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A NEW GERŠGORIN-TYPE EIGENVALUE INCLUSION SET∗
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Abstract. We give a generalization of a less well-known result of Dashnic and Zusmanovich [2] from 1970, and
show how this generalization compares with related results in this area.
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1. Introduction. Our interest here is in nonsingularity results for matrices and their
equivalent eigenvalue inclusion sets in the complex plane. As examples of this, we have the
famous result of Geršgorin [3]:

THEOREM 1. For any A = [ai,j ] ∈ Cn×n and for any eigenvalue λ of A, there is a
positive integer k in N := {1, 2, · · · , n} such that

|λ − ak,k| ≤ rk(A) :=
∑

j∈N\{k}

|ak,j |.(1.1)

Consequently, if σ(A) denotes the collection of all eigenvalues of A, then

σ(A) ⊆ Γ(A) :=

n
⋃

i=1

Γi(A), where Γi(A) := {z ∈ C : |z − ai,i| ≤ ri(A)}.(1.2)

Here, Γi(A) is the i-th Geršgorin disk, and Γ(A) is the Geršgorin set for the matrix A.
The equivalent nonsingularity result for this is

THEOREM 2. For any A = [ai,j ] ∈ Cn×n which is strictly diagonally dominant, i.e.,

|ai,i| > ri(A) (all i ∈ N),(1.3)

it follows that A is nonsingular.

Similarly, there is the following nonsingularity result of Ostrowski [5]:

THEOREM 3. For any A = [ai,j ] ∈ Cn×n, n ≥ 2, with

|ai,i| · |aj,j | > ri(A) · rj(A) (all i 6= j in N),(1.4)

it follows that A is nonsingular.

Its equivalent eigenvalue inclusion set is the following result of Brauer [1]:
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THEOREM 4. For any A = [ai,j ] ∈ Cn×n, n ≥ 2, and for any eigenvalue λ of A, there
is a pair of distinct integers i and j in N such that

λ ∈ Ki,j(A) := {z ∈ C : |z − ai,i| · |z − aj,j | ≤ ri(A) · rj(A)}.(1.5)

Consequently,

σ(A) ⊆ K(A) :=
⋃

i,j∈N

i6=j

Ki,j(A).(1.6)

The quantity Ki,j(A) of (1.5) is called the (i, j)-th Brauer Cassini oval, and K(A) of
(1.6) is called the Brauer set for the matrix A. (For further results about these sets, see Varga
[6].)

2. New results. To describe our first result here, let S denote a nonempty subset of
N = {1, 2, · · · , n}, n ≥ 2, and let S := N\S denote its complement in N . Then, given any
matrix A = [ai,j ] ∈ Cn×n, split each row sum, ri(A) from (1.1), into two parts, depending
on S and S, i.e.,















ri(A) :=
∑

j∈N\{i}

|ai,j | = rS
i (A) + rS

i (A), where

rS
i (A) :=

∑

j∈S\{i}

|ai,j |, and rS
i (A) :=

∑

j∈S\{i}

|ai,j | (all i ∈ N).
(2.1)

DEFINITION 1. Given any matrix A = [ai,j ] ∈ Cn×n, n ≥ 2, and given any nonempty
subset S of N , then A is an S-strictly diagonally dominant matrix if

{

i) |ai,i| > rS
i (A) (all i ∈ S), and

ii) (|ai,i| − rS
i (A)) · (|aj,j | − rS

j (A)) > rS
i (A) · rS

j (A) (all i ∈ S, all j ∈ S).
(2.2)

We note, from (2.2 i), that as |ai,i| − rS
i (A) > 0 for all i ∈ S, then on dividing by this

term in (2.2 ii) gives

(

|aj,j | − rS
j (A)

)

>
rS
i (A) · rS

j (A)

(|ai,i| − rS
i (A))

≥ 0 (all j ∈ S),

so that we also have

|aj,j | − rS
j (A) > 0 (all j ∈ S).(2.3)

If S = N , so that S = ∅, then the conditions of (2.2 i) reduce to |ai,i| > ri(A) (all
i ∈ N ), and this is just the familiar statement that A is strictly diagonally dominant.

Our first result here is

THEOREM 5. Let S be a nonempty subset of N , and let A = [ai,j ] ∈ Cn×n, n ≥ 2, be
S-strictly diagonally dominant. Then, A is nonsingular.

Proof. If S = N , then, as we have seen, A is strictly diagonally dominant, and thus
nonsingular from Theorem 2. Next, we assume that S is a nonempty subset of N with S 6= ∅.



ETNA
Kent State University 
etna@mcs.kent.edu

Ljiljana Cvetkovic, Vladimir Kostic, and Richard S. Varga 75

The idea of the proof is to construct a positive diagonal matrix W such that AW is strictly
diagonally dominant. Now, define W as W = diag[w1, w2, · · · , wn], where

wk :=

{

γ, for all k ∈ S, where γ > 0, and
1, for all k ∈ S.

It then follows that AW := [αi,j ] ∈ Cn×n has its entries given by

αi,j :=

{

γai,j , if j ∈ S, all i ∈ N, and
ai,j , if j ∈ S, all i ∈ N.

Then, the row sums of AW are, from (2.1), just

r`(AW ) = rS
` (AW ) + rS

` (AW ) = γrS
` (A) + rS

` (A) (all ` ∈ N),

and AW is then strictly diagonally dominant if

{

γ|ai,i| > γrS
i (A) + rS

i (A) (all i ∈ S), and

|aj,j | > γrS
j (A) + rS

j (A) (all j ∈ S).

The above inequalities can be also expressed as

{

i) γ(|ai,i| − rS
i (A)) > rS

i (A) (all i ∈ S), and

ii) |aj,j | − rS
j (A) > γrS

j (A) (all j ∈ S),
(2.4)

which, upon division, can be further reduced to

rS
i (A)

|ai,i| − rS
i (A)

<γ (all i ∈ S), and γ<
|aj,j | − rS

j (A)

rS
j (A)

(all j ∈ S),(2.5)

where the final fraction in (2.5) is defined to be +∞ if rS
j (A) = 0 for some j ∈ S. The

inequalities of (2.4) will all be satisfied if there is a γ > 0 for which

0 ≤ B1 := max
i∈S

rS
i (A)

|ai,i| − rS
i (A)

< γ < min
j∈S

|aj,j | − rS
j (A)

rS
j (A)

=: B2.(2.6)

But since (2.2 ii) exactly gives that B2 > B1, then, for any γ > 0 with B1 < γ < B2, AW
is strictly diagonally dominant and hence nonsingular. Then, as W is nonsingular, so is A.

As is now familiar, the nonsingularity in Theorem 2 then gives, by negation, the following
equivalent eigenvalue inclusion set in the complex plane.

THEOREM 6. Let S be any nonempty subset of N := {1, 2, · · · , n}, n ≥ 2, with
S := N\S. Then, for any A = [ai,j ] ∈ Cn×n, define the Geršgorin-type disks

ΓS
i (A) := {z ∈ C : |z − ai,i| ≤ rS

i (A)} (any i ∈ S),(2.7)

and the sets

V S
i,j(A):={z ∈ C:(|z− ai,i|− rS

i (A)) · (|z − aj,j | − rS
j (A))≤rS

i (A) · rS
j (A)},(2.8)
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(any i ∈ S, any j ∈ S). Then,

σ(A) ⊆ CS(A) :=

(

⋃

i∈S

ΓS
i (A)

)

∪





⋃

i∈S,j∈S

V S
i,j(A)



 .(2.9)

We remark that Dashnic and Zusmanovich [2] obtained the result of Theorem 5 in the
special case that the set S is a singleton, i.e., Si := {i} for some i ∈ N . In this case, we
define the associated set, from Theorem 6, as the set Di(A), so that, from (2.7) and (2.8),

Di(A) = ΓSi

i (A) ∪





⋃

j∈N\{i}

V Si

i,j (A)



 .(2.10)

Now, rSi

i (A) = 0 from (2.1) so that ΓSi

i (A) = {ai,i} from (2.7). Moreover, we also have,
from (2.8) in this case that, for all j 6= i in N ,

V Si

i,j (A) = {z ∈ C : |z − ai,i| · (|z − aj,j | − rj(A) + |aj,i| ) ≤ ri(A) · |aj,i|} .(2.11)

But as z = ai,i is necessarily contained in V Si

i,j (A) for all j 6= i, we can simply write from
(2.11) that

Di(A) =
⋃

j∈N\{i}

V Si

i,j (A) (any i ∈ N).(2.12)

This shows that Di(A) is determined from (n − 1) sets V Si

i,j (A), plus the added information
from (2.1) on the partial row sums of A. The associated Geršgorin set Γ(A), from (1.2), is
determined from n disks and the associated Brauer set K(A), from (1.6) is determined from
(

n

2

)

Cassini ovals. These sets are compared in the next section.

3. Comparisons with other eigenvalue inclusion sets. We first establish the new result
of

THEOREM 7. For any A = [ai,j ] ∈ Cn×n, n ≥ 2, and for any i ∈ N , consider Di(A) of
(2.12). Then (cf. (1.2)),

Di(A) ⊆ Γ(A),(3.1)

and for n = 2, and for all A = [ai,j ] ∈ C2×2, we have (cf. (1.5) and (1.6))

D1(A) = D2(A) = K(A) = K1,2(A).(3.2)

But, for any n ≥ 3 and for any i ∈ N , there is a matrix F̃ in Cn×n for which

Di(F̃ ) * K(F̃ ) and K(F̃ ) * Di(F̃ ).(3.3)

Proof. To establish (3.1), fix some i ∈ N and consider any z ∈ Di(A). Then from
(2.12), there is a j 6= i such that z ∈ V Si

i,j (A), i.e., from (2.11),

|z − ai,i| · (|z − aj,j | − rj(A) + |aj,i|) ≤ ri(A) · |aj,i|.(3.4)
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If z /∈ Γ(A), then |z − ak,k| > rk(A) for all k ∈ N , so that |z − ai,i| > ri(A) ≥ 0, and
|z − aj,j | > rj(A) ≥ 0. Thus, the left part of (3.4) satisfies

|z − ai,i| · (|z − aj,j | − rj(A) + |aj,i|) > ri(A) · |aj,i|,

which contradicts the inequality in (3.4). Thus, z ∈ Γ(A) for each z ∈ Di(A), which
establishes (3.1).

Next, to establish (3.2), it can be easily seen from (1.5)-(1.6) and (2.11)-(2.12) that (3.2)
is valid for any A = [ai,j ] ∈ C2×2.

Finally, to establish (3.3), consider first the specific 3 × 3 matrix E of

E =





1 1

2

1

2

0 i 1
0 1 −1



 .(3.5)

Then, it can be verified that

Γ(E) = {z ∈ C : |z − 1| ≤ 1} ∪ {z ∈ C : |z − i| ≤ 1} ∪ {z ∈ C : |z + 1| ≤ 1},
K(E) = {z ∈ C : |z − 1| · |z − i| ≤ 1} ∪ {z ∈ C : |z − i| · |z + 1| ≤ 1}

∪ {z ∈ C : |z − 1| · |z + 1| ≤ 1},
D1(E) = {z ∈ C : |z − 1| · (|z − i| − 1) ≤ 0} ∪ {z ∈ C : |z − 1| · (|z + 1| − 1) ≤ 0}.

It is interesting to note that D1(E) reduces to the union of the two disks {z ∈ C :
|z − i| ≤ 1} and {z ∈ C : |z + 1| ≤ 1}, and the single point z = 1. These above three sets
are shown in Fig. 3.1, where we see that the special case i = 1 and n = 3 of (3.3) is valid.

To establish (3.3) in general, let n > 3, and consider the matrix F in Cn×n which is
obtained by adding n − 3 rows of zeros beneath the matrix E of (3.5) and n − 3 columns of
zeros to the right of E, so that E becomes the upper 3 × 3 principal submatrix of F . From
the structure of F , it is not difficult to show that (3.3) holds for F in the case i = 1, i.e.,

D1(F ) * K(F ) and K(F ) * D1(F ).

But, given any i ∈ N , there is a suitable n×n permutation matrix P such that if F̃ := P T FP ,
then

Di(F̃ ) * K(F̃ ) and K(F̃ ) * Di(F̃ ),

completing the proof of Theorem 7.
Next, it is evident from (2.9) of Theorem 6 that, for any A = [ai,j ] ∈ Cn×n,

σ(A) ⊆ Di(A) (all i ∈ N),

so that

σ(A) ⊆ D(A) :=
⋂

i∈N

Di(A).(3.6)

Now, as each Di(A), from (2.12), depends on (n − 1) oval-like sets V Si

i,j (A), it follows that

D(A) of (3.6) is determined from n(n− 1) oval-like sets V Si

i,j (A), which is twice the number
of Cassini ovals, namely

(

n
2

)

, which determine the Brauer set K(A). This suggests, perhaps,
that D(A) ⊆ K(A). This inclusion is true, and this new result is established in
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FIG. 3.1. The sets Γ(E) (shaded dark gray), K(E) (shaded light gray), D1(E) (two disks with the bold
boundary and the point z = 1) for the matrix E of (3.5). The white dots are the eigenvalues of E.

THEOREM 8. For any A = [ai,j ] ∈ Cn×n, n ≥ 2, the associated sets D(A), of (3.6),
and K(A), of (1.6), satisfy

D(A) ⊆ K(A).(3.7)

Proof. First, we observe, from (3.1), that as Di(A) ⊆ Γ(A) for each i ∈ N , then D(A),
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as defined in (3.6), evidently satisfies

D(A) ⊆ Γ(A).(3.8)

To establish (3.7), consider any z ∈ D(A) so that, for each i ∈ N , z ∈ Di(A). Hence, from
(2.12), for each i ∈ N , there is j ∈ N\{i} so that z ∈ V Si

i,j (A), i.e. the inequality of (3.4) is
valid. But from (3.8), D(A) ⊆ Γ(A) implies that there is a k ∈ N with |z − ak,k | ≤ rk(A).
For this index k, there is a t ∈ N\{k} such that z ∈ V Si

k,t(A), i.e.,

|z − ak,k| (|z − at,t| − rt(A) + |at,k|) ≤ rk(A) · |at,k|.

This can be rewritten as

|z − ak,k| · |z − at,t| ≤ |z − ak,k | · (rt(A) − |at,k|) + rk(A) · |at,k|
≤ rk(A)(rt(A) − |at,k|) + rk(A) · |at,k| = rk(A) · rt(A),

that is,

|z − ak,k| · |z − at,t| ≤ rk(A) · rt(A).

Hence, from (1.5) and (1.6), z ∈ Kk,t(A) ⊆ K(A). As this is true for each z ∈ D(A), then
D(A) ⊆ K(A).

We remark that the set D(A) of (3.5) was also considered in Dashnic and Zusmanovich
[2], but with no comparisons with Γ(A) or K(A).

It is interesting also to mention that Huang [4] similarly breaks N = {1, 2, · · · , n} into
disjoint subsets S and S, but assumes a variant of the inequalities of (2.2). Now, if S =
{i1, i2, · · · , ik}, then AS,S := [aij ,i`

] (all ij , i` in S) is its associated k×k principal submatrix
of A, whose associated comparison matrix is given by

M(AS,S) :=











+|ai1,i1 | −|ai1,i2 | · · · −|ai1,ik
|

−|ai2,i1 | +|ai2,i2 | · · · −|ai2,ik
|

...
...

−|aik,i1 | −|aik ,i2 | · · · +|aik ,ik
|











,(3.9)

and it is assumed by Huang that M(AS,S) is a nonsingular M -Matrix (or equivalently, that
AS,S is a nonsingular H-matrix), with the additional assumption (in analogy with (2.6)) that

if r
S(A) := [rS

i1
(A), rS

i2
(A), · · · , rS

ik
(A)]T , then

||M−1(AS,S) · rS(A)||∞ < B2 := min
j∈S

(

|aj,j | − rS
j (A)

rS
j (A)

)

,(3.10)

where B2 is defined in (2.6). We note that our earlier assumption in (2.2 i) makes the associ-
ated principal submatrix AS,S a strictly diagonally dominant matrix, so that M(AS,S) in our
case is necessarily a nonsingular M -matrix.

The result of Huang [4] is more general than the result of our Theorem 5, but it comes
with the added expense of having to explicitly determine M−1(AS,S) for use in (3.10).
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FIG. 4.1. Considered localization sets referring to the matrix G.

4. Numerical example. Finally, we give an example of possible improvement in the
eigenvalue localization for a given matrix. For the matrix

G =









10 0 3 5
0 −10 2 4
2 5 20 0
4 4 0 −20









,

Fig. 4.1 shows the sets Γ(G), K(G), D(G)and C(G) :=
⋂

S⊂N CS(G) of (1.2), (1.6), (3.6)
and (2.9) respectively, shaded decreasingly. Exact eigenvalues are marked by white dots.
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