.

The expansion of pel”(z) by the associate Legendre functions gives

oo
1.2) pen'(2) = ZAZ”,QHS Prarys(2);
k=0
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s = mod(n —m,2),
where P, . (2) is the associate Legendre function and mod(i, j) is the remainder when i
is divided by j. P™(z) is of the form

mP,
P (z)=(1- zz)m/QdTT:n(z) (P.(2) : Legendre polynomial)

with orthogonality over [-1,1],
/ P (2) PP (2)dz = 0 (1 # ),

m 2 (n+m)'
/ @) 2n+1 “(n—m)

It is known that the substitution of (1.2) into (1.1) gives the following three-term recur-
rence relations [1, Chap 21, formula 21.7.3]. For convenience, let A,Tl”’ & and A, be simply
rewritten as Ay and A, respectively, in the sequel.

When n — m is even

BoAo + agAs = Ay,
(1.3) YorAok—2 + Por Aok + aop Aspio = Moy (E=1,2,...).
When n — m is odd
BrAr + a1 Az = M,y
Yort1A2k—1 + Pok1 Aokt + Q21 Aokt = Aapyr (B =1,2,..).
The symbols ay, B, and 4, in the equations represent

2m+k+2)2m+k+1) , ¢
Cm+2k+3)2m+2k+5). 4
2m+k)(m+k+1)—2m> -1 ,
(2m + 2k — 1)(2m + 2k + 3)

o = (k — 00),

(1.4) Br=(m+k)(m+k+1)+

~ k? (k = o0), and

k(k—1) ,
= ~—(k—>
"= Gmr =g Emr k= ~ 1 F o)
fork =0,1,2,.... Since the two cases are treated in the same way, only the former case will

be discussed in this paper.

2. Behavior of expansion coefficients. In this section, we discuss the behavior of { Ao} (k =

0,1,2,...) of (1.3).
First, let us begin with the next inequality:

@1 i,@ K(m, 2k) < oo, where K (m, a) = — (2m + a)t
' 2 fL(m, 2R) < oo, where R{(m.a) = 5 =0 1T @

This is easily shown as

| per@yas = / > A PRl

_k - A 2m+4k+1  (2k)! ‘
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Next, consider the recurrence relations with the same coefficients as (1.3), or

Bohi + aghs = Ahy,
(2.2) Yorhk—1 + Borhi + corhpyr = A (kK =2,3,4,...).

By [6, Theorem 2.3, case(a)], the existence of two independent solutions of (2.2) (say, {hg,1}, {hr,2})
is guaranteed with the behaviors

hitia _ 16K 2

o = =L o)

hk+1,2 _ _ C
b2 16k2

[1+0(1)] = 0 (k — o0).

From (2.1), it is obvious that { A2} (K = 0,1,2,...) shows the same behavior as {hy,2},
the minimal solution of (2.2). Thus,
Aspy2

2. =—
2.3) Aoy 162

[1+40(1)] (k = o0).

3. (Ordinary) eigenvalue problem. In this section, a computation of eigenvalues is
shown, along with its error estimate.

In 1995, the following theorem was proved by Ikebe et al.:
[9, Theorem 1] Given a non-compact complex symmetric tridiagonal matrix

di fo 0
fo da fs
T = . : D(T /2
f3 d3 -, ( )._) )
0 )

where 0 < |d| = oo (k = 00),0 < |fx| < const (k =2,3,...), D(T) = {[uV,«?, .. ]T:
[diu®) dou® .. ]T € £2}. Let T have a simple eigenvalue A # 0, and 0 # x =
[X(l), X, .. ¥ be an eigenvector corresponding to A, and assume the existence of T7L.
Then
(i) Letting Ty, (k = 1,2,...) denote the k-th order principal submatrix of 7', there is a
sequence {A} of eigenvalues of T}, which converges to .
(i5) Letting xTx # 0and fr1x*tD/x%*®) = 0 (k = 00), we have the following error

estimate:
(k) 4 (k+1)
A A = %[1 +o(1)] (k= oo).
XX
In this theorem, £2 is the complex Hilbert space 2 = {[sy, s2,...]7 : s1,82,... €

C, Y2, |si* < o}, 0(1) is a quantity converging to zero as k — oo, and T exists if
z = ( is the only solution of Tz = 0. Also, an eigenvalue A is said to be simple if and only
if its corresponding eigenvector is unique (up to scalar multiplication) and also there are no
corresponding generalized eigenvectors of rank 2. These definitions are retained throughout
this paper.

This theorem is applicable to the computation of eigenvalues of the spheroidal wave
equation.

THEOREM 3.1. Given m and ¢ # 0, A # 0 is an eigenvalue of (1.1) if and only if A is
an eigenvalue of an infinite symmetric tridiagonal matrix T acting as a linear transformation
from X into 02 defined below:
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Bo Vao/r2 0
Vaoy/r2 B2 Vaz/a
3.1 T = .
G- Vavi o p |
0 .

where X = {w € 2 : diag[Bo, B2, - - Jw € £2} C 2.
Moreover, if one lets an eigenvector of T correspondingto Abe 0 # y = [y(l), y@, .. JTe
X, or

(3.2) Ty=M\y
holds, y@ (i = 1,2,...) are expressed with a scalar t (# 0) as
ag;

j—2
Asi_s.
27

N

Proof. (1.3) in matrix form, with its symmetrization, directly becomes an eigenvalue
problem of T', namely, (3.2). What remains to be provedisy # O andy € X.

y = 0 means Ay, = 0 (k =0,1,2,...), which is the trivial solution of (1.1) (which we
omit). In order to show y € X (or [|y|> = |Bo2[y ™| + |B2*[y®|?> + - - - < 00), one only
has to prove

(3.3) y =t 15

/B2k
ﬂ2k—2

This holds since |y*+1) /y*)| — 0 from (2.3) and | B2k / Bok—2| — 1 from (1.4). O

THEOREM 3.2. Let T™®) be the k-th principal submatrix of T (k = 1,2,...). Then, one
can choose each ¥, an eigenvalue of T™), such that \*¥) — X. And the following error
estimate is valid:

<1

R = lim sup

k—o0

[yt
()

MFJag | Aog oAog
(3.4) A= AR = [ =02 ) 1+ o(1)] (k = o0).
= Ty [1+o(1)] ( )

Moreover; the rate of convergence is
2
16

A= AFD o Aopyo
35 A4 T Q2% 1+ 0(1)] =
35 S—m - A%_2[ +o(1)] (

) - ki4[1 +o(1)] (k — 00).

Proof. Tt only has to be shown that [9, Theorem 1] can be applied to the eigenvalue
problem (3.2). To begin with, the existence of T~ need not be verified since T+ 61 is easily
proved to have an inverse for appropriately taken d. Since o, - Yg+2 > 0 (k = 0,2,--), T
is real. So are \ and y (up to scalar multiplication). Therefore yTy # 0, which should lead
A is simple. To prove this, take the contraposition, or ‘) is not simple = yTy = 0’. First, y
is uniquely determined up to scalar multiplication. Therefore, it suffices to show that when T’
has an eigenvector of rank two, yTy = 0 holds. From the assumption, for given y # 0, there
exists a vector v such that

0#£y=(T—-X)v, (T—-X)y=(T-N\)?v=0.
Thus, y7y = {(T = A)v} (T = A)v
= oT (T — M) v (by the symmetry of T') = 0.
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What is left to show is fg1 25T /z(*¥) — 0 (k = 00). This is, however, clear by (2.3).
Hence, [9, Theorem 1] may apply the case of (3.2) and direct computation gives the error
estimate (3.4) and rate of convergence (3.5). O

4. Inverse eigenvalue problem. In Section 3, the computation of A (eigenvalue) was
presented. In this section, its inverse case is discussed.

DEFINITION 4.1. Given m and real ), let any value of ¢? such that w(z) of (1.1) is
regular in [—1, 1] be called an inverse eigenvalue.

Let us begin, as Section 3, with the prior result:
[8, Theorems 1.1 and 1.4] Given an infinite complex symmetric tridiagonal matrix

fo d2 f3
A= .
fz3 ds .
0

where d, — 0,fx — 0 (k — o0), and f, # 0 (k = 2,3,...), representing a compact
operator in £2. Let A have a simple eigenvalue A # 0, and 0 # x =[xV, x?,...]T € £
denote an eigenvector of A corresponding to A. Under the stated assumptions, we have
(i) Letting A (k = 1,2,...) be the k-th order principal submatrix of A, and A, be an
eigenvalue of Aj,. Then, taking {\} properly, we have A, — A.
(i4) Assuming that {\} is taken in the sense of (i), xTx # 0, and x**+1) /x(*) is bounded
for all sufficiently large k, we find the following estimate valid:

(k)4 (k+1)
A— e = %[1 +o(1)] (k= oo).

By applying [8, Theorems 1.1 and 1.4], the inverse problem, namely, the computation of
inverse eigenvalues c? is enabled. Beforehand, let us define new symbols ay, by, 7 as

4.1 ap = apc?, B = (m+E)(m +k+ 1) + bpc?, v = rpc?,
and also gy, as
4.2) gr=A—(m+Ek)(m+k+1)~ -k (k— ).
Using (4.1) and (4.2), (1.3) is then rewritten as follows:
_ 90
bvo + a0A2 = —2A0,
c

4.3) ropAsp—o + bap Aop + ask Asgyo = g;—zkfbk (k=1,2,3,...).

THEOREM 4.2. Suppose ga, # 0 (k = 0,1,2,...) for given m and real \. Then, ¢* # 0
is an inverse eigenvalue of (1.1) if and only if 1/c? is an eigenvalue of an infinite symmetric
tridiagonal matrix A acting as a compact operator in £2, where

bo/go VaoT2/1/9092 0
\/007’2/\/9092 b2/g2 \/a2r4/\/gzg4

(4.4) A= (G371 /9291 bs/9a
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Furthermore, if one lets an eigenvector of A correspondingto1/c? be 0 # x = [.77(1) NS JFe
2 ie., if
1
4.5) Az = <z
c

holds, then =) (i = 1,2,...) can be expressed in the form

_1 /0252
=1 Azi 2

(4.6) @ =t [y 5 1T

where t # 0 is a scalar.
Proof. (4.3) in matrix form, with its symmetrization, directly becomes an eigenvalue
problem of A, namely, (4.5). Also, from (2.3) it holds that z € #2, since

(k+1) — 2
@7 |2 = | VI V22 ‘ Ase_ | _ “_[1+0(1)] =0 (k- 00). O
z(k) VO2k—2 /T2 Asg_2 16k

THEOREM 4.3. Let A% be the k-th principal submatrix of A (k = 1,2,...). Then,

assuming zTx # 0, one can choose each C%k) = 1/&€®), where €% represents one of the

eigenvalues of A®), such that c?k) — 2. And the following error estimate is valid:

=l Aok —2 Aok

48) - c%k) po g [1+4 o(1)] (k — 00), where
(2m +1)2(2m + 2)

(2m + 4k — 3)(2m + 4k — 1)(2m + 4k + 1

The rate of convergence is thus derived:

lm,k = ) . 2m+2kc2m+2-

(4.9) %_(5)4.i[1+ 1)] (k = o)
’ c2—c%k) T \4 k4 © o)

Proof. Let us prove a few conditions to apply [8, Theorems 1.1 and 1.4] to (4.5).
1) /2(%) is bounded for all sufficiently large k, since |z(*+1) /z(!)| — 0 (k — oc) from
(4.7). Also, from the assumption zTx # 0, it is derived that the eigenvalue 1/c? of A is
simple, in the same way as the proof of Theorem 3.2.

Direct computation leads to the error estimate (4.8) and rate of convergence (4.9). 0

LEMMA 4.4. [8, Theorems 1.1 and 1.4] is applied also when ga, = 0 for some non-
negative integer k in (4.3).

Proof. When k = 0, or gg = A — m(m + 1) = 0, the first line of (4.3) yields 49 =
_Z_SAQ. Substituting this into the second line of (4.3) gives

(b2 - M) Ay +as Ay = g—;AQ
bo C
With this and the subsequent equations, one can reformulate them into the matrix eigenvalue
problem by the same procedure.
When £ is non-zero, Ay, = —ﬁ (roxAsg_o + asxAsgs2) = 0 holds. Substituting this
into (k — 1)-th and (k + 1)-th equations yields

A2k—2T2k G202k 92k—2
Tok—2A2k—a + <b2k2 - 7) Ag—o — = Aspto = =5 Aok,
bag bar, c

92k+2

T2kT2k+2
-———A ) Aspyo + a2pt2Aokya = 2 Aopya.

bor,

A2k T2k+2
bag,

ok—2 + <b2k+2 -
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Likewise, [8, Theorems 1.1 and 1.4] applies to the new set of equations. 0

5. Geometrical properties of A\—c? graph. The \-c? graph, created by the proposed
method, is shown in Fig. 5.1 (for m = 0). The graph above A-axis is the prolate output, while
the graph below is the oblate case.

c
100 T T T T T T

50 -

i n=0

0 1
50 - 4
5 | L | L L | L |
10t -100 =50 0 50 100

.

FIG. 5.1. A-c? graph (prolate and oblate cases combined for m = 0)

The following two geometrical properties are proved regarding A-c? graph.
REMARK 5.1. In the prolate case, A > m(m + 1) holds.

Proof. Suppose the contrary, or A\ < m(m+ 1), and let the contradition be derived. Since
g2k =A—(m+2k)(m+2k+1)<0(k=0,1,2,...), the eigenvalue problem

1
Uzy = ——m, where
c
r bo_ Vao /T2 0
—g0 v —g0vV—92
N by NNz
51 U= V—g0v—92 —g2 V=92v—94 d
GRY) = Jaz/ra b |
V=92v-94 —94 ’
L 0
[ Vo vz Vo ’
z1 = [v/=g04o, “—=(/—9242), Y="—=(vV—9444),
i VT2 van \/_
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are both real, is obtained. U is found to be decomposed into U = § TS where

0 0
€y €3

S = €4 es , with
0

_ 1 (k—1)2m+k—-1)
- V/—9p, (2m+2k—-3)2m+2k—1)
Py = k — 2+ mod(k, 2).

ek (k=2,3,...)and

This shows that U is positive definite (refer to Appendix A for a detailed proof), leading to a
contradiction (since the eigenvalues of U are assumed —1/c? < 0). O

REMARK 5.2. Given m, we have dc? /d\ # 0.

Proof. The next equation is obtained by applying [11, Corollary 1],

(55) @0 =67,

with z and y respectively defined in (4.6) and (3.3). Since yTy # 0 (y is non-zero and real),
the proposition obviously holds. [

6. Numerical experiments. Some experiments were conducted to show the validity of
the error estimates presented in (3.4) and (4.8). The computations were executed on Dell Di-
mension XPS (Pentium 4 CPU 3.00GHz, IGB RAM), using double precision floating-point
arithmetic by Intel Visual Fortran Compiler (version 8). For computing eigenvalues of sym-
metric tridiagonal matrices, we used the FORTRAN subroutine COMQR in EISPACK [12].

EXPERIMENT 6.1. Computation of eigenvalues A\, given m and c. We first computed
an eigenvalue of a sufficiently large order principal submatrix of (3.1) and regarded it as the
true value \. Then, for each k, we computed all the eigenvalues of T'(*) and chose the closest
to X to be A¥). The values of y(¥) (k = 1,2,...) were obtained by backward-substitution
by (1.3), initiating y&) = 0 for sufficiently large K, and y(K=Y = ¢ (# 0,¢ shall be
taken appropriately so that an overflow doesn’t occur). These settings of y %) and K —1 are
allowed from the behavior y®) — 0 (k — o).

Table 6.1 describes how fast the approximated eigenvalues A(*) approach the exact eigen-
value A with error estimates. In the table, ng% (k = 1,2,...) represent the RHS of (3.4)
without [1 + o(1)] corresponding to the approximated eigenvalue A(F) = AR

EXPERIMENT 6.2. Computation of inverse eigenvalues c?, given m and \. The proce-
dure is almost the same as Experiment 6.1. The true value c2 was computed from a sufficiently
large order principal submatrix of (4.4). Then, for each k, we computed all the eigenvalues
of A®) and chose the closest to c2 to be clyy- The values of z® (k = 1,2,...) were ob-

tained by backward-substitution by (1.3), initiating (% ) = 0 for sufficiently large K', and
oK' =1 = ¢ (# 0, ¢ shall be taken appropriately so that an overflow doesn’t occur). These
settings of &) and (X" ~1) are allowed from the behavior z(¥) — 0 (k = 00).

Table 6.2 describes how fast the approximated eigenvalues c%k) approach the exact eigen-

value ¢2 with error estimates. In the table, E*) (k = 1,2,...) represent the RHS of (4.8)
without [1 + o(1)] corresponding to the approximated eigenvalue c%k).



ETNA

Kent State University
etna@mcs.kent.edu

NUMERICAL COMPUTATION OF EIGENVALUES FOR THE SPHEROIDAL WAVE EQUATION 337

TABLE 6.1
Actual errors and estimates of (3.4). Given m = 0,c¢2 = 10, compute X = Ago = 2.305040036 - - -,
A = Ao1 = 7.285254306 - -+, A = A2 = 11.79039448 - - -.

Moo = Ade) B | Mot — A EY | Ao — A By
2.98E-02 -3.06E-02 | -1.57E-02 -1.60E-02 | -4.46E-01 -4.29E-01
-1.91E-04 -1.93E-04 | -6.82E-05 -6.85E-05 | -5.85E-03 -5.92E-03
-3.64E-07 -3.65E-07 | -9.15E-08 -9.17E-08 | -1.62E-05 -1.63E-05
-2.72E-10  -2.72E-10 | -5.02E-11 -5.06E-11 | -1.52E-08 -1.52E-08

-8.00E-12 -6.21E-12

AN L B W

TABLE 6.2
Actual errors and estimates of (4.8). Given m = 0,\ = 15, compute c% = 5.649012143 - - -, c% =
15.46529327 - - -, ¢2 = 32.20360313 - - -.

g = iy E®) | ¢} - ) E®) | 3 - ) E®)
1.90E-01 2.02E-01 | 1.48E-00 1.65E-00 | 2.19E-00 2.85E-00
5.21E-04 5.23E-04 | 5.64E-02 5.89E-02 | 1.04E-01 1.10E-01
3.08E-07 3.08E-07 | 3.95E-04 3.98E-04 | 1.38E-03 1.40E-03
6.62E-11 6.62E-11 | 9.00E-07 9.02E-07 | 7.56E-06 7.60E-06
8.86E-10 8.87E-10 | 2.03E-08 2.03E-08
2.99E-11 3.00E-11

~N QN bW

7. Concluding remarks. By the proposed method, one only has to compute the eigen-
values of the given matrices without further knowledge or skill. The eigensystem routines
such as EISPACK [12] with guaranteed error estimates allow one to obtain accurate eigen-
values A and inverse eigenvalues ¢®. The theorems in [8] and [9] are powerful tools for
computing eigenvalues of certain classes of infinite matrices, which arise in solving some
types of linear differential equations. Further applications of the theorems will be sought by
us.

Appendix A.

PROPOSITION. A.1 The matrix U defined in (5.1) is positive definite.

Proof. One needs to show that w” Uw > 0 holds for all w = [w, w2, ...]T € £2 and the
equality is valid only when w = 0. Since U = ST,

wTUw =w? ST Sw = ||Sw||® > 0.

The proof for w"Uw = 0 & w = 0 follows. It is obvious w = 0 leads wTUw = 0.
Conversely, if one assumes w? Uw = ||Sw||?> = 0, one finds

0 0 wi 0
es e3 wo eawy + ezws
Sw = . ws | = esws +esws | — .
€4 €5 : esWs + erwy
0

Therefore,

€2 €4 €2 n—1 n—1 €2i
w2Z——w1,w3=——wh---awnz(—l)( ) I —— ) ws.
€3 €5 €3 €2i4+1
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This shows w; has to vanish, since, otherwise,

2 2 2
€3 €3 es 00 €944 1

contradicts the premise w € £2. This argument leads tows = w3 = ... = 0 orw = 0.0

(1]
[2]

[3]
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