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STABILITY OF NUMERICAL METHODS FOR ORDINARY STOCHASTIC
DIFFERENTIAL EQUATIONS ALONG LYAPUNOV-TYPE AND OTHER

FUNCTIONS WITH VARIABLE STEP SIZES
�

HENRI SCHURZ
�

Abstract. Some general concepts and theorems on the stability of numerical methods for ordinary stochastic
differential equations (SDEs) along Lyapunov-type and other Borel-measurable, nonnegative functions are presented.
In particular, we deal with almost sure, moment and weak � -stability, exponential and asymptotic stability of related
stochastic difference equations with nonrandom, variable step sizes. The applicability of the main results is explained
with the class of balanced implicit methods (i.e. certain stochastic linear-implicit methods with appropriate weights).
It is shown that, they are rich enough to provide asymptotically, exponentially and polynomially stable numerical
methods discretizing stable continuous time SDEs by controlling the choice of their weights.
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1. Introduction. Convergence and stability are two of the key requirements on numer-
ical methods for approximating systems of stochastic differential equations (SDEs) such as,�����	��
������������������������� � � �!���"���#�#�%$ �� � ����� &�� � �!���"���#�#�%$ ��
(1.1)

driven by standard one-dimensional Wiener processes
$ � �'�($ �� � &*) � ),+ and interpreted in

Itô sense (for the sake of simplicity of this representation), where

-� � �/.102& �"3 4��"57698 IR : � IR : �

and we meet the convention
$ &� �;�

and � & ������<,�=�>
������<,�
for more compact notation (for

theory of SDEs (1.1), see Arnold [2] - [3]). The key role of these concepts is visible from
the stochastic Kantorovich-Lax-Richtmeyer principle, as presented in Schurz [44, 45, 46, 47]
(For deterministic counterparts and related topics, e.g. see Godunov and Ryabenkii [14],
Richtmeyer and Morton [36] or Strikwerda [49]). Roughly speaking, it says that, if some
consistency, contractivity and stability requirements are met, one is able to find contractivity
constants ?A@B of the exact solution, stability constants ?DCE of the numerical approximation
and contants ?GF such that the universal estimates of the weak HJI -error (KMLON ),P I ��5=�RQS�UT�V�W&9) � ),+�X IE Y ����ZD[]\� Y I :9^ ��_ Ia`cbed W�� ? @B 52� P I �(4f�g� ? F bed W�� ? CE 5=��hji�lkem(1.2)

hold, where
h �nk�m denotes the maximum step size, o the rate of HpI -convergence, YrqsY : the Eu-

clidean vector norm of IR : , and
[ \

a suitable (continuous time continuation of) numerical ap-
proximation of process

�t�u�!� � � &9) � ),+ governed by (1.1). Similar estimates are valid for the
strong H	I -error v I ��5=�p�;�

IE
T"V�W &*) � ),+ Y � � ZA[ \� Y I : � �"_ I (K1LON ). Also, in view of weak ap-

proximations along appropriate classes of functionals of
�

, the verification of stability of re-
lated numerical methods applied to SDEs (1.1) is crucial for the proof of rates of weak conver-
gence, as seen in works of Milstein [30] and Talay [50]. Hence, the important role of stability
investigations for discrete stochastic dynamics generated by numerical methods approximat-
ing SDEs is apparent. For a more recent overview on aspects of stochastic-numerical analysisw
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and interrelations, see also Artemiev and Averina [5] or Schurz [44]. In passing, for technical
reasons, we note that both the solution

�x�y�!�z��� &*) � ),+ , its approximation
[ \ �;�![ \{ � {%| IN

and the driving independent Wiener processes
$ � �}�($ �� � &*) � ),+ are defined on complete,

filtered probability spaces
�(~2�"�M�9�!� � � &9) � )+ �"� �G� and

��~2�"�M�9��� { � {%| IN
��� �G�

, respectively.
This work is a continuation of systematic stability investigations [37] - [43]. Mean square

stability of numerical methods for linear SDEs is discussed by many authors, e.g. [4], [5], [8],
[9], [16], [17], [18], [33], [35], [37] and [38], and stochastic stability by [6], [17], [18], [7] and
[30], whereas expectation stability in [1], [19] and [39]. Additively noised equations and sta-
bility is treated in [39]. There is a note [40] on an invariance property of stochastic � -methods
concerning moment stability. Stochastic versions of A-stability are found in [5], [17], [38]
and [42]. Numerical stability exponents are investigated in [41]. Contractivity and B-stability
of stochastic dynamics (including the drift-implicit Euler-Maruyama method) are discussed
in [38], [41] and [42]. However, most of the forementioned works deal with numerical sta-
bility when applied to linear, onedimensional SDEs. Here, we are aiming at a presentation
of fairly general theorems to control the qualitative behavior with respect to diverse stabil-
ity concepts of stochastic numerical methods in IR : along certain nonlinear functions (which
play a similar and sometimes more general role as Lyapunov functions) when applied to lin-
ear and nonlinear test SDEs (1.1). As an illustrative example, the class of balanced implicit
methods with linear-implicit weights as introduced in [31] is thoroughly treated with respect
to several stability issues. It is shown that this class can successfully tackle several problems
of asymptotic almost sure and moment stability by the help of Lyapunov-type functions. As
a major consequence, our analysis contributes to the understanding of constructing both con-
verging and asymptotically stable numerical methods applied to systems of (nonlinear) SDEs
with variable step sizes. However, we will interpret the concept of Lyapunov functions in a
very generous manner (i.e. along nonnegative Borel-measurable functions with certain equi-
libria to evaluate the asymptotic behavior of related numerical dynamics, that is why we use
”Lyapunov-type” in our title above) compared to its original definition.

As we go on we note that, there exist an incredible rich literature on stability theory
of analytic solutions of SDEs. See, e.g. the books of Arnold [2] and [3], Hasḿinskiǐ [15]
or Mao [29] in order to mention a few of them. Our aim is to present a fairly general, but
still applicable approach, to the stability analysis of stochastic-numerical methods based on
Lyapunov-type or similar functions (or functionals), and we understand this work only as
a beginning to carry over some of the key concepts known from analytic theory to fastly
expanding field of stochastic-numerical analysis. Here, we are mainly interested to study the
stability behavior of the numerical methods by its own dynamics. The through comparison to
the behavior of the underlying analytic solution is left to future research due to its enormous
complexity and many unsolved related problems.

The paper is organized as follows. In Section 2, we report on results with respect to
exponential and asymptotic weak � -stability along Lyapunov functions � (i.e. ”weak” in the
sense of expectations of � ). Section 3, deals with asymptotic almost sure stability. Thereafter,
we introduce the concept of weak � -stability exponents and study the almost sure stability
behavior with their help in Section 4. Finally, section 5, concentrates on fully nonlinear
relations involving Lyapunov-type functions and resulting to stability of polynomial type.

2. Exponential and Asymptotic Weak � -Stability. One of the weakest requirements
of stability is the stability of the first moments. Such a concept for numerical methods is dis-
cussed in [1]. A more general, but still weak concept is given below. Let

[���� m �!�"� , denote the
continuous one-step representation of the numerical method

[;�y�([ { � {%| IN along discretiza-
tions

4M�>� & ` � � ` q�q�q ` � {f� �>5
of time-intervals

3 4��"5n6
, i.e.

[ ��� m �!�"� is the value of the
numerical approximation at time

� . 3 ����5n6g��3 4��"5n6
, started at the value

<
at time

� . 3 4��"5=�
.



ETNA
Kent State University 
etna@mcs.kent.edu

STABILITY OF NUMERICAL METHODS FOR SDES ALONG FUNCTIONALS 29

2.1. Definition and general theorems. For simplicity, interpret the discrete time nu-
merical method

[
as a sequence of values

[ { , along a given adapted discretization of the
interval

3 4���5n6
. We shall also take into account certain standard continuations of those dis-

crete methods to associated continuous time approximations constructed along the adapted
sequences of nondecreasing instants

� { . 3 4���5n6
and coinciding with the values

[ { at those
instants

� { wherever it is convenient (for simple examples, see below). Let � ���p� , denote the� -algebra of Borel sets of inscribed set
�

, and � the Lebesgue-measure.
DEFINITION 2.1. A random sequence

[����![ { � {%| IN of real-valued random variables[ { Q��~2�"� { ��� �G�l���
IR : � � � IR : ��� is called asymptotically weakly � -stable for a nonnega-

tive, Borel-measurable function � Q�3 � & �"52�J8 IR : � IR
�� if,��������a� +�� IE � ��� { ��[ { ����4

(2.1)

for all finite initial values
[ & with IE � �!� & ��[ & �2 u�/¡

. Moreover,
[

is said to be exponen-
tially weakly � -stable for a nonnegative, Borel-measurable function � Q�3 � & �"52�%8 IR : � IR

��
if there exist functions ? E Qg3 4��"52�R�

IR
� . H �¢�£�¤ ��3 4��"5=�e� � �"3 4���5=�"�e� � � and real constants ¥ &

such that,

IE
3 � ��� { � � ��[-� � � C � ��� { � � �"�9¦ � { 6 `§bed W X ? E �!� { �e�!� { � � Z¨� { � ^ � ��� { ��[ { �(2.2)

for all finite random variables
[ { which are

��� { � � � IR : �"� -measurable and all
�!� { � -

predictable discretizations
�!� { � { � & � � �ª©ª©ª©ª� {�� �g� of

3 4��"5n6
with

h �nk�m ` ¥ & . If � �!<,�G� Y < Y I :in the above statements then
[

is called exponentially K -th mean stable (in particular, ifK ��«
then exponentially mean square stable).

Note: The terminologies ”asymptotic” and ”exponential stability” are interpreted in a
fairly wide sense. We incorporate the limit behavior on finite time-intervals

3 4��"576
too, since

there are examples such as, the numerical simulation of Brownian bridges, (see e.g. Schurz
[38]) where the precise limit behavior at the boundaries on finite time-intervals

3 4��"5n6
is re-

quired on its approximation (or more general in boundary value problems). Moreover, we
also allow to observe exponentially increasing behavior by the concept of ”exponential sta-
bility” in contrast to continuous time standard definitions. The main observation for the term
”exponential” is that the numerical method allows estimates of the form (2.2), and hence the
behavior of its stability function ? E on

3 4���5n6
will mainly determine its limit behavior as

seen below. Only the additional words ”asymptotic stability” or ”asymptotically stable” are
exclusively reserved for the convergence of related functional to

4
throughout this paper.

THEOREM 2.2. Assume that the numerical method
[

constructed along any nonrandom
time-discretization of

3 4��"5n6
with maximum step size

h �nk�m ` ¥ & is exponentially weakly� -stable with ¥ & and nonrandom stability function ? E on
3 4���5n6

. Then, ¬, � N �®«¯� q�q�q �  + ,

IE � ��� { ��[ { � `°bed W X { � ��± �g& ? E �!� ± �"h ± ^ IE � �(4���² & �e�(2.3)

T"V�W&9) � )+ IE � ������[ & � ³®´��!�"�"� `°bed W X { � �g��± � & 3 ? E �!� ± �µ6 � h ± ^ IE � �(4��"² & �(2.4)

where
3 q 6 � denotes the positive part of the inscribed expression. Moreover, if

[
is a continu-

ous time numerical method and ? E is its nonrandom stability constant (i.e. ? E =constant on3 4��"5n6
) then,

IE � ������[ & � ³ ´a���"��� `§bed W�� ? E �"� IE � �!4���² & �e�(2.5) T�V�W&*) � ),+ IE � ������[ & � ³ ´a���"��� `§bed W��"3 ? E 6 � 52� IE � �!4��"² & � q(2.6)
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Proof. Suppose that
� ± ` � ` � ± � � with

h ± ` ¥ & . If IE � �(4��"² & �¶�x�/¡
then there

is nothing to prove. Now, suppose that IE � �!4���² & �M }�/¡
. We may confine ourselves to

the case when ? E is a nonrandom constant on
3 4��"5n6

and
[

is a continuous time numerical
method constructed along the adapted nondecreasing instants

� { . 3 4��"5n6
since the proof-

steps are very similar. Using elementary properties of conditional expectations, we estimate,

IE � ������[ & � ³�´����"�"���
IE IE

3 � ������[ �!· � C · �!�"�"�9¦ � �!· 6`cbed W�� ? E �!�¸Z¨� ± ���º¹ IE � ��� ± ��[ ± �J� b*d W�� ? E ���ºZ¨� ± �"�	¹ IE � ��� ± ��[ �!·®»½¼ � C ·�»½¼ ��� ± �"� ` q�q�q`cbed W�� ? E �"�º¹ IE � �!4��"² & � `¾bed W���3 ? E 6 � �"�º¹ IE � �(4���² & � `cbed W��"3 ? E 6 � 52�¸¹ IE � �!4��"² & �
by induction. Hence, taking the supremum confirms the claim of Theorem 2.2.

COROLLARY 2.3. Assume that, the numerical method
[

constructed along any non-
random time-discretization of

3 4��®�/¡c�
with maximum step size

h �nk�m ` ¥ & is exponentially
weakly � -stable with constant ¥ & and nonrandom Lesbesgue-integrable stability function? E . H �¢�£�¤ �"3 4����/¡¾�e� � �"3 4����/¡¾����� � � satisfying,��¿�± � & ? E ��� ± ��h ± �yZ=¡ q(2.7)

Then,
[

using nonrandom step sizes
��h ± � ± | IN is asymptotically weakly � -stable.

Proof. Obvious application of Theorem 2.2 with inequality (2.3) and taking the limit �À�/¡
.

2.2. The example of balanced implicit methods. A fairly easy example of numerical
methods for systems of SDEs (1.1), is given by the class of balanced implicit methods (BIMs),
as introduced by Milstein, Platen and Schurz [31] and studied in Schurz [38], [43]. These
methods follow the iteration scheme,[ ± � � �Á[ ± ������� & � � �!� ± ��[ ± �"h�$ �± �Â����� &gÃ � ��� ± ��[ ± �9¦ h�$ �± ¦��![ ± Z¨[ ± � � �(2.8)

where
h�$ �± �O$ ��!·"Ä%¼ ZD$ ��!· � Ã �/.Å02& ��3 4��"5n6�8

IR : � IR :aÆ�: � (Recall the convention
$ &� ���

and � & ������<,�p�Ç
,�!���"<�
). BIMs (2.8) possess the one-step representations[,��� ³¯�!�"�J�È²/�¾É �g���� ³ �!�"�Å�����g&�� � �(�f�"²��*�($ �� ZD$ �� � with(2.9)

É �®� ³ �!�"�J�ÁÊ : � ����� &�Ã � �(�f�"²��9¦ $ �� ZD$ �� ¦
(2.10)

while assuming the existence of
É � ���� ³ ���"� for all

4 ` �ËZÌ� ` ¥ & ` 5
and all

² .
IR : and

all
�f�"� . 3 4��"5n6

, where
Ê : denotes the

�Í8Î�
unit matrix of IR :aÆ�: . Mean square convergence

of these linear-implicit methods with rate 0.5 (as the standard Euler-Maruyama methods) has
been proven in [31] provided that the coefficients � � are Lipschitz-continuous and the weightsÃ � guarantee the uniform boundedness of

É �g�
. Using the one-step representation (2.9), the

continuous polygonal representation of the scheme (2.8) can recursively be written as,[ & � ³ ´a�!�"�p��[ ± �ÌÉ � ��!· � C · ���"� ����� & � � �!� ± ��[ ± �e��$ �� ZD$ ��!· �
if

� ± ` � ` � ± � �(2.11)
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for all times
� . 3 4���5n6

, started at
[ & �Ï[ & � ³ ´a�!� & �]�Ð² & . IR : , where we have the identity[ & � ³ ´a��� ± � � �Ë�Ç[-� · � C · ��� ± � � �J��[ ± � � for all Ñ �Ç4�� N � q�q�q �  + Z N . Let YrqsY :aÆ�: denote a matrix

norm which is compatible with the Euclidean vector norm YrqsY : on IR : .
THEOREM 2.4. Let ¥ & ` ����Ò�� N �"5=� and � � ������<,�Ë�ÇÓ � �!���"<��<

. Assume that the stochas-
tic process

�t�u�!���"� &9) � )+ satisfies (a.s.) the Itô SDE

�f���º�ÇÓ & �����"���#�����º���g�Â������� Ó � �������¶�"�#�����%$ �� �
(2.12)

with nonrandom IR :aÆ�: -valued matrix coefficients
Ó �

of Caratheodory-type and there are real
constants ? EÔ and ? �Õ satisfying ¬ ���®� . 3 4���5n6/Qp4 ` �¸ZD� ` ¥ & ¬ < . IR :

Y Ó � �!���"<,� Y :aÆ�: ` ? �Õ � Y �!Ê : Z¨Ó & �!���"<,�*���	Z��Ö�"� �g� Y :aÆ�: `Àbed W�� ? EÔ ���ºZD�Ö���
(2.13)

Then the drift-implicit BIMs (2.8) applied to SDE (2.12) with weights Ã & ������<,�=��Z7Ó & ������<,�
and Ã � ������<,�J�O×

(Ø � N ��«¯� q�q�q �"Ù ), and step sizesh ± ` h �nk�m ` ¥ &  c����ÒjÚ N ��57� NÙ K � K Z N �*� ? �Õ �#Û Q Ø � N ��«�� q�q�q �"ÙÝÜ
(2.14)

are exponentially K -th mean stable with KÎL «
and stability constant

?�Þ IeßE ` K ¹Ràá Ù K Z N« ������� � ? �Õ � ÛN ZAÙ K � K Z N �e� ? �Õ �#ÛÖh �lkem
� ? EÔÍâã(2.15)

and they satisfy global K -th mean stability estimates (2.5) and (2.6) for K1L «
.

Proof. Suppose that ¥ & ` ����Ò�� N �"5=� . Recall that
4 ` �2ZO� ` ¥ & ` ����Ò�� N �"5=� .

Let ä �(�Ö� , be any
���=�å� � � IR : ��� -measurable random variable. Define the auxiliary quantitiesÉ ��� m �!�"�J�ÇÊ : ZDÓ & ������<,�e�!�ºZD�Ö�

and o �uæ NÖç � K Z N � . Then,

IE
3 Y [ �®� è Þ � ß ���"� Y I : ¦ �é��6Í� IE

3 Y9ä �(�Ö�9��É �g��®� è Þ � ß ���"� ����� &�� � ����� ä ���Ö�"�e��$ �� ZD$ �� � Y I : ¦ �é��6�
IE
3 Y É � ���� è Þ � ß �!�"� X Ê : � ������� Ó � �(�f� ä �(�Ö���e�($ �� Z�$ �� � ^ ä �(�Ö� Y I : ¦ � � 6`cb*d W�� K-? EÔ �!�¸Z��Ö�"� Y9ä �(�Ö� Y I : IE 3 Y Ê : ��������� Ó � ���f� ä �(�Ö�"�*�($ �� ZD$ �� � Y I :aÆ�: ¦ �é��6� b*d W�� K-? EÔ �!�¸Z��Ö�"� Y9ä �(�Ö� Y I : IE 3 Y Ê : ��������� Ó � ���f��ê%�e�($ �� Z�$ �� � Y I :aÆ�: 6®ëëë ì � è Þ � ß q

Now, the expectation part at the right hand side is treated as follows. By using an elementary
inequality originating from Clarkson [12] and Beckner [10] applied to the Banach space of
random matrices with uniformly HpI -integrable coefficients (see Lemma 2.5 in Section 2.3
below) one finds that,

IE
3 Y Ê : � ������� Ó � �(�f��ê%�e��$ �� Z�$ �� � Y I :aÆ�: 6 ëëë ì � è Þ � ß
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� N« IE
3 Y Ê : � o No ������� Ó � �(�f��ê%�e��$ �� Z�$ �� � Y I :aÆ�: 6 ëëë ì � è Þ � ß �� N« IE

3 Y Ê : Z o No ������� Ó � ������ê½�*�($ �� Z�$ �� � Y I :aÆ�: 6 ëëë ì � è Þ � ß` IE X N �ÝÙ No Û ������� Y Ó � �(�f� ä �(�Ö�"� Y Û :aÆ�: ��$ �� Z�$ �� � Û ^ I _ Û` IE X N �ÝÙ¨� K Z N �Î�����¸� � ? �Õ � Û �($ �� Z�$ �� � Û ^ I _ Û` �í����� IE bed W X N« Ù K � K Z N �*� ? �Õ � Û �($ �� ZD$ �� � Û ^`Ìbed W X Ù K � K Z N �« ������� � ? �Õ � ÛN ZAÙ K � K Z N �e� ? �Õ �"Ûåh �nk�m
�!��Z��Ö� ^

for
4 ` �JZ¾� ` h �lkem ` ¥ &  î����Ò�� N �"57� NÖç 3 Ù K � K Z N �*� ? �Õ � Û 6�� . Exploiting this fact after

returning to the original estimation yields

IE
3 Y [ ��� è Þ � ß ���"� Y I : ¦ � � 6`Ìbed W X K 3 Ù K Z N« ������� � ? �Õ � ÛN Z¨Ù K � K Z N �e� ? �Õ �"Û9h �nk�m

� ? EÔ 6µ�!�¸Z��Ö� ^ ¹ Y9ä �(�Ö� Y I : q
Therefore, the BIMs (2.8) are exponentially K -th mean stable for KÎL «

. It obviously remains
to apply Theorem 2.2 in order to complete the proof with ?¾Þ I*ßE as in (2.15).

Remark. Interestingly, we gain asymptotic K -th mean stability of BIMs provided that? EÔ  'ZnÙD� K Z N ��ï ����¸� � ? �Õ � Û ç « and sufficiently small step sizes. For example, compare
with the onedimensional analytic case

�f�ð�7�yñ����#����� � �¶���%$Å�
when asymptotic stability

of K -th moments can be established under the condition
ñò��� K Z N � � Û ç «Î y4

. In passing,
one can also show that, the presence of negative semidefinite matrices

Ó &
in its drift leads to

stabilizing effects on the moments of related SDEs (2.12). So some ”coincidence” between
analytic and numerical behavior is observed. Conditions (2.13) can be guaranteed for neg-
ative semidefinite matrices

Ó &
and uniformly bounded

Ó �
for Ø � N ��«�� q�q�q �"Ù . For practical

implementation, one may also take the stabilizing, negative semidefinite part of
Ó &

as weight
matrix Ã & instead of the entire structure of

Ó &
. As seen, drift-implicitness in BIMs (2.8) is

sufficient to ensure K -th mean stability - a fact which [38] has already noted for linear systems
with K �î«

.

2.3. Exponential
� N � Y < Y Û � I _ Û -stability. The stability of numerical methods with re-

spect to Lyapunov functions � �!<,�J�;� N � Y < Y Û : � I _ Û is commonly used to prove convergence
(i.p. in the weak sense) of numerical methods. We will discuss this issue with the example of
balanced implicit methods. For this purpose, we need a series of auxiliary lemmas.

2.3.1. Three auxiliary lemmas. We begin with a random version of Clarkson-Beckner
inequality (which even holds for each ó . ~

, see proof below).
LEMMA 2.5. Let

�Å��[
be two elements of a (random) Hilbert space

�!ôÎ�9  q � q7õ2ö �
equipped with its scalar product

  q � qRõéö , IR
�

as its set of scalars and naturally induced
norm Y9äjY*ö �u�#  ä � äOõ7ö � ��_ Û . Assume that,

IE
3 Y � Y I ö � Y [ Y I ö 6Î ÷�/¡
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for a KÎL «
. Then, for that KÎL «

, we ó -wisely haveY �Ð�Ý[ Y I ö � Y �}ZD[ Y I ö« ` X ����Ò�ø Y � Y Ûö �Ì� K Z N � Y [ Y Ûö � Y [ Y Ûö �Ì� K Z N � Y � Y Ûöúù ^ I _ Û
and hence moment-wisely

IE Y �Ð�¾[ Y I ö �
IE Y ��ZD[ Y I ö«` IE X ����Ò ø Y � Y Ûö ��� K Z N � Y [ Y Ûö � Y [ Y Ûö �Ç� K Z N � Y � Y Ûö ù ^ I _ Û q(2.16)

Proof. Define û QS�§ø9� . �(ôÎ�*  q � q=õ ö �ÎQ Y � Y I Õ �
IE
� Y � Y I ö �Î t�/¡ ù . Then� û � YrqsY Õ � forms a Banach space as a subset of

ô
. Suppose that

�Å��[ . ûÐü ô
. Seto � NÖçfý K Z N , ê � �x�þ� ý K Z N [ ,

ê Û �x�°Z ý K Z N [ , ÿ � �§� Y ê � Yeö � Y ê Û Yeö � ç «
and ÿ Û �>¦ Y ê � Yeö Z Y ê Û Yeö ¦ ç « . Then, Clarkson-Beckner inequality from [12] and [10] which
says that,

X ¦ N � ÿ ¦ �p�î¦ N Z ÿ ¦ �« ^ ��_ � ` X ¦ N � æ ���2Z N � ç � K Z N � ÿ ¦ I �î¦ N Z æ ���2Z N � ç � K Z N � ÿ ¦ I« ^ ��_ I
for all numbers ÿÎL 4�� N   K ` �

and parallelogram identity on Hilbert spaces imply that

X Y �Ï�¾[ Y I ö � Y �}Z¨[ Y I ö« ^ ��_ I � X Y �Ð� o �i [ Y I ö � Y ��Z o �i [ Y I ö« ^ ��_ I` X �"� N � o � Y ê � Yeöúç «7�Ç� N Z o � Y ê Û Yeö/ç «f� I �M�"� N Z o � Y ê � Y*öúç «n��� N � o � Y ê Û Yeöúç «�� I« ^ ��_ I� X ¦ ÿ � � oÿ Û ¦ I �Ç¦ ÿ � Z oÿ Û ¦ I« ^ ��_ I;` X ¦ ÿ � � ÿ Û ¦ Û �î¦ ÿ � Z ÿ Û ¦ Û« ^ ��_ Û� X Y ê � Y Ûö � Y ê Û Y Ûö« ^ �"_ Û � X Y � Y Ûö ��� K Z N � Y [ Y Ûö ^ �"_ Û q
Now, it remains to exploit the symmetry of the above expressions with respect to

�
and

[
and to take the K -th power and expectation in order to arrive at (2.16). Thus, the proof is
complete.

Second, observe the following property of moments of Gaussian exponentials.
LEMMA 2.6. Assume that

� .�� �(4���h��
. Then

¬ � . �"Z Ný «fh � Ný «�h �
IE b*d Wg� � Û � Û � ` Ný N ZD« � Û9h `°b*d W�� � Û hN Z�« � ÛÖh � q(2.17)

Proof. Define � �Á� ç ý h . Note that � .�� �!4�� N � . Calculate

IE bed W�� � Û � Û �D�
IE b*d W�� � Û h � Û �¨� Ný «	� 
 ��¿� ¿ bed W X � Û h < Û Z < Û« ^ �f<� Ný «�� 
 ��¿� ¿ bed W X ZÌ� N ZD« � Û h�� < Û« ^ �f<Ï� Ný N Z�« � Û h `°bed W X � Û hN Z�« � Û h ^

using the elementary inequality NÖç � N Z�ê½� `�b*d W��!ê ç � N ZDê%�"�
for

êz��« � Û h}  N . Thus, the
proof is complete.
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Third, linear-polynomial boundedness of Lipschitz continuous functions can be estab-
lished too. Let

0ú&� Þ� ß ��3 4��"5n6/8 IR : � IR ¢ � denote the set of all continuous functions � Q3 4��"576g8
IR : � IR

¢
which are uniformly polynomially bounded such that

¬ � . 3 4��"5n6 ¬ < . IR : Y�� ������<,� Y ¢ ` ?�� ¹f� N � Y < Y : ���
where ?��AL 4

and �cL 4
are appropriate real constants. ( � Qº3 4���5n6º8

IR : � IR
¢

is called
linear-polynomial bounded if it is uniformly polynomially bounded with � � N .)

LEMMA 2.7. Assume that � .D0ú&� Þ� ß �"3 4���5n6�8 IR : � IR ¢ � with constants �¨L 4
and ? � is

uniformly Lipschitz continuous with constant ?�� , i.e.

¬ � . 3 4���5n6 ¬ <���² . IR : Y�� �!���"<�ºZ � �!���"²�� Y ¢ ` ?���Y <zZ¨² Y : q(2.18)

Then, there exist real constants ? � Þ I*ß � ? � Þ I*ß � K �"57� ? � � ?�� � such that ¬ � . 3 4��"5n6
¬ < . IR : Y�� �����"<� Y ¢ ` « � Þ I � � ß _ I ? � Þ Ieß ¹�� N � Y < Y : � ` ? � Þ I*ß ¹f� N � Y < Y I : � ��_ I(2.19)

for all KÎLON , where the real constants ? � Þ I*ß can be estimated by4 ` ? � Þ I*ß ` « Þ I � � ß _ I ¹*��� d ø ? � � ?�� ù q(2.20)

Proof. While using triangle and Hölder inequalities, estimate4 ` Y�� �!���"<� Y ¢ ` Y�� ������4f� Y ¢ � Y�� �����"<�¸Z � �!����4½� Y ¢ ` ?�� � ? � Y < Y :` ��� d ø ?�� � ? � ù � N � Y < Y : � ` « Þ I � � ß _ I ��� d ø ?�� � ? � ù � N � Y < Y I : � ��_ I q
Therefore, constant ? � Þ I*ß can be chosen as in (2.20). Thus, the proof is complete.

Remark. In fact, it suffices that
T"V�W &9) � )+ Y�� �!���"< � � Y ¢  ��/¡

for some
< � .

IR : and� is Lipschitz continuous in
< .

IR : with constant ?�� ���"� which is uniformly bounded with
respect to

� . 3 4���5n6
. However, ? � Þ I*ß may depend on � too.

2.3.2. Exponential weak
� N � Y < Y Û : � I _ Û -stability of BIMs (2.8). Consider BIMs (2.8)

with both variable or constant step sizes
h ± ` h �lkem where

h �nk�m sufficiently small. Uni-
form boundedness of K -th moments of these methods can be established as follows.

THEOREM 2.8. Let K ��« � and � .
IN � øÖ4 ù . Assume that BIMs (2.8) with nonrandom

step sizes
h ± ` h �nk�m ` ¥ &  c����Ò¸� N ��5=� and

¬�Ø � N ��«�� q�q�q �"ÙUQ K � K Z N ��Ù ? ÛÔ � ? �� Þ Û ß � Û h �nk�m   N(2.21)

possess real constants ? Ô � ? Ô ��5=� L 4�� ? B � ? B ��5=� L 4
such that, for the chosen

weight matrices Ã �/. IR :aÆ�: of BIMs (2.8), we have

¬ � . 3 4��"5n6 ¬ < . IR : ��� � ± � & Y Ã ± �!���"<,� � � ������<,� Y Û : ` � ? B � Û � N � Y < Y Û : ���(2.22)

¬ �f���zQp4 ` �ºZ�� ` ¥ & ¬ < . IR :�� É � ���� m �!�"� with
¦�¦ É �g���� m �!�"�*¦�¦ :aÆ�: ` ? Ô �

(2.23) ¬ � . 3 4��"5n6 ¬ < . IR : Y � � ������<,� Y Û : ` � ? �� Þ Û ß � Û � N � Y < Y Û : ���(2.24)

IE Y [ & Y I :  t�/¡ q(2.25)
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Then, all K -th moments of BIMs (2.8) are uniformly bounded and, more precisely, for allÑ �Á4�� N � q�q�q �  + and all � . IN � øå4 ù with
« � ` K , we have

IE Y [ ± Y Û : ` IE
3 N � Y [ ± Y Û : 6  `Àbed W�� ? Û  � ± � IE 3 N � Y [ & Y Û : 6 (2.26) `Àb*d W�� ? Û  5=� IE 3 N � Y [ & Y Û : 6 

with appropriate real constant

? Û  ` ��? Ô�� « ? &� Þ Û ß �M��« � Z N ��Ù ? Ô �������
� ? �� Þ Û ß � ÛN Z « � ��« � Z N ��Ù ? ÛÔ � ? �� Þ Û ß �"Ûåh ± � q(2.27)

Proof. Define ! & � Ñ �lQª� IE
3 Y [ ± Y I : 6 for all Ñ �Á4�� N � q�q�q �  + . First, note that

! & � Ñ � N �D�
IE
3 Y [ ± �ÌÉ � ��!· � C · ��� ± � � � ����� & � � �!� ± ��[ ± ��h¶$ �± Y I : 6� N« IE

3 Y [ ± �cÉ � �� · � C · ��� ± � � �"
,�!� ± ��[ ± ��h ± � ������� É � �� · � C · ��� ± � � � � � ��� ± ��[ ± �"h�$ �± Y I : 6%�� N« IE
3 Y [ ± �cÉ � ��!· � C · ��� ± � � �"
,�!� ± ��[ ± ��h ± Z������¸� É � ��!· � C · ��� ± � � � � � ��� ± ��[ ± �"h�$ �± Y I : 6 q

Second, apply the random version of Clarkson-Beckner inequality (2.16) from Lemma 2.5
and obtain! & � Ñ � N � `
IE X Y [ ± �cÉ � ��!· � C · ��� ± � � �#
�!� ± ��[ ± �"h ± Y Û : �Ç� K Z N � Y ������� É � ��!· � C · �!� ± � � � � � �!� ± � [ ± ��h�$ �± Y Û : ^ I _ Û q
Thanks to (2.23) and (2.24), this implies! & � Ñ � N �	� IE

3 Y [ ± � � Y Û : 6 I _ Û` IE X Y [ ± Y Û : �c« ? Ô Y [ ± Y : Y 
�!� ± ��[ ± � Y : h ± � ? ÛÔ Y 
��� ± ��[ ± � Y Û : h Û ± �(2.28) �¶� K Z N �#Ù ? ÛÔ �����¸� Y � � ��� ± ��[ ± � Y Û : ��h�$ �± � Û ^ I _ Û` IE X Y [ ± Y Û : �Ç� N � Y [ ± Y Û : � � « ? Ô ? &� Þ Û ß h ± � ? ÛÔ � ? &� Þ Û ß � Û h Û ± �(2.29) �¶� K Z N �#Ù ? ÛÔ �����¸� � ? �� Þ Û ß � Û �(h�$ �± � Û � ^ I _ Û q
Third, repeat the previous estimation for all exponents

« � with
4c �« � ` K instead of K .

This leads to inequalities (2.29) for
« � ` K instead of K . Define ! I � Ñ �=Qª� IE

3 N � Y [ ± Y Û 6 I _ Û:for all Ñ �'4�� N � q�q�q �  + . In particular, we are interested in ! Û  � Ñ �ú� IE
3 N � Y [ ± Y Û 6 : for allÑ �'4�� N � q�q�q �  + and all � . 3 4�� Kç «Ö6 . For simplicity, suppose that � .
IN � øå4 ù . Apply the

binomial theorem in order to estimate the expression! Û  � Ñ � N �	� IE
3 N � Y [ ± � � Y Û : 6  � �{ � &#" �#$ IE

3 Y [ ± � � Y Û : 6 {
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for all � . �(4�� K ç «r6 ü IN. Adding the inequalities (2.29) for all
«  ` « � ` K instead of K ,

multiplied by the related binomial coefficients, leads to! Û  � Ñ � N �` IE X � N � Y [ ± Y Û : � � N ��« ? Ô ? &� Þ Û ß h ± � ? ÛÔ � ? &� Þ Û ß � Û h Û ± �È�����¸� �
Û�� ��h�$ �± � Û � ^ ` IE X � N � Y [ ± Y Û : � bed W X « ? Ô ? &� Þ Û ß h ± �M�(« � Z N ��Ù ? ÛÔ �����¸� � ? �� Þ Û ß � Û �(h�$ �± � Û ^^ ` IE X � N � Y [ ± Y Û : �  bed W X « ��? Ô ? &� Þ Û ß h ± ^ �í����� IE � b*d W X � Û� ��h¶$ �± � Û ^ ëëë � ± � ^` IE X N � Y [ ± Y Û : ^  bed W X « �-? Ô ? &� Þ Û ß h ± ^ �í����� IE � bed W X � �(« � Z N ��Ù ? ÛÔ � ? �� Þ Û ß � Û h ± � � �± � Û ^ �

with i.i.d. � �± .%� �!4�� N � , thanks to monotonicity of expectations, tower property of con-
ditional expectations and independence of increments

h�$ �± � ý h ± � �± , where we put� Û� � � ��« � Z N �#Ù ? ÛÔ � ? �� Þ Û ß � Û . Fourth, suppose that the constants � � satisfy
« � Û� h ±   N .

Apply Lemma 2.6 with � Û� to treat the latter estimate. This implies that4 ` IE Y [ ± Y Û :   ! Û  � Ñ � N � ` ! Û  � Ñ � bed W X Ã ö � Ñ � ^(2.30)

where the coefficients Ã ö are given by

Ã ö � Ñ �Ë� �-? Ô X « ? &� Þ Û ß �Ç�(« � Z N ��Ù ? Ô �������
� ? �� Þ Û ß � ÛN Z�« � �(« � Z N ��Ù ? ÛÔ � ? �� Þ Û ß �#Û9h ± ^ h ± q

Therefore,
� ! ± � ± � & � � �ª©ª©ª©ª� { � is governed by a linear homogeneous inequality (2.30) whose

maximum solution can be estimated by the discrete variation-of-constants formula (which
reduces to the discrete Gronwall-Bellman Lemma here) as proven in [38] and applied in
[44, 45, 46, 47]. Thus, we arrive at4 ` IE Y [ ± Y Û :   ! Û  � Ñ � N � ` ! Û  � Ñ � bed W X ? Û  h ± ^ ` ! Û  �!4½� bed W X ? Û  � ± � � ^ q
This gives the estimates (2.26) with constants ? Û  estimated as in (2.27). Note that ? Û is increasing for increasing � , hence ? Û  ` ? I and the uniform boundedness of all

« � -
moments of BIMs (2.8) is obtained for all � . 3 4�� K ç «Ö6 provided that the initial moment
IE Y [ & Y I :  È�/¡

. Thus, the proof is complete.

3. Asymptotic Almost Sure Stability. In the following sections, we discuss the almost
sure stability behavior of sequences and numerical methods, with both constant and variable
step sizes with respect to, the trivial equilibrium

4 .
IR : . Let Yaq Y : , be a vector norm of IR :

which is compatible with the matrix norm YrqsY :aÆ�: of IR :aÆ�: .
3.1. Definition and general theorems. In the course of our presentation, we identify

the stability of equilibria with the stability of related numerical methods, as it is common in
numerical analysis.

DEFINITION 3.1. A random sequence
[����![ { � {¯| IN of real-valued random variables[ { Q,�(~2�"� { ��� �G�	���

IR : � � � IR : ��� is called (globally) asymptotically stable, with probabil-
ity one (or (globally) asymptotically a.s. stable) if,�����{ � ��¿ Y [ { Y : ��4��!
 q � q �
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for all
[ & �Ï² & . IR : � øå4 ù , where

² & . IR : is nonrandom, otherwise asymptotically a.s.
unstable.

THEOREM 3.2. Let � �}� � �  �"� {%| IN be a sequence of nonnegative random variables� �  �RQ��(~2��� { �"� �G�p� IR
�� , with � �!4½� õ 4

satisfying the recursive scheme� �  � N �¨� � �  �'&ð�  �(3.1)

where
&ð�  �ÎQ=��~2�"� { �"� �G�Í� IR

�� are i.i.d. random variables, with the moment property
IE
¦#��Ò�3 &ð�  �µ6#¦¯ ��/¡

. Then� (globally) asymptotically a.s. stable iff IE
��Ò�3 &ð�!4½�µ6� Ì4

.
Proof. This result is already found in Higham [18] and in Schurz [44]. The main idea

is to use the strong law of large numbers (SLLN) in conjunction with the law of iterated
logarithm (LIL). Note that � possesses the explicit representation

� �  � N �¨� ( {í± � & &ð� Ñ �') � �!4½�(3.2)

for all  .
IN. Now, suppose that

&ð� Ñ � are i.i.d. random variables and define

� & QS� IE
3 ��Ò���&ð�!4½�"�µ6µ� � { QS� { �g��± � & ��Ò*&ð� Ñ �e�

hence � �  � N �p� b*d W��(� { � � � � �(4f� and IE
3 � { 6 �  � for  .

IN. By SLLN, conclude that�����{ � ��¿ � { � � & �!
 q � q �
thanks to the

� �
-integrability of

&ð� Ñ � . This fact implies that if � &  Ç4
then

� { �ÂZ=¡
, i.e.� �  �R� 4

as  tends to
�/¡

and if �Ýõ 4
then

� { ���/¡
, i.e. � �  �R���/¡

as  tends to�/¡
. Moreover, in the case � & �y4

, we may use LIL (at first, under � Û � � 
,+¯����Ò-&ð� Ñ ���7�
IE
3 ��Ò*&ð� Ñ �pZ IE

��Ò*&ð� Ñ �µ6 Û  ��/¡
, later we may drop � Û  Ç�/¡

by localization procedures)
to get �����Ì��Ò/.{ � ��¿ � {ý «  ��Òn��Ò  �yZ ¦ � ¦ � �����ÈT"V�W{ � ��¿ � {ý «  ��Òl��Ò  �>¦ � ¦ �
hence

� { oscillates with growing amplitude and
����� { � ��¿ � { does not exist. Therefore�����{ � ��¿ � �  �D� �����{ � ��¿ bed W��(� { � � �!4f�

does not exist either (a.s.). Thus,
����� { � ��¿ � �  �#0��4

and the proof is complete.
Now, consider the one dimensional test class of pure diffusion equations�f� � � � � � �%$ �

(3.3)

as suggested by Milstein, Platen and Schurz [31]. Then, the following result provides a
mathematical evidence that their numerical experiments for BIMs (2.8) led to the correct
observation of numerical stability due to its asymptotic a.s. stability. It extends the results,
which are found in [18], [38] and [44].

THEOREM 3.3. The BIMs (2.8) with scalar weights Ã & �x4
and Ã � �°¦ � ¦ applied to

martingale test equations (3.3) for any parameter � .
IR
� � øÖ4 ù with any equidistant step sizeh

provide (globally) asymptotically a.s. stable sequences
[;�;�![ { � {%| IN.
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Proof. Suppose
¦ � ¦ õ 4

. Then, the proof is an application of Theorem 3.2. For this
purpose, consider the sequence � �§� � �  �"� {¯| IN

�§��¦ [ { ¦ � {%| IN. Note that � �  � N �z�&ð�  � � �  � , IE
¦���Ò*&ð�  �9¦¯ Á�/¡

and IE
3 ��Ò*&ð�  �µ6� È4

since

IE
3 ¦���Ò*&ð�  �9¦ 6 ` �

IE
3 ��Ò*&ð�  �µ6 Û � ��_ Û ` ��Ò���«��g�î¦ � ¦ ý h and

IE
3 ��Ò*&ð�  �µ6M� IE 1 ��Ò ëëë N �Ç¦ � h�$ { ¦å� � h�$ {N �O¦ � h�$ { ¦ ëëë 2 �

IE 1 ��Ò ëëë N � � h¶$ {N �Ç¦ � h�$ { ¦ ëëë 2� N« IE 1 ��Ò ëëë N � � h�$ {N �Ç¦ � h�$ { ¦ ëëë 2 � N« IE 1 ��Ò ëëë N Z � h�$ {N �î¦ � h�$ { ¦ ëëë 2� N« IE 3 ��Ò ëëë N Z " � h�$ {N �î¦ � h�$ { ¦ $ Û ëëë 4   Z N« IE 3 " ¦ � h�$ { ¦N �î¦ � h�$ { ¦ $ Û 4  §4
with independently identically Gaussian distributed increments

h�$ { .5� �!4���h��
(In fact,

note that, for all � 0��4
and Gaussian

h¶$ { , we have4;  N Z " � h�$ {N �Ç¦ � h�$ { ¦ $ Û   N
with probability one, hence, that

h�$ { has a nondegenerate probability distribution with non-
trivial support is essential here!). Therefore, the assumptions of Theorem 3.2 are satisfied and
an application of Theorem 3.2 yields the claim of Theorem 3.3. Thus, the proof is complete.

Remark. The increments
h�$ { .�� �!4���h { � can also be replaced by multi-point discrete

probability distributions such as � �ÎøÖh�$ { �76 æ h { ù � N«
or

� �1øÖh�$ { �Ç4 ù � «8 �¨� �1ørh¶$ { �96 æ 8 h { ù � N:
as commonly met in weak approximations. In this case, the almost sure stability of the BIMs
as chosen by Theorem 3.3 is still guaranteed, as seen by our proof above (due to the inherent
symmetry of

h�$ { with respect to
4
).

For variable step sizes, we can also formulate and prove a general assertion with respect
to asymptotic a.s. stability. Let � 
;+¯� ä � denote the variance of the inscribed random variableä .

THEOREM 3.4. Let � �}� � �  �"� {¯| IN be a sequence of nonnegative random variables� �  �RQ��(~2��� { �"� �Í�p� IR
�� with � �!4½� õ 4

satisfying the recursive scheme� �  � N �D� � �  �'&ð�  �e�(3.4)

where
&ð�  �éQ-��~2�"� { ��� �G�R� IR

�� are independent random variables such that � nonrandom
sequence � �y� � { � {%| IN with � { �§�/¡

as  �À�/¡��¿�± �g& � 
;+¯�!��Ò¸��&ð� Ñ �"�"�� Û ±  ÷�/¡�� �����{ � ��¿ ï { �g�± �g& IE
��Ò���&ð� Ñ ���� {   4 q(3.5)

Then � � � � �  �"� { � ��¿ is (globally) asymptotically a.s. stable sequence, i.e. we have����� { � ��¿ � �  �D��4
(a.s.).
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Moreover, if ��¿�± � & � 
;+¯�!��Ò¸��&ð� Ñ �"�"�� Û ±  ��/¡Á� �����{ � ��¿ ï { �g�± �g& IE
��Ò���&ð� Ñ ���� { õ 4

(3.6)

then � � � � �  �"� { � ��¿ is (globally) asymptotically a.s. unstable sequence, i.e. we have����� { � ��¿ � �  �����/¡
(a.s.) for all nonrandom

² & 0�Á4
.

Proof. The main idea is to apply Kolmogorov’s SLLN, see Shiryaev [48] (p. 389). Recall
that � possesses the explicit representation (3.2). Now, define� { QS� { �g��± � & ��Ò*&ð� Ñ �e�
hence � �  � N �n� b*d W��(� { � � � � �(4f� for  .

IN. By Kolmogorov’s SLLN we may conclude
that �����{ � ��¿ � {� { � �����{ � ��¿ IE

� {� { � �����{ � ��¿ ï { �g�± � & IE
��Ò���&ð� Ñ �"�� {  §4ð�(
 q � q �

thanks to the assumptions (3.5) of
� �

-integrability of
&ð� Ñ � . This fact together with � { �À�/¡

implies that
� { � Z=¡

(a.s.), i.e. � �  �Ë�À4
as  tends to

�/¡
. The reverse direction under

(3.6) is proved analogously to previous proof-steps. Thus, the proof is complete.
Now, let us apply this result to BIMs (2.8) applied to test equation (3.3). For Ñ �4�� N � q�q�q �  + , define &ð� Ñ �¾QS� ëëë N �Ç¦ � h�$ ± ¦9� � h¶$ ±N �Ç¦ � h�$ ± ¦ ëëë q(3.7)

THEOREM 3.5. Assume that � nonrandom sequence � ��� � { � {%| IN with � { �Â�/¡
as �§�/¡

for a fixed choice of step sizes
h { õ 4

such that��¿�± � & � 
,+¯����Ò���&ð� Ñ �"���� Û ±  ÷�/¡Á� �����{ � ��¿ ï { � �± � & IE
��Ò���&ð� Ñ �"�� {  §4 q

Then the BIMs (2.8) with scalar weights Ã & �t4
and Ã � �§¦ � ¦ applied to martingale test

equations (3.3) with parameter � .
IR
� � øÖ4 ù with the fixed sequence of variable step sizesh { provide (globally) asymptotically a.s. stable sequences

[y�;�![ { � {%| IN.
Proof. We may apply Theorem 3.4 with � �  �p�>¦ [ { ¦ since the assumptions are satisfied

for the BIMs (2.8) with scalar weights Ã & � 4
and Ã � � ¦ � ¦ applied to martingale test

equations (3.3). Hence, the proof is complete.
THEOREM 3.6. The BIMs (2.8) with scalar weights Ã & �x4

and Ã � �°¦ � ¦ applied to
martingale test equations (3.3) with parameter � .

IR
� � øå4 ù with any nonrandom variable

step sizes
h ± satisfying

4� �h �=< { ` h ± ` h �nk�m provide (globally) asymptotically a.s.
stable sequences

[;�;�![ { � {%| IN.
Proof. We may again apply Theorem 3.4. with � �  �M��¦ [ { ¦ . For this purpose, we

check the assumptions. Define � { Qª�  . Note that the variance � 
,+%�!��Ò¸��&ð� Ñ �"��� is uniformly
bounded since

h¶$ { .>� �(4���h { � and
4� Ìh �?< { ` h ± ` h �nk�m . More precisely, we have� 
,+¯����Ò���&ð� Ñ �"���` IE

3 ��Ò���&ð� Ñ �"��6 Û � IE
3 ÊA@ \CB �/D &FE ��Ò���&ð� Ñ ���µ6 Û � IE

3 Ê�@ \CB �/G &HE ��Ò���&ð� Ñ �"��6 Û  K { 3 ��Ò��(«���6 Û � IE
3 ��Ò�� N �Ç¦ � h�$ { ¦ ��6 Û ` K { 3 ��Ò��(«f�µ6 Û � IE

3 ��Ò�� bed W¸��¦ � h¶$ { ¦ �"��6 Û` K { 3 ��Ò��(«���6 Û � IE
3 � h�$ { 6 Û � K { 3 ��Ò���«���6 Û � � Û h { ` K { 3 ��Ò��(«���6 Û � � Û h �lkem
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for
&ð� Ñ � as defined in (3.7), where

ÊA@JI E denotes the indicator function of the inscribed set K
and K { � æ � �1ørh�$ { õ 4 ù . Note that

4�  K { � ý « ç «   N if
h�$ { is Gaussian distributed.

Therefore, there is a finite real constant ?MLÛ  î�!��Ò¸�(«���� Û � � Û h �nk�m such that��¿�± ��� � 
,+¯����Ò���&ð� Ñ ���"�Ñ Û ` ��¿�± ��� ?NLÛÑ Û � ? LÛ � Û:   �/¡ q
It remains to check whether �����{ � ��¿ ï { ± ��� IE

��Ò���&ð� Ñ �"�  §4 q
For this purpose, we only note that IE

��Ò���&ð� Ñ ��� is decreasing for increasing ý h ± for allÑ . IN (see the proof of Theorem 3.3). Therefore, we can estimate this expression by

IE
��Ò���&ð� Ñ ��� ` N« IE 3 ��Ò ëëë N Z " � ý h �=< { �N �Ç¦ � ý h �?< { � ¦ $

Û ëëë 4 Qª� ? L�  À4
where � .�� �!4�� N � is a standard Gaussian distributed random variable and ?OL� the negative
real constant as defined above. Thus,�����{ � ��¿ ï { ± ��� IE

��Ò���&ð� Ñ �"� ` ? L�  À4 q
Hence, thanks to Theorem 3.4 (or Theorem 3.5), the proof is completed.

4. � -Stability Exponents and Asymptotic Stability. The estimation of stability expo-
nents and its sign is an important task to measure the convergence or divergence speed of
numerical methods towards its equilibria.

4.1. Definition and general estimation theorem. For this purpose, consider the fol-
lowing definition.

DEFINITION 4.1. The upper (forward moment) � -exponent of a random sequence[;�u�([ { � {%| IN with values in the domain
� Py�

IR : is defined to beQ R§QS�÷�����ÈT"V�W{ � ��¿ ��Ò X IE � �  �9�([ ± � ± ) { � ^(4.1)

for a fixed deterministic functional � � � �  �"²��úQ IN
8¾�!� Pú� { � � Z-�

IR � (or positive func-
tion). The lower (forward moment) � -exponent of a random sequence

[;�y�![ { � {%| IN with
values in the domain

� P;�
IR : is defined to beQ R Qª�÷�����c��Ò/.{ � ��¿ ��Ò X IE � �  �9�![ ± � ± ) { � ^(4.2)

for a fixed deterministic functional � � � �  �"²��úQ IN
8¾�!� Pú� { � � Z-�

IR � (or positive func-
tion).

For the sake of abbreviation, defineh
IE � { QS� IE � �  � N �9�![ ± � ± ) { � � �ºZ IE � �  �å�![ ± � ± ) { �

for the discrete time
� P

-valued stochastic process
[°� �![ { � {%| IN on the probability space�(~2���Í�å��� { � {%| IN

�"� �G�
.

THEOREM 4.2. Assume that IE � �!4���[ & �z Ð�/¡
for a nonanticipating functional � Q

IN
8Í� P;8 q�q�q 8Í� PyZ,�

IR
�� withÑ { IE � �  �9�([ ± � ± ) { � ` h

IE � { ` Ñ { IE � �  �å�![ ± � ± ) { �



ETNA
Kent State University 
etna@mcs.kent.edu

STABILITY OF NUMERICAL METHODS FOR SDES ALONG FUNCTIONALS 41

for all  .
IN, where Ñ < � Ñ < are deterministic, real constants along the dynamics of process[;�u�([ { � {%| IN, and for all  .

IN

N � Ñ { õ 4 q
Then, for all  .

IN, we have

b*d WS( {� < �g& Ñ <N � Ñ < ) IE � �!4���[ & � ` IE � �  � N �9�![ ± � ± ) { � � � `Ìbed WS( {� < � & Ñ < ) IE � �(4���[ & �
and, if the limits exist, then

�����Ì��ÒT.{ � ��¿
{ � �� < � & Ñ <N � Ñ <� { ` Q R ` Q R ` �����ÈT"V�W{ � ��¿

{ � �� < � & Ñ <� { q
If
QURÌ c4

then
����� { � ��¿ � �  �9�([ ± � ± ) { ���÷4

(a.s.).
Proof. First, assume

h
IE � { ` Ñ { IE � �  �9�([ ± � ± ) { � (for all  .

IN). Making use of
elementary splitting ê-�  � N �p�Çê-�  �g�Ýê,�  � N �¸ZDê-�  �
with

ê,�  � N �RQª� IE � �  � N �9�([ ± � ± ) { � � � , one concludes

ê-�  � N � ` ê-�  �e� N � Ñ { � ` ê,�!4f� {í< � & � N � Ñ < � � ` ê,�!4½� bed WN( {� < � & Ñ < ) q
On the other hand, when

h
IE � { ` Ñ { IE � �  �å�![ ± � ± ) { � and N � Ñ { õ 4

(for all  .
IN), one

recognizes the validity of

ê,�  � ` ê,�  � N �N � Ñ { ` ê,�  � N � bed W " Z Ñ {N � Ñ { $
which implies

ê,�  � N � L ê,�  � b*d W " Ñ {N � Ñ { $ L ê-�(4f� b*d WN( {� < � & Ñ <N � Ñ < )}�
using elementary inequality

NN ��< `¾bed W��"Z <N ��< � q
Now one arrives at the second result by taking the exponential logarithm and limit when inte-
gration time

� { advances. The remaining almost sure convergence while
QÅ �4

is concluded
by a straightforward application of the well-known Borel-Cantelli-Lemma. Therefore, the
proof is complete.
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4.2. The example of discretized damped linear oscillator. For the sake of simple il-
lustration, we consider the stochastic oscillator with multiplicative white noiseV<j�¾«;W óYX<¶� ó Û <Ð� � X< � �(4.3)

where
W¯� ó}õ 4

and the stochastic integration is understood in the sense of Itô. Then the
corresponding deterministic equation has an asymptotically stable zero solution if

4� �W¶  N ,
and does not exponentially grow if

4 ` W ` N . The stochastic oscillator (4.3) possesses a
upper � -stability exponent ZQ R ` 4

with � �!<���²¯�j�Ï² Û � ó Û < Û if
4 ` � Û `\[ W ó . Let us

now look at the discretization of such a equation by numerical methods. Define the numerical
Lyapunov function by � �  � N �"<��"²��RQª� ó Û < Û ��� N �c«]W ó h { �#² Û
where

h { ��� { � � Z¨� { is current step size, and ! { � � QS� IE � �  � N ��� { � � ��[ { � � � .
THEOREM 4.3. Assume that the stochastic oscillator (4.3) is discretized by the fully

drift-implicit Euler method (which can be represented as BIM (2.8) here too) given by� { � � �È� { �¾[ { � � h {(4.4) [ { � � �Á[ { ZÌ��«]W ó [ { � � � ó Û � { � � ��h { � � [ { h�$ {
where

h�$ { �î$ ��� Ä½¼ Z�$ ���
along a time-discretization

��� { � {%| IN, and

IE
3 ó Û � Û& �Ý[ Û& 6� ��/¡ q

Then, for all  .
IN, all ^ . IN with N ` ^    , we have

! ¢ bed WN( {� < � ¢ Ñ <N � Ñ < ) ` ! { � � � IE � �  � N �"� { � � ��[ { � � � ` ! ¢ b*d WS( {� < � ¢ Ñ < )
where

Ñ < � Z ó Û h Û< � N �c«]W ó h < � � ���Ç3�� � Û Z�«]W ó ��h < ZD«;W ó h < � � � N �¾«;W ó h < �µ6 �� N �c«]W ó h < � � �e� N �¾«;W ó h < � ó Û9h Û< �
and

Ñ < � Z ó Û h Û< � N �¾«;W ó h < � � �	ZÌ3�� � Û ZD«;W ó �"h < Z�«]W ó h < �g� � N �Ì«;W ó h < ��6 �� N �c«]W ó h < � � �e� N �¾«;W ó h < � ó Û9h Û< � q
Furthermore, if

�(h { � {%| IN is a deterministic sequence then the � -exponents can be estimated
by

�����c��Ò/.{ � ��¿ N� { {
�g�� < ��� Ñ <N � Ñ < ` Q R ` Q_R ` �����ÈT"V�W{ � ��¿ N� { {

� �� < ��� Ñ < q
Additionally, in the following assume that� h k ��h � . IR � Q ¬ .

IN
4� Áh � ` h { ` h k  Á�/¡ q(4.5)

If � � Û ZD«;W ó �"h { Z�«]W ó h { �g� � N �¾«;W ó h { � ` 4
(4.6)
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for all  .
IN then Q R ` Z ó Û h �N �c«]W ó h k � ó Û9h¶Ûk

and, if additionally ó Û õ 4
and

W óÈõ 4
, then

����� { � ��¿ � �  � N �"� { � � ��[ { � � �Ë�Á4
(a.s.). If� � Û Z�«]W ó �"h { ZD«;W ó h { �g� � N �c«]W ó h { � L 4

(4.7)

for all  .
IN then Q R L Z ó Û h kN �c«]W ó h � q

Proof. First, we equivalently rearrange the scheme (4.4) to an explicit one. Thus, one
arrives at � { � � � N �c«]W ó h {N �c«]W ó h { � ó Û9h¶Û{ � { � � N � � h�$ { �"h {N �c«]W ó h { � ó Û9h¶Û{ [ {(4.8) [ { � � �uZ ó Û h {N �c«]W ó h { � ó Û h Û{ � { � � N � � h�$ { �N �c«]W ó h { � ó Û h Û{ [ { q
Recall that ! { � � � IE

3 ó Û � Û{ � ¼ �O� N �È«]W ó h { �"[ Û{ � � 6 . After some elementary calculations
we get ! { � � � ó Û IE 1 N �c«]W ó h {N �c«]W ó h { � ó Û9h¶Û{ � Û{ 2 � IE 1 N � � Û h {N �c«]W ó h { � ó Û9h¶Û{ [ Û{ 2 �
henceZ ó Û h k h {N �c«]W ó h � � ó Ûåh Û � ! { Z IE 1 � � Û Z�«]W ó ��h { Z�«]W ó h { � � � N �c«]W ó h { �N �¾«;W ó h { � ó ÛåhjÛ{ [ Û{ 2 �

` h
IE � { ��Z

IE 1 ó Û h Û{N �¾«;W ó h { � ó Û h Û{ ó Û � Û{ 2�
IE 1 � � Û Z�«]W ó �"h { Z ó Û h Û{ Z�«]W ó h { � � � N �¾«;W ó h { � ó Û h Û{ �N �c«]W ó h { � ó Û9h¶Û{ [ Û{ 2

��Z ó Û h Û{N �c«]W ó h { � ó Û h Û{ ! { � IE 1 � � Û Z�«]W ó �"h { ZD«;W ó h { � � � N �c«]W ó h { �N �¾«;W ó h { � ó Û h Û{ [ Û{ 2` Z ó Û h � h {N �c«]W ó h k � ó Û9h¶Ûk ! { � IE 1 � � Û Z�«]W ó �"h { ZD«;W ó h { � � � N �c«]W ó h { �N �¾«;W ó h { � ó ÛåhjÛ{ [ Û{ 2 �
Now, we may choose Ñ { � Ñ { as indicated above, and apply Theorem 4.2 with Ñ { � Ñ { . Thus,
the proof is complete.

Remark. Most of the clever variable step size algorithms have implemented conditions
on the step size selection like that of (4.5). We can conclude from our assertion that the
fully drift-implicit Euler method (4.4), applied to stochastic oscillator (4.3) produces damped
approximations, particularly in the critical case, (the energy-conservative case) when � Û �[ W ó under the condition (4.5). However, the observed effect of numerical stabilization also
explains that the requirement (4.5) is meaningful in variable step size algorithms in order to
achieve asymptotically stable approximations. Asymptotically considered, when maximum
step size

h k tends to zero, the � -exponents of the continuous time dynamics are correctly
replicated by the discretization method (4.4), as we would naturally expect from a well-
behaving and converging numerical method.
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5. Fully Nonlinear Weak � -Stability. So far we discussed examples where the
stability-controlling function � (or Lyaponuv-type function) is governed by a linear differ-
ence inequality (difference inclusion). Now, it is the time for fully nonlinear relations.

5.1. A general theorem on weak � -stability. Define ! { Qª�
IE � �  � and

h ! { �! { � � Z ! { for all  .
IN and � as given below.

THEOREM 5.1. Let � Q
IN

Z-�
IR
�� be a sequence of random variables � �  �ÇQ�(~2��� { �"� �Í�p���

IR
�� � � � IR �� ��� satisfying! { � � � IE

3 � �  � N ��6 ` IE
3 � �  ��6¯� Ã �  �a`� IE 3 � �  �µ6��(5.1)

with nonrandom Ã �  � . IR
�

for all  .
IN, where

`ÁQ
IR
�� �

IR
�� is a Borel-measurable,

nondecreasing function satisfying the integrability-conditionZÝ¡÷ b&ð� ÿ �RQª� 
dce ´ �½ê`�(ê½�  ÷�/¡
(5.2)

for all ÿÇõ 4
and

� ! { � {%| IN is nondecreasing. Assume that IE � �(4f�ð ��/¡
. Then, for all .

IN, we have! { � � � T�V�W± � & � � �ª©ª©ª©ª� { IE � � Ñ � ` & �g� X &ð� IE 3 � �(4f�µ6��g� {�± � & Ã � Ñ � ^(5.3)

where
& �g�

is the inverse function belonging to
&

.
Proof. Suppose that ! & õ 4

, at first. Then, inequality (5.1) implies thath ! {`� ! { � ` Ã �  � q
Therefore, by simple integration under (5.2), we obtain&ð� ! ± � � �ºZM&ð� ! ± �J� 
 e ·"Ä%¼e · � !` � ! � ` 
 e ·"Ä%¼e · � !`� ! ± � � h ! ±`� ! ± � ` Ã � Ñ �
for all Ñ . IN. Summing up these inequalities leads to&ð� ! { � � �ºZO&ð� ! & �p� {�± � & &ð� ! ± � � �ºZO&ð� ! ± � ` {�± �g& Ã � Ñ �
for all  .

IN, which is equivalent to&ð� ! { � � � ` &ð� ! & ��� {�± � & Ã � Ñ � q
Note that the inverse

& � �
of
&

exists and both
&

and
& �g�

are increasing since
&

satisfying
(5.2) is increasing. Hence, we arrive at! { � � ` & � � X &ð� ! & ��� {�± � & Ã � Ñ � ^ q
Note also that, Ã � Ñ � L 4

due to the assumption ! is nondecreasing. If ! & �'4
then one can

repeat the above calculations, for all ! & � P õ 4
. It just remains to take the limit as P tends

to zero in the obtained estimates. Thus, the proof of (5.3) is complete.
Remark. Theorem 5.1 can be understood as a discrete version of the continuous time

Lemma of Bihari [11].
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5.2. The discrete Girsanov-example (Pure diffusions). Girsanov [13] discussed the
simplest examples of one dimensional Itô SDEs�f���	� � �"3 ���µ6 � �Jf7�%$Å�
(5.4)

with
� & L 4

(a.s.) in view of its solutions and strong uniqueness. Without loss of gener-
ality, we may suppose that � L 4

. If
ñ . 3 4�� N 6 and IE

� Û&   �/¡
we obtain continuous

time solutions which are martingales with respect to the � -algebra generated by the driving
Wiener process

$ �'�($ � � �hg & . If
ñ��O4

or
ñ . 3 Nrç «¯� N 6 these (nonanticipating) martingale-

solutions are unique with probability one (by the help of Osgood-Yamada-Watanabe re-
sults, cf. Karatzas and Shreve [24]). Due to the pathwise continuity, the nonnegative cone
IR � �;ø9< .

IR
� Q½< L 4 ù is left invariant (a.s.). A nontrivial question is whether related nu-

merical approximations are stable, converge to the underlying analytic solution and have the
same invariance property. We are able to answer these problems. Here, we are only interested
in stability and invariance (for convergence, see a forthcoming paper of the author). For this
purpose, consider the balanced implicit methods[ { � � ��[ { � � ��3 [ { 6 � � f h�$ { � � �"3 [ { 6 � � f � � ¦ h¶$ { ¦��![ { Z¨[ { � � � q(5.5)

THEOREM 5.2. The BIMs (5.5) applied to Girsanov’s SDE (5.4) with
4u °ñt  N

leave the nonnegative cone IR � invariant (a.s.) and provide polynomially stable numerical
sequences. More precisely, if � õ 4

,
4Ì 

IE
[ Û&   �/¡

and
[ & is independent of the � -

algebra
�'� � øÖ$ò�RQa� L 4 ù then their second moments are strictly increasing as  increases

and they are governed by

IE
3 [ Û{ 6 ` X � IE 3 [ Û& 6s� �®� f �Ç� N ZDñ¸� � Û �!� { � � Z¨� & � ^ �"_ Þ ��� f ß(5.6)

Proof. Suppose that
4� cñÝ  N . At first we rewrite (5.5) as the explicit scheme[ { � � �Ç[ { N � � �"3 [ { 6 � � f �g� h�$ { � � ��3 [ { 6 � � f � � ¦ h�$ { ¦N � � �"3 [ { 6 � � f �g� ¦ h¶$ { ¦(5.7)

which immediately gives the a.s. invariance with respect to the nonnegative cone IR � , pro-
vided that

[ & L 4
(a.s.). Therefore, we may drop the taking of positive part by

3 q 6 � in the
above form. Now, rewrite (5.7) as[ { � � �Á[ { � � �([ { � f h¶$ {N � � �![ { � f � � ¦ h�$ { ¦ q(5.8)

Taking the square and expectation yields! { � � Qª� IE
3 [ Û{ � � 6g� IE

3 [ { 6 Û � IE � � �([ { � f h¶$ {N � � �![ { � f � � ¦ h�$ { ¦ � Û q(5.9)

Thus, due to the positivity of all summands at the right hand side, we may conclude that the
second moments

� ! { � {%| IN are nondecreasing and, in fact if � õ 4
, ! { is strictly increasing.

It remains to apply Theorem 5.1. For this purpose, estimate (5.9) by Jensen’s inequality for
concave functions in order to obtain! { � � ` ! { � � Û IE 3��![ { � Û f h�$ { 6Í� ! { � � Û IE 3��![ { � Û f IE

3 h�$ { ¦ � { 6�6(5.10) � ! { � � Û IE 3��![ { � Û f IE
3 h�$ { 6�6 ` ! { � � Û � ! { � f h { q(5.11)
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Therefore, we may take � �!<,�n�O< Û
,
`�(ê½�l�Oê f

, Ã �  �n� � Û h { and apply Theorem 5.1 with
the conclusion (5.3) in order to get to (5.6). Note also that&ð� ÿ �p� 
dce ´ �½ê`�(ê½� � 
dce ´ �½êê f � ê ��� fN ZDñ ëëë ì � cì � e ´ � ÿ ��� f ZÈ� ! & � ��� fN ZDñ �& �g� �!ê%�p� X ê,� N ZDñº��� ! ��� f& ^ ��_ Þ ��� f ß q
If ! & ��4

, then one can repeat the above calculations for ! & � P õ 4
. It just remains to take

the limit as P tends to zero in the obtained estimates. Thus, the proof is complete.
Remark. One could also compare the moment evolutions of the explicit Euler method[jiÇ���([ji{ � {%| IN with that of BIMs

[ Õ ���![ Õ{ � {%| IN governed by (2.8). Then, it is fairly
easy to recognize that IE

�![ Õ{ � Û  ` IE
�([ji{ � Û  for all integers � .

IN, provided that
IE
�![ Õ& � Û  ` IE

�![ki& � Û  . It is also interesting to note that the explicit Euler methods cannot
preserve the a.s. invariance property with respect to the nonnegative cone IR � . In fact, they
exit that cone with positive probability, independently of the choice of any nonrandom step
sizes

h { . Summarizing, the underlying explicit solution to (5.4) has very similar analytic
properties as BIMs (5.5).

5.3. Numerical experiments for Girsanov’s SDE (5.4). For illustration we conducted
numerical experiments in computing trajectories and second moments of solutions to Itô SDE�f� � �Ç« æ 3 � � 6 � �%$ �
(5.12)

with
� & � N�q 4 . Hence, with � �;« q 4 and

ñÌ�;4 qml , we consider an example for a Girsanov
SDE (5.4) and its discretization. Its discretization is done via the balanced implicit method
(5.5) along equidistant grids on

3 4�� N 6 (for the sake of simplicity) with uniform mesh sizenG�î« �g��&
. The Gaussian increments

h�$ { are generated by the well-known Polar-Marsaglia
method, where we use a random initialization of the random seed coupled to the internal time
clock in order to guarantee randomness of our results based on the built-in pseudo-random
number generator for uniform distributed numbers in

0
. An appropriate C-code (run on a

LINUX-operating machine) provides us the simulation results below. All computing was
done in double precision and the data are plotted with GNUPLOT.

In figure 5.1, we recognize how the balanced implicit methods can follow the paths and
restore nonnegativity pathwisely as the exact solution does. If one repeats simulations then
one can confirm that the four trajectories, depicted in this figure, are rather typical for the
Girsanov SDE with

ñ���4 q l . Some paths might converge to zero, some just fluctuate and
some seem to explode. Recall that, the pathwise uniqueness of solutions to this SDE is still
guaranteed by an application of the Watanabe-Yamada results, see Karatzas and Shreve [24].

Figure 5.2, shows the graphs of the 2nd moments and its estimate (5.6) from theorem
5.2. Clearly we can see the over estimation from the polynomial bound (5.6) having quadratic
growth in

�
here. Again, we used the Polar-Marsaglia method to generate the Gaussian in-

crements
h�$ { . To check the accuracy of statistical moment estimation, we separated the

sampling over the trajectories obtained from the first component and the second one of Polar-
Marsaglia pairs

��& � �o& Û � (recall that it always generates i.i.d. pairs of Gaussian pseudo-
random numbers). The small deviation noticed between both estimates for the 2nd moment
results from the use of finite sample sizes (in fact our choice is p � N 4rq in the figure 5.2).
However, if one repeats for larger sample sizes then this deviation caused by statistical errors
will decrease as sample size p increases (with order s � ý p �

, cf. standard limit theorems and
law of large numbers). We have just used this information on statistical estimation to control
the choice of reasonable sample sizes and to evaluate the goodness of our experiments.
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FIG. 5.1. Four trajectories of Girsanov SDE (5.12).
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FIG. 5.2. Estimation of 2nd moments of the discretization of Girsanov SDE (5.12) compared to estimate (5.6).

A Few Final Remarks. Despite the diversity of stability concepts treated in this paper, our
investigations can not be complete. This is due to the large complexity of stochastic stability
issues and the absence of the solution of the problem of the relevance of test equations for
a significantly larger class of nonlinear SDEs (A thorough treatment of a stochastic version
of Dahlquist’s stability theory could not be found in the literature so far). Finally, it is also
worth noting explicitly that stability investigations are fairly independent of the type of con-
vergence of examined numerical method (the two types of weak and strong convergence have
been established as the major ones in stochastic-numerical analysis). However, stability esti-
mates are needed in any refined convergence analysis. So, we hope that we have shown both
general theorems concerning several stability issues and its use by fairly simple examples of
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numerical methods applied to ordinary SDEs - a fact which documents the use of this paper.
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