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SOME THEORETICAL RESULTS DERIVED FROM POLYNOMIAL
NUMERICAL HULLS OF JORDAN BLOCKS

�
ANNE GREENBAUM

�
Abstract. The polynomial numerical hull of degree � for a square matrix � is a set in the complex plane

designed to give useful information about the norms of functions of the matrix; it is defined as�����
	������� ��� ���� ����� � � for all polynomials
�

of degree � or less ���
In a previous paper [V. Faber, A. Greenbaum, and D. Marshall, The polynomial numerical hulls of Jordan

blocks and related matrices, Linear Algebra Appl., 374 (2003), pp. 231–246] analytic expressions were derived for
the polynomial numerical hulls of Jordan blocks. In this paper, we explore some consequences of these results.
We derive lower bounds on the norms of functions of Jordan blocks and triangular Toeplitz matrices that approach
equalities as the matrix size approaches infinity. We demonstrate that even for moderate size matrices these bounds
give fairly good estimates of the behavior of matrix powers, the matrix exponential, and the resolvent norm. We give
new estimates of the convergence rate of the GMRES algorithm applied to a Jordan block. We also derive a new
estimate for the field of values of a general Toeplitz matrix.
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1. Introduction. The polynomial numerical hull of degree � for an � by � matrix �
was introduced by Nevanlinna in [15, 16] and further studied by Greenbaum in [8]. It is a set
designed to give more information than the spectrum alone can provide about the behavior of
the matrix under the action of polynomials and other functions. It is defined as

(1.1)  "!$#%�'&)(+*-,/.103254768#9�
&:4<;+= 68#%,�&�=?>�6"."@A!CBCD
where � is a positive integer and @ ! denotes the set of polynomials of degree � or less. In
this paper 48E�4 will always denote the 2-norm for vectors and the associated spectral norm for
matrices: 4�FG4H(JI5KMLONQPRNTS�U8V�4�FXWO4ZY .

While it is clear that  ! #%�
& provides a convenient lower bound on the norms of poly-
nomials of degree � or less in � ; i.e., 476[#%�'&�4\;]I^KML`_:aMb�c-dfeOgO= 68#9,h&:= , it also may provide
estimates of the norms of other functions such as iRj e or #9kmlonp�
&rq V , where s�;ut and k^."0
are parameters. Since any primary matrix function v�#%�'& can be written as a polynomial of
degree at most �Gnxw in � [11], we can write

(1.2) 4�v�#9�
&�4H(y476{z`#9�
&:4'; I^KRL_:aMb�|M}h~�dfeOg = 6�z�#%,�&�=��
The polynomial 6 z is the one that matches v at the eigenvalues of � , and, if an eigenvalue���

corresponds to a Jordan block of size � ��� w , then the first � � n�w derivatives of 6 z also
match those of v at

���
. If v�#9�
& can be well approximated by a lower degree polynomial, say,6�!�#9�
& , then 4:v�#%�'&�4 also can be related to the maximum value of 6�! on  G!$#9�
& .

An equivalent definition of the polynomial numerical hull is [8]:

(1.3)  ! #%�'&)(+*-,5.�032�I5�f��Z��� c� df_�g�U[V 476[#%�'&�4A(�wmBC��
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That is, if one considers polynomials of the form 68#9�
&p(�l��y� !� U8VO� � #%��n3,hlh& � , then
if ,�.y G!$#%�'& then the coefficients that minimize 476[#%�
&:4 are just � V (��:���
( � !x(�t ,
while if ,3�.x ! #%�
& , then there are coefficients that make 4�68#9�
&�4"� w . This establishes a
close connection between the polynomial numerical hull and the ideal GMRES algorithm [9],
whose convergence after � steps is measured by the quantity

(1.4) I5�¡��Z��� c� d�¢�g�U8V 476[#%�
&:4R�
This quantity is less than w , and we say that ideal GMRES( � ) converges, if and only if tu�. ! #9�
& .

A related set defined in [8] is

(1.5) £ ! #9�
&)(+*-¤ � �<¤¥2
¤ � ¤o(¦w and ¤ � � � ¤o(§#%¤ � �<¤M& � D^¨¥(¦wmD��:���ZD���BC�
For any matrix � , £ ! #%�'&'©ª ! #9�
& , and it was argued in [8], based on results in [5], that if� is a normal matrix or a triangular Toeplitz matrix, then these two sets are identical. The
precise class of matrices for which these two sets are identical is not known.

A number of simple properties of polynomial numerical hulls were derived in [4, 8, 15,
16]. Here we list several of these for future reference:

THEOREM 1.1.
(i)  G!$#«E & is invariant under unitary similarity transformations.
(ii) For scalars ¬�D«®.�0 ,  "!$#9¬8lo�®¯�'&)(ª¬��®� G!`#%�'& .
(iii) If £"#9�
& denotes the field of values ( £�#%�
&?(+*-¤ � �
¤°2�¤ � ¤±(¦wMB ) and ²�#%�'& the spectrum,

then £"#9�
&5(³ V #%�
&µ´� Y #9�
&µ´¶���:��´· µ¸/#%�'&/(³ µ¸º¹ V #%�
&5(»���:��( ²�#9�
& ,
where � is the degree of the minimal polynomial of � .

(iv) If  ! #%�
&H´�¼ , then  ! #9�
&º´ pco ! #9¼H& , where

pco ! #T¼H&)(�*Rk/.�0½2/= 68#Tkm&:=$¾¿I^KML_:amÀ = 68#9,h&:=�>�6�.µ@ ! BC�
Proof.

(i) If Á is a unitary matrix and 6 any polynomial, then 68#TÁ � �
ÁX&]( Á � 68#9�
&ÂÁ�Ã476[#9Á � �
ÁX&:4A(§4�68#9�
&�4�ÃÄ ! #9Á � �
Á°&?(� ! #9�
& .
(ii) If ½(Åt , then it is clear that  G!`#%¬[lh&°(Ä*Æ¬?B , so assume ·Ç(]t . For any polynomial61.G@H! , define ¤°.G@A! by ¤$#9¬��°¯,�&�(È68#9,h& , or, ¤$#%,�&?(È68#«#9,On±¬[&��Æ8& . Clearly, every¤¥.G@A! can be written in this form for some 61."@<! , and then 6[#%�'&?(J¤$#9¬8lo�É¯�'& .

It follows that kÊ.¿ G!$#9�
& if and only if 4768#9�
&:4µ;Ë= 6[#9kC&�=M>h6x.¿@<! if and only if4Z¤$#9¬8lo�®8�
&�4';+= ¤$#%¬"�È8kC&�=�>{¤°."@H! if and only if ¬��®8k^.µ "!$#%¬[l'�È¯�'& .
(iii) It follows from definition (1.1) that, for every � ,  ! #9�
&É´Ì²�#%�'& , since if #�Í�D � & is

an eigenpair of � then 68#9�
&�ÍË(»68# � &�Í Ã 476[#%�'&�4�;Î= 68# � &:= . For �·;Ì� , ! #9�
&¥(]²�#9�
& , since if 6 is the minimal polynomial of � then 4�68#9�
&�4G(³t but68#9,h&?(3t only at the eigenvalues of � . The inclusions  � #9�
&º´u � ¹ V #%�
& are clear
from definition (1.1). For a proof that  V #9�
&)(J£�#%�
& , see [8] or [15].

(iv) This follows directly from definition (1.1).

In [4] analytic expressions were derived for the polynomial numerical hulls of a Jordan
block. It was shown that the hulls of degrees w through �Gn�w for an � by � Jordan block are
disks about the eigenvalue with radii ranging between whn
Ï5#«wÆ�Æ� Y & and whn
Ï5#�Ð¡ÑmÒ?�8�R�¯& . These
results were used to derive fairly tight inner and outer bounds on the polynomial numerical
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hulls of banded triangular Toeplitz matrices, using the fact that a triangular Toeplitz matrix is
just a polynomial in the Jordan block with eigenvalue zero.

In this paper we explore some consequences of these results. We derive lower bounds
on the norms of functions of Jordan blocks and triangular Toeplitz matrices that approach
equalities as the matrix size approaches infinity. We demonstrate with numerical examples
that these bounds provide fairly good estimates of the norms of powers, exponentials, and
resolvents of such matrices, even for moderate size matrices. We also derive a new estimate
of the field of values of a general Toeplitz matrix.

2. Norms of Functions of a Matrix. The following theorem relates the norm of a func-
tion v�#9�
& to the size of the polynomial 6 z defined in (1.2) on  G¸ q V #9�
& , where � is the
degree of the minimal polynomial.

THEOREM 2.1. Let � have minimal polynomial

¤ e #9,h&?( ÓÔ� U8V #%,±n � � &QÕQÖRD
where

� V D:���:��D � Ó are distinct and each × � ;½w . Let �Ë( deg #9¤ e #9,h&Â&)( � Ó� U8V × � . Let v�#%,�& be
a scalar valued function, whose domain includes

� V D����:�ZD � Ó . For each
� � with × � � w , assume

that
� � is in the interior of the domain of v�#%,�& and that v�#%,�& is × � n�w times differentiable at� � . Let v�#%�'& be the primary matrix function associated with the stem function v�#9,h& . Then

(2.1) 4�v�#9�
&�4'; I^KRL_:aMb�Ø }h~ dfeOg
ÙÙÙÙÙÙÙ
ÓÚ� U8V
ÛÜ
Ý ÓÔ Þ¡ß ~�7àU � #9,±n

� � & Õ
Þ7á�â
ã ÛÝ ÕTÖ q VÚ � UO¢ wä�å9æ d

� g� # � � &�#%,±n � � & � áã
ÙÙÙÙÙÙÙ D

where æ � #%,�&?(Jv�#9,h&��?ç Ó Þfß ~�7àU � #9,±n ��� & Õ
Þ
.

Proof. See [11, pp. 391 and 412–413]. This follows from the fact that v�#%�'&<(ª6¯z�#9�
& ,
where 6�z�#%,�& is the polynomial of degree �]nªw that matches v at each point

� � , and whose
derivatives of order wmD:������D�× � nyw match those of v at each point

� � with × � � w . The
expression on the right-hand side of (2.1) is the Hermite-Lagrange interpolation formula for
such a polynomial.

The following corollaries show how to apply Theorem 2.1 to different types of matrices.

COROLLARY 2.2. If � is diagonalizable and has distinct eigenvalues
� V D����:�ZD � ¸ , and

if v�#9,h& is a scalar valued function whose domain includes
� V D:�����:D � ¸ , then

(2.2) 4�v�#9�
&:4'; I^KRL_:aMb Ø }h~�d¡eOg
ÙÙÙÙÙÙÙ
¸Ú� U[V v�# � � &

¸Ô Þ¡ß ~�7àU �
,on � �� � n � �

ÙÙÙÙÙÙÙ �

COROLLARY 2.3. If � is similar to an � by � Jordan block è?# � & with eigenvalue
�

, and
if v�#9,h& is a scalar valued function that is �Gnxw times differentiable at

�
, then

(2.3) 4:v�#%�'&�4'; I^KRL_:aMb |M}h~ dfeOg
ÙÙÙÙÙ é q VÚ � UO¢ v

d � g # � &ä�å #%,±n � & � ÙÙÙÙÙ �



ETNA
Kent State University 
etna@mcs.kent.edu

84 Some theoretical results derived from polynomial numerical hulls of Jordan blocks

At first glance, it may appear that the bound in Theorem 2.1 is a discontinuous function
of the matrix entries, since it depends on the eigenvalues and their algebraic multiplicities;
yet an arbitrarily small change in the matrix entries may change completely the multiplicities
of the eigenvalues. For v sufficiently smooth, however, i.e., for v�#��^nÉw-& -times continuously
differentiable on a convex set containing

� V D��:���ZD � Ó in its relative interior or for v analytic
on a simply connected open set containing

� V D��:���:D � Ó , this is not the case. In this case
the interpolation polynomial for v can be represented by a Newton formula using divided
differences, and it can be shown that the coefficients of this formula are continuous functions
of the interpolation points

� V D:���:�ZD � Ó [11, p. 395].
Using knowledge of the norms of infinite Toeplitz matrices, one can obtain upper bounds

on 4�v�#�è?# � &«&�4 to go with the lower bound of Corollary 2.3 applied to �§(yè?# � & . By defini-
tion, v�#7è?# � &«& is the triangular Toeplitz matrix whose diagonals are the values v d � g # � &Â� ä�å . The
norm of an infinite triangular Toeplitz matrix with these diagonals is

(2.4) I^KMLê _ q{ë ê ì V
ÙÙÙÙÙ é q VÚ � UO¢ v

d � g # � &ä�å #%,Xn � & � ÙÙÙÙÙ �
Since the finite matrix v�#�è?# � &«& can be thought of as the restriction of the infinite matrix to a
finite dimensional subspace, its norm is less than or equal to that of the infinite matrix, and
therefore expression (2.4) gives an upper bound on 4:v�#7è?# � &«&:4 . It follows that if  é q V #7è?#

� &«&
approaches a disk of radius w about

�
as �®íïî (which will be shown to be the case in the

next section), then the inequality (2.3) for �3(+è?# � & approaches an equality as ��í�î .
Note also that if ð is a triangular Toeplitz matrix with diagonals ñ ¢ , ñ V , �:��� , ñ é q V thenðò( � é q V� UO¢ ñ � è

�
, where è�(�è?#%th& is the Jordan block with eigenvalue zero. Norms of

functions of ð can be estimated by applying Corollary 2.3 to ð directly, or they can be
estimated by applying Corollary 2.3 to è , using the fact that v�#%ð
&?(�v�#9óh#7è¯&«& , where óh#%,�&?(� é q V� UO¢ ñ � , � is the symbol of the Toeplitz matrix. We will use the latter approach.

3. The Polynomial Numerical Hulls of Jordan Blocks. The following theorem was
established in [4], where part of it was shown to be essentially equivalent to much earlier
results proved by Goluzin [6], [7, Theorem 6, pp. 522–523] and by Schur and Szegö [20].

THEOREM 3.1. The polynomial numerical hull of any degree �G�u� for an � by � Jordan
block with eigenvalue

�
is a disk about

�
. For �5(¦w , the radius of the disk is ô Vrõ é (JöZÑh÷]øé ¹ V

.
For �5(ª�"nxw , the radius ô é q Vrõ é is the positive root of

(3.1) ùRô é �®ôonxw<(Jt�Dwhen � is even, and is greater than or equal to the positive root of this equation when � is
odd. For � odd, ô é q V�õ é is the largest value of ô that satisfies

wHn\ô'nÉùMô é �uùRô é
ú wHnÊö�ÑC÷-#%û$�$#%�Gnxw-&Â&Qü$�Èô ú w<nÊö�ÑC÷�#Â#�ý�nÉûh&��Æ�¯&Qüw��Èô ;xtþ>{û��

In either case,

(3.2) ô é q Vrõ é (+wHn
Ð¡ÑmÒ�#9ùM�¯&� � Ð¡ÑmÒ�#�Ð¡ÑmÒ�#9ùR�¯&Â&� n�ÿ é� D

where ÿ é
� t and Ð¡�¡I é�� � ÿ é (3t , and

(3.3) ô é q V�õ é
� wHn Ð¡ÑmÒ�#TùR�¯&� >{�p;ªù$�
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It follows from this theorem that all of the hulls of degrees w through �un§w for an� by � Jordan block are disks about the eigenvalue with radii between w¥n3Ï5#�wÆ�R� Y & andwHnÉÏ5#%ÐfÑCÒ)�8�R�¯& .
4. Examples. Using Theorem 3.1 together with Corollary 2.3, we can now give good

lower bounds on the norms of functions of Jordan blocks. According to the arguments after
(2.4), these lower bounds approach exact expressions as the matrix size approaches infinity,
and the following examples show that the bounds can be quite good even for moderate size
values of � . In most cases, these bounds are not the best known; by carefully studying a
specific function one often can improve upon estimates derived in this general setting. Still,
as will be demonstrated, the estimates derived from polynomial numerical hulls are often
close to optimal for matrices of this type.

Let è?# � & denote the � by � Jordan block with eigenvalue
�

. Then

(4.1) 4Rè?# � & ! 4';
������ ����� #�= � =:�Èô ! õ é &

! ;�#�= � =:�JwHnÊÐfÑCÒ�#TùR�¯&Â�R�¯& ! D �G�u�� é q V� UO¢�� �¨
	 = � = ! q � ô � é q Vrõ é ;� é q V� UO¢�� �¨ 	 = � = ! q � #«wHn\Ð¡ÑmÒ�#9ùR�¯&��Æ�¯& � D»�G;u� �
Figure 4.1(a) shows a plot of 4Rè�# � & ! 4 and the lower bound (4.1) for a �mt by �mt Jordan block
with eigenvalue

� (Ën±�� . As can be seen from the figure, the estimate (4.1) is quite close
to the actual value of 4Rè�# � & ! 4 , although slightly sharper estimates can be obtained by other
means; see, for example, [1].

Similarly, one can give a lower bound on the norm of the exponential of a Jordan block:

(4.2) 4Zi j�� d ë g 4';xi j�� d ë g ÙÙÙÙÙ é q VÚÕ UO¢ s Õ× å ô Õé q Vrõ é
ÙÙÙÙÙ ;�i j�� d ë g ÙÙÙÙÙ é q VÚ Õ U�¢ s Õ× å #�wHnÊÐfÑCÒ�#TùR�¯&Â�R�¯& Õ

ÙÙÙÙÙ �
This estimate is plotted in Figure 4.1(b), along with the actual value 4�iÆj�� d ë g 4 , again for a �Mt
by �Mt Jordan block with eigenvalue

� (]n±��� . This estimate is less precise than the one for
matrix powers but still gives a good idea of the actual behavior of the matrix exponential. The
difference between the curves becomes smaller as the matrix size increases.

Polynomial numerical hulls also can be used to gain information about the resolvent
norm, 4m#9kml¥nÈ�'& q V 4 , for values of k throughout the complex plane. The ÿ -pseudospectrum
of a matrix � [3] is defined as��� #%�
&�(�*Æk/.10½2/4m#9kMlXnÊ�'& q V 4'; ÿ q V BC�
These sets are especially useful because they indicate how the eigenvalues of � can change
when the matrix is perturbed by a matrix of given norm; that is, an equivalent definition of
the ÿ -pseudospectrum is [3]:��� #%�'&?(�*Rk/.�0½2xk is an eigenvalue of �¿��� for some � with 4��µ4
¾ ÿ Bh�

In [17] bounds were derived on the pseudospectra of Toeplitz matrices, and these bounds
are of course applicable to the simplest Toeplitz matrix, a Jordan block. It was shown that theÿ -pseudospectrum of an � by � Jordan block contains the disk about the eigenvalue of radiusÿ V�� é and is contained in the disk about the eigenvalue of radius w�� ÿ .
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FIG. 4.1. Norms of functions of a Jordan block of size ����� � with eigenvalue !"��#�� $ . (a) Norm of % � !m�'&
(solid) and lower bound (4.1) (dashed), (b) Norm of (*),+.-0/21 (solid) and lower bound (4.2) (dashed).

Since the resolvent can be written as a polynomial in the matrix:

#9kmlXnuè�# � &Â& q V ( é q VÚ� UO¢ #9kon � & q d � ¹ V�g #7è?# � &�n � l�& � D³kGÇ( � D
it follows from Corollary 2.3 that

4m#9kmlXnuè�# � &Â& q V 4'; I^KRL_:aMb�|R}h~�d � d ë g�g
ÙÙÙÙÙÙ é q
VÚ� UO¢ #Tkon � & q d � ¹ V«g #9,±n � & �

ÙÙÙÙÙÙ (

(4.3) I^KRL_:aMb |R}h~ d � d ë g�g
ÙÙÙÙÙÙ wkon � é q VÚ� UO¢ � ,±n �kon � 	 � ÙÙÙÙÙÙ ( I5KML_�aMb |R}h~ d � d ë g�g ÙÙÙÙ #«#9,Xn � &��$#9k±n � &«& é nuw,±n®k ÙÙÙÙ �

The quantity on the right in (4.3) is maximized by taking ,<n � (�ô é q V�õ é #TkHn
� &Â�`= k<n � = . To

simplify the notation, we can take
� (3t , since adding a scalar times the identity to è?#9tC& just

corresponds to shifting k by that scalar. Then expression (4.3) can be written as

(4.4) 4m#9kMl°n¿è?#9tC&«& q V 4'; #�ô é q Vrõ é �`= k�= & é nuwô é q V�õ é nª= k�=
�

Thus, on the disk of radius = k�= , the resolvent norm is greater than or equal to the ex-
pression in (4.4), or, put another way, the ÿ�3yÿ #Â= k�= &
( #%ô é q Vrõ é n½= k�= &Â�

ú #�ô é q Vrõ é ��= k�= & é nªwZüpseudospectrum of è?#%tC& contains the disk of radius = k�= about t . For = k�= small, this result is
slightly weaker than the one in [17], since ÿ � = k�= é ; specifically,

Ð¡�¡Iê 4-ê � ¢ ÿ
#Â= k�= &= k�= é

( Ð¡�fIê 4Æê � ¢
ô é q Vrõ é n�= k�=ô éé q V�õ é nª= k�= é

( wô é q Vé q V�õ é
� wC�
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FIG. 4.2. Contour plot of the logarithm base 10 of the resolvent norm (solid) and the lower bound (4.4)
(dashed) for a � � by � � Jordan block with eigenvalue � .

For larger values of = k�= , however, such as = k�=�í�ô é q V�õ é or = k�= � ô é q Vrõ é , the expression for ÿis less than = k�= é ; for example,

Ðf�¡Iê 4Æê �65 |M}h~'7 | ÿ #Â= k�= &)( Ð¡�fIê 4-ê ��5 |R}h~87 |
n±wnH�?#%ô é q V�õ é ��= k�= & é q

V ô é q V�õ é = k�= q
Y ( ô é q Vrõ é� �xô éé q Vrõ é Dand

Ð¡�fIê 4Æê � � ÿ #�= k�= &w��½= k�= ( Ðf�¡Iê 4-ê � � #%ôon�= k�= &Â�`#�w��½= k�= &:#�ôm�`= k�= & é nxw
(�wC�
Thus for large values of = k�= this inner bound on the ÿ -pseudospectrum approaches the outer
bound of [17].

Figure 4.2 shows a contour plot of the logarithm base 10 of the resolvent norm 4M#9kml/nè?#%tC&Â& q V 4 and the lower bound (4.4) (with ô é q Vrõ é replaced by its lower bound w`noÐ¡ÑmÒ�#TùR�¯&Â�R� ),
for a �Mt by �Mt Jordan block with eigenvalue t . (The picture is just shifted by

�
for a nonzero

eigenvalue.) As can be seen from the figure, the inner bounds on pseudospectra derived from
(4.4) are fairly close to the actual pseudospectra.

For one more example, we consider the triangular Toeplitz matrix whose symbol is:

(4.5) óC#9,h&?(¦w:t � n ww29 n w: ,
�¿, Y n w: ,<;ºn ww=9 ,?> 	 �
This example was considered in [1], where it was noted that the powers of the matrix show
many peaks and valleys. Since a triangular Toeplitz matrix is just a polynomial in the Jordan
block with eigenvalue zero, any function of a triangular Toeplitz matrix is a function of è\(è?#%tC& , so that for this example � ! ( ú óh#7è¯&Qü ! . Figure 4.3 shows 4Z� ! 4 and the lower bound
(2.3) applied to è with v�#%,�&o(Åóh#%,�& ! . A matrix of size �ª(Ëw2@ was used. It is interesting
that the peaks and valleys in the actual norm have corresponding peaks and valleys in the
lower bound. To compute the lower bound we differentiated v�#%,�& symbolically and then used
a global search followed by bisection to find the maximum value of

ÙÙÙ � é q V� U�¢ zBA
ÞDC
d�¢�g�FE , � ÙÙÙ on the

circle about the origin of radius wHnÊÐ¡ÑmÒ�#TùR�¯&��Æ� .
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FIG. 4.3. Norms of powers of an G�H by G�H triangular Toeplitz matrix with symbol (4.5). Solid line is
 �I&  ;

dashed line is lower bound from (2.3) applied to % � �Z� with J �¡� �K�ML N �¡� �,O & .

Finally, consider the GMRES algorithm applied to a Jordan block è�# � & (or to any ma-
trix unitarily similar to è?# � & ). It follows from (1.3) and Theorem 3.1 that ideal GMRES( � )
converges if and only if = � = � ô ! õ é ; that is,I5�¡����Z� c� d�¢�g%U8V 4�68#7è?# � &Â&�4o�½w P/Ã t��.G ! #7è?# � &«& P/Ã = � = � ô ! õ é �
Since è?# � & is a triangular Toeplitz matrix, it follows from [5] thatI/�¡��Z��� c� d�¢�g�U8V 4�68#�è�# � &Â&�4o�½w P5Ã I^KMLN'Q�NTU[V I5�¡����Z� c� d�¢�g%U8V 4�68#7è?# � &Â&8R¥4X�3wm�
So one obtains the same criterion for the convergence of ordinary GMRES( � ), with the worst
possible initial vector.

A lower bound on the rate of convergence of ideal GMRES is obtained by noting that for
any polynomial 61."@ ! with 68#%th&?(+w ,476[#7è?# � &«&:4o; I^KRL_:aMb c d � d ë g%g = 6[#%,�&�=m( I^KRLê _ q{ë ê ì 5 c 7 | = 68#9,h&:= �When = � = � ô ! õ é , the right-hand side of this inequality is minimized by taking 68#9,h&º( #9,Xn� & ! �`#�n � & ! . See, for instance, [19, Lemma 6.26, p. 201]. It follows that for = � = � ô ! õ é ,

I5�f��Z��� c� d�¢�g�U8V 476[#7è?# � &«&:4o;
ÙÙÙ ô ! õ é�

ÙÙÙ ! ; ÙÙÙÙ wHnÊÐfÑCÒ�#9ùM�¯&Â�R�� ÙÙÙÙ ! �
An upper bound on I/�¡� � a.S{c-õ � d�¢�g�U8V?4�68#�è�# � &Â&�4 is obtained by considering an infinite Jordan
block è � . For = � = � w , we have

I5�¡��Z��� c� df¢�g�U[V 476[#7è?# � &«&:4o¾ I5�f��Z��� c� df¢�g�U[V 476[#7è � # � &Â&�4A( I5�¡����Z� c� d�¢�g%U8V I^KRLê _ q{ë ê ì V = 68#%,�&�=C(
ÙÙÙÙ w� ÙÙÙÙ ! �

For related results involving specific initial vectors, see [12] or [14].
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5. The Field of Values of a Toeplitz Matrix. While we have not yet been able to derive
expressions for all of the polynomial numerical hulls of an arbitrary Toeplitz matrix, we can
use the result about Jordan blocks to derive bounds on the hull of degree w (i.e., the field of
values) of an arbitrary Toeplitz matrix. It is shown in [18] that the field of values of an � by �
Toeplitz matrix approaches the closure of the field of values of the infinite Toeplitz operator
as �1í�î . It is further shown in [2] that for banded Toeplitz matrices with a fixed bandwidthT
, the rate of convergence is Ï5#��?q Y & . Here we give an explicit inner bound on the field of

values of an arbitrary Toeplitz matrix that approaches that of the infinite operator at the rate
that ô=U õ é approaches w . Related work can also be found in [13].

THEOREM 5.1. Suppose F�(þó V #9�
&��½ó-YC#9� � & , where ó V and ó-Y are polynomials of
degree

T
or less and � � denotes the complex conjugate transpose. Then V #%F/&)(�£�#%F/&º´ co V�*Ró V #9kC&8�uó:YC#2Wkh&�2'k5."£XU:#%�
&rBBY?�

Here £"U is the set defined in (1.5), and co denotes the convex hull.
Proof. Let k be a point in £"U:#%�'& . Then k can be written as ¤ � �
¤ for a certain vector ¤

satisfying ¤ � ¤±(�w and ¤ � � � ¤±(¦#9¤ � �
¤M& � , ¨/(+wCD��:���ZD T . For this vector we have¤ � F°¤X(ª¤ � ó V #9�
&«¤H�¿¤ � ó:YC#%� � &«¤o(3¤ � ó V #%�'&�¤<� ¤ � Wó-Ym#9�
&«¤±(½ó V #9¤ � �
¤M&¯�¿ó-Yh# ¤ � �<¤M&Z�
Hence ó V #9km&[�¿ó-Yh# WkC& lies in the field of values of F . Since this set is convex, it also contains
the convex hull of *Ró V #9km&[�¿ó-YC# Wkh&�2'k/.�£XU�#9�
&rB .

COROLLARY 5.2. If � in Theorem 5.1 is a normal matrix or a triangular Toeplitz matrix,
then  V #%F/&?(ª£�#%F/&º´ co V�*Ró V #9kC&8�uó:YC#2Wkh&�2'k/." ZU:#%�
&rBBY?�

Proof. It is shown in [5] that £ U #%�'&)(x U #9�
& when � is a normal matrix or a triangular
Toeplitz matrix.

COROLLARY 5.3. If ð is an � by � Toeplitz matrix with symbol óh#%,�&�(+ó V #%,�&8�xó Y # W,h& ,
where ó V #9,h&?( � U� UO¢ ñ � , � and ó-Ym#9,h&?( � U� U[V ñ q � , � , then

 V #%ð
&?(J£"#%ð
&�´ co V�*Ró V #9kC&¯�¿ó Y #�Wkh&º2¥= k�=$¾xô U õ é B[Y��
Proof. ðª(3ó V #7è¯&¯�uó:YC#7è � & .
Since the closure of the field of values of the Toeplitz operator with symbol óh#%,�&�(ó V #%,�&��uó:Yh# W,h&?( � U� UO¢ ñ � , � � � U� U8V ñ q � W, � is [10, 13]

clos #�£�#�ð � &Â&?( co #«*Æó V #%,�&¯�¿ó Y # W,C&H2/= ,�=M(¦wMBR&�D
Corollary 5.3 implies that the field of values of an � by � Toeplitz matrix with a fixed band-
width

T
approaches that of the Toeplitz operator at least at the rate that ô�U õ é approaches w .

Solutions to the equation \^]Q#�s«&)(Jð_\)#%s«& initially grow in norm for certain initial vectors\)#%th&"(`\ ¢ if and only if the field of values of ð extends into the right half plane, sinceÓÓ j V 4 \�#�s«&�4 Y Y (³ù?acbd\)#%s«&rDÂð_\)#�s«&fe . It follows from Corollary 5.3 that there is (at least tran-
sient) growth in 4 \�#�s«&�4A(y4ZiÆjdgh\ ¢ 4 , for a certain \ ¢ , if *Ró V #9kC&¯�Èó-Ym# WkC&�25= k�=�¾xô=U õ é B extends
into the right half plane. Similar criteria are derived by different means in [1].



ETNA
Kent State University 
etna@mcs.kent.edu

90 Some theoretical results derived from polynomial numerical hulls of Jordan blocks

6. Further Discussion. The polynomial numerical hull of degree �¶n�w for a matrix� with minimal polynomial of degree � plays a special role: the norm of any function of �
can be bounded below by the maximum absolute value of a certain polynomial on this set.
For Jordan blocks and triangular Toeplitz matrices of at least moderate size, this lower bound
turns out to be a fairly good estimate of 4:v�#%�'&�4 for a variety of functions v . This might not
be the case for other matrices, and better estimates might be obtained by approximating v�#%�
&
by a polynomial of some lower degree � and relating 4:v�#%�
&:4 to the size of this polynomial
on the hull of degree � .

It appears to be difficult to determine (theoretically) the polynomial numerical hulls of
most matrices. However, as this paper illustrates, once these hulls are known, a great deal of
information can be derived easily about the behavior of functions of the matrix.
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