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Abstract. This paper introduces a new model to describe the flow of data from update to frontal matrix in the
unsymmetric multifrontal method for solving sparse linear systems. The model is based on the elimination tree of
an unsymmetric matrix and consists of the edges in this tree together with some cross edges.

By symmetrically renumbering the rows and columns of the coefficient matrix using a tree-based postordering,
we can permute the matrix into a bordered block triangular form while preserving the elimination tree. The model
simplifies when the matrix has this form, which suggests that a multifrontal implementation based on it should be
simpler as well.

We also extend the model to handle pivoting for stability; compare it with others used in the unsymmetric
multifrontal method; and point out the implications for parallelism.
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1. Introduction. The unsymmetric multifrontal method is a powerful scheme for solv-
ing a linear system with a large, sparse, unsymmetric coefficient matrix [4, 6, 9, 13]. Here
we explore the use of the elimination tree of an unsymmetric matrix [11] to model the flow
of updates in the method. Our approach is a generalization of the symmetric case [18] and is
somewhat similar to that in [13, 14, 15], which offer a more ad hoc treatment. The paper is
organized as follows.

In � 2 we review the elimination tree and tree-based, bordered block triangular (BBT)
postorderings [11]. In � 3 we review the symmetric multifrontal method and point out a fun-
damental dichotomy in extensions to unsymmetric matrices.

In � 4 we describe how to split the update matrix at each step of the multifrontal method
and introduce an augmented elimination tree to model the flow of update submatrices. We
also show how updates can be bundled to reduce their total number.

In � 5 we discuss the major simplifications that arise when the matrix is already upper
BBT ordered: update matrices are always decomposed by columns, and each update subma-
trix goes either to its parent in the elimination tree or to a descendant of an older sibling.
These should make implementation much more straight-forward.

In � 6 we show how to extend the model when pivoting is required to maintain stability.
The extension (which applies only to BBT ordered matrices) easily accommodates both de-
layed elimination and pivoting within a fully summed block, the techniques used in existing
implementations of the unsymmetric multifrontal method.

In � 7 we compare our dataflow model with two existing multifrontal models: the sym-
metric pattern approach [4, 9], which uses the elimination tree of the symmetrized matrix�����	�

; and the task-dag/data-dag approach [13, 14, 15], which is more closely related to
that considered here.

In � 8 we present some concluding remarks.
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FIG. 2.1. A sparse matrix and its directed graph.
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FIG. 2.2. The filled matrix and elimination tree for the matrix in Figure 2.1.

2. Background. The authors introduced the elimination tree of a sparse unsymmetric
matrix and studied tree-based, bordered block-triangular orderings in [11]. We briefly review
these ideas here.

2.1. Graph notation. We let T@UWVYX denote the directed graph of a given Z\[MZ sparse
matrix V , and let ]Y^_ `badc (resp., ]Y^egf c ) indicate the existence of a directed edge (resp.,
path1) from vertex ] to vertex c in that graph. If V is clear from context, we shall sometimes
use the abbreviated form ] _adc (resp., ] f c ).

Figure 2.1 contains a hji�[khji unsymmetric matrix that will be used as an example
throughout the paper. Each l represents an off-diagonal nonzero; each vertex in the directed
graph is labeled by its corresponding diagonal entry.

2.2. The elimination tree of an unsymmetric matrix. Let
�

be a nonsingular, sparse,
unsymmetric Z�[�Z matrix with a nonzero diagonal and the factorization

� e�mon , where m
is unit lower triangular and n is upper triangular; and let

�qp eYm � n `sr denote its filled
matrix. We define the elimination tree tuU � X of

�
by the parent functionvxw y{z e}|'~��g��������� y and ���egf y��egf��g�{�

By definition we have vbw Z z e�� , so that vertex Z is a root. In general tuU � X consists of one
or more trees,2 and each vertex y with vbw y�z ek� is a root.

Figure 2.2 contains the filled matrix
��p

and the elimination tree t�U � X for the matrix
�

in Figure 2.1. Each � represents an off-diagonal fill-in; each vertex in the tree is labeled by
its diagonal entry and its row/column index.

1 Paths and cycles need not be simple; that is, they may visit a vertex more than once.
2 There is only one tree when

�
is irreducible [11, Corollary 3.7].
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An efficient algorithm for finding the elimination tree is given in [10]. Its complexity is� U�Z/�MX , where � is the number of nonzeros in
�

, but in practice it runs at least as fast as a
symbolic factorization code.

The following result characterizes the ancestor relation in tuU � X in terms of paths in T@U m X
and T@U n X .

THEOREM 2.1. [11, Theorem 3.2] Vertex � is an ancestor of vertex y in the elimination
tree tuU � X if and only if there exists a cycle � �e/f y �e/f � .

For a vertex y in the elimination tree tuU � X , we let � w y{z denote the subtree of tuU � X
rooted at y as well as the set of vertices in this subtree. We also define the immediate family
members of y to be the vertices in the set UK� w vxw y{z�z�� � vbw y{z � X � � w y{z , which consists of all
descendants of vxw y{z other than y and its descendants. We use the term older immediate family
members to refer to those immediate family members that are older than y with respect to the
numbering.

For example, in the elimination tree of Figure 2.2, vertex � has only one immediate
family member, namely vertex � , which is also an older immediate family member. On the
other hand, the immediate family members of vertex � are vertices � , c ,   , ¡ , and ¢ , but its
only older immediate family member is vertex ¢ .

2.3. BBT postorderings. A matrix V is said to be upper bordered-block-triangular
(BBT) if it can be written in the form

V e
�������
VO£¥¤ £ VO£¦¤ § �#��� VO£¦¤ ¨ VO£¦¤ ¨ p £i V §#¤ § �#��� V §#¤ ¨ V §#¤ ¨ p £

...
...

. . .
...

...i i �#��� V ¨¥¤ ¨ V ¨¥¤ ¨ p £V ¨ p £¦¤ £ V ¨ p £¦¤ § �#��� V ¨ p £¦¤ ¨ V ¨ p £¦¤ ¨ p £
! """""$ª©

where the diagonal blocks Vs«�« are square. If we can find a permutation matrix ¬ such that the
reordered matrix ¬ � ¬ � is in BBT form, we can take advantage of this structure by working
with ¬ � ¬ � instead of

�
.

Let c £ © �#��� © c � be the children of vertex y in the elimination tree t�U � X . In a postordering
of tuU � X the vertices within each subtree � w c « z are numbered consecutively, and y is numbered
immediately after its descendants. Postordering preserves the structure of tuU � X ; that is,
letting ¬ denote the corresponding permutation matrix, the elimination tree tuUK¬ � ¬ � X is
identical to tuU � X up to the numbering of the vertices [11, Theorem 5.1].

To achieve a (recursive) BBT form, an upper BBT (resp., lower BBT) postordering im-
poses a further condition on the order in which the subtrees � w c £ z © �#��� © � w c � z are numbered:
an edge in T@U � X from a vertex in one subtree to a vertex in another must always be directed
from the lower-numbered vertex to the higher-numbered one (resp., higher to lower). An
efficient algorithm for finding such orderings is given in [10].

For example, the ordering ¡ © � © � ©®x© � © � © c ©   © ¢ ©°¯ is an upper BBT postordering of the
elimination tree in Figure 2.2. The permuted matrix ¬ � ¬ � is given in Figure 2.3. Note that
the reordering does not preserve the filled graph. However, it does preserve the set of diagonal
elements of n [11, Theorem 5.2] and thus is arguably just as stable numerically.

We shall say that a matrix
�

is upper (resp., lower) BBT ordered if the natural ordering
is an upper (resp., lower) BBT postordering of tuU � X .

Let ±#²¥³ (resp., ´b²¥³ ) denote the UK] © c X entry of the lower (resp., upper) triangular factor m
(resp., n ). The following result states a key property of BBT ordered matrices.

THEOREM 2.2. [11, Theorem 6.1] If
�

is upper (resp., lower) BBT ordered, then±#µ�¶ ·¥¸ ¤ ·º¹e i (resp., ´/· ¤ µ�¶ ·®¸»¹e i ).
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FIG. 2.3. The filled matrix of an upper BBT postordering of the matrix in Figure 2.1.

3. The multifrontal method. In this section we review the symmetric multifrontal
method and discuss how to extend this approach to unsymmetric problems. We first establish
an important property of the rows and columns of the factor matrices.

3.1. A nesting property. Let ÄÆÅÈÇ®ÉËÊ¦Å�U�Ì�X denote the nonzero structure of the vector Ì ,
that is, the set of indices ¢ where ÌÍ«�¹e i . The following nesting property was originally
proved for symmetric factorization [18, Theorem 3.1]. We now extend it to the unsymmetric
case.

THEOREM 3.1. Let vertex Î e vbw y{z be the parent of vertex y in the elimination treetuU � X . Ignoring accidental cancellation we haveÄÏÅ®ÇÈÉËÊÐÅjUÈUÑ±¥Ò · © ���#� © ±#Ó · X � XÕÔÖÄÆÅÈÇ®ÉËÊ¦Å�UÆUÑ±¥Ò¥Ò © ���#� © ±#ÓjÒ×X � X
and ÄÆÅÈÇ®ÉËÊ¦Å�UÆUK´ · Ò © �#�#� © ´ · Ó X0ÔQÄÏÅ®ÇÈÉËÊÐÅjUÈU�´ Ò®Ò © ���#� © ´ ÒÐÓ XÈX �

Proof. Since Î is the parent of y , by definition we have Î �egf y �eØf Î . If ´ «ÚÙ ¹e i , a
multiple of column ¢ is added to column ¯ during the m0n factorization. Thus, by a simple
induction argument, for each ¯ on the path yÛ�egf Î we must haveÄÆÅÈÇ®ÉËÊ¦Å�UÈUÑ± Ò · © �#��� © ± Ó · X � XoÔÖÄÆÅÈÇ®ÉËÊÐÅjUÆU�± Ò¥Ù © �#��� © ± ÓjÙ X � X �
In particular, this holds for column Î . The second result follows by a similar argument based
on the path Î �e/f y .

This result is the cornerstone of the symmetric multifrontal method: it ensures that each
update matrix can be assembled into the frontal matrix of its parent in the symmetric elimi-
nation tree. The subtle difference here is that all of the entries ± · p £¦¤ · , . . . , ±#µ�¶ ·®¸ÝÜ £¦¤ · in the y th
column of m are zero in the symmetric case, whereas some may be nonzero in the unsymmet-
ric case (as may the analogous entries in the y th row of n ).

For example, in the elimination tree of Figure 2.2, since vertex Þ is the parent of vertex ß ,
we haveÄÏÅ®ÇÈÉËÊÐÅjUÈUÑ±#à®§ © ±#áÈ§ © �#��� © ±j£Ïâ�¤ §�X � X eã� Þ ©Èä � Ô � Þ ©®äå© h�i �æe ÄÆÅÈÇ®ÉËÊ¦Å�UÆU�±#àÈà © ±#á®à © �#�#� © ±j£Ïâ#¤ àjX � X
andÄÆÅÈÇ®ÉËÊÐÅjUÆUK´ §®à © ´ §Èá © �#��� © ´ §#¤ £çâ XÈX eY� äå© h�i � Ô � Þ ©®äå©®èå© hji �oe ÄÆÅÈÇ®ÉËÊ¦Å�UÆU�´ à®à © ´ à®á © ���#� © ´ àÐ¤ £Ïâ XÆX �
Moreover, unlike the symmetric case, we have ´g§Èà e i and ´b§®éÁ¹e i and ´b§®êÁ¹e i .
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for ë := 1 to ì do
Assemble the frontal matrix í)î from the nonzeros in ï ��ð î#ñ îÐò ð ò�ó

and the update matrices ôöõ for � a child of ë in ÷ ¼ � À
Factor í î into ø ù î¥îï ù ð î ñ î#ú ð ò�ó×ûÝüWý�þ×ÿ� J � � ø�� ôbî � ø ù î¥î ï ù�� î ñ ¾ î#ú � ò�ó×ûÑü�� þ ÿ� J� �

end for

FIG. 3.1. Symmetric multifrontal factorization.

3.2. The symmetric multifrontal method. The classic multifrontal method, first de-
scribed by Speelpenning, is a powerful approach to solving a linear system with a large,
sparse, symmetric coefficient matrix [8, 19]. Each step in the algorithm (see Figure 3.1) con-
sists of the assembly of a frontal matrix 	 · and its partial factorization, yielding the nonzeros
in the y th column of m and an update matrix 
 · that (if non-null) will be assembled into a
later frontal matrix. In practice only the lower triangles of 	 · and 
 · are formed.

The assembly of 	 · must include every unassembled3 update matrix that contributes to
the y th column of m ; that is, every 
�� with �� y that has a nonzero entry in column y
and has not already been assembled into another frontal matrix. In the symmetric case these
are precisely the updates 
 ³ with c a child of y in the elimination tree t�U � X . Thus the flow
of data from update matrix to frontal matrix can be modeled in terms of these child-parent
edges [18, Theorem 4.1].

The rows of 	 · correspond to those rows ¢ where ±j« · ¹e i . Similarly, the columns of 	 ·
correspond to those columns ¯ where ± Ù · ¹e i . We have ± « · ¹e i structurally (i.e., ignoring
accidental cancellation) if � « · ¹e i for some ¢�� y ; and by Theorem 3.1 or [18, Theorem 3.1]
we have both ± « · ¹e i and ± Ù · ¹e i structurally if the U�¢ © ¯ X entry in the update 
0³ from a childc of y is nonzero for some ¢�� ¯ � y . Thus there is an entry in 	 · to accommodate each
nonzero assembled into it.

During the assembly process we add each nonzero in w � « · z ·�� « � Ó and each nonzero in an
update 
 ³ to the corresponding entry in 	 · , which was initialized to zero. Then we perform
the partial factorization of 	 · in place as a dense matrix operation. The nonzeros in the y th
column of m now comprise the first column and row of 	 · ; and the nonzeros in 
 · comprise
the remainder of 	 · . This is the key to the efficiency of the symmetric multifrontal method.

3.3. The unsymmetric multifrontal method. The multifrontal approach has been ex-
tended to unsymmetric problems [4, 6, 9, 13]. By analogy with the symmetric case, we might
expect the algorithm to be that shown in Figure 3.2. The assembly of 	 · includes every
unassembled update matrix that contributes to the y th column of m or the y th row of n ; that
is, every 
 � with �� y that has a nonzero entry in column y or row y and has not already
been assembled into another frontal matrix. The partial factorization of 	 · yields the nonze-
ros in the y th column of m and y th row of n and an update matrix 
 · that (if non-null) will
be assembled into a later frontal matrix.

This algorithm makes two assumptions, which are satisfied in the symmetric case:
a) The rows (resp., columns) of 	 · correspond to those rows ¢ where ± « · ¹e i (resp.,

columns ¯ where ´ · Ù'¹e i ).
b) Each update matrix 
�� can be assembled into a single frontal matrix.

But if the nonzero structure of
�

is unsymmetric, an update 
�� to 	 · may contain a nonzero
entry in a position UK¢ © ¯ X where ±�« · e i or ´ · Ù e i . For example, for the matrix in Figure 2.1

3If a previously assembled update matrix contains a contribution to column ë , that contribution will be part of
the update from the frontal matrix into which it was assembled.
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for ë := 1 to ì do
Assemble the frontal matrix í)î from the nonzeros in ï ��ð î¦ñ î#ò ð ò�ó ,ï � î � ñ î#ò � ò�ó , and some update matrices ô�� with ���ºë
Factor í î into ø ù î¥îï ù ð î¦ñ î#ú ð ò�ó ûÑü ý�þ ÿ� J � � ø � ô î � ø�� î¥î ï � î � ñ îÐú � ò�ó û���þ��jÿ� J� �

end for

FIG. 3.2. Unsymmetric multifrontal factorization.

the update 
 £ e �� é§ �é � �
!$

to 	æ§ contains a nonzero entry in position U�! © !ÍX but ±jé®§ e i . Thus the assumptions are
incompatible in general.

The usual approach [4, 9], which satisfies (b) but not (a), is based on the elimination treetuU �O�s�	� X of the symmetrized matrix
�Ö�O�	�

.
Let "±#²¥³ denote the U�] © c X entry in the symmetric factor "m of

���}�æ�
. If ± « · ¹e i (resp.,´ · Ù@¹e i ), then "±#« · ¹e i (resp., "±¥Ù · e U "m � X · Ù@¹e i ), structurally if not numerically. That is, the

graph T@U m X (resp., T@U n X ) is a subgraph of T@U "m X (resp., T@U "m � X ); and the structure of
��p

is
contained in that of the filled matrix U �Ö�O� � X p .

Thus we can apply the algorithm in Figure 3.2 if we treat an entry of
�

as structurally
nonzero whenever the corresponding entry of

�N�k� �
is structurally nonzero; and use the

larger frontal matrix #	 · whose rows and columns correspond to those rows ¢ with "± « · ¹e i
and those columns ¯ with "± Ù · ¹e i . As in the symmetric case, the updates 
 � all come from
the children of y in tuU �O�O�	� X .

However, even when we suppress rows or columns that are structurally zero [4], in gen-
eral some frontal matrices will have nonzero entries in rows (resp., columns) whose leftmost
(resp., topmost) entry is zero, violating property (a). For example, using this approach, the
frontal matrix #	 § for the matrix in Figure 2.1 is given by

#	 § e ����
§ªé�ê  £Ïâ§ �ã�ªl l lé �à l l �

! ""$ e �� § ê  £çâ§ �Ylªl�là l l
!$%$& 
 £ © where 
 £ e �� é§ �é � �

!$ �
(Here rows 5 and 10 and column 6 are structurally zero and have been suppressed; and $&
denotes the extend-add operator, whereby the two operand submatrices are extended to con-
form with the row and column subscript sets formed by the union of their respective sets and
added together [18].) Note the structural zero in the first column.

An alternative4 is to impose property (a), but to break each update matrix into disjoint
pieces that are assembled into different frontal matrices [13, 14]. The assembly process is
more complicated, but only dense matrix operations are performed throughout the factoriza-
tion as in the symmetric multifrontal method. We explore this idea in the next section.

4 Another alternative is to order for sparsity while carrying out the multifrontal method, determining the frontal
matrix dynamically [6].
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Let ' �)( ï ë�ñ , the parent of vertex ë
Set ÷ � ôbî , the update matrix from vertex ë
while ÷ is non-null do

Set * = smallest row or column index in ÷
if *,+�' then

Forward all of ÷ to vertex ' and set ÷ � null
else if * is a row index then

Remove row * from ÷ and forward it to vertex *
else -.* is a column index /

Remove column * from ÷ and forward it to vertex *
end if

end while

FIG. 4.1. A simple algorithm to decompose the update matrix ô/î .
4. A dataflow model. In this section we show how to use the elimination tree to split

the update matrices and model the flow of data in the unsymmetric multifrontal method.

4.1. Simple decompositions of update matrices. After forming the frontal matrix 	 ·
associated with vertex y , one step of elimination on 	 · generates the y th column of m , they th row of n , and the update matrix 
 · .

Theorem 3.1 ensures that the frontal matrix 		µ�¶ ·®¸ of the parent vxw y{z of y can accommo-
date every nonzero entry in 
 · whose row and column indices are both greater than or equal
to vbw y{z . Thus the submatrix with these entries can be sent directly to vbw y�z . The remainder,
consisting of entries whose row index or column index is less than vxw y{z , must be split and
the pieces sent to other vertices. The simplest approach is the algorithm in Figure 4.1, which
“peels” rows or columns off the update matrix until the parent row/column is reached.5

We use the matrix in Figure 2.2 to illustrate this process. In the first step the frontal
matrix 	�£ and update matrix 
0£ are given by

	 £ e ����
£ é£ � l§ lé l l

! ""$ and 
 £ e �� é§ �é � �
!$ �

The update 
 £ is split into two parts,
 §£ e 0 é§ �21 and 
 µ�¶ £ ¸£ 3 
 é£ e ø éé � � � ©
with 
 §£ sent to vertex 2 and 
 µ�¶ £ ¸£ 3 
 é£ sent to vertex 3, the parent of vertex 1 in the
elimination tree.

In the second step the assembly of the frontal matrix 	�§ includes the update 
 §£ , giving	 § e �� § é ê  £çâ§ �ã�ªl l là l l
!$ e �� §ªê  £çâ§ �ãl l là l l

!$%$& 
 §£ and 
 § e ø éªê  £Ïâà �ª��� � �ª��� � � �
5 This is an improvement over [13], which uses in place of

( ï ë�ñ the parent function(5476 ï ë�ñ �98;:=< -?>�@A> 4�CB ë 6D EGF > or > 4D EHF ë 6�CB >I/KJ
Note that

( ï ë�ñCL (54M6 ï ë#ñ in general, but that
( ï ë#ñ �)(�4M6 ï ë�ñ when

�
is BBT ordered, by Theorem 2.2.
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The update matrix 
 § is split into three parts,
 é§ e ø éà � � � © 
 ê§ e ø êà � � � © and 
 µ�¶ § ¸§ 3 
 à§ e ø  £çâà ��� ��� � �
In the third step the frontal matrix 		é includes the two updates 
 é£ and 
 é§ , giving

	 é e ����
éONé l�lN là � l

! ""$ e ø éPNé c lN l � $& 
 é£ $& 
 é§ and 
 é e �� NN �à � �
!$ �

Since the entire update matrix can be sent to the parent vertex, no splitting is necessary; that
is, 
 µ�¶ é ¸é 3 
 Né e 
»é .

In the fourth step the frontal matrix 	QN includes the update 
 Né , giving

	 N e ������
NORã£çâN lªl�lê là �á l �

! """"$ e �� NSRN£ÏâN   l lê lá l
!$S$& 
 Né and 
 N e ����

Rã£çâê � �à � �á � � � �
! ""$ �

The update matrix 
 N is split into four parts,
 êN e 0 Rã£çâê � � 1 © 
 àN e 0 RN£Ïâà ��� 1 © 
 áN e 0 RN£Ïâá ��� 1 © and 
  N e 0 RN£Ïâ � � 1 �
The update 
 µ�¶ N ¸N 3 
 £ÏâN to the parent vertex is the null matrix.

In the fifth step the frontal matrix 	 ê includes the updates 
 ê§ and 
 êN , giving

	 ê e ����
êªà  RN£Ïâê � lªlª���à � �£Ïâ l

! ""$ e ø êªà  ê � l l£çâ l � $& 
 ê§ $& 
 êN and 
 ê e �� à  RN£Ïâà ���ª��� ���ª���£Ïâ ���ª���
!$ �

No splitting is necessary, so 
 µ�¶ ê ¸ê 3 
 àê e 
 ê .
We will consider one more step. The frontal matrix 	�à includes the updates 
 à§ , 
 àN , and
 àê , giving

	æà e �� à  Rã£çâà lª�ª��� �ª�ª���£Ïâ �ª�ª���
!$ e 0 àà  1 $& 
 à§ $& 
 àN $& 
 àê and 
»à e ø  Rã£çâ �ª���£Ïâ �ª��� � �

Again no splitting is necessary. Note that unlike the nonzeros in the other updates, the nonze-
ros in 
 à§ and 
 àê are not limited to the leftmost column and topmost row of 	�à .
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�% A �% B�% C�% D
�% E�% F�% G �% H �% I % AKJ

<< <T TVU�WW XR R RZY3 3 4 66 7 SSS [
+ +

+ +\ ]^. .
FIG. 4.2. The dataflow graph for the matrix of Figure 2.2.
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&&

FIG. 4.3. A chorded cycle and its filled matrix and elimination tree.

4.2. The dataflow graph. The decomposition drives the flow of data from update ma-
trix to frontal matrix, and this flow can be modeled by a directed acyclic graph (dag). Each
vertex corresponds to a frontal matrix and its associated update matrix (i.e., a row/column
index); each edge corresponds to the assembly of all or part of an update matrix into a frontal
matrix. If we assume that every vertex sends a (possibly null) update to its parent, the dag
contains every edge in the elimination tree, directed from child to parent. In addition there
is an edge from y to g for each non-null update 
 ¨· with y hgi vbw y{z . Each such edge
corresponds to a nonzero in

� p
.

Figure 4.2 gives this dataflow graph for the example of Figure 2.2, with the nine non-tree
edges represented by dotted arrows. As we will see in � 5, the situation is much simpler for
BBT ordered matrices.

4.3. Length-two reductions. There is more freedom in splitting an update matrix than
the simple algorithm in Figure 4.1 suggests [13, p. 537].

Consider the matrix in Figure 4.3, which corresponds to a cycle with six chords. Its first
frontal and update matrices are given by

	�£ e ����
£Y§jN à£ � lªl lé lê lá l

! ""$ and 
 £ e �� §PN�àé �ª���ê �ª���á �ª���
!$ �

Since vertex 8 is the parent of vertex 1, the update matrix 
 £ must be decomposed before
being sent to other vertices. The algorithm in Figure 4.1 will split 
 £ as�� §PN�àé ßj!P!ê ßlknmá ßlk Þ

!$ ©
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Let ' �o( ï ë�ñ , the parent of vertex ë
Set ÷ � ôbî , the update matrix from vertex ë
while ÷ is non-null do

Set * = smallest row or column index in ÷
if *p+q' then

Forward all of ÷ to vertex ' and set ÷ = null
else if * is a row index then

Remove from ÷ row * and some set of other rows

�
that are length-two

reducible to it (i.e.,

� 4D EHF * 4D EGF ë ) and forward them to vertex *
else -.* is a column index /

Remove from ÷ column * and some set of other columns  that are length-two
reducible to it (i.e., ë 6D EGF * 6D ErF  ) and forward them to vertex *

end if
end while

FIG. 4.4. An algorithm to decompose the update matrix ôgî .
where each entry specifies the index of the vertex to which it is sent.

Because the U ß © k�X entry of
� p

is nonzero, the frontal matrix 	�§ can accommodate col-
umn 4 of 
 £ . Thus we could send that column to vertex 2 for assembly into 	 § , from which
this contribution to 	QN would be sent to vertex 4. This gives the split�� §jN�àé ßªßP!ê ßªßOmá ßªßªÞ

!$ �
Similarly, because the U�m © !ÍX and Uts © !ÍX entries of

� p
are nonzero, the frontal matrix 	�é can

accommodate rows 5 and 7 of 
o£ . Thus we could send these rows to vertex 3, leading to the
split �� §jN�àé ßj!O!ê ßj!O!á ßj!O! !$ �

More generally, let y �gqvu� vbw y{z . If ´ · ¨ ¹e i , ´ · � ¹e i , and ´ ¨ � ¹e i (resp., ± ¨ · ¹e i ,± � · ¹e i , and ± � ¨ ¹e i ), then the frontal matrix 	 ¨ can accommodate column (resp., row) u of
the update matrix 
 · . Thus, provided that no update has been bundled into the update 
 �· and
that the update 
 ¨· has not been bundled into another update, 
 �· could be bundled with 
 ¨·
and sent to vertex g ; and this contribution to the frontal matrix 	 � would eventually arrive as
part of the update 
 �¨ from g .

We shall call this bundling length-two reduction since the path y �_ `xa g �_ `xa u (resp.,u �_ `ba g �_ `xady ) of length two in the graph T@U n X (resp., T@U m X ) replaces the edge y �_ `xa u
(resp., u �_ `xa�y ), which corresponds to the direct update from y to u . This process lowers
the number of non-null update matrices (but not the volume of data sent), which could be
significant in a parallel context.

The splitting algorithm shown in Figure 4.4 processes nonzeros top-to-bottom and left-
to-right, and thus automatically satisfies the conditions above. Its 18 possible decompositions
of 
 £ for the chorded cycle are shown in Figure 4.5.
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FIG. 4.5. All possible decompositions of the update matrix ô A of Figure 4.3. Each entry specifies the vertex to

which it is forwarded.

�����������

A�B�C�DOE�F�G�HMI�AKJA � �B � � �P� �C ���\� �D �ML�� LPL L LE �MLPL��Ö����L LF ���G �����H �M���N�I � �AKJ � �PL\LPL�L�L�LQ 

! """""""""$ �% F�% B �% G�% H
�% C�% D�% A �% E �% I % AKJ

3 3 66
R R R T T WW SSS

FIG. 5.1. The BBT ordered matrix of Figure 2.3 and its elimination tree.

5. BBT ordered matrices. When a matrix is BBT ordered, the decomposition of the
update matrices and the dataflow graph are much simplified.6 In this section we assume that
the matrix is upper BBT ordered. We will use as an example the matrix of Figure 2.3, given
again in Figure 5.1 along with its elimination tree, which we have rearranged to better reflect
the sequence in which the subtrees are numbered.

5.1. Decompositions and the dataflow graph. Let y be a vertex and let Î e vbw y�z be
its parent. Since an upper BBT postordering of the elimination tree numbers the vertices
in each subtree consecutively, the vertices between y and Î must be descendants of Î but
not descendants of y ; that is, they must be older immediate family members of y in tuU � X .
And since in an upper BBT postordering there are no edges from an older immediate family
member to y , we have ±�« · e i for y ª¢��Î . Finally, we have ±¦Ò · ¹e i by Theorem 2.2.
Thus the decomposition of the update matrices in the algorithms in Figures 4.1 and 4.4 will
always be by columns.

This uniformity simplifies both the dataflow graph and the implementation of the un-
symmetric multifrontal algorithm. In particular the update 
 Ò· will contain the columns of
the update matrix 
 · with indices between Î and Z . The remaining columns will be split
into groups; and there will be an update 
 Ù· containing column ¯ for each y  ¯ �Î with´ · Ù ¹e i , unless that update has been bundled with another. Thus in the dataflow model for
an upper BBT ordered matrix with no length-two reductions, there is a tree edge from y to Î
and an extra cross edge from y to each y  ¯ �Î with ´ · Ù ¹e i .

6 A BBT postordering of the elimination tree can increase the fill and (to a lesser extent) the work required [10].
However, it also enables a variation of the usual, stack-based implementation [2, 9].
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�% F�% B �% G�% H
�% C�% D�% A �% E �% I % AKJ

<<3 3 4 66 7<
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+
+ +] �Y �����������

AB�C�DÖE�F�G�H�I�AKJA � �B � � ��� �C ����� �D �MLM����� � �E �z��L�� ����L �F ���G �����H �������I � �AKJ � ���ÂLl��� L�LQ 
! """""""""$

FIG. 5.2. Two views of the dataflow graph of the matrix of Figure 5.1.����� � �M�M�M�M�x � �~ �M�M�� �M�� ��M�M�M�M� �
!#"""$

Original
matrix

����� � �M���M���x � �~ �M���� ���� ��M�M���M� �
!#"""$

No length-two
reductions

����� � ���q�M���x � �~ ���z�� ���� ��M�M�M�M� �
!#"""$

All practical
reductions

����� � ���q���z�x � �~ ���z�� ���� ��M�M�M�M� �
!#"""$

Maximum number
of reductions

FIG. 5.3. A matrix and several possible dataflow models.

The dataflow graph for the matrix in Figure 5.1 is given in Figure 5.2. The six cross
edges corresponding to non-parental updates are represented by dotted arrows.

In the same figure we use the nonzero structure of the filled matrix
�qp

to present another
view of the dataflow graph. As noted above we have ± Ò · ¹e i for each parental update 
 Ò·
(tree edge from y to Î ); and by construction ´ · Ùº¹e i for each non-parental update 
 Ù· (cross
edge from y to ¯ ). Thus after we replace every other off-diagonal nonzero in

� p
by a � , the

remaining nonzeros in the strict lower (resp., upper) triangle represent tree edges (resp., cross
edges) and are denoted l or � , depending on their origin.

5.2. Length-two reductions. Length-two reductions remove edges from the dataflow
graph. However, finding an optimum set of reductions seems very difficult; and even a greedy
implementation of the algorithm in Figure 4.4 (that is, one that removes all edges reducible
to y �_ `xa g at each iteration) may be too expensive.

If  · is the column index of the first off-diagonal nonzero in the y th row of n and  · vbw y{z , the edge y �_ `xa  · cannot be reduced. Therefore, a practical compromise is to identify
only length-two reductions where y �_ `xa  · �_ `xa ¯ replaces y �_ `xa ¯ for some y  ¯ .The Þ[�Þ matrix in Figure 5.3 illustrates this compromise. Note that column 5 of the
update matrix can be bundled with column 4 because of the length-two path h �_ `xa k �_ `öa m .
But this path is not of the form y �_ `öa  · �_ `xa ¯ , so the edge h �_ `xa m will be kept in the
practical dataflow graph. Moreover, even without this restriction column 4 cannot be bundled
with column 3 since the latter has already been bundled with column 2.

All practical reductions can be identified using the algorithm in Figure 5.4. The total
time required is

� U�Z/ZZ�xU n XÈX .
6. Pivoting for stability. So far we have assumed that the elimination sequence is fixed.

That is, after we assemble the frontal matrix 	 · , we perform a step of Gaussian elimination
to generate the y th column of m , the y th row of n , and the update matrix 
 · . But what if they th pivot is not acceptable numerically?
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for  := � to ì do
Set exists ï  ñ ���
Set �/ï  ñ � empty set

end for
for ë := � to ì do

for each nonzero � î � in row ë do
Set exists ï  ñ � ë

end for
for each row

�
in �/ï ë�ñ (i.e., each row with � ð � ë ) do

for each nonzero � ð � in row

�
with ëQ�  � ( ï � ñ do

if exists ï  ñ � ë (i.e., � î ������ ) then
Reduce edge

� 6D EGF  to

� 6D EHF ë 6D EGF  
end if

end for
end for
Add row ë to �/ï � î ñ (= set of rows

�
with � ð � ë )

end for

FIG. 5.4. Finding all practical length-two reductions for an upper BBT ordered matrix.

The simplest approach is the one that was used in the GESP (Gaussian elimination with
static pivoting) algorithm7 [16]. If the magnitude of any pivot would be less than � ��� � � £ ,
where � is the machine precision, then that pivot is replaced by � �,� � � £ . When combined
with a preprocessing step that moves large entries onto the main diagonal and an extra stage
of iterative refinement that compensates for the perturbation, this scheme seems to work well
in practice [17]. And it does not require any changes to the dataflow model.

But as we will show in this section, the model can also handle more traditional ap-
proaches to pivoting [2, 6, 9, 13, 14, 15] when the matrix is BBT ordered. We begin by
discussing block matrices and supernodes.

6.1. Block matrices and supernodes. Assume that we can symmetrically partition
�

into a block matrix whose diagonal blocks are dense and whose off-diagonal blocks are either
dense or zero. Then we can easily extend the unsymmetric multifrontal method to perform
block elimination on

�
and thereby compute its block mon factorization. We can model the

flow of data with a block dataflow graph8 whose vertices correspond to the diagonal blocks
of
�

. And because we are doing block elimination, pivoting within a diagonal block has no
effect on the graph.

Supernodes are a more general form of blocking that is commonly used to improve the
efficiency of symmetric [5] and unsymmetric [7] sparse numerical factorization. Assume that± · p £¦¤ · and ´ · ¤ · p £ are both nonzero. Then vertex y is a child of vertex y � h in the elimination
tree tuU � X , and the entire update matrix 
 · will be forwarded to vertex y � h and assembled
into the frontal matrix 	 · p £ .

Assume further that the nonzero structures of the columns of 9 ��p U y�� Z © y�� y � h�X are
identical and that the structures of the rows of

� p U y�� y � h © y�� ZØX are also identical. Then 
 ·
will have the same nonzero rows and columns as 	 · p £ .

Thus if we assemble into the frontal matrix 	 · all updates (other than 
 · ) destined for
either 	 · or 	 · p £ and perform two steps of elimination, we will have computed columns y
and y � h of m , rows y and y � h of n , and the update 
 · p £ . There is no need to create 
 ·
explicitly. The set � y © y � h � is said to be a supernode.

7 Existing implementations of GESP are column-based, not multifrontal.
8 This graph is also the quotient graph of the dataflow graph for

�
with respect to the blocking.

9 We use the MATLAB notations '���� , denoting the sequence 'M��'¡  � �?J¢J¢J£�t� , and
� > ¼Ý½ �V¤ À , denoting the

submatrix of
� >

defined by the row sequence
½

and the column sequence ¤ .
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More generally the set ¥ e � y © y � h © �#�#� © � � is a supernode if the diagonal subblock�	p U�¥ © ¥�X is dense; the columns in the submatrix
�qp U y�� Z © ¥�X have the same nonzero struc-

ture; and the rows in the submatrix
� p U�¥ © y�� ZØX have the same structure. As before we can

assemble all updates destined for 	 · , 	 · p £ , . . . , and 	 � from earlier vertices into the su-
pernodal frontal matrix 	§¦ and perform � ` y � h steps of elimination (of the vertices in¥ ). This will compute m U y�� Z © ¥�X , n U�¥ © y�� ZØX , and the update matrix 
 � . There is no need
to create 
 · , 
 · p £ , . . . , and 
 � Ü £ explicitly.

In terms of the dataflow graph this corresponds to coalescing the vertices in the set ¥
into a single supernode ¥ . To do so we delete the edges between vertices in ¥ ; replace by� _a ¥ any edges of the form � _a ¢ with �  y©¨ ¢ ¨ � ; and replace by ¥ _a«ª any edges
of the form � _a¬ª with � ª)¨ Z . (Since yº_a �5�K� _a � is a chain in tuU � X , there are no
edges ¢ _a«ª with yo¨ ¢�O� .)

Rather than perform � `\y � h separate steps of elimination, we could instead perform
a single U�� `�y � hjX [�UK� `�y � h�X block elimination and compute something equivalent tom U y�� Z © ¥�X and n U�¥ © y�� ZØX . The advantage of block elimination is that any pivoting within
the U�� ` y � h�Xæ[ÖU�� `Öy � hjX pivot block, which consists of the fully summed rows and
columns of 	Q¦ , will not affect the supernodal dataflow graph.

6.2. Delayed elimination for upper BBT ordered matrices. Pivoting within super-
nodal blocks may not be sufficient. Thus when a vertex y is not an acceptable (diagonal)
pivot, we delay its elimination until immediately after the elimination of its parent Î . (The
pivot value would be unchanged if we tried to eliminate y any earlier [11, Theorem 5.2].)
The corresponding symmetric permutation ¬ has a local effect on the elimination tree [11,
Theorem 7.2] and thus on the dataflow graph.

One drawback of this approach is that there is no guarantee that vertex Î is an acceptable
pivot; e.g., suppose that every remaining diagonal element is zero. Following [9] we address
this problem by treating � Î © y � as a supernode, which permits pivoting within the supernodal
block.10 The effect on the dataflow graph is again local (see the discussion of supernodes
above).

Note that to satisfy the definition of supernode we may have to treat certain zero entries
in the filled matrix UK¬ � ¬ � X p as nonzero, which constitutes additional fill. However, all such
entries lie in the rows and columns corresponding to vertices y and Î in the original ordering,11

and there is no effect on fill during the remainder of the factorization.
Another drawback is that the dataflow graph of ¬ � ¬ � does not capture all flows. In

particular, we do not discover that the vertex y is an unacceptable pivot until after we have
received all of the updates to y and have assembled them into the frontal matrix 	 · ; and we
may have to package some of the nonzero entries in 	 · as updates to vertices between y andÎ in the original elimination order. None of these flows is captured.

We address this problem by keeping the original dataflow graph with vertex Î now repre-
senting the new supernode and vertex y now representing an assembly-only vertex at which:l All updates are assembled into 	 · .l Row y of 	 · is moved immediately after row Î ; column y is moved either immedi-

ately after column Î (if present) or to where column Î would be (otherwise).l The entire 	 · is treated as the update matrix; that is, it is decomposed in the usual
way with the pieces sent along edges in the dataflow graph to vertices between y andÎ in the original order.

10 There is no guarantee that the supernodal block will be an acceptable pivot either, but we can delay all or part
of its elimination in the same fashion.

11 Row/column ë may get more fill than in the original ordering, but row/column ' cannot.
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�?>Â� ����
AB�C�D�EA ��� �B � �C ��L���L�LD ����LE ���

! ""$ �% A �% B�% C�% D �% E
3 3 4 66 73

3 4 66 7 Y+ : ¼�½ � ½¿¾WÀ >Â� ����
B�C�DsAEB � �C � �D ����LA � ���PLE ��L��

! ""$
FIG. 6.1. A filled matrix, its dataflow graph, and the filled matrix after a delayed pivot.

In terms of an implementation based on this extended model the only modification required is
to notify the vertices receiving updates, including Î , that y has been permuted to follow Î and
that the two vertices have been coalesced into a supernode. What makes this scheme work
for an upper BBT ordered matrix is that each recipient vertex between y and Î in the original
order is expecting an update that contains row Î ; and that Î can accommodate an update that
contains column y since they have coalesced into a supernode.

For example, for the matrix in Figure 2.3 the frontal matrix of vertex 5 is	 ê e ø ê àªá  £Ïâê � l lª���£Ïâ � � ��� � e 0 ê àªáê � lªl 1 $& 
 êN �
If we delay the elimination of vertex 5 until after the elimination of its parent 10, then the
“update” matrix is 
 ê e ø à á  £Ïâªê£çâ ��P�����ê lªlª��� � � e 
 àê $& 
 áê $& 
  ê $& 
 £Ïâê
where � denotes an entry that would have filled in with the original ordering and
 àê e ø à£Ïâ �ê l � © 
 áê e ø á£çâ �ê l � © 
  ê e ø  £Ïâ �ê � � © and 
 £Ïâê e ø £Ïâªê£çâ ���ê � � � �
Note that the recipient of each of these updates is expecting a contribution to row hji ; and that
vertex hji (representing the supernode � hji © m � ) can accommodate a contribution to column m .

These conditions need not be satisfied if
�

is not BBT ordered, so the process could
break down. For example, for the matrix in Figure 6.1 the frontal matrix of vertex h is	�£ e ø £ª§jN£ � l�lé l �
If � is an unacceptable pivot and we delay the elimination of vertex 1 until after the elimina-
tion of its parent 4, then the “update” matrix is
 £ e ø §jN £é �P�sl£ lªlY� � e 
 §£ $& 
 é£ $& 
 N£
where 
 §£ e ø §é �£ l � © 
 é£ e 0 NY£é ��l 1 © and 
 N£ e 0 N ££ lY� 1 �
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The frontal matrix for vertex ß is	 § e �� §ªê§ �ãlé �£ l
!$ e 0 §kê§ �kl 1 $& 
 §£

and its update matrix is 
 § e ø êé �£ � � e 
 é§ $& 
 N§ ©
where 
 é§ e 0 êé � 1 and 
 N§ e 0 ê£ l 1 �
However, there is no edge from vertex ß to vertex k (into which vertex h was coalesced) over
which to send the update 
 N§ , nor can the edge ß _a k be length-two reduced (which would
allow that update to be sent to an intermediate vertex).

This kind of pivoting is similar to what is done in the symmetric indefinite multifrontal
method [8] and in unsymmetric multifrontal methods that are based either on the elimination
tree tuU � �s�	� X of the symmetrized matrix

�Ö�O���
[2, 3, 9, 12] or on data-dags [13, 14, 15].

The difference is that we work with the elimination tree tuU � X of the original matrix and its
associated dataflow graph. This has significant advantages, as we show in the next section.

7. Relation to existing multifrontal models. In this section we investigate how our
dataflow model compares with other models of the unsymmetric multifrontal method.

7.1. Model based on ®)¯?°²±°©³µ´ . As mentioned in � 3.3, many current approaches
to the unsymmetric multifrontal method use the elimination tree of the symmetrized matrix�����æ�

as the model [2, 3, 9, 12]. We first establish some simple relationships between tuU � X
and tuU �O�s�	� X .

THEOREM 7.1. If vertex Î = vxw y{z is the parent of vertex y in the elimination tree t�U � X ,
then Î is an ancestor of y in the elimination tree tuU �O�Ö� � X . If ��� y and either ±5¶ · ¹e i or´ · ¶¹e i , then vertex � is an ancestor of y in tuU �O�Ö��� X .

Proof. Let "m be the symmetric factor of
�M���	�

. As noted in � 3.3, the graph T@U m X (resp.,T@U n X ) is a subgraph of T@U "m X (resp., T@U "m � X ). If Î is the parent of y in tuU � X , there exists a
cycle Î �e/f y �e/f Î , whence Î¸·�egf y ·�º¹eØf Î . Thus Î is an ancestor of y in tuU �}�Q��� X by
Theorem 2.1. On the other hand, if ��� y and ± ¶ · ¹e i , we have � �_ `ba y ��¹_ `xa � , whence� ·�e/f y ·�º¹e/f � . Thus � is an ancestor of y in tuU �P�P��� X by Theorem 2.1. The case ´ · ¶¹e i
is similar.

The second part of Theorem 7.1 does not imply the first since Î can be the parent of y
even if ±¥Ò · e i and ´ · Ò e i . For example, in the chorded cycle of Figure 4.3, vertex � is the
parent of vertex � , yet ±  £ e ´ £  e i . However, by Theorem 2.2 this cannot happen if

�
is

BBT ordered.
The data model based on tuU � X sends updates from a vertex y to its parent and, via added

edges, to certain other vertices � for which ±�¶ · ¹e i or ´ · ¶}¹e i . If the data model based
on t�U �k�N�	� X were used instead, the entire update from y would be sent to its parent intuU � �Ö�æ� X . By Theorem 7.1 one part would eventually reach the parent of y in tuU � X ; and,
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since the edges added to tuU � X lead to ancestors in tuU �}����� X , the other parts would also
eventually reach their destinations.

This suggests that the elimination tree tuU � X is a more refined model for the unsymmetric
multifrontal method than tuU �O�O��� X . There are three major practical differences:

1. Each update in the tuU � X model goes directly to its destination, barring length-two
reductions; and even with length-two reductions, the path in tuU � X is never longer. Thus there
is less data movement/assembly.

2. All updates in the tuU � X model are full matrices. Thus there is less arithmetic.
Indeed, merely shrinking the update matrices in the tuU ��� � X model by removing zero rows
and columns, which does not eliminate all embedded structural zeros, can lead to a significant
improvement in both storage and execution time [4].

3. The overhead to manage the updates in the tuU � X model is greater since each update
matrix is split into submatrices. However, this overhead is significantly lower when the matrix
is BBT ordered.

7.2. Model based on »¼¯K¯?½§³.´¿¾Z±ÁÀ)¾M´ . An alternative is to use a task-dag to specify the
task dependencies in the multifrontal method, and a data-dag to guide the assembly of data
from update matrix to frontal matrix [13] (see also [14, 15]). Here we explore the relationship
of these dags to the elimination tree and the dataflow graph.

The task-dag is the union T@UÆU m � X£Â � n Â#X of the transitive reductions12 of the graphsT@U m � X and T@U n X . In general the elimination tree is not a subgraph of the task-dag. For
example, in the chorded cycle matrix of Figure 4.3, vertex � is the parent of vertex � in tuU � X ,
but there is no direct edge in T@U m � � n X from � to � . However the situation is different for
BBT ordered matrices.

THEOREM 7.2. If
�

is BBT ordered, then the elimination tree t�U � X is a subgraph of the
task-dag.

Proof. If
�

is upper BBT ordered, the graph T@UÈU m � X Â X is the elimination tree tuU � X with
its edges directed from child to parent [11, Theorem 6.3]. The case when

�
is lower BBT

ordered is similar.
The data-dag is an extension of the task-dag that is formed by adding every edge y �_ `xa ¯satisfying13

a) ¯  v � � w y{z 3 |'~��/������� �eØf y �_ `xa � or � �_ `öa�y �e/f �Ø�
b) there does not exist an edge y �_ `ba g in the data-dag such that g �_ `xa ¯c) there exists a vertex u � ¯ such that u �_ `xady

and every edge in T@U m � X that satisfies the analogous conditions [13, Theorem 4.1]. By con-
trast the reduced dataflow graph is formed by pruning every length-two reducible edge from
the unreduced dataflow graph. In general neither the dataflow graph nor the data-dag is a
subgraph of the other. However the situation is different for BBT ordered matrices.

THEOREM 7.3. Let
�

be irreducible and upper BBT ordered, and assume that edgesy �_ `ba ¯ are considered for pruning from the unreduced dataflow graph (via reduction) or
adding to the task-dag (via extension) in left-to-right order within each row. Then the reduced
dataflow graph is the data-dag.

Proof. As noted in the proof of Theorem 7.2, the transitive reduction T@UÆU m � X£Â�X is the
elimination tree tuU � X with edges directed from child to parent.

12A transitive reduction of a directed graph Ã ¼�ÄMÀ is a subgraph Ã ¼ÅÄzÆ#À of Ã ¼ÅÄMÀ such that there is a path
from vertex � to vertex Ç in Ã ¼ÅÄMÀ if and only if there is a path from � to Ç in Ã ¼�ÄzÆ#À , and no subgraph with this
property has fewer edges. The matrix

Ä Æ
is its representation. The transitive reduction of a dag is unique [1].

13 The order in which edges are considered for inclusion is not specified in [13], so the data-dag need not be
unique.
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Let vertex Î e vxw y{z be the parent14 of vertex y in tuU � X , so that Î �e/f y �e/f Î . As noted
at the start of � 5.1, we have ±¥Ò · ¹e i and ±#« · e i for y ã¢¡QÎ . Since Î �_ `ba�y �egf Î , we
have v � � w y�z e vxw y{z . By construction no edge y �º¹_ `ba ¢ can be a cross edge in the dataflow
graph; and by the analog of property (a) above no such edge can be in the extension to the
data-dag. Thus it suffices to show that the dataflow graph and the data-dag have the same
subset of edges of the form y �_ `öa ¯ with ¯ ¹e Î . (The tree edges have already been accounted
for.)

Assume that y �_ `xa ¯ with ¯ � Î . By construction this edge is not in the unreduced
dataflow graph; by property (a) above it will not be added to the task-dag; and since Î �_ `xa ¯by Theorem 3.1, we have y �egf Î �_ `xa ¯ , so that it is not in the transitive reduction T@U n Â#X .
Thus it suffices to consider the set of edges of the form y �_ `xa ¯ with ¯ �Î that are not inT@U n Â#X . (The edges in T@U n Â�X are not reducible and must be in both the dataflow graph and
the data-dag.)

Because edges are considered for pruning or adding in left-to-right order, the condition
to add such an edge to the task-dag is just

There does not exist an g with y Ogo ¯ such that yÛ�_ `öa g is already in
the data-dag and g �_ `xa ¯ .(Since ¯ �Î and ±¥Ò · ¹e i by Theorem 2.2, the other conditions are already satisfied.) But

this is precisely the condition that this edge not be pruned from the unreduced dataflow graph.

There is an analogous result for lower BBT ordered matrices.
Dynamic pivoting of the kind described in � 6 requires a second data-dag È9É (see [13]).

This dag is constructed from the original data-dag ÈoÊ by adding each edge in the elimination
tree t�U � X , if it is not already present, and any additional edges y �_ `xa ¯ (or y ��¹_ `xa ¯ ) that
satisfy the three conditions in [13, Theorem 4.5], the first of which isy  ¯  vbw y�z and there exists a child g of ¯ such that y �e/f g (or g �e/f y ).
But in a BBT ordered matrix, if y  ¯  vxw y{z , then any child g of ¯ must satisfy y �gË ¯ .Thus this condition is never satisfied, and Theorem 7.3 holds for È9É as well as È9Ê .

For BBT ordered matrices the dataflow model is identical to both data-dag models, al-
though their derivations are quite dissimilar. However, the elimination tree is needed to define
BBT ordering; and without it neither the simplified decomposition nor the collapse of theÈ©ÊYÔ�È©É hierarchy is possible. Thus the dataflow model is arguably more refined.

8. Concluding remarks. Our dataflow model for the unsymmetric multifrontal method
is based on the elimination tree of a sparse unsymmetric matrix. Update matrices are split
and flow along either tree edges or certain cross edges in an augmented tree. When the sparse
matrix has symmetric structure, the model reduces to that for the symmetric multifrontal
method.

The model is particularly simple when the sparse matrix is in BBT form, and this suggests
that an implementation based on it should also be simpler. But any unsymmetric matrix can
be permuted to such a form efficiently [10].

Another advantage of BBT form is robustness under pivoting. When a pivot is unac-
ceptable the model adapts easily to the combination of pivoting within supernodal blocks and
delayed elimination that is used in unsymmetric multifrontal codes based on the elimination
tree tuU �O�O�	� X or on the data-dag. However, it is more refined.

Finally, because the dataflow graph captures all dependencies of frontal matrices on up-
date matrices, it also reveals whatever high-level parallelism is available. And since it is more

14 Since
�

is irreducible, only vertex ì lacks a parent; but there are no edges in either the dataflow graph or the
data-dag directed from that vertex.
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refined than the t�U �O�O�	� X model, it exposes more such parallelism.
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