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FAST GIVENS TRANSFORMATION FOR QUATERNION VALUED MATRICES
APPLIED TO HESSENBERG REDUCTIONS

�
DRAHOSLAVA JANOVSKÁ

�
AND GERHARD OPFER

�
Abstract. In a previous paper we investigated Givens transformations applied to quaternion valued matrices.

Since arithmetic operations with quaternions are very costly it is desirable to reduce the number of arithmetic oper-
ations with quaternions. We show that the Fast Givens transformation, known for the real case, can also be defined
for quaternion valued matrices, and we apply this technique to the reduction of an arbitrary quaternion valued matrix
to upper Hessenberg form and also include a numerical example. We offer two algorithms. One is based on the
classical real case using dynamically two transformation matrices, while the other is based on four transformation
matrices where in each step that matrix is selected that has the smallest condition number. For the first algorithm we
show that the essential information (namely the two numbers � and � which define the Givens transformation) can
be stored in only one variable. This is apparently even new for the real case. We include, necessarily, some investi-
gations on the determination of the relevant condition numbers. We show that in general the application of the Fast
Givens transformation in the quaternion case is not as favorable as in the real case with respect to (relative) savings
in arithmetic operations. We begin with some introduction into the field of quaternions. In the end in an appendix
we present some results concerning the computation of roots of quaternions which in some cases are needed.

Key words. Fast Givens rotation, quaternions, quaternion valued matrices, Hessenberg form for quaternion
valued matrices, roots of quaternions.
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1. Basic properties and definitions for quaternions. We start with some information
on the algebra of quaternions. There are more details in our previous paper, Janovská and
Opfer [10]. General information are contained in a book by Kuipers [13], results concerning
matrices with quaternion elements are surveyed by Zhang [21]. Applications to quantum
mechanics are treated by Dongarra et al., [4],[5], and application in chemistry are given by
Rösch[15].

Let ���	��
� , where � is the set of natural numbers starting with one. We denote by�������
the skew field of quaternions. Let � ��� �������������� !��� �#" �%$ �&� $'�(��$)����$* !��$ �(" 
 � .

Then, addition is defined elementwise and multiplication is governed by the following rule:�+$-, �.� �/�'$0�213�4�#$*�513�� '$* �13� � $ � ���/�)$*�768���#$'�%69�� '$ � 1�� � $) ��(1.1) �+�0$* �13�4�#$ � 68�� '$0�%68� � $*�!���/�)$ � 68���#$) �1��� '$)�769� � $'� "*:
We see, that 16 real multiplications and 12 real additions are needed to compute the product�+$ , altogether 28 floating point operations (flops). The first component �;� of � �.� �/�������!���� ��� �#" 
 � is called the real part of � and denoted by <�� . The second component �=� is called
the imaginary part of � and denoted by >?� . A quaternion � �@� ������A=��A/��A " will be identified
with �/�B
 � and � �C� �/����������A/��A " will be identified with �=�26EDF���G
9H . The zero element� A=��A/��A/��A " 
 � and the unit element

�JI ��A/��A/��A " 
 � will be abbreviated by A/� I , respectively.
Let � �K� �/�����������4 !��� �#" 
 � . The conjugate of � , denoted by � , will be defined by�L, �K� �/�(�'1M�4�!�01M�� ��'1M� �'"*:
The absolute value of � , denoted by N �ON , will be defined byP
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2 D. JANOVSKÁ and G. OPFERN �ON+, �KQ � � � 68� �� 69� � 68� �� :
There are the following important rules:< � ��$ " � < � $*� " �N ��$!N � N $)�ON � N �ONRN $�NS�N �TN � � � � � �?�;���$ � $ �����U � � �N �TN � �V�XW� A=�� ��$ " U � � $ U � � U � �Y�;��$ZW� A :
We denote by

�Z[
the normed vector space of � -vectors formed by quaternions, where the

norm of \], �K�_^ � � ^ � � :':0: � ^ [ " 
 � [ will be defined byN`N \7N`N+, �Ka N ^ � N � 6bN ^ � N � 6dc'c0c#6eN ^ [ N � �
and by

�gfih [
the set of all

� �CjB� " -matrices with elements from
�

. We note here, that these
matrices act as linear mappings kl, � [Gm �gf

only in the following sense:k � \L6on " � k � \ " 6ok � n " �p\%�Yn3
 �g[ �k � \Yq " � k � \ " q7�p\�
 � [ �Yqo
 � :
The converse is also true: A linear mapping k defined by the above two properties is always
represented by a matrix. This follows from standard arguments.

Let r�
 �Zfgh [ . By rts9
 � [ h+f we understand the transposed matrix of r where the
rows and columns are exchanged. By ru
 �vfih [ we understand the matrix which is formed
by conjugation of all its elements. Finally,r � , �w� r " s � r s :
In case r �o� r , we call r Hermitean. The zero element of

� [
and of

�gfih [
will be

denoted by x . From the context it will become clear which zero element is meant. Elements
in
� [

will be denoted by boldface Latin lower case letters, where for matrices in
� fih [

normally boldface Latin capital letters are used. A matrix ry
 �B[ h [ will be called unitary
if r � r � rtr �-�{z , where

z
is the identity matrix. Unitary matrices r are characterized byNRN rt\7N`N � N`N \7NRN for all \E
 �i[ . Eigenvalue problems for ry
 �i[ h [ have to be posed in the

form rt\ � \V|(1.2)

and similar matrices have the same set of eigenvalues. The set of eigenvalues is in general
not finite. If | is an eigenvalue, the whole equivalence class} |/~�, �w�4� 
 � , �X�{� | � U � for all

� 
 �v��� A+�+�
consists of eigenvalues. The number of different equivalence classes is, however, at most � .

LEMMA 1.1. Two quaternions | � and | � are members of the same equivalence class
if and only if N |T�!N � N |��4N and <5|;� � <5|=� . As a consequence, two different complex num-
bers are equivalent if and only if they are conjugate two each other. Two real numbers are
equivalent if and only if they coincide.

Proof. Cf. Janovská and Opfer[10].
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This lemma implies that in any equivalence class
} � ~ of quaternions there is exactly one

complex quaternion �� with <���t� A . This will be called the complex representative of
} � ~ . If� ��� � � � � � � �  � � � " 
 } � ~ , then �� ��� � � � Q � �� 6 � � 6 � �� ��A/��A " is the complex representative

of
} � ~ .

We should note here, that Hermitean matrices have only real eigenvalues and that all
eigenvalues | of unitary matrices obey N |�N �uI

. In the later sections 4.1, 4.2 we will make
some investigations on condition numbers of certain quaternion valued matrices. Since con-
dition numbers for quaternion valued matrices � are apparently not defined in the literature
we use the following definition.

DEFINITION 1.2. Let ��
 � [ h [ be nonsingular. We define the condition number of� , denoted by �)���=� � � " by�0�!�=� � � " , �wa |/�%��� � �w� � "�� |=�%� � � �w� � "
where |=�%� �/��|=�%��� denote the smallest, the largest eigenvalue of �K� � , respectively.

This definition makes sense since all matrices of the type �w� � have (only) � nonnega-
tive eigenvalues | and in case � is nonsingular these eigenvalues are positive. The definition
implies �0�!�=� � � " � I and �)���=� � � " ��I if and only if all eigenvalues of �K� � are positive
and identical.

In the above definition it is required to compute the eigenvalues of a quaternion valued,
Hermitean matrix. For the

��� j � " case we shall use the following lemma.

LEMMA 1.3. Let ��
 � � h � be a Hermitean matrix. Then it has necessarily the form� ��� � �� $ � �p�;��$¡
 � � � 
 �
and the eigenvalues | are real and obey the following quadratic equation with real coeffi-
cients: ¢ � | " , � | � 1 � �£6¤$ " |v68��$21dN � N � � A :
The two solutions of this equation are|O�¦¥ �i, � �l6¤$� §{¨ © �Z1o$�«ª � 6bN � N � :

Proof. The given form of � and the fact that the eigenvalues are real are obvious. The
solutions of the eigenvalue equation �Z\ � \V| imply the given quadratic equation and its
solutions.

2. Flop counts for quaternion arithmetic. In connection with quaternion arithmetic
not only quaternion j quaternion will be considered but many special cases for which the flop
counts are more favorable. We repeat that flop stands for floating point operation which
means an algebraic operation of the type addition, subtraction, multiplication, division of
real numbers in floating point representation. Thus, a multiplication of two complex num-
bers in the classical form

�¬^ �£6�D`4� " �¬^ �g6�D`!� " ��^ � ^ �Z1d4�*!�£6�D � �� ^ �g6 ^ �)!� " needs
apparently 4 multiplications and 2 additions, together 6 flops. Actually, it is possible to use
only three multiplications, but then, the number of additions/subtractions is increased. As
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TABLE 2.1
q-flop counts for various operations with quaternions

Operation additions multiplications flops q-flops
¢ 6 � ® A ® I ��¯¢ � I#� I#° �!± I² � A ® ® I ��¯N � N � ³ ® ¯ I � ®� U � ³ ± I�I I!I � ��±¢ � U � I#´ � ® ³�µ I 6 I!I � �!±¶ � ® ± I(� ³ ��¯· sV¸ I#° �¹1 ® I#° � ³ � �t1 ® �G6 [ U �ºr · � �	I'° �¹1 ® " I#° �»� � � ³ � �t1 ® " � � �t6 [ U �º "r¼69½ ® �¹� A ® �»� f [ºrLs�½ � � �	I'° ��1 ® " I#° � � � � � � ³ � �¾1 ® " � � � ��6 f U �º "

already mentioned, see formula (1.1), the product of two quaternions needs 12 additions and
16 multiplications, altogether 28 flops.

DEFINITION 2.1. We will call the amount of 28 flops one q-flop. One q-flop is the
algebraic work needed to multiply two quaternions.

We will summarize various flop counts in Table 2.1.

In the table we used the following notation:¿X² for real numbers, ¿]¶ for complex numbers, ¿ ¢ � � for quaternions,¿À· �	¸ for quaternion valued column vectors with � components,¿ rX��½ for quaternion valued matrices with � rows and � columns.

3. Givens transformations for quaternions. We turn now to
� j � Givens transforma-

tions. Let Á be a matrix of the formÁ�, �Â� ¶«Ã1 ÃÄ¶ � � ¶ � Ã 
 � :(3.1)

Such a matrix Á is unitary if and only if��Å " ¶0Ã � Ã#¶ � �¬Æ " N ¶ N � 6bN Ã N � �wI :(3.2)

Let \ �w�_^ ��� ^ � " so
 � � ��� xY� . A matrix Á of the form (3.1) will be called a Givens transfor-
mation with respect to \ if it is unitary and if it has the propertyÁ � \ � ,�Ç �{È¡É � � where

É � �K�JI ��A " s 
 � � � È 
 �v��� A/� :(3.3)

In a recent paper we gave a characterization of Givens transformations.

THEOREM 3.1. Let \ �.�¬^ ��� ^ � " so
 � � be given with
(a)
^ � ^ ��W� A . Then, Á as defined in (3.1) is a Givens transformation with respect to \ if and

only if Ã � 1 � ^ �N`N \7N`N � ¶ �d� ^ �N`N \7N`N � where(3.4)
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XÊd, �¼Ë;� 
 � , �Ì� q ^ � 6oÍ ^ �N q ^ �26oÍ ^ ��N �Yq2�	Ío
 � �2N q?N#6bN Í2N�ÎA;Ï��(3.5)

provided that the components
^ ��� ^ � are linearly independent over

�
. In case there is a real

constant q�W� A such that
^ � � q ^ � , then,

� 
 � is arbitrary with N � N �ÐI . In addition, we
have

È��{� NRN \7N`N .
(b) Let

^ � ^ � � A , but \¤W� x . Then, the general solution of (3.3) is:ÑÒÒÓ ÒÒÔ Ã � 1 � ^ �N ^ ��N � ¶ � A if
^ � � A ,¶ � � ^ �N ^ � N � Ã � A if
^ � � A , È��{� NRN \7N`NÕ� where

� 
 � with N � N �wI :(3.6)

Proof. Cf. Janovská and Opfer[10].

This theorem roughly says, that different from the real and complex case we cannot
freely choose the parameter

�
with N � N �¼I , but we have to follow the rule given in (3.5). In

the above theorem we have not considered the case \ � x . In this case, let Á ��z
. There

is another advantage of this conventional method. In the real case it is known, Stewart[17],
that both constants ¶ � Ã could be combined into one constant from which ¶ � Ã then can be
recovered. This is also valid in the quaternion case if we assume that ¶ or Ã is real. But this
is not a restriction. A look at formulas (3.4), (3.5) shows that it is always possible to choose
either ¶ or Ã not only real but nonnegative. So we can defineÖV× , � ÃI 6 ¶ for ¶ � AZØ ¶ � I 1dN ÖV× N �I 6�N Ö × N � � Ã �.�	I 6 ¶ " ÖV× � � ÖV×I 6bN Ö × N � �(3.7) ÖVÙ , � ¶I 6 Ã for Ã � AZØ Ã � I 1dN ÖVÙ N �I 6�N Ö Ù N � � ¶ �w�JI 6 Ã " ÖVÙ � � ÖVÙI 6�N Ö Ù N � :(3.8)

In terms of \ �K�_^ ��� ^ � " s with
^ � ^ ��W� A , we haveÖ × � 1 ^ � ^ �N ^ ��N � N ^ �!N06�NRN \7NRN " �¬� , � ^ �N ^ ��N " � Ö Ù � 1 ^ � ^ �N ^ �4N � N ^ ��N06�N`N \7NRN " �¬� , � 1 ^ �N ^ ��N "*:(3.9)

For the special cases
^ � � A or

^ � � A but \8W� x we obtainÖ × � A for
^ � � AZØ ¶ �wI � Ã � A/Ú Ö Ù � A for

^ � � AZØ ¶ � A/� Ã �.I :
It should be noted that cancellation in the numerator of the formulas for ¶ and Ã cannot take
place if we choose formula (3.7) only in case ¶ � � A : ´=�¬Û N Ã N �vÜ A : ´gÛ N ^ ��N � N ^ ��N " which
is equivalent to N Ö�× N �ZÜ³ 1 �4Ý �BÞ A : I ¯ I#° . If ¶ �Zß A : ´ we choose the other formula. SinceÖV× � ÖVÙ are undistinguishable by the sizes of their absolute values, the idea of Stewart[17] was
to store a new constant, namely,Ö , �Ðà Ö × if N ^ � N � N ^ � N ,Ö U �Ù if A ß N ^ � N ß N ^ � N ,I

if
^ � � A .(3.10)

Now, if Ö ß I , then we can use the recovery formulas given in (3.7), with ÖV× , � Ö . If Ö Î I
we use (3.8), however, Ö�Ù has to be replaced by Ö�Ù , � Ö U � . If Ö �KI , we have ¶ � A/� Ã �KI .
Actually, Stewart’s[17] definition was a little different. The advantage of the given formulas
is, that no square roots are needed in the recovery process.
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Givens transformation usually requires many evaluations of n¼, � Á �0á for arbitrary
á

and fixed Á . Let no, �w�  � �	 � " s2� á , �w��â � � â � " s . Then,� 4�!� � , � Á � áZ� � ¶ â �21 Ã â �Ã â �%6 ¶ â � � :(3.11)

By rearranging and using (3.7), (3.8) we can write this as follows:� !�4� � � � Ã â �ã6 ¶ â �1 ÖV× ��â �?6o!� " 6 â � � for ¶ � A=�(3.12) �  � � � �ä� Ã â � 6 ¶ â �Ö Ù �¬â � 69 � " 1 â � � for Ã � A :(3.13)

Let ¶ or Ã be real. Then, formulas (3.11), (3.12), (3.13) all need (2+4/7) q-flops. However,
one multiplication real j quaternion in (3.11) is replaced with one addition of two quaternions
in (3.12), (3.13).

4. Fast Givens transformations for quaternions. Let ��
å� be given with � � � and
let Á�
 � � h � be of the form already defined in (3.1) and let Á be unitary, i. e. (3.2) is valid.
With given

� Ü3æ'çgßdè!çgÜ �%�*Á , we defineé , �bé-� æ ç � è ç " � , �ëê�ì�í " 
 �i[ h [ �(4.1)
where � ê ìïîïìïî ê ìðî¦í¦îê í¦îïìïî ê í¦î¦í¦î � , � Á and

ê ì�í , � ñ ì�í
otherwise :

We note that with Á also
é

is unitary. Let r �K� � ì�í " 
 � [ h [ be an arbitrary matrix. We callé8�bé-� æ ç � è ç " a Givens transformation if Á has this property with respect to the vector \], �� � ì î ¥ ì î U � ��� í î ¥ ì î U � " s . That means,
é-� æ ç � è ç " annihilates the element in position

� è ç � æ ç 1 I "
and the formulas of Theorem 3.1 are valid. Then, r¹ò �K� ��òì�í " defined by r¹ò �{é � r is

� òì�í � ÑÒÓ ÒÔ � ì�í if æ W� æ'ç � æ W� è�ç ,¶ � ìðî�í 1 Ã � í¦î�í if æ � æ'ç � è �.I � � � :':0: ��� ,Ã � ìðî�í 6 ¶ � í¦î�í if æ � è!ç � è � æ0ç � æ'ç 6 I � :0:0: �	� ,Ã � ìðî ¥ ìïî U �ã6 ¶ � í¦î ¥ ìðî U � � A if æ � è!ç � è � æ0ç 1 I .(4.2)

In order to compute r ò we need
��� 6 I ��¯�" ��� �31 � æ ç 1 I "	" q-flops. Since algebraic

operations with quaternions are expensive an idea of Gentleman[6] and Hammarling[9] can
be used to reduce the number of operations. Compare also Rath[14]. An application to
complex matrices was given by Xu [20].

As we see from (4.2), only the rows æ'ç � è!ç are affected. Therefore, in this section, we
may assume that rÂ
 � � h [ . We see from (4.2) that the two possible cases Ã � A (implyingN ¶ N �wI ) and ¶ � A (implying N Ã N ��I ) already reduce the computational work of carrying out
(4.2) to

��� �£1 � æ'ç 1 I "	" q-flops. In our further considerations in this section, we may therefore
assume that Ã � ¶ 
 �v��� A/� :(4.3)

For computing r ò � Á � r , the idea is to use decompositions of r and of r ò of the formr �{ó ½t�Yr ò �{ó ò ½ ò with
ó , � �+D Å�ô;�¬õ � � õ � " � ó ò , � �+D Å!ô;��õ ò � � õ ò� " �

where the diagonal matrices
ó � ó ò are supposed to be quaternion-valued, nonsingular, but

otherwise arbitrary matrices. From the decomposition r ò �¾ó ò ½ ò � Á � r � Á �0ó ½¹� it
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follows that ½ ò �K�¬ó ò " U � Á � óö ÷)ø ùú5û ½¹�(4.4)

where ü � , defined as indicated, should be as simple as possible. By this, the computational
work for finding r ò is split into three parts:

(1.) ½ �bó U � rÀ� (2.) ½ ò � ü � ½t� (3.) r ò �bó ò ½ ò �(4.5)

and we will see later whether this splitting can lead to less computational work. Occasionally,
we will use the notationr � , � � ì�í " �Vr ò � , � � òì�í " �V½ � , � $ ì�í " �Y½ ò � , � $ òì�í " � æ ��I � � Ú è �.I � � � :0:': �	� :
The matrix ü � is determined by the two diagonal matrices

ó � ó ò . It is reasonable to discuss
two cases for ü � , namely the standard matrix forms

1.) ýü � , � � I 1G�þ�ÿ I � � 2.) �ü � , � � �þ 1 II �ÿ � �(4.6)

and the alternative matrix forms

3.) ýü �� � � , ��� �þ � � � 1 I�ÿ � � � I � � 4.) �ü �� � � , �Â� I 1 �þ � � �I �ÿ � � � � :(4.7)

where the quantities �þ ���ÿ � �þ � �ÿ �4�þ � � � ���ÿ � � � � �þ � � � � �ÿ � � � still have to be determined. We shall treat
both cases in the two subsequent subsections.

4.1. The standard matrix forms. We first treat the two matrices defined in (4.6). If
we do not make special assumptions for the two diagonal matrices

ó � ó ò steps (1.) and (3.)
of (4.5) require together

® � q-flops and step (2.) requires
��� 6 � �!¯!" � q-flops, more than the

original formula (4.2). We first discuss case 1.) of (4.6). From (3.1), (4.6), case 1.), (4.4) we
have � ¶ õ ��1 Ã õ �Ã õ � ¶ õ � � � Á � óu�dó ò ýü � � � õ ò � 1 õ ò � �þõ ò� �ÿ õ ò� � :
This leads to the following equations:õ ò � � ¶ õ � � õ ò� � ¶ õ � �(4.8) �þ �K�¬õ � " U � ¶ U � Ã õ � � �ÿ �w��õ � " U � � ¶ " U � Ã õ � :(4.9)

From (3.2)(a) we know that ¶0Ã � Ã'¶ . If we use, in addition, the quaternion formula
� U � ��N � N � for

� 
 �v��� A+� we find

�þ �ÿ �w��õ � " U � ¶ U � Ã � ¶ " U � Ã õ � � N Ã N �N ¶ N � and
I � �JI 6K�þ �ÿ " � N ¶ N �(4.10)

which is independent of
ó

. Because of the denominator N ¶ N � in (4.10), we also discuss case 2.)
of (4.6). The corresponding equation reads� ¶ õ � 1 Ã õ �Ã õ � ¶ õ � � � Á � óu�dó ò �ü � �Â� õ ò � �þ 1 õ ò �õ ò� õ ò� �ÿ �
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and leads to: õ ò � � Ã õ � � õ ò� � Ã õ � �(4.11) �þ �w�¬õ � " U � Ã U � ¶ õ � � �ÿ �K�¬õ � " U � � Ã " U � ¶ õ � :(4.12)

We will call the equations (4.8), (4.11) transition equations. Now we see, that (4.11), (4.12)
are obtained from (4.8), (4.9) by interchanging

õ � � õ � and Ã � ¶ . Thus, it is sufficient to study
case 1.) of (4.6) in more detail. Then, case 2.) follows immediately, e. g.�þ �ÿ � N ¶ N �N Ã N � and

I � �JI 6 �þ �ÿ " � N Ã N � :(4.13)

It is also clear, that we shall use formulas (4.6), case 1.), (4.8), (4.9) in case N ¶ N � � A : ´ and
formulas (4.6), case 2.), (4.11), (4.12) when N Ã N � ÎwA : ´ . Since N ¶ N � 6.N Ã N � �CI , exactly one
of these cases will occur. This distinction allows us to include the cases N ¶ N ��I � Ã � A and¶ � A=�#N Ã N �.I . See, Theorem 3.1, part (b).

The above formulas describe the transition from
ó

to
ó ò and the computation of the

constants �þ ���ÿ � �þ � �ÿ in terms of general ¶ � Ã . To use the annihilation property (last equation of
(4.2)) we set · , �w� � � ��� � " s , �w��õ � $ ��� � õ � $ �¦� " s �(4.14)

where · stands for one of the columns of r and use the terminology of Theorem 3.1. In
formulas (4.9), (4.12) there are four products ¶ U � Ã � � ¶ " U � Ã � � Ã " U � ¶ � � Ã " U � ¶ . If we insert the
results from Theorem 3.1 we obtain¶ U � Ã � 1 �+� ���N �/��N � � � ¶ " U � Ã � 1 � �/�)�4�N �/��N � � �(4.15) Ã U � ¶ � 1 �4� �/�N � � N � � � Ã " U � ¶ � 1 � ���'�+�N � � N � � :(4.16)

There is some freedom in choosing
�

, where the details about
�

are explained in Theorem 3.1.
If in (4.15) we choose

�Ì� �/� � N �/��N (implying ¶ � A ), then, the second product reads� ¶ " U � Ã � 1 � � � �N �/��N � :(4.17)

If in (4.16) we choose
�å� 1M� � � N � � N (implying Ã � A ), then, the second product simplifies to� Ã " U � ¶ � 1 � � � �N ����N � :(4.18)

We compute the coefficients �þ ���ÿ � �þ � �ÿ , defined in (4.9), (4.12) with the help of (4.15) to (4.18)
and obtain ÑÒÒÒÓ ÒÒÒÔ �ÿ � 1¡$ �*� $ U ���� � �þ � N õ �4N �N õ � N � �ÿ for �þ �ÿ Ü I ,�ÿ � 1¡$ ��� $ U ��¦� � �þ � N õ � N �N õ � N � �ÿ for

�þ �ÿ ß I .(4.19)

Since
I � �	I 6¾�þ �ÿ " � N ¶ N � , the condition N ¶ N � � A : ´ is equivalent to �þ �ÿ Ü I

and N ¶ N �3Ü I
implies �þ �ÿ � A . The second condition

�þ �ÿ ß I follows similarly. It should be observed that� �þ �þ " �¾� �ÿ �ÿ " �@I and that the products �þ �ÿ � �þ �ÿ are real and nonnegative with
� �þ �ÿ " � �þ �ÿ " ��I .

As a byproduct we see, that no square roots are needed. It is important to note that in case 1
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( �þ �ÿ Ü I
) the quantity ¶ is real and nonnegative whereas in case 2 the quantity Ã is real

and nonnegative. Therefore, the transition equations (4.8), (4.11) imply that the diagonal
elements always stay real and nonnegative if the starting diagonal matrix has this property.
We can square the transition equations and replace ¶ � � Ã � with N ¶ N � �#N Ã N � , respectively. Using
(4.10),(4.13) the transition equations can be put into the formõ ò � �¡� II 6.�þ �ÿ õ � � � õ ò� �-� II 6.�þ �ÿ õ �� for �þ �ÿ Ü I �
(4.20) õ ò � �¡� II 6 �þ �ÿ õ �� � õ ò� �-� II 6 �þ �ÿ õ � � for

�þ �ÿ ß I :
Our strategy has the consequence, that the factors applied to

õ � � � õ �� are always in the range} A : ´ � I ~ . We observe that here and in (4.19) only the squares of the diagonal elements are
needed. The new “Fast” formula ½ ò � ü � ½ with ½ ò �.� $ òì�í " reads explicitly

$ òì�í �
ÑÒÒÒÒÓ ÒÒÒÒÔ
� $'� í 1e�þ $*� í if æ �wI � è ��I � � � :0:': �	� ,�ÿ $0� í 68$*� í if æ ��� � è �{� � ³ � :0:': �	� , for �þ �ÿ Ü I �� �þ $0� í 1o$*� í if æ �wI � è ��I � � � :0:': �	� ,$'� í 6 �ÿ $*� í if æ ��� � è �{� � ³ � :0:': �	� , for

�þ �ÿ ß I :(4.21)

We summarize the algorithm for a given r 
 � � h [ and a given
ó�� �+D Å�ô;�¬õ ��� õ � " 
 � � h �

with
õ � W� A/� õ � W� A .
ALGORITHM 4.1. Fast Givens algorithm

1. Determine
� $ ì�í " , � ½Ð, �dó U � r ,

2. compute
� ¶ � � ¶ � " , �w� N õ � N � N $ ��� N � �#N õ � N � N $ �*� N � " ,

3. if ¶ � ß ¶ � compute
�þ � �ÿ � �þ �ÿ � ¶ � � ¶ � , else compute �þ ���ÿ ���þ �ÿ � ¶ � � ¶ � according to

(4.19),
4. compute

� $ òì�í " , � ½ ò according to (4.21), use 3.,
5. compute

õ ò � � õ ò� according to (4.20) and define
ó ò , � �+D Å!ô;��õ ò � � õ ò� " , use 3.,

6. compute r ò �{ó ò ½ ò .
Since only the squares of the

õ
’s appear one could add the following step after step 1.

1a. Replace
ó

with
ó � (elementwise) and replace all squares of

õ
’s in (4.19), (4.20) and

in step 2. by
õ

alone.
In this case, step 6. must be replaced by

6 ò . compute r ò � Ý ó ò ½ ò , where
Ý

has to be computed elementwise. See appendix
for roots of quaternions.

Both algorithms (1. to 6. and
I : � I � : � � : � :0:': � ´ : � ° ò : ) work with general quaternion entries in

step 1. However, the choice
ó , � �+D Å�ôO�JI � I " simplifies 1. to ½u, � r and further simplifies

step 2. and also step 1a.
We will mention an alternative algorithm. Wolfgang Rath says in his paper [14, p. 51]

that “the two parameters ... can unfortunately not be put together and stored in one element”.
The same comment appears in Schwarz and Köckler[16, p. 239]. This is actually not true.
By using Ö × � Ö Ù from (3.7), (3.8) and also using (4.20) we can write�þ � �I 1N Ö × N � õ U �� ÖV× õ ��� �ÿ � �I 1N Ö × N � õ U �� ÖV× õ � � N õ ��N �N õ � N � �þ �
(4.22)
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10 D. JANOVSKÁ and G. OPFERõ ò � � © I 1N Ö × N �I 6bN ÖV× N � ª õ � � õ ò� � © I 1N Ö × N �I 6bN ÖV× N � ª õ � for N Ö × N � ÜE³ 1 � Ý � ��þ � �I 1dN ÖVÙ N � õ U �� ÖVÙ õ ��� �ÿ � �I 1N ÖVÙ N � õ U �� ÖVÙ õ � � N õ � N �N õ ��N � �þ �
(4.23) õ ò � � © I 1N Ö Ù N �I 6bN ÖVÙ N � ª õ � � õ ò� � © I 1dN Ö Ù N �I 6�N ÖVÙ N � ª õ � otherwise :
Apart from

õ ��� õ � , all information is stored in one element, namely in Ö × or in Ö�Ù and the
above formulas show that we can recover all necessary quantities from Ö × � ÖVÙ " alone. Neither
squares of the

õ
’s nor square roots appear in the above formula. However, the computation ofÖV× � ÖVÙ " requires one square root of a (nonnegative) real number. This one parameter algorithm

seems to be new, even in the real case. Let ry
 � � h [ and
ó&� �+D Å�ô;�¬õ ��� õ � " 
 � � h � withõ � W� A=� õ � W� A be given.

ALGORITHM 4.2. Fast Givens algorithm with only one parameter Ö
1. Determine

� $ ì�í " , � ½¾, �{ó U � r ,
2. compute

� � � ��� � " , �K�¬õ � $ ��� � õ � $ �*� " ,
3. if N � � N � N � � N compute Ö × , else Ö Ù using (3.9),
4. compute �þ ���ÿ � õ ò � � õ ò� according to (4.22) or

�þ � �ÿ � õ ò � � õ ò� according to (4.23),
5. compute ½ ò according to (4.21),
6. compute r¹ò �bó òR½vò .

It would have been possible to work with Ö defined in (3.10) alone. In this case Ö�Ù has
to be replaced with Ö U � in (4.23).

In the end we will make some investigations on the condition numbers of the two matrices
defined in (4.6).

THEOREM 4.3. Fix
õ ��W� A/� õ �LW� A and put

õ , � N õ ��N �N õ ��N � . Denote both matrices ýü�� �ü byü . (a) The condition numbers of the two matrices ü defined in (4.6) are both bounded by�)���=� � ü " �%�	� ��õ " , ����Å��O��õ � Iõ " � �0�!�=� � ü " �%��� � Iõ "(4.24)

and this bound is sharp. (b) At the midpoint N Ã N � � A : ´ the condition number for both matrices
is �0�!�=� � ü " �%� 	 �¬õ " , ��
 �	I 6 õ " � 6 a �JI 6 õ " � 1 I'°�õ ��	I 6 õ " � 1 a �JI 6 õ " � 1 I'°�õ �
(4.25) � �� I 6 Q I 1 �������� ���������I 1 Q I 1 ����� �� ������� � � �)���=� � ü " �%� 	 � Iõ "*:

Proof. (a) We write þ for �þ � �þ , and ÿ for �ÿ � �ÿ . The eigenvalues of the matrices ü � ü (and
of üåü � as well) obey all the same eigenvalue equation (cf. Lemma 1.3). If by (4.19) we useþ �ê ÿ , whereê»� � I � õ for ü � ýü ,õ

for ü � �ü ,
� N ÿ N � � à]Në�ÿ N � for ü � ýü ,N �ÿ N � � �� �� � � for ü � �ü ,
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this eigenvalue equation has by Lemma 1.3 the two solutions| �%��� � ¢ � 6 ¢ � � | �%� � � ¢ � 1 ¢ � � where¢ �-, � �JI 6 ê � " N ÿ N � 6 �� � ¢ �l, � I� a �JI 1 ê � " � N ÿ N � 6 ® �JI 1 ê " � N ÿ N � :
Thus, �)���=� � ü " �Ka �G� N ÿ N � " where

� , � |/�%���|/�%� � �
¢ � 6 ¢ �¢ �21 ¢ � � I 6 �I 1 � �(4.26)

� � N ÿ N � " , � ¢ � � N ÿ N � "¢ � � N ÿ N � " � Q �JI 1 ê � " � N ÿ N � 6 ® �JI 1 ê " � N ÿ N ��	I 6 ê � " N ÿ N � 6 � :(4.27)

Observe, that A Ü � ß I and that
�

is strictly increasing with N ÿ N � for
ê W��I . Therefore,

�
is also strictly increasing with N ÿ N � . Now, we divide the numerator and denominator in the
expression for

�
by N ÿ N � ÎA and find� D �� � � �! #" � � N ÿ N � " � N ê � 1 I Nê � 6 I :

From here we deduce � D �� � � �  $" �G� N ÿ N � " � � ê � for
ê � I

,I � ê � otherwise.

Observing that
�

is the square of the condition number and taking into account the meaning
of the quantity

õ
yields (4.24). Now, by (4.10), (4.13) it follows that N ÿ N � m&%

impliesN Ã N � m I �7N Ã N � m A for the two matrices, respectively. Therefore, the bound is sharp. (b) LetN Ã N � � A : ´ . Then N ¶ N � � A : ´ and by (4.10) and (4.13) it follows that þ�ÿ ��I and by (4.19) it
follows that N ÿ N � �.I � ê with

ê Î¤A . Thus, we have to evaluate
�G� �' " . We find�G� Iê " � �	I 6 ê " � 6 a �JI 6 ê " � 1 I'°�ê ��	I 6 ê " � 1 a �JI 6 ê " � 1 I'°�ê � ���G�_ê "

which proves (4.25).

Let us mention some test values for �)���=� � ü " �%� 	 ��õ " for
õ���I � � � ³ � ® � ´ � I A/� I A!Al,I � I : ° ® A ³ ±ã±�� A ³ � A �!� A ± � � : �+I(´!��´ A ® ³ ¯ A �+I#´ ³ A+� � : ¯ ° ³ A ±7´ ¯ µ ® ´�I'±�°4´ µ �³ : � µ °�°!°7� µ ´ ® ¯ A µ ´ ¯�¯ � ´ : ± ¯ µ�µ � µ�µ ® °!° A I!I ® � � ´ A : µ ±4´ ³ ±ã°�´ ³ °!±2´ A ´!° µ :

From the representation (4.25) it follows that asymptotically we have �)���=� � ü " �%� 	 ��õ ")(�� �GÅ*�T�¬õ � I � õ " for
õ m+%

and
õ m A .

Though Ã � ¶ are not explicitly used, we used N Ã N � as abscissa for several plots. The formula
is (see (4.10), (4.13), (4.19))

N Ã N � � ÑÒÒÓ ÒÒÔ � �� � ���� � �� � � for matrix form 1.)������ �-,� � � for matrix form 2.)
� õv� N õ � N �N õ �4N � :(4.28)

From (4.19) it follows that N �ÿ N � � NF�ÿ N U � implying that both parts in (4.28) are identical.
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4.2. The alternative matrix forms. We shall investigate the two matrices defined in
(4.7), because we have seen in examples, that the corresponding condition numbers of these
matrices may be smaller than the condition number of the matrices investigated in the pre-
vious subsection. This case is normally neglected (see Schwarz and Köckler[16, p. 236]).
Following the pattern of the last subsection we have to solve the two matrix equations�¬Å " � ¶ õ � 1 Ã õ �Ã õ � ¶ õ �T� �bó ò ýü �� � � � � õ ò � �þ � � � 1 õ ò �õ ò� �ÿ � � � õ ò� � Ú�¬Æ " � ¶ õ � 1 Ã õ �Ã õ � ¶ õ � � �dó ò �ü �� � � � � õ ò � 1 õ ò � �þ � � �õ ò� õ ò� �ÿ � � � � :
The solutions for Ã W� A and ¶ W� A are��Å " õ ò � � Ã õ ��� õ ò� � ¶ õ ���/�þ � � � �yõ U �� Ã U � ¶ õ ���2�ÿ � � � �yõ U �� � ¶ " U � Ã õ �(Ú
(4.29) �_Æ " õ ò � � ¶ õ � � õ ò� � Ã õ � � �þ � � � �yõ U �� ¶ U � Ã õ � � �ÿ � � � �yõ U �� � Ã " U � ¶ õ � :
Since Ã#¶ � ¶0Ã we obtain from (a) and (b)�¬Å " �þ � � � � �ÿ � � � " U � � N ¶ N �N Ã N � Ø N Ã N � � II 6w�þ � � � � �ÿ � � � " U � Ú
(4.30) �_Æ " �þ � � � � �ÿ � � � " U � � N Ã N �N ¶ N � Ø N ¶ N � � II 6 �þ � � � � �ÿ � � � " U � :
In both formulas (4.29) the quantities Ã U � and ¶ U � appear simultaneously. Thus, we should
avoid both formulas in cases where either N Ã N or N ¶ N is small. By the same techniques (using
(4.15)–(4.18)) as in the previous subsection, we obtainÑÒÒÓ ÒÒÔ �ÿ � � � � 1¡$)�¦�0$ U ���� � �þ � � � � N õ �!N �N õ � N � �ÿ � � �NF�ÿ � � � N � ��ÿ � � � � 1¡$ ��� $ U ��¦� � �þ � � � � N õ �4N �N õ �!N � �ÿ � � �N �ÿ � � � N � :(4.31)

The transition equations (4.29) should be given the following form:�¬Å " õ ò � � N õ � N � a . N Ã N � � õ � " U � �ÿ � � � � õ ò� �Ka . N Ã N � õ � �
where

. N Ã N � , � .I 6 . � õ , � N õ ��N �N õ � N � � $¡, � N $0����N �N $ �*� N � � . , �bõ $(�(4.32) �_Æ " õ ò � � N õ ��N � a N Ã N � � õ � " U � �ÿ � � � � õ ò� �Ka N Ã N � õ �(� N Ã N � � II 6 . :
The new “Fast” formula ½�ò � ü � ½ with ½vò �w� $*òì�í " reads in this case explicitly

$ òì�í �
ÑÒÒÒÒÓ ÒÒÒÒÔ
� �þ � � � $0� í 1o$*� í if æ �wI � è ��I � � � :0:': �	� ,�ÿ � � � $0� í 68$)� í if æ ��� � è �{� � ³ � :0:': �	� ,� $ � í 1 �þ � � � $ � í if æ �wI � è ��I � � � :0:': �	� ,$0� í 6 �ÿ � � � $)� í if æ ��� � è �{� � ³ � :0:': �	� ,

(4.33)
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where the use of the first or second form will be specified later. Because of the singularities
of �þ � � � ���ÿ � � � � �þ � � � � �ÿ � � � at Ã � A and ¶ � A (see 4.29) an algorithm cannot be based on the
alternative forms alone. Another disadvantage of this form is that the transition equations
for the

õ ò s (the first two equations in (a) and (b) of (4.29)) have different factors with the
consequence that in general the

õ ò s will not remain real. Since the condition numbers of both
matrices ýüÌ� � � , �üÌ� � � has poles at both ends N Ã N � A and N Ã N �ÐI more information from plots
of the reciprocal of the condition numbers (rather than from the condition numbers direct)
can be gained. See Figure 4.1.

Since the condition number of these two matrices is small “in the middle” of the interval} A=� I ~ , a strategy to use them has been developed which is summarized in Table 4.1.

THEOREM 4.4. Let
õ � W� A/� õ � W� A and put

õ , � � �0/ � �� � � � � . Denote both matrices defined
in (4.7) by ü � � � and use the notation ÿ � � � for both �ÿ � � � and

�ÿ � � � . Putê � � � , � � õ
for ü � � � � ýü � � � ,I � õ for ü � � � � �ü � � � , N ÿ � � � N � , � à]NF�ÿ � � � N � � NF�ÿ N � for üÌ� � � � ýüÌ� � � ,N �ÿ � � � N � � ��1���243 5 � � for üÌ� � � � �üÌ� � � .

(a) The condition number of ü � � � is�0�!�=� � üÌ� � � " �Ka � � � � � N ÿ � � � N � " where
� � � � , � I 6 � � � �I 1 � � � � and(4.34)

� � � � � N ÿ � � � N � " , � 
 ©766 ÿ � � � 66 � 6 ' �243 5� �!283 5 � � ª � 6 ® 1 ±�ê � � �N ÿ � � � N � 6 ' �243 5� �!283 5 � � 6 � :(4.35)

(b) At the midpoint N Ã N � , � A : ´ which corresponds to N ÿ � � � N � , �dê � � � the condition number is�0�!�=� � üÌ� � � " �%� 	 ��õ " �wa �GÅ*�T�¬õ � I � õ " � �)���=� � üÌ� � � " �%� 	 � Iõ "):(4.36)

Proof. (a) Define � , � ü �� � � üÌ� � � . Then,

� �:9; ê �� � �N ÿ � � � N � 6 I § �ëê � � � 1 I "§ �ëê � � � 1 I " N ÿ � � � N � 6 I=<> �
where the 6 -sign refers to the first matrix ýüÌ� � � . Applying Definition 1.2 to üÌ� � � and employ-
ing Lemma 1.3 for � , we find the expressions given in (4.34) and in (4.35).
(b) Follows directly from (4.34), (4.35) by inserting N ÿ � � � N � �dê � � � .

It is interesting to see the condition numbers of all four matrices for a fixed value ofõ
in only one plot. Since the condition number of üX� � � is singular at both endpoints ofN Ã N � 
 } A/� I ~ we plot the reciprocal of the condition numbers of all four matrices. Then,

instead of looking at the minima, we have to look at the maxima. In Figure 4.1, we have
graphed the reciprocal of the condition numbers of all four matrix forms (see (4.6),(4.7))
for a fixed quotient

õ , � N õ �!N � � N õ ��N � over the quantity N Ã N � 
 } A/� I ~ and, in addition, the
maximum of all four curves (dashed). In the given figure we have selected a

õ Î I . If we
would replace

õ
with

I � õ ß I only the graphs corresponding to the matrix forms 3.) and 4.)
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FIG. 4.1. Reciprocal of the condition numbers for all four matrices for ?A@CB�D .
would interchange. The curves corresponding to matrix forms 1.) and 2.) show monotonous
behavior with respect to the abscissa N Ã N � and do not change if we would replace

õ
by
I � õ .

Thus, the graph of the maximum for all four curves is invariant under
õ m I � õ .

The relation between N Ã N � and N ÿ N � (for matrix forms 1.) and 2.)) is given in (4.28). The
new formula for N Ã N � is (see (4.30), (4.31))

N Ã N � � ÑÒÒÓ ÒÒÔ ��E��� �1�� 283 5 � � for matrix form 3.)�-,��243 5 � ���� �F,�!283 5 � � for matrix form 4.)
� õB� N õ � N �N õ �4N � :(4.37)

From (4.31) it follows that N �ÿ � � � N � � Në�ÿ � � � N U � implying that both parts in (4.37) are identical.
By comparing the expressions for �ÿ and �ÿ � � � at (4.19) and (4.31) we see that NF�ÿ N � � NF�ÿ � � � N U �
(though �ÿ and �ÿ U �� � � differ). Figure 4.1 shows that at the midpoint N Ã N � � A : ´ the alternative
matrix forms have smaller condition numbers than the standard forms.

COROLLARY 4.5. Let
õ Î�A be fixed and

õ W� I
. At the midpoint N Ã N � � A : ´ , the

condition number of üå� � � denoted by �0�!�=� � üå� � � " �%� 	 ��õ " is smaller than the condition number�)���=� � ü " �%� 	 �¬õ " of ü , or �)�!��� � üÌ� � � " �%� 	 �¬õ " ß �0�!�=� � ü " �%� 	 ��õ "):(4.38)
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TABLE 4.1
Logic of Fast algorithm using all four matrix forms

N Ã N � 
 } A/���!~ N Ã N � 
O~ë�;� I 1M��~ N Ã N � 
O~ I 1M�;� I ~õ � I � I 1G�þ�ÿ I � � I 1 �þ � � �I �ÿ � � � � � �þ 1 II �ÿ �õ ß I � I 1G�þ�ÿ I � � �þ � � � 1 I�ÿ � � � I � � �þ 1 II �ÿ �
Proof. The corresponding formulas (in the above order) are given in (4.36) and in (4.25).

By using the notation
� , � a �	I 6 õ " � 1 I#°!õ � the inequality (4.38) is equivalent to the in-

equality �GÅ*�T�¬õ � Iõ " ß �	I 6 õ " � 6 ��JI 6 õ " � 1 � :(4.39)

Let
õ Î I . Then, this inequality is equivalent to� Î õ � 1 I :

By squaring and putting in the meaning of
�

we obtain�JI 6 õ " � 1 I'°�õ � Î �¬õ � 1 I " � :
From here we have

�JI 6 õ " � 1 I'°!õ � 1 �¬õ � 1 I " � � ® õ;�¬õ 1 I " � ÎA . Very similar arguments
work for A ß õ ß I .

Inequality (4.38) implies that (in case
õ W�.I ) it is also true in a certain (symmetric) neigh-

borhood of N Ã N � � A : ´ . And a look at Figure 4.1 shows this neighborhood, explicitly. Thus,
we can base an algorithm on the partition of N Ã N � 
 } A=� I ~ into three subintervals according to
Table 4.1:

It remains to determine A ß � ß A : ´ . Let us call the curve of the condition number
corresponding to matrix form j.) the curve æ , æ �ÂI � � � ³ � ® . The quantity � is the smallest
positive abscissa N Ã N � of the intersection of curves 1 and 4 if

õ Î I , and
I 19� is the largest

positive abscissa of the intersection of curves 2 and 3 if
õ ß I .

LEMMA 4.6. The above quantity � is given by� � N Ã ç N � , � II 6 �GÅ*�T�¬õ � I � õ " for
õ Î¤A :(4.40)

Proof. Let
õ Î I

. Then, � is the smallest, positive solution (in terms of N Ã N � ) ofG , � � � � N ÿ N � " 1 � �� � � � N ÿ � � � N � " � A where the corresponding expressions are defined in (4.27),
(4.35). In these expressions we put

È , � N ÿ N � � NF�ÿ N � �.I � N ÿ � � � N � � ê»�.I � õ such that (via first
line of (4.28)). N Ã N � �dÈ � ��õ 6 È "*:
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Then,
G

is a rational function in the variable
È

of numerator and denominator degree six with
positive denominator. The numerator can be factored with the help of maple

�
in the form1 ® õ � �_È 6 õ " � �_È 1 I " �'È  6 � 1 õ � 6 ��õ � " È � 1 õ � È 1 õ � � :

The zero
È , � 1 õ ß A is irrelevant and the zero

ÈK�@I
corresponds to N Ã ç N � , �@I � �	I 6 õ " .

The polynomial

¢ �_È Ú õ " , ���'È  6 � 1 õ � 6 ��õ � " È � 1 õ � È 1 õ � � has exactly one positive rootÈ � Î õ � which implies that N Ã � N � , ��È � � �¬õ 6 È � " Î I � �JI 6 õ " � N Ã ç N � . Similar arguments
work for the case

õ ß I .
This lemma tells us that even for

õ
of moderate size the interval

} �;� I 1b��~ in which
the alternative matrix forms have smaller condition numbers is already considerably large.
Already for

õ Î ³ the interval
} �;� I 1o��~ is longer than the two subintervals

} A/���!~ð� } I 19�;� I ~
together.

4.3. Fast Givens algorithm with four matrix forms. The principal algorithm is laid
out in Table 4.1. The decision whether N Ã N � is in one of the intervals

} A/����~ �	~F�;� I 1t��~ð�J~ I 1t�;� I ~
turns out to be very easy. We assume that

õ �BW� A , õ �BW� A , $'��� , $*�*� are given quaternions. We
set õ , � N õ ��N � � N õ �4N � � $-, � N $'���!N � � N $*�¦�!N � for $)�¦�ZW� A/��L, ��I � �JI 6 �GÅ*�T�¬õ � I � õ "�" � . , � $ õ :
Then N Ã N � can easily be expressed in the formN Ã N � � � A if $ �¦� � A ,��E��H otherwise.

Then, with the help of Lemma 4.6 and Table 4.1 we find

N Ã N � 
 ÑÒÒÓ ÒÒÔ } A/���!~ if $ � �GÅ*�Y�JI � I � õ � " or $)�¦� � A [matrix form 1.) is used],~ë�;� I 13�!~ if
� D`� �	I � I � õ � " Ü $ ß �GÅ*�T�JI � I � õ � " [matrix form 3.)

for
õ ß I , matrix form 4.) for

õ � I
is used],~ I 1��;� I ~ if $ ß � D`� �JI � I � õ � " [matrix form 2.) is used].

Now, the corresponding formulas are:
1. Matrix form 1.): �þ ���ÿ in (4.19),

õ ò � � õ ò� in (4.20), but no squares, use �þ �ÿ �.I � . .
2. Matrix form 2.):

�þ � �ÿ in (4.19),
õ ò � � õ ò� in (4.20), but no squares, use

�þ �ÿ ��. .
3. Matrix form 3.): to be used only if

õ ß I
, �þ � � � ���ÿ � � � in (4.31),

õ ò � � õ ò� in
(4.32 (a)). use �þ � � � �ÿ U �� � � �I. ,

4. Matrix form 4.): to be used only if
õ � I

,
�þ � � � � �ÿ � � � in (4.31),

õ ò � � õ ò� in
(4.32 (b)), use

�þ � � � �ÿ U �� � � �wI � . .
The use of all four matrix forms implies that the transition equations must be used in the

square free form. The advantage is, that in the end no square roots need to be computed.

4.4. Avoiding underflows in the diagonal elements. If we have a look at the transition
equations ((4.8), (4.11), (4.29)) which describe the transition from

ó
to
ó ò , we see that

the matrix elements of
ó

are always multiplied by quantities which are smaller than one in
modulus. The effect is that they are always decreasing in modulus. In Hessenberg reduction
each diagonal element (apart from the first) of

ó
is multiplied �o1 � times. Thus, if theP

Actually, one can directly check, that J0KML4B!NPOQJ�KRTS U LVB!NW@XD .



ETNA
Kent State University 
etna@mcs.kent.edu

FAST GIVENS WITH QUATERNIONS 17

multiplicator is in the average 0.75 and � � I A�A , then the diminishing factor is already� ³ � ® "�Y!Z Þ@° c I A U �J . Therefore, we will discuss shortly a method introduced by Anda and
Park[1] for the real case in which they try to avoid this phenomenon by introducing another
matrix decomposition. In our context, using matrix form ýü � (see (4.6)) the main idea is
contained in the following identity:ó ò ��� ¶ õ � AA ¶ õ � � ��� ¶ õ � AA ¶ U � õ � � � I AA N ¶ N � � � , ýó&� I AA N ¶ N � � :
The final clue is the following equation and decomposition:ó ò ýü � � ýó&� I AA N ¶ N � � ýü � � ýó&� I 1 þN ¶ N � ÿ N ¶ N � � � ýó�� I AN ¶ N � ÿ I � � I 1 þA I � :(4.41)

The last decomposition shows, that a multiplication with a vector can still be carried out by
using only two (quaternion) multiplications. We also remark here that this matrix form is
only used in case ¶ is real and N ¶ N � � A : ´ . In case N ¶ N �Gß A : ´ we use matrix form 2.) with a
similar expansion.

Matrix form 3.) is ýü �� � � � � þ 1 Iÿ I � and for the transition equations we can make a

corresponding development. See (4.29):ó ò � � Ã AA ¶ � õ � � � Ã AA ¶ U � � õ � � I AA N ¶ N � � � , ýó � I AA N ¶ N � � :
Therefore, ó ò ýü �� � � � ýó�� I AA N ¶ N � � � þ 1 Iÿ I � :
The last product can also be factored in the form� I AA N ¶ N � � � þ 1 Iÿ I � �Â� þ AN ¶ N � ÿ I � � I 1 þ U �A I �(4.42)

where we may assume that ¶ is real and positive. However, as before, we still have two quater-
nion multiplications (56 flops) but we need one additional multiplication real j quaternion (4
flops). If we compare the two different decompositions of the last equation, we see, that the
product on the right has no advantages over the product on the left and therefore we do not
use the right decomposition. When using matrix form 3.) we assume, that both N Ã N � �#N ¶ N � are
near the middle of

} A/� I ~ such that there is no preference of Ã over ¶ or vice versa. Therefore,
we may also use the formó ò ýü �� � � � ýó&� N Ã N � AA I � � þ 1 Iÿ I � with ýó , �Â� � Ã " U � õ � AA ¶ õ � � :(4.43)

Anda and Park[1] reduce or avoid the possibility of an underflow in the diagonal elements ofó
. However, instead, they introduce a multiplication by N ¶ N � or N Ã N � of the matrix elements

(see (4.41) to (4.43)) and thus, increase the danger of underflows in the matrix elements.
Therefore, we have not implemented this technique. The use of matrix form ü �� � � was not
considered by Anda and Park[1].
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5. Hessenberg reduction of quaternion valued matrices by Givens transformations.
Assume that r 
 �i[ h [ is an arbitrary matrix. By similarity transformations with Givens
transformations we want to reduce r ��� � ì�í " to upper Hessenberg form, see Janovská and
Opfer [11]. Such a Hessenberg form is usually the starting point for the application of a QR
algorithm to find the eigenvalues of r . A QR algorithm for quaternion valued matrices was
developed by Bunse-Gerstner, Byers, and Mehrmann [2]. The reduction steps with

é , �é¡� æ'ç � è�ç " , defined in (4.1) have the formr ò ò , �bé � r é :(5.1)

The matrix r¹ò ò will differ from r only in rows and columns with numbers æ�ç � è�ç . Let us
introduce r ò , �K� � òì�í " where r ò �{é � r . Then, r ò ò �w� � ò òì�í " , � r ò é with

� ò òì�í � ÑÓ Ô � òì�í for è W� æ ç � è W� è ç ,� òìïìïî ¶ 13� òì�í î Ã for è � æ ç � æ �wI � � � :':0: ��� ,� òìïìïî Ã 69� òì�í î ¶ for è � è!ç � æ ��I � � � :0:': �	� .
(5.2)

A formula for computing
� � òì�í " is given in (4.2), and we already found that��� 6 I ��¯�" ��� �31 � æ ç 1 I "�" q-flops were needed. In order to compute all elements of r ò ò

from rtò , we need
� ® 6 � ��¯�" � q-flops. Since the total number of q-flops is a cubic polynomial

¢
in � we can use

¢ � A " � ¢ �	I " � ¢ ��� " � A=� ¢ � ³ " �K��� ³ 6 ® ��¯�" to obtain¢ � � " �K� ® 1 � � ��± " � �  1 ³ � � 6 � � " q-flops(5.3)

as the total number of computing r ò and r ò ò . This number is valid under the assumption that
all entries are quaternion entries. If ¶ or Ã is real, then the factor

� ® 1 � � ��± " ��´!´ � I ® at

¢ � � "
has to be replaced with

� � 6 I A � �!± " � ³�³ � I ® .
6. Hessenberg reduction with Fast Givens transformations for quaternion valued

matrices. We start with the same setting as in Section 4 and 5. There is an arbitrary matrixrp
 � [ h [ and a unitary matrix
é

defined in (4.1) depending on a fixed matrix position� æ ç � è ç " where
I ß9æ ç ßè ç Ü � . This matrix has the effect that in r ò , ��é � r it annihilates

the element in position
� è ç � æ ç 1 I " . In r¹ò òY, � r¹ò é only the columns æ ç � è ç differ from those

in r ò . Therefore, also in r ò ò the element at
� è�ç � æ0ç 1 I " is zero. If r happens to be Hermitean,

then, so will be r ò ò .
The “Fast Idea” is the same as in Section 4, namely to introduce a matrix decomposition

into (5.1) which has the following form:

ru, �bó ½ ó � �pr ò ò , �bó ò ½ ò ò ó ò � �(6.1)

where
ó , � �+D Å�ôO�¬õ � � õ � � :0:0: � õ [ " � ó ò , � �+D Å!ô���õ ò � � õ ò� � :0:0: � õ ò[ " are suitably chosen, nonsin-

gular but otherwise arbitrary diagonal matrices in
� [ h [

. Then, (6.1), (5.1) imply:½ ò ò �w��ó ò " U � é � óö ÷*ø ùú�û ½ ó � é-�¬ó ò � " U �ö ÷*ø ùú :(6.2)

We see that (apart from the dimension) the above defined matrix ü � coincides with the former
matrix ü � introduced in (4.4). If we choose the diagonal elements of

ó � ó ò according toõ ì �{õ òì for all æ W� æ'ç � æ W� è!ç �(6.3)
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spectively. The complete analysis from Section 4 is therefore, valid here. In the formu-
las (4.19), (4.20) we only have to replace

õ ��� õ ò � by
õ ìðî � õ òìïî ; õ ��� õ ò� by

õ í¦î � õ ò í î ; �+���(�¦$0��� by� ìðî ¥ ìðî U �(�¦$ ìðî ¥ ìðî U � , and ���*���¦$*�*� by � í¦î ¥ ìðî U �(�¦$ í¦î ¥ ìïî U � , respectively. Let us rewrite the iteration
steps derived from (6.2) in the form½$[ ��� , � ü �[ ½$[¦ü\[ �.��ó [ ��� " U � é �[ ó [�½$[ ó �[ é [ �¬ó �[ ��� " U � �(6.4) k£, � A=� I � :0:': �	�¾1 I � �Â, �K� �Ì1 � " � �¹1 I "�� � � then �½ f , �.��ó f " U � é �f U � c'c0c é �ç ó ç ½ ç ó �ç é ç c0c'c é f U � ��ó �f " U � :(6.5)

Then, the wanted Hessenberg form isr f , �bó f ½ f ó �fZ� where ½ ç , �dó U �ç r ��ó �ç " U � :(6.6)

For algebraic simplicity it is reasonable to choose
ó ç , ��z

, then ½ ç , � r . But see the
comment at the end of the numerical example. If all

ó [ already contain the squares of the
diagonal entries, then, the last step must readr f , � a ó f ½ f a ó �fZ�(6.7)

where
Ý

should be applied elementwise. For square roots of quaternions, see the appendix.
In order to compute ½ ò ò , � ½ [ � � from ½ ò , � ½ [ according to formula (6.4) we first

compute
� $ òì�í " , � ½ ò according to a slightly modified (4.21), namely

$ òì�í �
ÑÒÒÒÒÒÒÒÒÓ ÒÒÒÒÒÒÒÒÔ
ÑÓ Ô $ ì î ¥ í 1e�þ $ í î ¥ í if æ � æ ç � è ��I � � � :0:0: �	� ,A if æ � è ç � è �.I � � � :':0: � æ ç 1 I ��ÿ $ ìðî ¥ í 6¤$ í¦î ¥ í if æ � è!ç � è � æ'ç � æ0ç 6 I � :0:': �	� ,

for �þ �ÿ Ü I �ÑÓ Ô �þ $ ì î ¥ í 1o$ í î ¥ í if æ � æ ç � è ��I � � � :0:0: �	� ,A if æ � è ç � è �.I � � � :':0: � æ ç 1 I �$ ì î ¥ í 6 �ÿ $ í î ¥ í if æ � è ç � è � æ ç � æ ç 6 I � :0:': �	� ,
for

�þ �ÿ ß I �(6.8)

and then
� $ ò òì�í " , � ½ ò ò according to

$ ò òì�í �
ÑÒÒÒÒÒÒÓ ÒÒÒÒÒÒÔ
à $ òì ¥ ì î 1o$ òì ¥ í¦î �þ if è � æ ç � æ �.I � � � :':0: ��� ,$ òì ¥ ì î �ÿ 6¤$ òì ¥ í¦î if è � è ç � æ �.I � � � :':0: ��� ,

for �þ �ÿ Ü I �
à $ òì ¥ ì î �þ 1o$ òì ¥ í¦î if è � æ ç � æ �.I � � � :':0: ��� ,$ òì ¥ ìðî 6¤$ òì ¥ í¦î �ÿ if è � è�ç � æ �.I � � � :':0: ��� ,

for
�þ �ÿ ß I :(6.9)

If we count the q-flops together for evaluating (6.8) and for (6.9) we arrive at¢ � � " �K� ®!® � �/I " � �  1 ³ � � 6 � � " q-flops :(6.10)

A comparison with (5.3) using the realistic factor ³!³ � I ® instead of
® 1 � � ��± shows that

we have a moderate gain factor of 1.125 which will later appear also in Table 6.1.
The general relation between the iteration number k and the corresponding matrix posi-

tion
� æ � è " can be expressed byé [ � ì U ��� U ì � ì ���E�4]���� í � � �bé¡� æ � è " Ú I ß�æGßdè¹Ü �%�(6.11)



ETNA
Kent State University 
etna@mcs.kent.edu

20 D. JANOVSKÁ and G. OPFER

TABLE 6.1
Flop comparisons: ordinary and Fast Givens transformation�� � ¶ ^ ��1 Ã ^ ��� � Ã ^ �26 ¶ ^ � 4� �d^ �?1 þ ^ �!� � ÿ ^ �76 ^ � ô�Å DR�DR�_^ ô4Å DR�DR�_` ô4Å DR�ba Å �0c��ed

in F

A M F A M F

1. all 
 � 2 4 6 2 2 4 2 2 1.5
2. all 
ÌH 12 16 28 8 8 16 12 8
3. ¶ 
 � 8 12 20 8 8 16 4 4 1.25
4.

Å �-� 
 � 56 64 120 32 32 64 56 32
5. ¶ 
 � 32 40 72 32 32 64 8 8 1.125

where
é-� æ � è " was already defined in (4.1). If we want to recover æ � è from k at

é ['� I Ü k Ü� , we introducef �hg " , � � �»1 � " � �»1 I "� 1 � �»1 g " � �Ì1 g 6 I "� 6 I � I ß g ß �%�
and determine æ � è byæ �dÅ d ôi�GÅ*��kjWlVj [ f �hg " Ü k�� è � æ 6 I 6 � k?1 f � æ "�"*:
Let us make a little example with � � °

. Then,
��� � ³ " � � � � ® " � ��� � ´ " � ��� � ° " Ú� ³ � ® " � � ³ � ´ " � � ³ � ° " Ú � ® � ´ " � � ® � ´ " Ú ��´ � ° " correspond to è �.I � � � ³ � ® � ´ � ° � ¯ � ± � µ � I A . Let us try

to find
� æ � è " } � � ³ � ´ " ~ from

é � , i. e. we have k � °
. We see that

f � ³ " � ´ Ü k�� f � ® " � ± Î k . Hence, æ � ³ � è � æ 6 I 6 � kv1 f � æ "	" � ´
, as

required.

We make a comparative flop count for various cases of ordinary and Fast Givens trans-
formation in Table 6.1.

In Table 6.1, we used A for additions, M for multiplications, F for flops. The Fast for-
mulas in all cases are based on the fact that either ¶ or Ã is real. Thus, we have to compare the
counts in lines 3. and 5. in Table 6.1. The savings deduced from lines 2. and 4. are unreal-
istic. Thus, the (relative) saving is optimal in the real case, but moderate in the complex and
quaternion case. The question is whether there is a strategy for choosing the diagonal ele-
ments

õ ��� õ � such that the quantities þ � ÿ become real. We could choose
�¬õ ��� õ � " �K� �/���������¦� "

in case both quantities are not zero. Then, the first column of ½ would consist of two ones
and both þ � ÿ would be real with ÿ �¼I . This would reduce (4.21) to ³ � �!¯ q-flops, however,
by the cost of a premultiplication with

� � q-flops, together
��� 6 ³ �!¯!" � q-flops. The direct

evaluation needs
� � 6 � �!¯!" � q-flops.

7. Stability considerations. The three papers by Gentleman, Hammarling, Rath, [6],[9],[14],
all contain investigations on stability of the Fast Givens method. If we consider the com-
putation of $ òì�í � æ � I � � � è � I � � � :0:': �	� in formula (4.21), we combine the two vectors$ ò � í ��$ ò� í to one vector $ ò , �¼� $ òí " � è �wI � � � :0:': � � � , and compare that with the computed vec-
tor m $ ò , �Â� m$ ò í " . We also combine the two given vectors $#� í ��$*� í to one vector $ . Then, the
estimates given are all of the form NRN $ ò 1im $ ò NRN � Ü ¶on NRN	$%NRN �(7.1)
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where the constant ¶ is moderate and varies depending on specific assumptions and where m
is the machine precision. In all cases the authors refer to Wilkinson, [19, p. 134]. However,
it seems a little easier to follow the concept of the condition of a function which one can find
e. g. in Demmel’s book, [3, p. 5].

The stability is treated as the problem of evaluating a differentiable function på, �-[ m �
at a known, computed neighbor m^ , �K^ 6 �Wq of an unknown value

^
, where

�rq
is assumed

to be a small perturbation of
^

. For a function p., �¡f m �
let
^�� �¬^ ��� ^ ��� :':0: � ^ f " s

be the true argument and m^�� � m^ ��� m^ ��� :0:': � m^ f " s a disturbed argument and define
.*qts , ��_^ ì 1 m^ ì "�� ^ ì , the relative error of component number æ �wI � � � :0:0: ��� . We definep ì �_^ � m^ " , � p � m^ �(� m^ ��� :0:': m^ ì � ^ ì � ��� :0:0: � ^ f " � æ � A/� I � :':0: ��� :

In particular, p ç �_^ � m^ " � p �_^ " and p f �¬^ � m^ " � p � m^ " . Then,u � p " �_^ " , � p �_^ " 1vp � m^ "p �¬^ " � fwì!x � p ì U � �_^ � m^ " 1ip ì��_^ � m^ "^ ì 1 m^ ì ^+ìp �_^ " ^+ì 1 m^+ì^ ì :(7.2)

And we define the condition of p at
^

by the vectory � p " �_^ " , � © p q / �_^ " ^ �p �¬^ " ��p q � �_^ " ^ �p �¬^ " � :':0: ��p qtzl�¬^ " ^ fp �_^ " ª s(7.3) � , � y ��� y ��� :':0: � y f " s �
where p qts denotes the partial derivative of p in direction

^ ì � æ �ÐI � � � :0:': �	� . According to
(7.2), component æ of y � p " �¬^ " is the amplification factor of the relative error

.{qMs
oru � p " �_^ " Þ fwì!x � y ì .|qts :(7.4)

Finally, if we have a function på, �Mf m � [
, we define a condition vector for each component

of p . The result will be an
� ��j»� " matrix of condition numbers. From (7.4) we can deduceN u � p " �¬^ " N Þ N fwì!x � y ì .}qts N Ü � ��Å��ì N y ì N �GÅ*�ì N .}qts N :(7.5)

Let us apply this to the multiplication of two quaternions. The formula for multiplication
is given in (1.1). Each component of the product is a function of eight variables �¾, �� �/�(���������� !��� �#" �2$», �&� ��~������!��� º ��� Z " . For the first component of the product (1.1) defined
by

¢ � �;��$ " , � � � � ~ 13� � � � 1��  � º 13� � � Z we obtain from (7.5)N Zwì!x � y ìt.*��s N Ü ±¢ ��Å���k� ì � � N � ì � ì � � N �GÅ*��k� ì � Z � N .*��s N " Ü ± n¢ �GÅ����� ì � � N � ì � ì � � NS�
where m stands for the machine precision. Since

¢
is an ordinary scalar product, it may have

the well known fallacies of a scalar product, or in other words, the four components of the
product of two quaternions must be computed carefully.

8. A numerical example. Given a matrix rÄ
 � ~ h ~ � , � � ì�í " � æ � è �äI � � � :':0: � ´
defined by

ru, � 9����; � ��� � �	� � �J � � � � �E~ � �*� � ��� � �� � � � � ��~´ ® ³ 1 ³ 1 � A A I ® 1 ´A � ³ ® A A A 1 ® 1 I A1 ® ´ ® � 1 ® 1 ³ ³ 1 ® � ®1 ® ³ 1 ® 1 I A ® � I 1 ® ³
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22 D. JANOVSKÁ and G. OPFER�� ¦� �� ��«�� � �� � �� !~«� � � � � � � �  «� ��� � � ~«��~*� ��~��«��~� «��~ � ��~�~³ ³ 1 ® 1 � � ® I 1 I ³ ³ 1 ´ 1 � ´ 1 � 1 ´1 ³ 1 ³ I A 1 ® 1 ´ ® 1 I ® 1 I 1 I 1 � 1 � 1 ® A� 1 ³ 1 ³ ³ ³ 1 ® A 1 I ³ 1 I ³ A ³ 1 � I1 ³ A ® 1 � A � A ® ® 1 ³ 1 � 1 ³ ® � � <M����> :
The reduction of r to upper Hessenberg form ü � , ���=ì�í " � æ � è �yI � � � :0:': � ´ by the pre-
scribed Fast Givens transformation with four matrices and using the identity matrix as starting
diagonal matrix

ó
yields

�I� @�������
���T� �b� K ���V� ���V� ���4�� O�D|� ���M�k� �k�k� D|BkB�D �k� �:O��|� �k� �k�0� � DkDk�kD �k�k� ���|� �k�k�k� BkB��0�tB �k�k� ��� D|� � �k� D �k� Dk���k� � �0� �D�O � � � BE�}B�D �k� B � � � DkD � O��|� �kDk� � D0� � � � � �k� �k���|� �0D � �k�0� �k�k�k� ��� � B�O��|� DkD � � � �0�k� �k� � �k� �O�� �|� � � � � � � �0� � Dk�|BE�M�:O��|� � ��� � �0� � Dk� � �0� � ���|� � � �k� � B �k� �k��� �k� � �|� � �k�k� �����0D �k�k� �k�0�O�� �|� � ��� �k� ��� � �M��� � B � �|� � � ��� � �k� � � � �M�tB � Bk� � �kDk� �k�k�k�k� ��� �k�k� �|� � � � � �k�kD|B�Dk�k�0� �k�� � / � �8� � �8� � � � � �4�U �0� º � Y�Z ç Z ~ ç Y�Y ~� !� Y ç � ç Z  � � � � � � � � � � � U ~M� Z � ç � ç�ç ��~�~!~ Y!Y�Y º �M� Y º ��� ç Y�Y!Z º ����~ ç � U ç � � � Z ��� Y ~ Y ç ~� ����*��0� º � Y�Z ç Z ~ ç Y�Y ~� !� Y U  0�  ç ��� ��� Z  ç �  Z  Z �M� ~!~ Z ~�~ Y ~�� ç ~��� *��� �k� � ç �	�¦�	 ���� Y!Z�Z � ~ º �0� Y�Y!Z ~�� ç Z � º ~����!~��U � � � Z ��~� Y ç�ç ���� �~ Z ç U �0� �� Y � ~ � ç Y � � Y � Z ç U �M� Y ~� Y � �J���� ç � ç  �� U �k� � Z �� ��� Y �� � *��� º ç ç � Y � º  �� Z � Y � Z ~� Z ��0� º � Y�Z ç Z ~ ç Y�Y ~� !� Y ç � ����~ Z  Y ~� !� Z ç º � Z U �M� � � � Y!Z �¦����~ ç  ç ��~ U � � ��~ ç Y �� ç � Y ~� �� � ~  0� ç  ¦�	� º Z ç º � Z  �~ Z º  ���   � K   �T�   �T�   �E�¡£¢¥¤*¦ §|¡|¨t¡|©t¨|§|ªt¡}«M©{¬|¬�ª¢¯®e¦ ®}°tª|ª|¤�¬�§|©|©t§t®{¬k§|¨ °�¦ ¨{¬�ª}°t¨t¨|¨t©|¡}¤M¡t®}«|«±¢²¬t¦ «M§|¨t§}«|«t¤t©|«t¨}«M©t®t®¡ °*¦ ¤|«t¡tª|¡M®}§|ªt§|¡t©}«M®}«±¢¥°�¦ §|°�¬�®|©|§t¨|©|¨�¬k¡tª}°tª ¡{¦ ©|©|«tª|©t©|©M®}¡|¡tªt®|¡}°±¢A¡�¦ §t§}¤Mª}°|«t«t¨t¡}¤t§t©}«0®¡£¢¥°*¦ ¤M®e¬t¬k§|¤|«tª|°t©t¨}«�¬�ª¢¯®e¦³¬�ª}¤|°t¤tªt¨|©}°M§|©M®}§}«´¢²¬|¦ ¡}°*¬0«t¡t©|©t¨|¡|¨�¬0«t«tª ª�¦ ª{¬k¨M®*°M§|¨{¬k«|°0®*°|¤t°¡ §�¦ ®}©|§M®*¤t¤�¬k¡tª|¡t¡|§|©t© ¬|¦ ¨|«tª|¡tª|¨|°�¬k§t§|¡tª}°|«´¢A¡{¦ ©t®|©|¡|©M®*°M¨|ª}°Mªt®}«t© ª�¦³¬0°t©t©t®|¡}¤t¨�¬k§|«M®*°t«� � � � � � � �  � ��� � � ~A A 1MA : I ® °!± ® ¯ A�A ´ A �!´ ¯ ³ 1 � : ® ´/I!I ¯ µ ´ ® ¯ � µ ¯ ³ ® 1 � : �!± ® ¯!¯ µ ´+I(� ¯ ±=I'� ¯A A ´ : ³!µ�³ ��´ ¯ °�±/I ³ ® ��±�´ 1 I : ° ® ³!µ ° ® A ¯ µ ± ³ ° ³!µ 1 I : ® ¯ ´ ³!³ °4´�± ³ ® ³ A�A °A A � : ±�´�´!´ ³ I!I(� ¯ �!��° ¯ ´ 1 ³ : ® ±4��±�� A �!±!± ®�® ³ ±!± 1 � : °�± ¯ I µ ��´!� ¯ µ A ¯ ´ ³A A ® : ´!´ µ ° A ±�´��+I#±!°!±�´!´ � : ³ A � ³ ® I!I ®�®!® ° ¯ A!A I : ® � A I µ ± A ® ¯ I'± ® I#�� ~*� � ~�� � ~� � ~ � � ~�~A A A I : µ � ® A I ³ I ³ I#� ¯ ³ ¯ � A : ¯ µ I!I µ ¯ µ I ³ ° A ´�° µA A A 1 � : °!±�´!° A ³ ��°�± A I µ °�° 1 ® : � ¯ A µ ´�±�±/I ¯ I ¯ ±�° ³A A A 1 ° : A I!I#± A � ® ¯ µ I(� ³ ��° 1 I : ³ ® A µ ± µ�µ I'°�°/I A I#´A A A 1 ® : �+I#� A °4´ µ ® I ³�µ ´ ® � I : ´ ® µ ´/I'± ® µ I ¯ µ�µ °!° <M����> :

It should be pointed out, that a change of the strategy or a change of the diagonal matrix
ó

at the start would change the result. The matrix
ó

could be used to scale r . If we chooseó , � a �+D Å�ô;� r " where
Ý

is applied elementwise, with the exception of zero diagonal
elements of r where one defines the corresponding diagonal element of

ó
to be one. Then,

the effect is, that all non zero diagonal elements of ½ ç (see (6.6)) will have absolute value one.
This could be an important argument, not to use the identity matrix

z
for
ó

in the beginning.

9. Conclusion. We have developed two techniques for applying the Fast Givens trans-
form to matrices with quaternion valued matrices. The first technique follows from what is
known for the real case, namely, to use two different matrices according to the size of the
quantity N Ã N � 
 } A/� I ~ . In this case we also show, that in contrast to the standard opinion it
is also possible to store the essential information in only one parameter. As in the real case,
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two options are available, namely either to use the squares of the diagonal elements or to
use the diagonal elements directly. In the first case square roots are only needed in the very
end. Since the diagonal elements may be quaternions there may be the necessity to compute
square roots of quaternions. Therefore, we have added an appendix in which we show how
to compute roots from quaternions.

The second technique involves four matrices and in each step we select that matrix which
has the smallest condition number. We have shown, that this technique yields smaller condi-
tion numbers in comparison with the standard technique with only two matrices. This tech-
nique would even be new for the real case. There is also some disadvantage. The diagonal
elements do not stay real (in case we do not work with real matrix entries) if we would start
with real diagonal elements, and in computing the new matrix forms more algebraic work is
needed. However, when computing the Hessenberg form which is our main application the
algebraic work for transforming the original matrix is µ � �  " , whereas the additional work is
only µ � � � " . This additional work may be applied well, when using the start matrix

ó
for

scaling the given matrix r . More details are given at the end of Section 8.
There is one general drawback when using Fast Givens transformation for complex or

quaternion valued matrices. This can be seen from looking at Table 6.1. There is only a gain
factor of 1.125 with respect to the flop count over the classical Givens transformation when
applied to quaternions. We also see that the Fast Givens transformation in the quaternion case
needs 16 times as many flops as the Fast Givens transformation applied to real matrices.

Appendix. Roots of quaternions. In Section 6, there is the possibility of using quater-
nion entries in the diagonal matrix

ó
. In step (6.7), there is the task of computing square

roots of quaternions. Since this is not obvious, we will give some hints for computing roots
in general. For a given �L
 �v�4� A/� and fixed � � � let us consider the polynomial

¢ , � m �
defined by ¢ �¬â " , �bâ [ 13�;� �]
Ì�l� � � � � �t
 �v��� A+� :(A.1)

Any
â 
 � with

¢ �¬â " � A will be called a root (sometimes also � -root) of � or a zero of
¢

. We will use the already introduced notion of equivalence of quaternions. In particular
we refer to Lemma 1.1. We will see that

¢
defined in (A.1) has always � zeros. But it may

have even infinitely many zeros. In order to see this, let
â

be a root of � . Then, for any� 
 �v�4� A+� we have
� U � ¢ ��â " �¤����� U � â4� " [ 1 � U � � �E� A . In particular, if � is real, we

obtain

¢ ��� U � â4� " � A . Thus, with
â

also
� U � â�� is a root of �t
 � . Therefore, if

â
is not real

(take � � 1 I as an example) there will be infinitely many roots of � .
LEMMA A.1. Let

¢
of (A.1) be given and �� be the corresponding complex representative

of
} ��~ with representation � �@� �� � U � . Let

�â , � �� ��] [ . Then
â , �@� �â�� U � is a root of � and> �â � A :

Proof. Apparently we have
�â [ 1e�� � �â [ 1 � U � � �o� A . Multiplying from the left by�

, from the right by
� U � we obtain

� �â [ � U � 1E� ����� �â�� U � " [ 1E� ��â [ 1¤� � A , hence,â
is a root of � . Since > � ���� � A the quantity �� has a polar representation of the form�� � NÕ��TN � �)��¶_·å6oD|¶	DR�²· " with A Ü · Ü¹¸ . Therefore, > �âZ� N`��TN �!] [ ¶�DR�»º [ � A .

Let us keep the notation of the lemma. We assume, that we are able to compute all � -
roots of a complex number. Then, a root of � can be found by first computing

�â , � �� �!] [ and
then, by finding

� 
 �v�4� A/� with � �b� �� � U � . This is equivalent to� ��i13� �t� A :(A.2)

Let us put �t, �K� �/������������ ���� �(" �/��L, �K� �/�(� ý�4�!��A=��A " � � , �w��� ��� � �!� �  �� � �(" and recall that ý�+� �a � �� 6¤� � 69� �� . Then, (A.2) can be written as a real, homogeneous linear
� ® j ® " system
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r �»� x with r � 9�; A 1M���76 ý��� 1M�� 1M� ����51 ý��� A 1M� � �� �  � � A 1M� � 1 ý� �� � 1M�  � � 6 ý� � A <M�> 
 � � h � �(A.3)

where r is of rank 2 if � �
 � . For the details see Janovská and Opfer [10]. If a solution� 
 �v�4� A/� has been found, the wanted root is (according to Lemma A.1)
âÀ�¾� �â�� U � . In

case � is real or complex there is no problem finding ¼Ý � . We may, therefore, assume thatN �4 4N'6�N � � N�ÎEA . This is equivalent to ý�+�lÎ.N ���4N .
One solution

�
of (A.3) is:� , � 9�; � �� �II <M�> � � � �� � � , � 9��; �4 M1�� �ý�4�M1�����  69� �ý� � 1�� � < ��> :(A.4)

Another, independent solution ½ is

½», � 9�; II�  � � <M�> � � �  � � � , � 9��; �� 513� �ý� � 68� ��� 268� �ý���268��� <M��> for � � W� A=Ú
(A.5) ½», � 9�; I � �  ��!�  I <M�> in case � � � A :
By this technique all � -roots of the complex �� produce a quaternion root of � , therefore,
there are � such roots. Let us treat a little example with � ���

, �{, � �JI ��A/� ³ � ® " . Then,�� �ä�JI � ´ ��A/��A " and
�âe� Ý I 6 ´ D �äI : ¯ ® ° ³ 6 I : ® ³ I'° D . The solution (A.4) of (A.3) is��� � 1MA : � � I : ® � I � I " and the final solution is

âE��� �â4� U � � �	I :S¯ ® ° ³ ��A/��A : ±4´ µ A/� I : I ® ´ ³ " .
We mention a just released article by Kuba[12] where in particular polar representations of
roots of quaternions are given. However, there are no explicit formulas to find the roots in the
presented cartesian form.

Appendix A. Why we do need quaternion arithmetic. There is the well known iso-
morphism, see van der Waerden[18, p. 55]

ı , � m H � h � �
which is defined by

ı
�¬^ ��� ^ �!� ^  !� ^  " � � ^ �76 ^ �0D ^  26 ^ � D1 ^  ?6 ^ � D ^ �?1 ^ �'D � :

Thus, in pure mathematical terms, we could transfer all quaternion problems to complex
matrix problems. However, we will see by the smallest possible example, that the results are
disastrous from a numerical point of view. Let � �@� �������������� ���� �(" � $ �@� $0����$*���¦$* ��¦$ �#" 
 �
and q%� � �/�%68���)D �Vq�� � �� 769� � D���ÍO� � $0�ã6¤$*�)D �	Í;� � $* 76¤$ � DY
»H be given and defineru, �Â� � A$ � � 
 � � h � :
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Then, the corresponding complex matrix is

�ru, � ı
� r " , ��� ı

� � " ı
� A "

ı
� $ " ı

� � " � � 9���; q � q �1 q � q � A AA AÍT� Í��1 Í � Í � q � q �1 q � q � <M���> 
åH � h � :
All eigenvalues of r are

} ��~ and ��3, � �=�?6 a � �� 68� � 68� �� D is its complex representative.
The four eigenvalues of �r are ��;� �� , each double. If we choose � �w�	I ��A/� ³ � ® " , then �� ��I 6 ´ D
and eig( �A) of MATLAB (version 5.3) producesI : A�A!A�A!AãA�A ��° ³ ® I ¯ ± 1 ® : µ�µ!µ�µ!µãµ�µ!µ ® ¯ ³ I#° ® D �A : µ�µ!µ�µ!µãµ�µ ¯ ³ °7´�±4��� 1 ´ : A�A!A�A!AãA�A!A ´��%°!± ³ ´ D �A : µ�µ!µ�µ!µãµ�µ ° ³ ´ã´ A ´�° 6 ® : µ�µ!µ�µ!µãµ�µ ¯ ³�³ � µ ® ´ D �I : A�A!A�A!AãA�A ³ ° ®ã® µ ®�® 6 ´ : A�A!A�A!AãA�A ��°�° ¯ A ´�´ D :
There is a loss of 6-7 decimal digits. The same is true in newer versions of MATLAB. Even
the pairs of conjugate eigenvalues are not recognized. For matrices only a little larger, the
same technique produces results with even fewer correct places. Therefore, the idea to go to
complex matrices if quaternions should be treated numerically, has in general to be avoided
because of the danger of significant error propagation.

There is also a
� ® j ® " real matrix analogue for quaternions. See Gürlebeck and Sprößig[8,

p. 12]. An application to the same example displays errors of the same nature.
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