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MATRIX EXPONENTIALS AND INVERSION OF CONFLUENT VANDERMONDE
MATRICES ∗

UWE LUTHER† AND KARLA ROST‡

Abstract. For a given matrix A we compute the matrix exponential etA under the assumption that the eigen-
values of A are known, but without determining the eigenvectors. The presented approach exploits the connection
between matrix exponentials and confluent Vandermonde matrices V . This approach and the resulting methods
are very simple and can be regarded as an alternative to the Jordan canonical form methods. The discussed inver-
sion algorithms for V as well as the matrix representation of V −1 are of independent interest also in many other
applications.
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1. Introduction. Given a (complex) matrix A of order n, the problem of evaluating its
matrix exponential etA is important in many applications, e.g., in the fields of dynamical
systems or control theory.

While the matrix exponential is often represented in terms of an infinite series or by
means of the Jordan canonical form our considerations have been inspired by papers like [7]
and [6], where alternative methods are discussed. In an elementary way we here develop
a representation of etA which involves only the eigenvalues (but not the eigenvectors), the
first (n − 1) powers of A, and the inverse of a corresponding confluent Vandermonde matrix
V . Such a representation was already given in [4], where an important motivation was to
arrange the approach and the proofs simple enough to be taught to beginning students of
ordinary differential equations. We here make some slight simplifications by proving such
a representation, but we also concentrate our attention to the problem of developing fast
recursive algorithms for the inversion of the confluent Vandermonde matrix V in the spirit of
[4].

There is a large number of papers dealing with algorithms for nonconfluent and confluent
Vandermonde matrices. They mainly utilize the well-known connection of Vandermonde
systems with interpolation problems (see, e.g., [3] and the references therein). Moreover, in
[10], [9] the displacement structure of V (called there the principle of UV-reduction) is used
as a main tool.

In the present paper we want to stay within the framework of ordinary differential equa-
tions. Together with some elementary facts of linear algebra, we finally arrive at a first in-
version algorithm which requires the computation of the partial fraction decomposition of
(det(λI − A))−1. This algorithm is in principle the algorithm developed in a different way
in [11]. We here present a second algorithm which can be considered as an improvement of
the first one since the preprocessing of the coefficients of the partial fraction decomposition
is not needed. Both algorithms are fast, which means that the computational complexity is
O(n2). As far as we know the second algorithm gives a new version for computing V −1.
For the sake of simplicity, let us here roughly explain the main steps of this algorithm for the
nonconfluent case V = (λj−1

i )n
i,j=1 :
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1. Start with the vector hn−1 = ( 1, 1, · · · , 1 )T ∈ Cn and do a simple recursion to get
vectors hn−2, . . . ,h0 and form the matrix H = (h0 h1 · · · hn−1) .

2. Multiply the jth row of V with the jth row of H to obtain numbers qj and form the
diagonal matrix Q = diag(qj)

n
1 .

3. Multiply H from the left by the diagonal matrix P = Q−1 to obtain V −T .

In the confluent case the diagonal matrix P becomes a block-diagonal matrix with upper
triangular Toeplitz blocks (ti−j), t` = 0 for ` > 0 .

Moreover, we show how the inversion algorithms described above lead to a matrix repre-
sentation of V −1, the main factor of which is just V T . The other factors are diagonal matrices,
a triangular Hankel matrix (si+j), s` = 0 for ` > n , and a block diagonal matrix with trian-
gular Hankel blocks. For the nonconfluent case such a representation is well known (see [13]
or, e.g., [10]) and is also a straightforward consequence of a formula proved in [5]. In [12]
a generalization of the result [5] to the confluent case is presented, which leads directly to a
formula for V −1 of the form just described. Generalizations of representations of this kind
to other classes of matrices such as Cauchy-Vandermonde matrices or generalized Vander-
monde matrices can be found in [2] and [8]. Fast inversion algorithms for Vandermonde-like
matrices involving orthogonal polynomials are designed in [1].

The paper is organized as follows. In Section 2 we discuss the connection of etA with
confluent Vandermonde matrices V and prove the corresponding representation of etA. Sec-
tion 3 is dedicated to recursive inversion algorithms for V. A matrix representation of V −1

is presented in Section 4. Finally, in Section 5 we give some additional remarks concerning
alternative possibilities for proving results of Section 3, modified representations of etA in
terms of finitely many powers of A, and the determination of analytical functions of A.

2. Connection between matrix exponentials and confluent Vandermonde matrices.
Let A be a given n × n complex matrix and let

(2.1) p(λ) = det(λI − A) = λn + an−1λ
n−1 + . . . + a1λ + a0

be its characteristic polynomial, λ1, λ2, . . . , λm its eigenvalues with the (algebraic) multi-
plicities ν1, ν2, . . . , νm,

∑m

i=1 νi = n. In other words, we associate the polynomial

(2.2) p(λ) = (λ − λ1)
ν1 · · · (λ − λm)νm

with the pairs (λi, νi) (i = 1, 2, . . . , m). We are going to demonstrate in a very simple way
that the computation of etA can be reduced to the inversion of a corresponding confluent
Vandermonde matrix. The only fact we need is well known from a basic course on ordinary
differential equations: Each component of the solution x(t) = etAv of the initial value
problem

(2.3) x′ = Ax , x(0) = v

is a linear combination of the functions

(2.4) eλ1t, teλ1t, . . . , tν1−1eλ1t, . . . , eλmt, teλmt, . . . , tνm−1eλmt .

Note that these functions are just n fundamental solutions of the ordinary differential equation

(2.5) y(n)(t) + an−1 y(n−1)(t) + . . . + a0 y(t) = 0,

the constant coefficients of which are given in (2.1). To be more precise, there is an n × n

matrix C such that

(2.6) x(t) = Ce(t) ,
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where

e(t) =
(
eλ1t, teλ1t, . . . , tν1−1eλ1t, . . . , eλmt, teλmt, . . . , tνm−1eλmt

)T
.

Now we use x(t) = Ce(t) as an ansatz and determine the unknown matrix C by comparing
the initial values x(k)(0) = Ce(k)(0) with the given initial values x(k)(0) = Akv, k =
0, 1, . . . , n − 1:

(2.7) Ce(k)(0) = Akv , k = 0, 1, . . . , n − 1 .

Considering the vectors e(0), e′(0), . . . , e(n−1)(0) and v, Av, . . . , An−1v as columns of the
matrices V and Av, respectively,

(2.8) V =
(
e(0) e′(0) . . . e(n−1)(0)

)
, Av =

(
v Av . . . An−1v

)
,

the equalities (2.7) can be rewritten in matrix form

(2.9) CV = Av .

We state that V has the structure of a confluent Vandermonde matrix,

(2.10) V =




V (λ1, ν1)
V (λ2, ν2)

...
V (λm, νm)


 ,

where

V (λ, ν) =




1 λ λ2 λ3 . . . λn−1

0 1 2λ 3λ2 . . . (n − 1)λn−2

0 0 2 6λ . . . (n − 1)(n − 2)λn−3

...
. . .

...
0 . . . 0 (ν − 1)! . . . (n − 1) · ... · (n − ν + 1)λn−ν




.

It is easy to see that V is nonsingular and together with (2.6) and (2.9) we obtain the following.
LEMMA 2.1. The solution x(t) of the initial value problem (2.3) is given by

(2.11) x(t) = etAv = AvV −1e(t) ,

where V , Av are defined in (2.8).
Now, taking into account that AvV −1e(t) =

∑n−1
i=0 yi(t)A

iv, where

(2.12)
(
yi(t)

)n−1

i=0
= V −1e(t) ,

(2.11) leads to the following expression of etA.
THEOREM 2.2 ([4], (1.10) and (1.15)). The matrix exponential etA can be represented

as

(2.13) etA = y0(t)I + y1(t)A + . . . + yn−1(t)A
n−1 ,

where yi(t), i = 0, 1, . . . , n − 1, are defined in (2.12).
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Let us define the multiplication of a row vector (A1, . . . , An) of matrices Ai ∈ Cn×n

and a column vector v = (v1, . . . , vn)T of scalars vi ∈ C by

(2.14) (A1, A2, . . . , An)v = v1A1 + v2A2 + . . . + vnAn .

Then (2.12), (2.13) can be rewritten in a more compact form,

(2.15) etA =
(
I, A, A2, . . . , An−1

)
y(t) , where y(t) = V −1e(t) .

Representation (2.15) is already known (see [4] and the references therein). The proof given
in [4] is nice and, as promised there, it can be appreciated by students in a course on ordinary
differential equations. In this paper the known initial values of etA are compared with the
initial values of the ansatz

(2.16) etA = (C1, C2, . . . , Cn) f(t),

where f(t) is an arbitrary vector of n fundamental solutions of (2.5) and Ci are n × n matri-
ces. But this requires the application of a formal vector-matrix product defined for matrices
Ai, i = 1, . . . , n, and U of order n as follows:

(2.17) (A1, . . . , An) U = ((A1, . . . , An)u1, . . . , (A1, . . . , An)un) ,

where ui denotes the ith column of U .
Possibly, the derivation given above is more natural and easier to understand. In particu-

lar, the special choice f(t) = e(t) is also a simplification and does not mean any loss of gener-
ality. Of course, instead of the vector e(t), one can use any other vector f(t) of n fundamental
solutions of (2.5). But, denoting by Wf the Wronski matrix of f , Wf = (f f ′ . . . f (n−1)),
the equality (2.11) is replaced by etAv = AvV −1

f
f(t) , where Vf = Wf (0). This leads to

the same representation (2.15) of etA, since V −1
f

f(t) does not depend on the choice of f

(compare the proof of Lemma 3.1).
REMARK 2.3. Denoting by ek(t) the kth component of e(t) and by vk the kth column

of V −1, then V −1e(t) =
∑n

k=1 ek(t)vk , and we obtain, as a consequence of (2.15), etA =
(C1, C2, . . . , Cn) e(t), where

(2.18) Ck =
(
I, A, A2, . . . , An−1

)
vk .

In the sense of (2.17) this can be written as

(2.19) (C1, C2, . . . , Cn) =
(
I, A, A2, . . . , An−1

)
V −1 .

Let us summarize: For an n × n matrix A having the eigenvalues λi with the algebraic
multiplicities νi the matrix exponential etA is given by (2.15), where V −1 is the inverse of the
confluent Vandermonde matrix corresponding to the pairs (λi, νi), i = 1, . . . , m,

∑
νi = n.

The special structure of the matrix V can be used to compute its inverse V −1 in a much
more efficient way than, e.g., Gaussian eliminations do. Thus we will proceed with designing
inversion algorithms the computational complexity of which is O(n2). Such fast algorithms
have been already presented and discussed in a large number of papers (see e.g. [3] and
references therein).

On one hand, we want to develop here a new version of such an algorithm; on the other
hand, we intend to follow the spirit of the authors of [4], namely to be simple enough for a
presentation to students of an elementary course on ordinary differential equations. Thus, we
will discuss inversion algorithms exploiting elementary results of Linear Algebra, but, as far
as it is possible, all within the framework of ordinary differential equations. Consequently,
numerical aspects and criteria such as, e.g., stability will be beyond the scope of this paper,
but will be discussed in a forthcoming paper.
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3. Recursive algorithms for the inversion of V . Hereafter, let ek be the kth unit vector
and wT

k−1 the kth row of V −1, wT
k−1 = eT

k V −1. We start with developing a recursion for the
rows wT

i ( i = n−2, . . . , 0 ) of V −1 from its last row wT
n−1 . As a basis we use the following

fact.
LEMMA 3.1. The vector y(t) = V −1e(t) is the solution of the initial value problem

(3.1)

{
y′ = By,

y(0) = e1,
where B =




0 0 · · · 0 −a0

1 0 · · · 0 −a1

. . .
...

...
0 · · · 1 0 −an−2

0 · · · 0 1 −an−1




and a0, . . . , an−1 are the coefficients of the characteristic polynomial (2.1).
Proof. The matrix B is just the companion matrix of p(λ). Moreover, since

( e1 Be1 . . . Bn−1e1 ) = In we conclude from (2.11) that etBe1 = V −1e(t) = y(t),
which completes the proof.

COROLLARY 3.2. The components of y(t) =
(
yk(t)

)n−1

k=0
can be recurrently determined

from the last component yn−1(t):

(3.2) yk−1(t) = y′

k(t) + akyn−1(t) , k = n − 1, . . . , 1 .

(For k = 0 this is also true if we set y−1 = 0.)
Let us introduce the block-diagonal matrix

(3.3) J̃ = diag
(
J̃1, . . . , J̃m) ,

where J̃i = λi in case νi = 1, otherwise

J̃i =




λi 1
λi 2

λi 3
. . .

. . .
λi νi − 1

λi




.

Then, taking into account that yk(t) = wT
k e(t) and e′(t) = J̃ T e(t), we obtain the following

reformulation of (3.2).
LEMMA 3.3. The rows wT

0 , . . . ,wT
n−1 of V −1 satisfy the recursion

(3.4) wk−1 = J̃wk + akwn−1 , k = n − 1, . . . , 0 .

(For k = 0 set w−1 = 0.)
Now we are left with the problem how to compute the last row wT

n−1 of V −1. To solve
this we decompose p(λ)−1 into partial fractions

(3.5)
1

p(λ)
=

m∑

i=1

νi∑

j=1

pij

(λ − λi)j
.

THEOREM 3.4. The last row wT
n−1 of V −1 is given, by the coefficients of (3.5), as

follows

(3.6) wT
n−1 =

(
p11

0!
,
p12

1!
, · · · ,

p1 ν1

(ν1 − 1)!
, · · · ,

pm1

0!
, · · · ,

pm νm

(νm − 1)!

)
.



ETNA
Kent State University 
etna@mcs.kent.edu

96 U. Luther and K. Rost

Proof. Since the function y(t) = (yi(t))
n−1
i=0 satisfies y(k)(0) = Bke1 = ek+1 for k =

0, 1, . . . , n − 1 (see Lemma 3.1) we obtain, in particular, that the last component yn−1(t) =
wT

n−1e(t) is the solution of the initial value problem

y(n) + an−1y
(n−1) + · · · + a0y = 0 ,(3.7)

y(0) = · · · = y(n−2)(0) = 0 , y(n−1)(0) = 1 .(3.8)

We consider now the Laplace transform of yn−1(t) defined by

(Lyn−1) (s) =

∫
∞

0

e−s tyn−1(t) dt .

In view of (3.8), L applied to (3.7) yields (Lyn−1)(s) = p(s)−1 which can be decomposed
into partial fractions as in (3.5). By applying the back transform we obtain

yn−1(t) =
m∑

i=1

νi∑

j=1

pij

(j − 1)!
tj−1eλi t

=
(p11

0!
,
p12

1!
, · · · ,

p1 ν1

(ν1 − 1)!
, · · · ,

pm1

0!
, · · · ,

pm νm

(νm − 1)!

)
e(t) ,

and (3.6) is proved.
Now we are in the position to propose a first inversion algorithm for V .

Algorithm I:
1) Compute the coefficients pij of the partial fraction expansion (3.5) and form the

vector wn−1 as in (3.6).
2) Compute the remaining rows of V −1 via the recursion (3.4).

It is well known that the coefficients in the partial fraction decomposition can be com-
puted by means of an ansatz and the solution of a corresponding linear system of equations.
This can be organized in such a way that the computational complexity of Algorithm I is
O(n2).

We propose now a further possibility the advantages of which seem to be that the pre-
computing of the coefficients pij is not necessary and that the recursion starts always with
a “convenient” vector. To that aim let us adopt some notational convention. Introduce the
following block-diagonal matrices with upper triangular Toeplitz blocks,

P = diag(Pk)m
k=1 with Pk =




pkνk
pk νk−1 · · · pk1

pkνk

. . .
...

. . . pk νk−1

0 pkνk




,

J = diag(Jk)m
k=1 with Jk =




λk 1 0
. . .

. . .
λk 1

0 λk


 ∈ C

νk×νk ,

and define the diagonal matrix

D = diag(Dk)m
k=1 with Dk = diag

(
1

0!
,

1

1!
, · · · ,

1

(νk − 1)!

)
.
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Obviously, D and P are nonsingular matrices.
It is easy to see that

(3.9) wn−1 = DP hn−1 ,

where hn−1 is the sum of the unit vectors eν1
, eν1+ν2

, . . . , en , i.e.,

(3.10) hn−1 = (0, · · · , 0, 1︸ ︷︷ ︸
ν1

, 0, · · · , 0, 1︸ ︷︷ ︸
ν2

, · · · , 0, · · · , 0, 1︸ ︷︷ ︸
νm

)T .

We consider the recursion

(3.11) hk−1 = J hk + akhn−1 , k = n − 1, . . . , 0 .

LEMMA 3.5. The recursion (3.11) produces the rows wT
k−1 of V −1 as follows

(3.12) wk−1 = DP hk−1 , k = n, . . . , 1 .

(Putting w−1 = 0 the equality (3.12) is also true for k = 0.)
Proof. We have, due to (3.11) and (3.9),

(3.13) DP hk−1 = DPJ hk + akwn−1 , k = n − 1, . . . , 0 .

Now, it is easy to verify that J̃D = DJ and JP = PJ . Hence, (3.13) shows that

DP hk−1 = J̃DP hk + akwn−1 , k = n − 1, . . . , 0 .

We compare this with (3.4) and state that DP h−1 = 0 implies h−1 = 0, which completes
the proof.

The following fact has been already stated in [11].
COROLLARY 3.6. The transpose of the matrix V −1 is given by V −T = DPH , where

H = (h0 h1 · · · hn−1).
From Corollary 3.6 it follows that P−1 = HV TD. On the other hand we have P−1 =

diag(Qk)m
k=1 with Qk = P−1

k . One can easily see that the inverse of a (nonsingular) upper
triangular Toeplitz matrix is again an upper triangular Toeplitz matrix, i.e., that Qk has the
form

(3.14) Qk =




qkνk
qk νk−1 · · · qk1

qkνk

. . .
...

. . . qk νk−1

0 qkνk




,

where q(k) = (qk1, . . . , qkνk
)T is the last column of P−1

k , i.e., the solution of the equation
Pkq

(k) = eνk
. Thus, the matrix Q = P−1 is completely given by that n elements of HV T =

QD−1 which stand in the last columns of the diagonal blocks of HV T ,

(3.15) HV T = diag
(
QkD−1

k

)m

k=1
.

With the entries of the vector q(k) we form the matrix Qk and compute the solution p(k) =
(pk1, . . . , pkνk

)T of

(3.16) Qkp
(k) = eνk

,

which gives the matrix Pk.
Now we propose the following second inversion algorithm for V .
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Algorithm II:
1) Compute recurrently the columns hj−1, j = 1, . . . , n of H by (3.11).
2) Compute that n elements qkj(νk − 1)! of the product HV T (see (3.15)) which de-

termine the blocks Qk (see (3.14)) of the matrix P−1 = diag(Qk)m
k=1.

3) Compute the upper triangular Toeplitz matrices Pk by solving (3.16) and form the
matrix P = diag(Pk)m

k=1.

4) Compute V −1 = (DPH)T .

In the case that the multiplicities νk are small compared with n the computational com-
plexity of the algorithm is again O(n2).

Our next aim is to develop the matrix representation of V −1. A nice algebraic proof was
given in [12]. The only motivation for us to add a second proof is to be more self-contained
within the framework of ordinary differential equations.

4. Matrix representation of V −1. Let us start with the nonconfluent case. Since in this
case J̃ = diag(λi)

n
1 , the recursion (3.4) together with (3.6) leads directly to the representation

V −1 = U(a) V T diag
(
pk1

)n

k=1
, where U(a) =




a1 · · · an−1 1
... . .

.
. .

.

an−1 1
1 0


 .

(Note that pk1 = p′(λk)−1.) This means that the inverse of a Vandermonde matrix V is
closely related to its transpose V T .

Such a representation is also possible in the confluent case. Recall that p(λ) =∑n

i=0 aiλ
i , where an = 1. Then the matrix H can be computed as follows.

LEMMA 4.1.

(4.1) H =
n−1∑

i=0

J i hn−1(ai+1, · · · , an, 0, · · · , 0) .

This lemma is a consequence of the observation that the columns of the right hand side
of (4.1) satisfy the recursion (3.11).

Let Zνk
be the νk ×νk counteridentity matrix defined as having ones on the antidiagonal

and zeros elsewhere. Obviously, PkZνk
are upper upper triangular Hankel matrices of order

νk. We obtain the following matrix representation of V −1.
THEOREM 4.2.

(4.2) V −1 = U(a) V T diag
(
Gk

)m

k=1
,

where Gk = DkPkZνk
Dk .

Proof. From the obvious equality PkZνk
= Zνk

P T
k it follows

diag
(
Gk

)m

k=1
= DZP T D , where Z = diag

(
Zνk

)m

k=1
.

Furthermore, U(a) =
∑n−1

i=0 ei+1a
(i), where a(i) = (ai+1, · · · , an, 0, · · · , 0). Conse-

quently, (4.2) is equivalent to V −T = DPZDV
∑n−1

i=0 ei+1a
(i). In view of Corollary 3.6

and Lemma 4.1 it remains to show that

(4.3)
n−1∑

i=0

J i hn−1a
(i) = ZDV

n−1∑

i=0

ei+1a
(i) .

For this end we apply the formula for etJ which is well know from the theory of ordinary
differential equations. This formula yields

(4.4) etJhn−1 = ZD e(t) .

If we compare (4.4) with etJhn−1 =
(
hn−1 J hn−1 · · · Jn−1 hn−1

)
V −1e(t) (Lemma

2.1), then we obtain
(
hn−1 J hn−1 · · · Jn−1 hn−1

)
= ZDV and (4.3) is proved.
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5. Final remarks.

REMARK 5.1. The assertion wk−1 − J̃ wk = akwn−1 (k = 0, . . . , n − 1) of Lemma
3.3, written in matrix form V −T Sn − J̃ V −T = wn−1(a0, a1, · · · , an−1), where Sn is the
forward shift of order n, is the so-called displacement equation for V −T (see [9]). This
equation can also be deduced from the well known equality BT V T = V T J̃ , where B is
defined in (3.1).

REMARK 5.2. To prove the assertion of Theorem 3.4 one can use, instead of the Laplace
transformation, the Laurent series expansion at infinity of (λ − λi)

−j (see [2]).

REMARK 5.3. In Section 2 we have only used that each component of etA is a so-
lution of (2.5). This fact is a consequence of the Cayley-Hamilton theorem p(A) = 0.
Hence, if q(λ) = λN + bN−1 λN−1 + · · · + b1 λ + b0 is any other polynomial with
q(A) = 0, for example the minimal polynomial of A, then the components of etA are so-
lutions of y(N)(t) + bN−1 y(N−1)(t) + · · · + b0 y(t) = 0 (since the matrix valued func-
tion Y (t) = etA solves this equation). So we obtain, in the same way as in Section 2,
etAv =

(
v Av A2v · · · AN−1v

)
V −1

q eq(t), where Vq is the confluent Vandermonde matrix
corresponding to the zeros of q(λ) and eq(t) denotes the vector of the standard fundamental
solutions of the above differential equation of order N . The resulting representation of etA is
etA = (I, A, A2, · · · , AN−1)yq(t), where yq(t) = V −1

q eq(t).

REMARK 5.4. Assume for sake of simplicity that all νk are equal to ν, where ν is small
compared with n. Then using representation (4.2) the matrix-vector multiplication with the
inverse of a (confluent) Vandermonde matrix V can be done with O(n log2 n) computational
complexity. Indeed, utilizing FFT techniques then the complexity of the multiplication of an
n × n triangular Hankel matrix and a vector is O(n log n) . In particular, this leads to a
complexity of O(n) for the matrix vector multiplication with diag

(
Gk

)m

k=1
. Now, the rows of

the matrix V T can be reordered in such a way that the first m rows form a nonconfluent m×n

Vandermonde matrix, the (km + 1)th up to ((k + 1)m)th rows a nonconfluent Vandermonde
matrix multiplied by a diagonal matrix, k = 1, . . . , ν . With the ideas of [2] concerning the
nonconfluent case this leads to a complexity of O(n log2 n) to multiply V T with a vector.

REMARK 5.5. From Lemma 3.1 one obtains a nice formula for the exponential of the
companion matrix B, etB =

(
y(t) y′(t) · · · y(n−1)(t)

)
. If A is nonderogatory, i.e., if there

exists a nonsingular matrix U such that AU = UB, then we obtain the representation etA =
Av

(
y(t) y′(t) · · · y(n−1)(t)

)
A−1

v , where v = Ue1 (which implies Av = U ). We remark
that A is nonderogatory if and only if there exists a v such that Av is invertible. This follows
from AvB = AAv which can be easily proved.

REMARK 5.6. For f(z) = ez we have f(A) = (I, A, · · · , An−1) · f(B)e1 (since
y(t) = etBe1). This is also true for other power series f(z) =

∑
∞

m=0 αm(z − z0)
m

with convergence radius R > 0 and its corresponding matrix valued function f(A)
(A ∈ Cn×n with maxi |λi(A) − z0| < R). Indeed, if we compare the initial values
of both sides of the equation e−z0tetA = (I, A, · · · , An−1) · e−z0tetBe1, then we ob-
tain (A − z0I)m = (I, A, · · · , An−1) · (B − z0I)me1 which yields the assertion. For
the application to an vector this means f(A)v = Avb, where b = f(B)e1. We re-
mark that b is just the coefficient vector of the Hermite interpolation polynomial of f(z)
with respect to the eigenvalues λi of A and their algebraic multiplicities νi. This follows
from the well known equality V BV −1 = J̃ T : V b = V f(B)V −1V e1 = f(J̃ T )V e1 =
(f(λ1), f

′(λ1), · · · , f (ν1−1)(λ1), · · · , f(λm), · · · , f (νm−1)(λm))T .
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