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THREE CASES OF NORMALITY OF HESSENBERG’S MATRIX
RELATED WITH ATOMIC COMPLEX DISTRIBUTIONS*

VENANCIO TOMEO' AND EMILIO TORRANO?

Abstract. In this work we prove that Hessenberg’s infinite matrix, associated with an hermitian OPS that
generalizes the Jacobi matrix, is normal under the assumption that the OPS is generated from a discrete infinite
bounded distribution of non-aligned points in the complex plane with some geometrical restrictions. This matrix is
also normal if we consider a real bounded distribution with a finite amount of atomic complex points. In this case
we still have normality with infinite points, but an additional condition is required. Some other interesting properties
of that matrix are obtained.
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1. Introduction. Let p(x) be a positive and finite Borel measure with real support.
It is well known that there is an associated OPS, {P,(z)}>2,, that satisfies a three-term
recurrence relation, with coefficients {a, }5° ; and {b,,}22 .

These coefficients are the entries of a Jacobi tridiagonal matrix .J. The spectrum of this
infinite matrix, considered as an operator .J : £2 — ¢2, permits us to study the properties of
the measure;, see for instance [5] and [6].

Recently the interest to extend the results of the real case to Borel measures, supported
in some bounded set of the complex plane, has increased; see ([10]). The role of the Jacobi
tridiagonal matrix now is played by the upper Hessenberg matrix D, which is the expression
of S,, inthe NOPS { P,,(2)}5° . Here S,, is the multiplication operator by = in II, the closure
of the polynomials in L?.

An important result of A. Atzmon for the unit disk (see [1]), which was extended in [12]
to a bounded set of the complex plane, says that a matrix M = (cj,k);{okzo, which is HPD, is
a moment matrix, i.e., exists @ ¢ Cand 1 : @ — Ry, with ¢; . = [, 272"du(2), if and
only if, the operator D : #2 — ¢2 is subnormal.

In the sequel we will study three distributions such as this operator D is the minimal
normal extension of itself. This paper extends the results of [11], related to the discrete finite
bounded case.

In section 2 we have introduced lemmas and definitions, and in section 3 we will study
the matrix D and some properties of it. In section 4 we are going to develop the discrete
infinite bounded case. Finally, in sections 5 and 6 we will study the normality of infinite
matrices related to real bounded distributions with a finite or infinite set of complex points.

2. Lemmas and Definitions.

LEMMA 2.1. (page 40 [9]) Let (=) be a positive and finite Borel measure with bounded
support @ C C. Let z be an arbitrary complex number. Then min [, |Qn(2)[*du(z) =
1/ K, (20, 20), where the minimum is computed as @,,(z) ranges over all complex polyno-
mials of degree at most n with the constraint @,,(zp) = 1. The minimum is attained for

Qn(2) = Kn(20,2)/Kn(20, 20), With K, (z,w) = Y37 Pu(2)Pa(w), where {Py(z)} is
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the normalized OPS associated to .

DEFINITION 2.2. Let B(H) be the set of bounded linear transformations from the Hilbert
space H into H. If T € B(H), then T is normal if and only if THT = TTH.

DEFINITION 2.3. Let T € B(H). Then T is quasi normal if and only if (THT)T =
T(THT).

DEFINITION 2.4. Let T' € B(H). Then T is subnormal if and only if 7" has a normal
extension.

DEFINITION 2.5. LetT € B(H). Then T is hyponormal if and only if THT—-TTH > 0.

DEFINITION 2.6. If T € B(H), the point spectrum of T', ,,(T"), is defined by 0,,(T) =
{Ae C:ker(T —\) #{0}}.

LEMMA 2.7. (problems 195 and 203 of [7]) Assume ||T'|| < +oc. Then T normal =-
T quasi normal = T subnormal =- T hyponormal.

LEMMA 2.8. (problem 207 of [7]) If A is hyponormal, A = B + iC, with B and C
Hermitian and C' compact, then A is normal.

3. The infinite Hessenberg matrix D.

Given an infinite Hermitian positive definite matrix (HPD) M = (c;;)5_, coming from
a measure or not, we call M’ the matrix obtained eliminating from matrix M its first column.
M,, and M are the corresponding sections of order n of M and M’ respectively, i.e., the
restrictions to their first n rows and »n columns.

¢From M, an infinite Hessenberg matrix D = (d;;)§5_, can be constructed such that its
sections of order n satisfy

D,=T,'M T " =THF,1 1

where M,, = T,,TH is the Cholesky decomposition of M,,, and F,, is the Frobenius matrix
associated to P, (z), where {P,,(z)} is the O.P.S. associated to M, with

€00 C10 C20 cee Cno
Co1 C11 C21 oo Cnl
Pp(z) =
Con—1 Cin—-1 C2n—-1 --- Cpn—1
1 z 22 ... z"

The triangularity of the matrix T7,, implies that
(3.1) D=T"'MTH=THS,T~H

where S is the infinite matrix of the shift-right operator in £2. We must be careful, because
T, THandT—H are infinite triangular matrices but they do not define necessarily operators
in 72, In the sequel P,(z) will be the monic polynomial and P, (z) will be the normalized
polynomial.

LEM™MA 3.1. ([1], [22])

If M is an infinite and HPD (Hermitian positive definite) matrix, and || D] < +oo,
then M is a moment matrix (i.e., the Gram matrix associated with the moments of a positive
and finite Borel measure supported in some set of the complex plane) if and only if D is
subnormal.

PROPOSITION 3.2. If z,, is a root of P, (z) then

EO (an) EO(an)
- Pl (an) _ D; Pl (an)

~ ~

Pn—l(znk) Pn—l(znk)
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Proof. We expand ﬁn(z) = |I,z — D,|, and since ||13n(z)|| = do1dsz ... dpy1n, it
follows that

(32) 2P,_1(2) = dinPo(2) + don P1(2) + dsn Po(2) + . . .+ dpn Pa—1(2) + dpi1.n P (2).

Takingn =1,n=2,...,n = n, in (3.2), row by row we have
fi’o(z) 311 321 d(’) 8 8 EO(Z
P s e A
2 2(2) | = : : : Ps(z)
dl,’ﬂ*? d2,n72 d3,n72 cee dnfl,n—Q 0 .
~ din-1 don-1 dzn-1 ... dn-1n-1 dnn-1 ~
Pnil(z) dl,n d2,n dS,n cee dnfl,n dn,n P7L71(Z)
0
0
(3.3) tdniin | V| Pal2).
1
We take z = z,, one of the roots of P, (z). It follows that
IEO (an) le 321 dO e 8 8 E()(an)
Pr(er) S R | 1
zon | 2(E0R) | = : : : : : Pa(znk) |,
din—2 domn—2 dzn—2 ... dpn—1n-2 0
~ dijn—1 domn—1 dzm—1 ... dp—in—1 dpn—1 ~
Pnil(z’”k) dl,n d2,n d3,n e dnfl,n dn,n Pnil(z’”k)

in other words z,,v, = D!v,. Hence z, is an eigenvalue of D! and its eigenvec-
tor is

O

REMARK 3.3. It is obvious that the eigenvalues of D,, and D!, are the same. Complex
conjugation in (3.3) with z = z,,;, yields

Py(2nk) Po(2nk)

ﬁ Zn ﬁ Zn
- 1(' k) _ pH 1(. k)
ﬁn—l(znk) ﬁn—l(znk)

The eigenvectors of DX and D,, are conjugate complex vectors, but we can’t say anything
about D! . We also have that

> 1Pi(znk) P = Kn(2nks 20k) = Kn1(2nks 20n) = [[Tal|*.
k=0
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Note that the norm squared of the eigenvector associated to z,,j is just the evaluation of the
n-th kernel polynomial in the root. In the tridiagonal case, we know that the Christoffel
constant p,,x, associated to z,, iS pnk = 1/ Kn(2nk, 2nk)-

PrROPOSITION 3.4. Let D' be a bounded operator, and take A € C. Then
lim;, 00 Kn (A, A) < 400, ifand only if, A € o,(D?).

Proof. =) Let A € C be such that lim,, K,,(A\,\) < +oo. Take z = X in (3.3). The
sequence of kernel polynomials K, (A, \) = Y-/, P, () Py ()) converges when n tends to
infinity and a consequence, lim,, . ﬁn()\) = 0. The boundedness of D* and D implies
that all its entries are bounded by || D||. In particular |d,+1,,| < ||D]||. The vector in the
right member of (3.3) converges to the null vector. On the other hand K, (), A) is convergent
and hence (Py(\), PL(\), Py(A),...)t € 62,5 = (Py(\), PL(\), Pa(N),...)t, and on taking
limits we conclude that \v = D'v, where \ € o, (D").

<) To prove the converse, if A € o,(D?), there exists an v € ¢? such that D'v = Av.
We have

Vo Vo
U1 . V1
Al vy | =D vy |

since
Avg = d11v0 + d21v1
Av1 = di2vg + daav1 + daav2
Avg = di3vg + da3v1 + d3zva + dy3vs
(34) /\Un—l = danO + dQnUI +...+ dn,nvn—l + dn+1,nvn7

With dy 41, = /2=l > 0, vm € N,

We have only two possibilities: either vg = 0 or vy # 0. If vg = 0 then v; = 0, and
if vg = v1 = 0,thenvy = 0, .... Consequently v = 0 and A is not an eigenvalue. Hence
vo # 0. We prove v, = P, (\)vg by induction.

The result is true for vy. Since do;; > 0, vy, we have v; = 2791 4o, but A — dq; =

21

Pi(N), and do1 = L = |[Py(2)|; hence, v1 = Py(A)vo. Suppose that v, = voPk(A),

Y1
Vk < n — 1. We need to prove that v, = P,,(\)vo. Consider v,, in (3.4). By the induction
hypothesis we have'

dn+1,nvn = ()\ - dnn)vn—l - dn—l,nvn—Q e danO
= ()\ — dnn)ﬁn_l()\)vo — dn—l,n An_g()\)’l)o — ... dlnﬁo()\)vo
= [()\ — dnn)Pn—l()\) — dn—l,npn—Q()\) — ... dlnPO()\)] Vo,

LIn the sequel we will suppose that the matrix M is normalized; in other words if coo # 1, we divide the matrix
by coo. Obviously we have Py(\) = 1.
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the last parenthesis is substituted by using (3.2), then dy, 41 v, = dn+1,n13n(/\)v0- Hence
Uy = ﬁn()\)vo, and therefore we have that the eigenvector of X is proportional to (ﬁo()\),
Pi(N), Po(N), ..., Pa(N),..) e 2.0

PROPOSITION 3.5. Let u(z) be a positive and finite measure of Borel with bounded
support © < C. Let X be an atomic point of this measure. Then A\ € o,(D?) and X €
op(DH).

Proof. Assume that the measure p has a weight po in A, that is u(\) = po. For any
polynomial Q,,(z) such that @, (\) = 1, we have that

1Qu(2)]? = /Q 1Qn(2)2dp(2) > |Qu(N) 00 = po.

This easily follows from the definition of the Lebesgue-Stieltjes integral. By lemma 2.1 we
have

min [ Qn(2)[2 = min / 1Qu(2) Pdu(z) =

1
- >
Ko = Po

hence, K, (A, A) < 1/po. This inequality is true in the limit, so that

n—oo

NP 1
0< lim K,(\MA) =Y Pe(NP(\) < —.
< (A, ) l;) KNP < o
Hence the sequence (ﬁo(/\)fl (A), Py(\), P5(X), . ..), and its conjugate are in £2. By propo-
sition 3.4, A € 0,(D?) and X € o,(D). O

4. Discrete infinite bounded case.

DEFINITION 4.1. We speak of the discrete infinite bounded case when we assume a
discrete set of bounded complex points Z = {z,}72, C C with weights {p.}32, C R%,
such that Y ~7° pr, < +oc.

For that distribution we have the moment matrix M = (cij);?;’zo, where ¢, =
S | #iZ%p,. Let D be the associated Hessenberg matrix. Obviously supp(u) = Z.

As usual (see [3] page 114), N, will be the operator multiplication by z in Lz. We
know that NV, is the minimal normal extension of S,,. Assuming that all the operators that
are in the context are bounded, it is easy to prove that S, is unitarily equivalent to the infinite
Hessenberg matrix D, considered as an operator in ¢2, and N, is unitarily equivalent to
operator N, which is the minimal normal extension of D. The next elegant proof is due to
Prof. Raquel Gonzalo.

PROPOSITION 4.2. If C\ Z is a connected set and the interior of Z is empty, then the
infinite Hessenberg matrix D is a normal operator in ¢2.

Proof. The set K = Z is compact. As usual we call C'(K) to the space of all continuous
functions with support K. The set K satisfies the hypothesis of Mergelyan theorem (see [3]
page 363), and in consequence Vf € C(K) and Ve > 0, there exists a polynomial P(z) such
that | f(z) — P(z)| < e. This implies that fsupp(u) |f(2)—P(2)|?du(z) < e. Clearly C(K) =
II. As we know that C(K) is dense in L2 (K), we conclude that IT = L? (K). Therefore we
are in a complete case. It follows that S,, = N, and also D = N, in consequence D is a
normal operator. [

THEOREM 4.3. With the previous hypothesis about Z and if Z/ N Z = (), then

D =U"(6;2)75-,U, and U"U =UU" =1.
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Here U = VT —H, where T is the Cholesky factor in the decomposition M = TT*#, and V/
is the Vandermonde matrix of the atoms

VP1  4/P171 s/p1212

VP2 \P2r2 D275 - ie1voo

V= VD3 \/P3%3 \/]9_32§ | =i )i,j:l'

Proof. We call L = (8;;2;)75_,. Itis clear that M" = V¥ LV. From D = T~ 'M'T~"
it follows that D = T-'VHLVT-H. We have that the elements of the ith. column
of the infinite matrix 7—#, are the coefficients of P,_;(z) in the basis {z*}. Therefore

U=VTH = (\/p_i ﬁj_l(zi)). . Now we calculate UH#U and have (UHU);; =
1,]=

sJ=

Sy ﬁ-(zk)ﬁj(zk)pk = §;;, because the orthogonality of the NOPS on the set Z =
{21, 22, ...}. On the other hand the product UU ¥ is

UU™ = (VpiyB; D Pulzi) Pr(2)) 55—y
k=0

To prove the statement we need also that (UU*);; = ¢&;;. For that we introduce the
bounded functionals L; : II — II such that L;(f) = f(z;). Recall that the inner prod-
uct in IL is (P(z), Q(2)) = > pey P(2k)Q(2k)pk, and it is extended to II as usual. Ob-

viously ||L;|| < 1/p;. Itis clear that the n-kemel K, (z,z) = Y.¢_, Pi(2)Pi(z), With
n > j, has the reproducing property, that is (Q;(z), Kn(z, z:)) = @Q;(z). The function
K(z,z;) = lim,, K,(z, 2;) definedon Z = {21, 22, . . .}, has the same property. With the ad-
ditional hypothesis, as the points of Z are isolated, x , (2)/p; € C(K). Where x, (z;) = d;;.
From the previous proposition we have that x.,(z)/p; € C(K) = II = L2(K). Hence

— Xz (B)y _ o= — .
(f(2), K(2,2)) = (f(2),=52) = f(z), Vf € T = L, then x,(2) = K(z,2),
ae. in L2. In particular x.,(2) = K(z,2) at the points with positive measure, i.e.,
K(z,2;) = X, (2) on Z. In consequence K (z;, z;) = &;;, therefore UU = 1.0

5. Real bounded distribution with a finite set of complex points.

THEOREM 5.1. Consider a bounded and real distribution supported in a finite set to a
bounded set of complex points {z; }2_,, such that S(zy) # 0, k = 1,..., N, with weights
{pr}2_,. Then the infinite matrix D = T~'M'T~ is normal.

Proof. Let H be the Hankel matrix associated to the real distribution, i.e., the moment
matrix. Let {zx}2_, be the complex points with weights {ps}2_,. The moment matrix is
M = H + L, where L = (I; )55, With? I; j = Zszliiz,ipk. Actually L is an infinite
matrix, but with rank N. We have D,, = T,; 1M/ T2 and at the same time we have

n-—n’?!

H _ pH
D, = Dnt Dy + Dn = Dy .D” i.
2 21

Since M is a moment matrix D is subnormal by Lemma 3.1, then D is hyponormal. By
Lemma 2.8 we only need to prove that D — D is a compact operator.
We calculate D,, — DX, We have DX = T-1(M! )" T, so that

Dy, — DI =1, M T =T, (MR
=T, (M, — [M]") T

2The notation for moment matrices is contrary to the usual.
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We use H' and L’ in the same way as M’ for M. We can write M/ = H/ + L. Since H,
is a real Hankel matrix, H/, — [H]* = 0, and hence

lio = o o=l oo lno—lina
MM = (L] = 111 —l2o log — 1o v lpr = o
ll,nfl - ZnO l2,n71 - an ce. ln,nfl - Zn,nfl

It is clear® that Vn > N we have
rank (M, — [M}]") = rank (L], — [L]]") = N.

The matrix M is a moment matrix and is HPD; hence the matrices T}, and Tf exist and
are non-singular for every n. The matrix D,, — D is equivalent to L!, — [L’]*, hence,
rank (D,, — DY) = N,Vn > N. Therefore rank(D — D) = N. (D — D*) is an operator
of finite rank in £2, and hence is a compact operator. By Lemma 2.8, D is a normal matrix. O

6. Real bounded distribution with a infinite bounded set of complex points.

THEOREM 6.1. Consider be a bounded real distribution supported in a bounded set of
infinite complex points {zx}7° ; with weights {ps}7, such that > pr < +oc. If all
the accumulation points of {2, }72, are in R, then the infinite matrix D = T-'M'T—# is
normal.

Proof. Let I be the Hankel matrix of the bounded real distribution. The moment matrix
is M = H + L, where L = (; ;)55 With l; j; = ", Zzipk. L, H, and M are infinite
positive definite Hermitian matrices.

Since M = T'T*H, we can write

D-DY =T Y (H +L)T " -7 (H' + L)Y T ",

Since H' — [H']* = 0, it follows that D — D# =T~ (L’ — [L']¥) T—H. We can reorder
the sequence {z;}£2, in a such way that* 3(zx) > S(2x41). We build the infinite matrices

VDT VPiz1 Pl JPiE ... 2 0 0
vP2 /D272 \/pzzg \/Pzzg’ 0 2z O

V=1 Ubs B3z JPszd ypss ... |4 Z=1 0 0 z

¢From L' = VH ZV we have [L')" = VEZHV and L = VHV. Therefore
61 D-DY=T'(WVT(Zz-Zz"YV)T "= (T""V")(Z2-Z")(vT ).

All the matrices in the last formula are well-defined and the products exist; hence the
associative property holds. In particular, since the factor 7~ is a lower triangular infinite
matrix, the product 7-1V exists element by element, (independently of the fact that the
rows or columns belongs to ¢2). In the same way VT~ exists. In addition, we are going to
prove that 71V and its transposed conjugated matrix V7'~# define bounded operators in
02,

SExpressing Ly, as a product of two Vandermonde matrices, with z1, za, .. ., zn and p1, p2, . . . , pn, We have
Ly = WH Wy n,since Ly, = WH Zy W and (L] = WH ZHWy o, Ly, — (L3, = WH(Zy—
ZEYWy . Hence, rank (Lf, — [L}]H) = rank (Zy — Z{) = N.

4If the terms were equal, we could establish a criterion from left to right and over to under the real axes.
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By hypothesis the diagonal matrix Z — ZH = (2i3(2k)05,k) 7%= 1s such that
limg, $(2x) = 0; hence Z — ZH defines a compact operator in ¢2.

To prove that the matrix V7~ is bounded, we know that in general || AZ A|| = ||A]|?,

and we have that | T-V#|2 = | T-VEVT-H| = |T-1LT-H|.

At the same time T 'MT—H = T-ITTHT = | = T-Y(H + L)T~H; hence,
TLr—% =1 - T 'HT H and T-'LT—H# > 0. Since L is positive definite, there-
fore I — T-'HT—H >0, and we can write

(6.2) (Iz,7) > (T 'HT "z.7), VvIel’

Obviously (T-'HT—H)H = T=1HT—H since H is a Hankel matrix and, hence, a symmet-
ric matrix. We know that if A = A%, then sup|z=1 [{(AZ, T)| = [|A]|. In our case, dividing
by ||Z||? in (6.2), and taking the supremum, we have ||T~tHT~H|| < 1. Finally

1T LT ) = L =T HT | < 1)+ T HT 7| < 2,

hence |T—'VH| = [VT~H|| < /2. The matrices at both sides of Z — ZH in (6.1) define
bounded operators in ¢2.

We know (see page 158 in [8] ) that the product of a bounded operator by a compact
one is compact. Applying twice this property in (6.1), it follows that D — D¥ is a compact
operator. Since M is a moment matrix, D is subnormal, and hence, D is a hyponormal
operator. From lemma 2.8 D is normal. O

REMARK 6.2. Theorems 5.1 and 6.1 still hold if the support of the real distribution does
not lie on the real line but on a straight line of the complex plane. Obviously, in Theorem 6.1
it is required that the accumulation points should be on this complex line.
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