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A BDDC ALGORITHM FOR A MIXED FORMULATION
OF FLOW IN POROUS MEDIA

�
XUEMIN TU

�
Abstract. The BDDC (balancing domain decomposition by constraints) algorithms are similar to the balancing

Neumann-Neumann methods, with a small number of continuity constraints enforced across the interface throughout
the iterations. These constraints form a coarse, global component of the preconditioner. The BDDC methods are
powerful for solving large sparse linear algebraic systems arising from discretizations of elliptic boundary value
problems. In this paper, the BDDC algorithm is extended to saddle point problems generated from the mixed finite
element methods used to approximate the scalar elliptic problems for flow in porous media. Edge/face average
constraints are enforced and the same rate of convergence is obtained as for simple elliptic cases. The condition
number bound is estimated and numerical experiments are discussed. In addition, a comparison of the BDDC
method with an edge/face-based iterative substructuring method is provided.

Key words. BDDC, domain decomposition, saddle point problem, condition number, benign space, edge/face-
based iterative substructuring method
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1. Introduction. The BDDC algorithms, introduced by Dohrmann in [5], see also [13,
14], are nonoverlapping domain decomposition methods, which are similar to the balancing
Neumann-Neumann (BNN) algorithms. In BDDC, the coarse problems are given in terms of
a set of primal constraints. An important advantage with such a coarse problem is that the
Schur complements that arise in the computation will all be invertible. The relation between
the BDDC and BNN is similar to that between the FETI-DP and one level FETI. Recently,
the BDDC and FETI-DP algorithms for elliptic problems were rederived and a much shorter
proof of the main result in [14] was given in [11].

Mixed formulations of elliptic problems, see [2], lead to large, sparse, symmetric, indef-
inite linear systems. Such methods have extensive applications, as in flow in porous media,
where a good approximation to the velocity is required.

Overlapping domain decomposition methods for this kind of problem were developed in
[6, 15, 16, 17]. These additive or multiplicative overlapping Schwartz alternating methods
reduce the problem to a symmetric positive definite problem for a vector, divergence free in a
finite element sense. Then two-level overlapping methods are applied to the reduced positive
definite problem in the benign, divergence free subspace. The algorithms converge at a rate
independent of the mesh parameters and the coefficients of the original equation.

In [9], two non-overlapping domain decomposition algorithms were proposed. They are
unpreconditioned conjugate gradient methods for certain interface variables and are, to the
best of our knowledge, the first iterative substructuring methods. The rate of convergence is
independent of the coefficients of the original equations, but depends mildly on the mesh pa-
rameters. The consequence of the singular local Neumann problems that arise was addressed
in [9]. Other non-overlapping domain decomposition methods were proposed in [8] and [4]
with improved rates of convergence. A BNN version of the Method II of [9] was proposed in
[3], see also [20]. The same rate of convergence is obtained as for simple elliptic cases.

Using mixed formulations of flow in porous media, we will obtain a saddle point problem
which is closely related to that arising from the incompressible Stokes equations. We note�
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that, in a recent paper [12], the BDDC algorithms have been applied to the incompressible
Stokes equation, where the constraints enforced across the interface satisfy two assumptions.
One assumption forces the iterates into the benign subspace in which the operator is positive
definite and the other ensures a good bound for the condition number. In general, both these
assumptions are required.

In this paper, we extend the BDDC algorithms to mixed formulations of flow in porous
media. This work is directly related to [12], but our situation is also different. First of all,
our problem is not originally formulated in the benign, divergence free subspace, and it will
therefore be reduced to the benign subspace, as in [6, 15, 16, 17], at the beginning of the
computation. In addition, only edge/face constraints are needed to force the iterates into
the benign subspace and to ensure a good bound for the condition number, since Raviart-
Thomas finite elements, see [2, Chapter III], are utilized. These elements have no degrees of
freedom associated with vertices/edges in two/three dimensions. Also, the condition number
estimate for the Stokes case can be simplified since the Stokes extension is equivalent to the
harmonic extension, see [1]. However, this is not the case here, and different technical tools
are required. We also note that our BDDC method is closely related to an edge/face-based
substructuring iterative method. We will give a detailed description later.

An iterative substructuring method with Raviart-Thomas finite elements for vector field
problems was proposed in [24, 21]. We will borrow some technical tools from these papers
in our analysis of the BDDC algorithms.

The rest of the paper is organized as follows. The mixed formulation for the elliptic
problems and its finite element discretization are described in Section 2. We reduce our
system to an interface problem in Section 3. In Section 4, we introduce the BDDC methods
for our mixed methods. We give some auxiliary results in Section 5. In Section 6, we provide
an estimate of the form �����	��
����� ����� of the condition number for the system with the
BDDC preconditioner; these � and � are the diameters of the subdomains and elements,
respectively. We also compare the BDDC methods with an edge/face-based algorithm in
Section 7. Finally, some computational results are given in Section 8.

2. An elliptic problem discretized by mixed finite elements. We consider the follow-
ing elliptic problem on a bounded polygonal domain � in two or three dimensions with a
Neumann boundary condition:

(2.1) ����� �"!$#%�'&)(+*-, in �. �/!$#%�'&)(0*21 in 34�65
Here . is the outward normal to 37� and # is a positive definite matrix function with entries
in 8	9 ! � ( satisfying

(2.2) :�; #7!=<>( :@?BADCE:FC ��G for a.e. <IH � G
for some positive constant A .

The functions ,JH 8 � ! � ( and 1KH ��L4M�N � ! 34� ( satisfy the compatibility conditionOQP ,7R"< � O%STP 1%R"U'*-V 5
The equation (2.1) has a solution & which is unique up to a constant. Without loss of

generality, we assume that 1I*WV and that , has mean value zero. We also require that the
solution & has mean value zero over � ; therefore we have a unique solution.

We assume that we are interested in computing �X#Q�'& directly as is often required in
flow in porous media. We then introduce the velocity Y :Y * �X#%�'& G
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and call & the pressure. We obtain the following system for the velocity Y and the pressure & :
(2.3) Z[ \ Y *��X#%�'& in ��]� Y *^, in �. � Y *_V in 34�65

Let ` !$<>(+*_#7!$<>( LaM and define a Hilbert space by�cb !dR�egf G � (+*�h�i�H 8 � ! � ( � or 8 � ! � (kj"lm�]�ni�H 8 � ! � ( and io� . *_V on 34�'p G
with the norm C i C ���qrtsvuTw Pyx * C i C �z|{ q PFx �}� �~ C � ��i C �z|{ q PFx G
where � ~ is the diameter of � .

Given a vector Y H � !dR�egf G � ( , it is possible to define its normal component Y � . on 34� ,
as an element of ��L4M�N � ! 34� ( , and the following inequality holds

(2.4) CnY � . C ��X�/��� { q STPFx�� ��CnY�C ��XqrtsuTw PFx G
with a constant � that is independent of � ~ , the diameter of � , see [24, Section 2]. The trace
operator that maps a vector in � !$R"egf G � ( into its normal component in �}L4M�N � ! 37� ( is thus
continuous, and it can be shown to be surjective; see [7, Ch. I, Th. 2.5 and Cor. 2.8].

The weak form of (2.3) is as follows: find Y H � b !dR�egf G � ( and &�H 8 �b ! � (�*�h��K�F��H8 � ! � ( Gm� P ��R"<o*-V p such that,� #7! Y G i�( �B� !=i G &)(�* V �)i�H � b !$R"egf G � (� ! Y G ��( * � � P ,7��R"< �7��H 8 �b ! � ( G
where #7! Y G i�(+* � P Y ; ` !=<>(ki>R"< and � ! Y G ��(0* � � P !��]� Y (���R�< .

Let �� be the lowest order Raviart-Thomas finite element space with a zero normal
component on 34� , see [2, Chapter III, 3], and let � be the space of piecewise constants
with a zero mean value, which are finite dimensional subspaces of � b !dR�egf G � ( and 8 �b ! � ( ,
respectively. The pair �� , � satisfy a uniform inf-sup condition, see [2, Chapter IV. 1.2]. The
finite element discrete problem is: find Y � H �� and & � H � such that,� #7! Y � G i � ( �B� !=i � G & � (�* V �)i � H ��� ! Y � G � � ( * � � P ,7� � R"< �7� � H � G
and the matrix form is:

(2.5) ��� � ;� V�� � Y �& � � * �c�� � � 5
The system (2.5) is symmetric indefinite with the matrix � symmetric, positive definite. For
details on the range of negative and positive eigenvalues of (2.5), see [19].

3. Reduction to an interface problem. We decompose � into � nonoverlapping sub-
domains � s with diameters � s , e@* � G �n��� G � , and with � *� �¡�¢ s � s . We assume that
each subdomain is a union of shape-regular coarse rectangles/hexahedra and that the number
of such rectangles/hexahedra forming an individual subdomain is uniformly bounded. We
note that the algorithm can be extended to different types of subdomains. In a more general
case, we can still define faces, regarded as open sets that are shared by two subdomains. Two
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nodes belong to the same face when they are associated with the same pair of subdomains.
We then introduce quasi-uniform triangulations of each subdomain. The global problem (2.5)
is assembled from the subdomain problems

(3.1) � � qvs x � qs x$£� qvs x V �I¤ Y qvs
x�& qvs x�¦¥ * � �� qvs x� � 5

The degrees of freedom of the Raviart-Thomas finite elements are the normal compo-
nents on the boundary of each element only.

Let § be the interface between the subdomains. The set of the interface nodes § � is
defined as § � *¨!d© s«ª¬) 34� s$w �X® 34�  w � (°¯ 34� � , where 37� s=w � is the set of nodes on 34� s and34� � is the set of nodes on 34� . We decompose the discrete velocity and pressure spaces ��
and � into

(3.2) �� * ��±³² ��µ´ G � * � ±°² �¶b�5��µ´ is the space of traces on § of functions of �� .
��±

and � ± are direct sums of subdomain
interior velocity spaces

� qvs x± , and subdomain interior pressure spaces � qvs x± , i.e.,� ± *¸·² s ¬ M � qs
x± G � ± *¸·² s ¬ M � qvs

x± 5
The elements of

� qs x± are supported in the subdomain � s and their normal components vanish
on the subdomain interface § s * § ® 34� s , while the elements of � qvs x± are restrictions of
elements in � to � s which satisfy � PF¹ � qs x± *2V . �ºb is the subspace of � with constant values� qvs xb in the subdomain � s that satisfy

(3.3) ·» s ¬ M � qvs
xb½¼ ! � s (0*-V G

where ¼ ! � s ( is the measure of the subdomain � s . ¾ qvs xb is the operator which maps functions
in the space �¶b to its constant component of the subdomain � s .

We denote the subdomain velocity space by
� qs x * � qvs x±À¿ � ´ , the space of the

interface velocity variables by
� qvs x´ , and the associate product space by

� ´ *^Á ·s ¬ M � qvs
x´ .

The subdomain saddle point problems (3.1) can be written as

(3.4) ÂÃÃÃÃÃÄ
� qvs x±t± � qs x$£±m± � qvs xd£´�± V� qvs x±t± V � qvs x±m´ V� qvs x´�± � qs x$£±�´ � qvs x´�´ � qvs x$£b ´V V � qvs xb ´ V

ÅÇÆÆÆÆÆÈ ÂÃÃÃÃÃÄ
Y qvs x� w ±& qvs x� w ±Y qvs x� w ´& qvs x� w b

ÅÇÆÆÆÆÆÈ * ÂÃÃÃÃÄ V� qvs
x� w ±V� qvs x� w ´
ÅÇÆÆÆÆÈ G

where ! Y qvs x� w ± G & qvs x� w ± G Y qs x� w ´ G & qvs x� w b (6H2! � qvs x± G � qvs x± G � qvs x´ G � qs xb ( . We note that, by the divergence

theorem, the lower left block of the matrix of (3.4) is zero since the bilinear form � !=i qvs x± G � qs xb (
always vanishes for any i qvs x± H � qvs x± and a constant � qvs xb in the subdomain � s .
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3.1. Obtaining a divergence free correction. First of all, we seek a discrete velocityY �� H �� such that,

(3.5) � Y �� * � � 5
Let �� � be the lowest order Raviart-Thomas finite element space on the coarse triangu-

lation, associated with the subdomains, with zero normal components on 34� and let � � be
the space of piecewise constants with vanishing mean value. ¾ ;b is the natural interpolation
operator from �� �ÊÉ � � to �� É � . We also use the same interpolation operator on the
corresponding right hand side space. Let

(3.6) �c� b � ;b� b V�� * ¾ b ��� � ;� V�� ¾ ;b G
and � Y �b& �b � * ¾º;b ��� b � ;b� b V � L4M ¾�b �Ë�� � � 5
We note that the coarse grid solution Y �b does not necessarily satisfy (3.5), but that � Y �b � � �has mean value zero over each subdomain � s , see [16, 6]. Then the local Neumann problems,

with Y qvs x� w ´ *ËV and the right hand sides ¤ � � qs x Y � wÌqvs xb� qs x� � � qvs x Y � wÌqvs xb ¥ G eX* � G �n�n� G � , are all well-

posed. We can solve

(3.7) ¤ � qvs
x±t± � qvs x$£±t±� qs x±m± V ¥ ¤ Y qvs

x� w ±& qvs x� w ± ¥ * ¤ �Í! � qvs x Y � wÌqvs xb ( ±! � qvs x� � � qvs x Y � wÌqvs xb ( ± ¥ G eÎ* � G �n��� G � G
and set Y �s * ¤ Y qvs

x� w ±� ¥ G e°* � G ���n� G �o5
Let Y �� * Y �b �ÏY �M � �n��� �ÏY �· which satisfies (3.5). We then write the solution of (2.5) as� Y �& � � * � Y ��V � � � Y& � G
where the correction ! Y G &)( ; satisfies

(3.8) �@� � ;� VÐ� � Y&Ë� * � � � Y ��V � 5
This problem can be assembled from the subdomain problems:

(3.9) ÂÃÃÃÃÃÄ
� qvs x±m± � qvs x$£±t± � qvs x$£´�± V� qvs x±t± V � qvs x±m´ V� qvs x´�± � qvs x$£±m´ � qvs x´�´ � qs x$£b ´V V � qvs xb ´ V

ÅÇÆÆÆÆÆÈ ÂÃÃÃÃÃÄ
Y qvs x±& qs x±Y qvs x´& qs xb
ÅÇÆÆÆÆÆÈ * ÂÃÃÃÄ

Ñ qvs x±VÑ qvs x´V
Å ÆÆÆÈ G

where ! Y qvs x± G & qs x± G Y qs x´ G & qvs xb (aHÒ! � qvs x± G � qvs x± G � qvs x´ G � qs xb ( and
Ñ qvs x± *]�_Ó � qvs x Y � qvs xkÔ ± and

Ñ qvs x´ *� Ó � qvs x Y � qvs x Ô ´ .
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3.2. A reduced interface problem. We now reduce the global problem (3.8) to an in-
terface problem.

We define the subdomain Schur complements Õ qvs x´ as: given Ö qvs x´ H � qs x´ , determineÕ qvs x´ Ö qvs x´ such that,

(3.10) ÂÃÃÄ � qvs
x±t± � qvs xd£±t± � qvs xd£´�±� qvs x±t± V � qvs x±m´� qvs x´�± � qvs xd£±m´ � qvs x´�´

Å ÆÆÈ ÂÃÃÄ Ö qvs
x±& qvs x±Ö qvs x´
Å ÆÆÈ * ÂÃÄ VV Õ qs x´ Ö qvs x´ Å ÆÈ .

We know, from the definition in (3.10), that the action of Õ qvs x´ can be evaluated by solving a
Neumann problem on the subdomain � s . We note that these Neumann problems are always
well-posed, even without any constraints on the normal component of the velocity since we
have removed the constant pressure component constraints. Furthermore, since the local
matrices ¤ � qs

x±t± � qs x$£´"±� qs x´"± � qs x´�´ ¥
are symmetric, positive definite, we have, by an inertia argument,

LEMMA 3.1. The subdomain Schur complements Õ qvs x´ defined in (3.10) are symmetric,
positive definite.

Given the definition of Õ qvs x´ , the subdomain problems (3.9) are reduced to the subdomain
interface problems

¤ Õ qvs
x´ � qvs x$£b ´� qvs xb ´ V ¥ ¤ Y qvs

x´& qvs xb ¥ * ¤Ø× qvs
x´V ¥ G e°* � GmÙ|G 55v5 G � G

where

× qs
x´ * Ñ qvs x´ ��Ú � qvs x´�± � qvs x$£±m´ÊÛ ¤ � qvs

x±m± � qvs x$£±t±� qvs x±t± V ¥ LaM � Ñ qvs
x± V � 5

We denote the direct sum of Õ qvs x´ by Õ ´ . Let ¾ qvs x´ be the operator which maps functions in
the continuous interface velocity space ��Ü´ to the subdomain components in the space

� qvs x´ .
The direct sum of the ¾ qs x´ is denoted by ¾ ´ . Then the global interface problem, assembled
from the subdomain interface problems, can be written as: find ! Y ´ G & b (6H �� ´ É � b , such
that

(3.11) ÝÕ � Y ´& b � * ¤ ÝÕ ´ Ý� ;b ´Ý� b ´ V ¥ � Y ´& b � * � × ´V � G
where × ´ *^Þ ·s ¬ M ¾ qvs

xd£´ × qs
x´ , Ý� b ´ *-Þ ·s ¬ M � qvs

xb ´ ¾ qvs x´ , and

(3.12) ÝÕ ´ * ¾ ;´ Õ ´ ¾ ´ *ß·» s ¬ M ¾ qvs
x$£´ Õ qs x´ ¾ qvs x´ 5

Thus, ÝÕ is an interface saddle point operator defined on the space ��Ü´ É �¶b . But by Lemma
3.1, this operator is symmetric positive definite on the benign subspace where Ý� b ´ Y ´ *WV .



ETNA
Kent State University 
etna@mcs.kent.edu

170 X. TU

From (3.8), we know that the correction ! Y ´ G &7( ; lies in this benign subspace. We will pro-
pose a preconditioner for (3.11) which keeps all the iterates in this benign subspace. There-
fore, the iterates remain in the benign subspace in which the preconditioned operator is posi-
tive definite and a preconditioned conjugate gradient method can be applied.

4. The BDDC methods. We follow [12, Section 4] closely in this section. We introduce
a partially assembled interface velocity space à� ´ byà�µ´ * ��µá@² ��â * ��µá@² ã ·äs ¬ M � qvs

xâ�å 5
Here, �� á is the coarse level, primal interface velocity space which is spanned by subdomain
interface edge/face basis functions with constant values at the nodes of the edge/face for
two/three dimensions. We change the variables so that the degree of freedom of each primal
constraint is explicit, see [11] and [10]. The space

��â
is the direct sum of the

� qvs xâ , which
is spanned by the remaining interface velocity degrees of freedom with a zero average over
each edge/face. In the space àæ ´ , we have relaxed most continuity constraints on the velocity
across the interface but retained all primal continuity constraints, which has the important
advantage that all the linear systems are nonsingular in the computation. This is the main
difference from an edge/face-based iterative substructuring domain decomposition method,
where we will encounter singular local problems; see Section 7.

We need to introduce several restriction, extension, and scaling operators between dif-
ferent spaces. ¾ qs x´ restricts functions in the space à�µ´ to the components

� qvs x´ related to
the subdomain � s . ¾ qvs xâ maps functions from ��µ´ to

� qvs xâ , its dual subdomain component.¾ ´�á is a restriction operator from ��µ´ to its subspaces ��µá and ¾ qvs xá is the operator which
maps vectors in ��µá into their components in æ qvs xá . ¾ ´ � à�µ´èçé�µ´ is the direct sum of¾ qvs x´ and ê¾ ´ � �� ´ ç à� ´ is the direct sum of ¾ ´�á and ¾ qvs xâ . We define the positive scaling
factor ë�ìs !=í)( as follows: for î H�ï ��ð Ù|Gtñ ( ,ë ìs !=í7(+* `Eòs !$í)(Þ ôó�õDö `Eò !=í7( G íoH 34� s=w � ® § � G
where ÷Òø is the set of indices ù of the subdomains such that íèH 37�  . We assume that ` s !=í)(
is a constant in each subdomain. We then note that ë"ìs !$í)( is constant on each edge/face since
the nodes on each edge/face are shared by the same pair of subdomains. Multiplying each
row of ¾ qvs xâ with the scaling factor ë�ìs !=í7( gives us ¾ qs x~ w â . The scaled operators ê¾ ~ w ´ is the

direct sum of ¾ ´�á and the ¾ qvs x~ w â . We also use the notationê¾ * ¤ ê¾ ´ ú ¥ and ê¾ ~ * ¤ ê¾ ~ w ´ ú ¥ 5
We also denote by û ´ , Ýû ´ , and êû ´ , the right hand side spaces corresponding to

�ü´
,��µ´ , and à�µ´ , respectively. We will use the same restriction, extension, and scaled restriction

operators for the spaces û ´ , Ýû ´ , and êû ´ as for
�µ´

, ��µ´ , and à�µ´ .
We define the partially assembled interface velocity Schur complement êÕ ´ � à�µ´Øç êû ´by

(4.1) êÕ ´ * ¾ ;´ Õ ´ ¾ ´ 5
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(4.2)
ÂÃÃÃÃÃÃÃÃÄ
� q M x±t± � q M xd£±t± � q M xd£âÎ± ê� q M x$£á4±� q M x±t± V � q M x±tâ ê� q M x±má� q M xâÎ± � q M x £±tâ � q M xâÎâ ê� q M x £á4â

. . .
...ê� q M xá4± ê� q M xd£±má ê� q M xá4â 5�5n5 ê� á7á
ÅÇÆÆÆÆÆÆÆÆÈ ÂÃÃÃÃÃÃÃÄ
Ö q M x±& q M x±Ö q M xâ

...Ö á
ÅÇÆÆÆÆÆÆÆÈ * ÂÃÃÃÃÃÃÃÄ

�V ! êÕ ´ Ö ´ ( q M xâ
...! êÕ ´ Ö ´ ( á

ÅÇÆÆÆÆÆÆÆÈ 5
Here,ê� qvs xá4± * ¾ qvs xd£á � qvs xá4± G ê� qvs xá7â * ¾ qvs x$£á � qs xá4â G ê� á7á * ·» s ¬ M ¾ qvs

x$£á � qvs xá)á ¾ qvs xá G ê� qvs x±má * � qvs x±má ¾ qvs xá 5
Given the definition êÕ ´ on the partially assembled interface velocity space à� ´ , we can also
obtain ÝÕ ´ from êÕ ´ by assembling the dual interface velocity part on the subdomain interface,
i.e.,

(4.3) ÝÕ ´ * ê¾ ;´ êÕ ´ ê¾ ´ 5
We can also define the operator ê� b ´ , partially assembled from the subdomain operators � qvs xb ´ ,
which maps the partially assembled interface velocity to the subdomain constant pressures.
Then Ý� b ´ can also be obtained from ê� b ´ by assembling the dual interface velocity part on
the subdomain interface, i.e., Ý� b ´ * ê� b ´ ê¾ ´ .Therefore, we can write the global interface saddle point problem operator ÝÕ , introduced
in Equation (3.11), as

(4.4) ÝÕ * ¤ ÝÕ ´ Ý� ;b ´Ý� b ´ V ¥ * ¤ ê¾ ;´ êÕ ´ ê¾ ´ ê¾ ;´ ê� ;b ´ê� b ´ ê¾ ´ V ¥ 5
The BDDC preconditioner for solving the global interface saddle point problem (3.11) is

then

(4.5) ý LaM * ¤ ê¾ ;~ w ´ ú ¥ ¤ êÕ ´ ê� ;b ´ê� b ´ V ¥ LaM ¤ ê¾ ~ w ´ ú ¥ 5
We use the notation êÕ * ¤ êÕ ´ ê� ;b ´ê� b ´ V ¥ G
then the preconditioned BDDC algorithm is of the form: find ! Y ´ G�þ b (cH ��µ´ É �ºb , such
that

(4.6) ê¾ ;~ êÕ L4M ê¾ ~ ÝÕ � Y ´& b � * ê¾ ;~ êÕ L4M ê¾ ~ � × ´Vÿ� 5
We define two subspaces �æ ´ w � and àæ ´ w � of � æ ´ and àæ ´ , respectively, as in [12, Defi-

nition 1]: ��µ´ w � * h Ö ´ H ��Ü´�� Ý� b ´ Ö ´ *-V p Gà�µ´ w � * h Ö ´ H à�Ü´�� ê� b ´ Ö ´ *-V p/5
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We call �� ´ w � É � b and à� ´ w � É � b the benign subspaces of �� ´ É � b and à� ´ É � b ,
respectively. With Lemma 3.1, it is easy to check that both operators ÝÕ ´ and êÕ ´ , given in
(3.12) and (4.1), are symmetric, positive definite when restricted to the benign subspaces��µ´ É �ºb and à�µ´ É �ºb , respectively and we also have

LEMMA 4.1. For any Ö H à�µ´ w � É �ºb , ê¾ ;~ Ö H ��µ´ w � É �¶b .
Proof. We need to show that for any Ö H à�µ´ w � É �¶b , ê¾ ;~ Ö H ��Ü´ w � É �ºb . GivenÖ *]! Ö ´ G & b (DH à�µ´ w � É �ºb , we have ê� b ´ Ö ´ *-V and

(4.7) ê¾º;~ Ö * ¤ ê¾ ;~ w ´ ú ¥ � Ö ´& b � * ¤ ê¾ ;~ w ´ Ö ´& b ¥ H ��Ü´ É �ºb�5
We only need to show that Ý� b ´ ê¾ ;~ w ´ Ö ´ *-V and we find thatÝ� b ´ ê¾º;~ w ´ Ö ´ * ê� b ´ ê¾ ´ ê¾º;~ w ´ Ö ´ * ê� b á Ö á *2V 5
Here we use the definitions of Ý� b ´ and ê� b ´ for the first equality. For the second, we use
the fact that the Raviart-Thomas finite element functions only have degrees of freedom on
edges/faces. In our BDDC algorithm, we choose the continuous primal interface velocity
space

�µá
and the subdomain dual interface velocity spaces

� qs xâ such that, if Y qs xâ H � qvs xâ ,
then Y qvs xâ has a zero edge/face average for each edge/face. In fact, ê¾ ´ ê¾ ;~ w ´ computes the
average of the dual interface velocities Ö â , then distributes them back to each subdomain
and leaves Ö á the same. We recall that the weights at these nodes are the same for each
edge/face since these nodes are shared by the same pair of subdomains. The averaged dual
interface velocity still has a zero edge/face average for each edge/face. For the third equality,
we use that ê� b ´ Ö ´ * ê� b á Ö á *2V , since Ö H à� ´ w � É � b .Therefore, we can conclude that the preconditioned BDDC operator, defined in (4.6), is
positive definite in the benign subspace à� ´ w � É � b .

5. Some auxiliary results. We first list some results for Raviart-Thomas finite element
function spaces needed in our analysis. These results were originally given in [24, 21, 23].

We consider the interpolation operator � �� ; from �� onto �� � . Recall that �� � is the
Raviart-Thomas finite element space on the coarse mesh with mesh size � , which is defined
in terms of the degrees of freedom ��� , by� � ! � �� ; Y (��Ì* �� �	� O � Y � . R�
 G ���� � 5

We consider the stability of the interpolant � �� ; in the next lemma.
LEMMA 5.1. There exists a constant � , which depends only on the aspect ratios of� H � � and of the elements of

� � , such that, for all Y H �� ,C R�egf7! � �� ; Y ( C �z { q�� x � C R�egf Y�C �z { q�� x GC�� �� ; YDC �z { q�� x � � � �	�Ï
v�"� � ��� Ó CôYDC �z { q�� x �Ï� �� C R"egf YDC �z { q�� x Ô 5
Proof. See [24, Lemma 4.1].
We define � ! 34� s ( as the the space of functions that are constant on each element of the

edges/faces of the boundary of � s and its subspace ��b ! 37� s ( , of functions that have mean
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value zero on 34� s . Let � � be the space of functions � defined on § , such that, for each
subdomain � s and each edge/face

�
of � s , � is constant on

�
. We note that � � is the space

of normal components on § of vectors in �� � .
The stable extension operator, defined in the next lemma, provides a divergence-free

extension of boundary data given on 34� s .
LEMMA 5.2. There exists an extension operator �� s � �Íb ! 34� s (D� ç � qvs x , such that, for

any � H ��b ! 34� s ( , R"e�f �� s � *-V G for íoH � s G
and

(5.1) C��� s �+C z { q P ¹ x � ��C��+C ���/��� { q S�P ¹ x 5
Here � is independent of � , � , and � .

Proof. See [24, Lemma 4.3].
Given a subdomain � s , we define partition of unity functions associated with its edges/faces.

Let ��� be the characteristic function of
�

, i.e., the function that is identically one on
�

and
zero on 34� s ¯ � . We clearly have»��� STP ¹ � � !$í)(+* � G almost everywhere on 34� s ¯ 34�65
Given a function � H � ! 34� s ( and a face

��� 34� s , let� � �Ì* � � � H � ! 37� s ( 5
We have the following estimates for the edge/face components of the particular functions in� ! 34� s ( with a vanishing average on the subdomain edges/faces.

LEMMA 5.3. Let � H � ! 34� s ( with � STP ¹ � R�
�*ÊV , and for any
� � 34� s , � � � R!
Ò*� � �"� R�
@*]V . There then exists a constant � , independent of � and � � , such that, for any� � H � � ,C��"�6C �# �/��� { q STP ¹ x� � � �	��
��� � �$� � ! �	�Ï
v�"� � � ( C��Ø�%� � C ����/�d� { q STP ¹ x �-C��+C ����/�d� { q STP ¹ x � 5(5.2)

Proof. See [24, Lemma 4.4].
The following lemma compares norms of traces on the subdomain boundaries that share

an edge/face.
LEMMA 5.4. Let � s and �  be two subdomains with a common edge/face

�
. Let �&� be

a function in ��LaM�N � ! 34� s ( , that vanishes outside
�

. Then, there is a constant � that depends
only on the aspect ratios of � s and �  , such thatC��(' C � �/�d� { q STP ¹ x � ��C��('XC � �/��� { q STP*)�x 5

Proof. See [21, Lemma 5.5.2].
We next list some results for the benign subspace àæ ´ w � É � b .
Let CEÖJC � +, * Ö ; êÕ°Ö and CôÖ ´ C � +,.- * Ö ;´ êÕ ´ Ö ´ . We then have

LEMMA 5.5. Given any Ö H àæ ´ w � É �ºb , we haveCEÖJC � +, * CôÖ ´ C � +,.- 5
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Proof.CEÖJC � +, * Ö ; êÕ°Ö *0/ Ö ;´ � ;b21 ¤ êÕ ´ ê� ;b ´ê� b ´ V ¥ � Ö ´� b � * Ö ;´ êÕ ´ Ö ´ * CôÖ ´ C � +,.- 5
We define the average operator by 3 ~ * ê¾ ê¾ ;~ . We see that, for any vector Ö *! Ö ´ G � b (�H à� ´ É � b ,

(5.3) 3 ~ � Ö ´� b � * � ê¾ ´ ú � � ê¾ ;~ w ´ ú � � Ö ´� b � * � 3 ~ w ´ Ö ´� b � G
where 3 ~ w ´ * ê¾ ´ ê¾ ;~ w ´ , which computes the average of the interface velocities across the
subdomain interface. Lemma 4.1 shows that after averaging a benign vector across a subdo-
main interface the result is still benign.

An estimate of the norm of the 3 ~ operator restricted to the benign subspace à�µ´ w � É �ºb
is given in the next lemma.

LEMMA 5.6. There exists a positive constant � , which is independent of � and � , and
the number of subdomains, such that,C�3 ~ ÖJC � +, � � � �+�}
��� � � � � CEÖJC � +, G � Ö *]! Ö ´ G � b (�H à�Ü´ w � É �ºb"5

Proof. Given any Ö *Ë! Ö ´ G � b ( H à� ´ w � É � b , we know, from Lemma 4.1, that ê¾ ;~ ÖH ��Ü´ w � É �ºb . Therefore, 3 ~ Ö * ê¾ ~ ê¾ ;~ Ö H à�µ´ w � É �ºb . We have, by Lemma 5.5, thatC�3 ~ ÖJC � +,� Ù Ó CEÖJC � +, �-CôÖ � 3 ~ ÖJC � +, Ô� Ù Ó CEÖJC � +, �-CôÖ ´ � 3 ~ w ´ Ö ´ C � +, - Ô* Ù Ó CEÖJC � +, �-C ¾ ´ ! Ö ´ � 3 ~ w ´ Ö ´ ( C � ,4- Ô* Ù ã CEÖJC � +, � ·» s ¬ M C ¾ qvs
x´ ! Ö ´ � 3 ~ w ´ Ö ´ ( C � ,65 ¹87- å 5(5.4)

Let Ö s * ¾ qs x Ö ´ and set

(5.5) i s !=í)( �Ì* ¾ qvs x´ ! Ö ´ � 3 ~ w ´ Ö ´ (n!=í)(�* »ôó�õ ö ë�ì ! Ö s !$í)(°� Ö  !=í)(�( G íoH 34� s ® §05
Here ÷ ø is the set of indices of the subdomains that have í on their boundaries. Since a fine
edge/face only belongs to exactly two subdomains, for an edge/face

� s  � 34� s that is also
shared by �  , we have

(5.6) i s * ë ì Ö s � ë ì Ö  G on
� s  5

We note that the simple inequality

(5.7) ` s ë�ì { �  :9�;³! ` s G `  ( G
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holds for î H�ï ��ð Ù|Gtñ ( .Since i s � . has a vanishing mean value on each face of � s , we can define, by Lemma
5.2, i=<s * �� s !=i s � . ( . Then

(5.8) R�egf/i <s *-V G for íoH � s G
and,

(5.9) C i <s C �z|{ q PF¹$x � ��C i s � . C �� �/��� { q S�Py¹$x 5
We then obtain C i s C � , 5 ¹�7- * ` s C i <s C �zF{ q Py¹=x � �º` s C i s � . C ��X�/��� { q STP ¹ x� �º` s »� ¹ ) � S�Py¹ C>� � ¹ ) !=i s � . ( C �� �/�d� { q STP ¹ x 5(5.10)

Using (5.6), we have, with ! Ö s � . ( � ¹ ) the average over
� s  ,` s C>� � ¹ ) !$i s � . ( C �� �/��� { q STPF¹dx* ` s C>� � ¹ ) ë�ì ! Ö s � Ö  (°� . C �� �/��� { q STPF¹=x� Ù ` s ë�ì { Ó C>� � ¹ ) ! Ö s � . � ! Ö s � . ( � ¹ ) ( C �� �/�d� { q STPy¹$x� C>� � ¹ ) ! Ö  � . � ! Ö  � . ( � ¹ ) ( C ����/�d� { q STP ¹ x Ô� Ù ` s C>� � ¹ ) ! Ö s � . � ! Ö s � . ( � ¹ ) ( C �� �/�d� { q STPy¹=x� Ù `  C?� � ¹ ) ! Ö  � . � ! Ö  � . ( � ¹ ) ( C �� �/��� { q STP*)�x 5

Here we use Lemma 5.4 and (5.7) for the last inequality.
We only need to estimate the first term since the second term can be estimated similarly.
Since Ö is in the benign space, Ö s � . has vanishing mean value on 34� s . By Lemma 5.2,

we can construct Ö <s * �� s ! Ö s � . ( G
such that, R"egf Ö <s *_V G for íèH � s 5
Let Ö <b H �� be defined by Ö <b * � Ö <s in � sV otherwise 5
Let Y � * � �� ; Ö b and � � * Y � � . . By the definition of � �� ; , we know that � � ¹ ) � � *! Ö s � . ( � ¹ ) , and for any

��� 34� s , �?� ! Ö s � . � � � (�R!
º*-V . Using Lemma 5.3, we have

(5.11) C>� � ¹ ) ! Ö s � . � ! Ö s � . ( � ¹ ) ( C �� �/�d� { q STPF¹dx* C>� � ¹ ) ! Ö s � . � � � ( C ��X�/��� { q STP ¹ x� � � �	�Ï
v�"� � ��� � ! �	��
��� � � ( CEÖ s � . C ��X�/��� { q STP ¹ x �^CEÖ s � . � � � C ����/�d� { q STP ¹ x �� � � �	�Ï
v�"� � ��� � ! �	��
��� � � ( CEÖ s � . C �� �/��� { q STP ¹ x �^C�� � C �� �/��� { q STP ¹ x � G



ETNA
Kent State University 
etna@mcs.kent.edu

176 X. TU

where we use the triangle inequality for the last inequality.
By Lemma 5.1, we know that

(5.12) C R"egf Y � C �z { q P ¹ x � C R"egf Ö <b C �z { q P ¹ x * C R�egf Ö <s C �z { q P ¹ x *_V 5
and CôY � C �z { q P ¹ x � � � �	�Ï
v�"� � �:� Ó CEÖ <b C �z { q P ¹ x �}� � C R�egf Ö <b C �z { q P ¹ x Ô* � � �	�Ï
v�"� � �:� CEÖ <s C �z { q PF¹=x 5(5.13)

Using (5.11), (2.4), (5.12), and (5.13), we obtain:C>� � ¹ ) ! Ö s � . � ! Ö s � . ( � ¹ ) ( C ����/�d� { q STP ¹ x� � � �	�Ï
v�"� � ��� � ! ����
��� � � ( CEÖ s � . C ��X�/��� { q STP ¹ x �^C�� � C ����/�d� { q STP ¹ x �� � � �	�Ï
v�"� � ��� � ! ����
��� � � ( CEÖ <s C ���qrtsvuTw Py¹$x �^CôY � C ��XqrtsuTw PF¹dx �� � � �	�Ï
v�"� � ��� � ! ����
��� � � ( CEÖ <s C �z { q P ¹ x � ! �	�Ï
v�"� � � ( CEÖ <s C �z { q P ¹ x �� � � �	�Ï
v�"� � ��� � CôÖ <s C �z { q P ¹ x� �` s � �	�Ï
v�"� � ��� � CôÖ s C � ,65 ¹�7- 5
Here we use that R"egf Ö <s *_V for the third inequality.

Finally, we obtain

(5.14) ` s C?� � ¹ ) !$i s � . ( C �� �/��� { q STPF¹=x � � � �	�Ï
��� � ��� � CEÖ s C � , 5 ¹87- 5
Since Ö is benign, we have, from Lemma 5.5, that CEÖJC +, * CEÖ ´ C +, - ; then by Equations

(5.4), (5.5), (5.10), and (5.14), we haveC�3 ~ ÖJC � +, � � � �	�Ï
v�"� � � � � CEÖ ´ C � +,.- * � � �	�Ï
v�"� � � � � CôÖJC � +, 5
6. Condition number estimate for the BDDC preconditioner. We are now ready to

formulate and prove our main result; this follows directly from the proof of [12, Theorem 1]
by using Lemma 4.1 and Lemma 5.6.

THEOREM 6.1. The preconditioned operator ýWL4MQÝÕ is symmetric, positive definite with
respect to the bilinear form @ � G � ACB, on the benign space ��µ´ w � É �ºb and

(6.1) @dY G Y A B, �ED ý L4M ÝÕÎY G YGF B, � � � �	�Ï
��� � ��� � @dY G Y A B, G � Y H ��µ´ w � É �ºb"5
Here, � is a constant which is independent of � and � .
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TABLE 8.1
Condition number bounds and iteration counts, for a pair of the BDDC and the FBA algorithms, with a change

of the number of subdomains. HJI�KMLON and P(QSR .
Num. of sub. BDDC FBAT ø É T(U Iter. Cond. Num. Iter. Cond. Num.V É V 5 1.66 5 2.43W É W 8 2.95 8 2.90� Ù É � Ù 9 3.08 7 2.75�CX É �CX 9 3.13 7 2.72Ù V É Ù V 8 3.15 7 2.71

TABLE 8.2
Condition number bounds and iteration counts, for a pair of the BDDC and the FBA algorithms, with a change

of the size of subdomain problems. N�YZN subdomains and P(QSR .
BDDC FBA� � Iter. Cond. Num. Iter. Cond. Num.

4 8 2.17 7 2.12
8 8 2.95 8 2.90

12 9 3.47 9 3.45
16 9 3.88 9 3.83
20 9 4.20 9 4.15

7. Comparison with an edge/face-based iterative substructuring domain decompo-
sition method. We define an edge/face-based iterative substructuring domain decomposition
method as a hybrid method (see [22, Section 2.5.2]). Similar to the BNN method, as defined
in [18, Section 4], the coarse problems and the local problems are treated multiplicatively
and additively, respectively, in this preconditioner. We use a different coarse component, i.e.,
a different choice of the matrix 8+b for the coarse problem, but the same local problems as
in [18, Section 4]. Here, each column of 8	b corresponds to an edge/face on the interface
of � and is given by the positive scaling factor ë"ìs !$í)( . It is clear and we can prove that the
condition number with this preconditioner is also bounded by �]���	��
����� ����� . We will call
this method the FBA.

The size and sparsity of the coarse problems of the BDDC and the FBA are the same.
However, the two algorithms are different. The FBA is a hybrid algorithm and a coarse
problem has to be solved before the rest of the iterations. In contrast, only the variables have
to be changed at the beginning of computation with the BDDC, to accommodate the edge/face
constraints. In addition, the FBA requires two Dirichlet local problems and one singular local
Neumann problem in each iteration, whereas the BDDC requires one local Dirichlet problem
and two nonsingular local Neumann problem. In the latter algorithm, singular problems are
avoided. Numerical experiments show that FBA is somewhat slower than BDDC.

8. Numerical experiments. We have applied our BDDC and FBA algorithms to the
model problem (2.1), where � *Ëï V G ��[ � . We decompose the unit square into � É � subdo-
mains with the sidelength � * ��ðô� . Equation (2.1) is discretized, in each subdomain, by
the lowest order Raviart-Thomas finite elements and the space of piecewise constants with
a finite element diameter � , for the velocity and pressure, respectively. The preconditioned
conjugate gradient iteration is stopped when the \ � -norm of the residual has been reduced by
a factor of � V L^] .We have carried out two different sets of experiments to obtain iteration counts and con-
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TABLE 8.3
Condition number bounds and iteration counts, for a pair of the BDDC and the FBA algorithms, with a change

of the number of subdomains. HJI�KML	N and P is in a checkerboard pattern.

Num. of sub. BDDC FBAT ø É T(U Iter. Cond. Num. Iter. Cond. Num.V É V 3 1.03 5 2.20W É W 3 1.06 7 2.44� Ù É � Ù 3 1.07 7 2.49�?X É �?X 3 1.08 7 2.51Ù V É Ù V 3 1.08 7 2.53

TABLE 8.4
Condition number bounds and iteration counts, for a pair of the BDDC and the FBA algorithms, with a change

of the size of subdomain problems. NGY_N subdomains and P is in a checkerboard pattern.

BDDC FBA� � Iter. Cond. Num. Iter. Cond. Num.
4 3 1.04 7 2.00
8 3 1.06 7 2.44
12 4 1.10 8 2.69
16 4 1.11 8 2.88
20 4 1.12 8 3.02

dition number estimates. All the experimental results are fully consistent with our theory.
In the first set of experiments, we take the coefficient `a`]� . Table 8.1 gives the iteration

counts and the estimate of the condition numbers, with a change of the number of subdomains.
We find that the condition number is independent of the number of subdomains for both
algorithms. Table 8.2 gives the results with a change of the size of the subdomain problems.

In the second set of experiments, we take the coefficient ` * � in half the subdomains
and ` * � V�V in the neighboring subdomains, in a checkerboard pattern. Table 8.3 gives the
iteration counts, and condition number estimates with a change of the number of subdomains.
We find that the condition numbers are independent of the number of subdomains for both
algorithms. Table 8.4 gives the results with a change of the size of the subdomain problems.
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