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A NEW SOURCE OF STRUCTURED SINGULAR VALUE DECOMPOSITION
PROBLEMS

�
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Abstract. The computation of the Singular Value Decomposition (SVD) of structured matrices has become an
important line of research in numerical linear algebra. In this work the problem of inversion in the context of the
computation of curve intersections is considered. Although this problem has usually been dealt with in the field of
exact rational computations and in that case it can be solved by using Gaussian elimination, when one has to work in
finite precision arithmetic the problem leads to the computation of the SVD of a Sylvester matrix, a different type of
structured matrix widely used in computer algebra. In addition only a small part of the SVD is needed, which shows
the interest of having special algorithms for this situation.
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1. Introduction and basic results. The singular value decomposition (SVD) is one of
the most valuable tools in numerical linear algebra. Nevertheless, in spite of its advantageous
features it has not usually been applied in solving curve intersection problems. Our aim in this
paper is to consider the problem of inversion in the context of the computation of the points of
intersection of two plane curves, and to show how this problem can be solved by computing
the SVD of a Sylvester matrix, a type of structured matrix widely used in computer algebra.
It must also be stressed that only a small part of the SVD will be needed.

Our approach to the intersection of parametric curves uses algebraic methods, and an
important step of the process consists of the implicitization of one of the curves by using
resultants. The process leads to the computation of the roots of a polynomial of (usually)
high degree, and so these roots will usually be floating point numbers.

Therefore, although we employ algebraic methods the use of floating point arithmetic is
unavoidable, contrarily to the idea expressed in the last section of [20], where it is indicated
that the algebraic methods assume the procedure is carried out using exact (integer or rational
number) arithmetic.

In fact, it is clear that the solution of practical problems of not small size needs the
combination of symbolic computations and numerical computations, although historically
those two classes of algorithms were developed by two distinct groups of people having very
little interaction with each other.

In connection with the problem we are dealing with, it can be read in [20] that inversion
-computing the parameter � for a point �����
	�� known to lie on the curve- can be performed
using Gauss elimination or Cramer’s rule.

While that assert may be correct when working with exact arithmetic and problems of
small size, the suggested procedure is far from being adequate with problems of large size
which lead to polynomial roots given as floating point numbers.

As it will be seen in Section  , the use of algebraic methods will allow us to formulate
the problem of inversion in terms of the computation of the nullspace of a Sylvester matrix of

�
Received November 10, 2003. Accepted for publication May 15, 2004. Recommended by F. Marcellán. This

work was supported by Research Grant BFM 2003-03510 from the Spanish Ministerio de Ciencia y Tecnologı́a.�
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order � and rank ����� , a task which for accuracy reasons is carried out by using the singular
value decomposition.

Let us mention that the use of the SVD in the context of curve intersection problems has
been advocated in [15], although only for the problem of rank determination. The use of the
SVD for a nullspace computation is not considered in [15], since the authors use a different
approach involving the solution of eigenvalue problems, usually of large size.

The computation of the SVD of a Sylvester matrix has also been suggested as a tool in
an important computer algebra application: the computation of polynomial greatest common
divisors when the coefficients are inexact or imperfectly known [4].

For the sake of completeness, we include some basic results which are used in the next
sections.

1.1. The Sylvester resultant. Following [20], we recall some important facts about
resultants, focusing on the Sylvester resultant, which due to its simplicity in form and
construction is perhaps the best known resultant expression for two polynomials � ��� ����
	����� � ������������ �

�
(with �������� ) and � ��� ����� 	�� � � � ��������� ��� � � (with � � ��!� ).

If we spawn " �$# polynomials of degree less or equal to " �$# �%� by multiplying the
degree " polynomial � ��� � with the # monomials � ��& � � ����� ��� and by multiplying the degree# polynomial � ��� � with the " monomials �

� & � � ����� ��� , we can write this process in matrix
notation as follows:
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)
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The coefficient matrix (of order " �# ) is the Sylvester matrix for � � � � and � ��� � . Let us
observe that we are showing the structure of the Sylvester matrix by rows, while the precise
form of the columns will depend on the relationship between " and # . The resultant of � ��� �
and � � � � (with respect to � ) is the determinant of the Sylvester matrix.

It is well-known that if there exists a common root � of the two polynomials � ��� � and � � � � ,
then the resultant must be zero. But from the above matricial expression we can derive another
deep consequence: if � is a common root of � ��� � and � ��� � , then ���

�RQ ��& � � � �RQ ��&TS � ����� � � ��� �OU
must be an eigenvector of the Sylvester matrix corresponding to the eigenvalue 0. In other
words, the vector ���

�RQ ��& � � � �RQ �4&0S � ����� � � ��� �OU must belong to the nullspace of the Sylvester
matrix.

An alternative resultant formulation, with analogous properties, is the so-called Bézout
resultant, whose construction and properties can be seen in [8]. The order of the Bézout
matrix is " � ��V�" � #XW .

1.2. The Singular Value Decomposition. Let us now recall the concept of singular
value decomposition (SVD):

Given an "ZY # real matrix [ (not necessarily square), there exist orthogonal matrices\
(of order " ) and ] (of order # ), and a diagonal matrix ^ (of size "_Y # ) such that
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[�� \ ^R] U��
This factorization of [ is called the singular value decomposition (SVD) of [ .
The � (with ��� " � # ) nonzero diagonal entries of ^ are the singular values of [ (i.e.

the positive square roots of the eigenvalues of [ U [ ). If there are � (nonzero) singular values,
then � is the rank of [ .

But we also obtain a very important additional advantage from the computation of the
SVD of a matrix [ of size "_Y # (including ] , not only ^ ): the last # � � columns of of ]
form a basis of the nullspace of [ (see [21] and [5]).

The SVD provides the best way of estimating the rank of a matrix whose entries are
floating point numbers. This is specially important in the presence of round-off errors. As
one can read in [15], although in principle the rank of a matrix can be computed by Gaussian
elimination, rounding errors make rank determination a non-trivial task. In this situation, the
use of SVD is a more reliable tool.

This fact was clearly stated in a historical paper by Golub and Kahan [9], where we can
read the following sentences: “In the past the conventional way to determine the rank of [
was to convert [ to a row-echelon form... But in floating-point calculations it may not be
so easy to decide whether some number is effectively zero or not... In other words, without
looking explicitly at the singular values there seems to be no satisfactory way to assign rank
to A”.

Good general references in connection with the computation of the SVD of a matrix are
[11] and [5].

The rest of the paper is organized as follows. In Section 2 an algebraic algorithm for
computing the intersection of two plane curves is presented, and an example for illustrating it
is included. The description of the structure of the SVD problem involved in the intersection
problem is the subject of Section 3.

2. Intersection of two plane curves. We will focus on the case of two plane curves
given by their parametric equations. An intersection algorithm for the case when the two
curves are given by their implicit equations can be seen in [17] and [20]. It must be noticed
that the SVD can also be used in a similar way as a tool in the last step of that algorithm:
given the � -coordinates of the intersection points, find the corresponding 	 -coordinates, or
vice versa.

Let � ��� � � ��� ��� � ��� � ��� �	��
 � � � � � 	 � � � ��� S ��� ���
 S � � � � ( ����� � �2�� ) be a proper ratio-
nal parametrization of the planar curve ��� and let � ��� � � � � ��� � ����� ��� ���
�� ��� � � 	 ��� � �
��� ��� ���
 � ��� � � ( �!�"� # �	$�� ) be a proper rational parametrization of the planar curve �&% . Our
aim is to compute using algebraic techniques the points where these two curves intersect. Our
procedure carries out the successive steps of the classical algebraic algorithm described, for
example, in [8], [13], or [17], trying to circumvent some of the difficulties usually associated
with it. The algorithm consists of the following steps:

Step 1. Using the resultant, compute the implicit polynomial equation ' ��� � 	�� � � of
the curve � ��� � .

Step 2. Substitute the parametric equations � ��� � � � � ��� � � 	 ��� � � into the implicit equa-
tion ' ��� � 	����!� to obtain a single rational polynomial equation ' � � ��� � � 	 ��� �
���!� .

Step 3. Using a polynomial solver, find all the roots of the numerator of
' � � ��� � � 	 ��� �
��� � within the interval of interest � # �	$�� . These roots are the parameter values
along � ��� � of the intersection points.
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Step 4. Using the parametric equations for � ��� � , compute the coordinates of the inter-
section points corresponding to the parameter values found in Step 3.

Step 5. Making use of an inversion algorithm for � ��� � , compute the parameter values
along � � � � of the intersection points found in Step 4, and discard those points whose param-
eters do not belong to � � �3�� .

Step 1 is called the implicitization of the curve � � � � . In [16] we present an algorithm to
obtain the implicit equation, computing ' � ��� 	�� ������� � ��� � ��� �-� � 
 � ��� � � � S ��� �-� 	 
 S � � � � (the
resultant with respect to the variable � of the polynomials � � ��� � � � 
 � � � � and � S ��� � � 	 
 S � � � )
by means of classical bivariate Lagrange polynomial interpolation. That algorithm reduces
the computation of the symbolic determinant ������� ��� � � � �E� � 
 � ��� � � � S ��� �E� 	 
 S � � � � , one of
the most expensive steps in the intersection process, to the computation of the interpolation
data and the solution of a linear system whose coefficient matrix is the Kronecker product of
two Vandermonde matrices.

As shown in [16], it is a remarkable fact that the algorithm admits a natural paralleliza-
tion, and it only involves arithmetic operations with numbers.

The construction of the Sylvester (or Bézout) matrix, which is the fastest part of the
algorithm, can esily be carried out by using Maple.

Step 3 corresponds to the computation of the real roots of a univariate polynomial of high
degree, a task in which problems of numerical instability may appear.

The approach we suggest is the use of Maple (or Mathematica or any other suitable
computer algebra system) for maintaining the exactness of the coefficients of the polynomial.
It is a remarkable fact that when the degrees of the curves being studied are not small, it is
likely that the coefficients of the polynomial cannot be represented even using IEEE double
precision arithmetic, as the example we include in this section shows.

The process of computing the real roots can be done with Maple by using the general
function fsolve, specifying an appropriate number of significant digits by means of the
command Digits. As a general rule, for higher degrees of the polynomial more significant
digits will be necessary to obtain a good accuracy.

Another suitable tool for computing accurately the roots of this polynomial of high de-
gree is the algorithm presented in [1], which uses the GNU multiprecision package GMP.

In this way, by using exact coefficients and high precision along the process of computa-
tion of the roots, we can mitigate the well-known problem of instability which is frequently
associated with the solving of polynomial equations of high degree.

Step 5 carries out the inversion process, that is, the computation of the value of the
parameter � corresponding to each one of the possible intersection points �����
� 		� � computed
at Step 4. Let ��� 	 � 	 	 � one of these points and let 
 be the matrix obtained when substituting
� � � 	 and 	 � 	 	 into the Sylvester matrix of � � � � � � � 
 � � � � and � S ��� � � 	 
 S ��� � (considered
as polynomials in � ) constructed at Step 1.

The crucial result for computing the value of � corresponding to � � 	 � 	 	 � is the one intro-
duced at the end of Section 1.1, which in this case tells us that the vector ���

� Q ��& � � � � � �
� ��� �
belongs to the nullspace of 
 . An analogous result holds for the Bézout resultant [15].

So, if the matrix 
 has rank " �# � � then the vector ���
�RQ ��& � � � � � �
� ��� � is a basis of

the nullspace of 
 . Since ] is orthogonal, in the last column of that matrix in the SVD of

 we obtain a multiple of that vector with euclidean norm 1: � ���

� Q ��& � � � � � �
� ��� � . Taking
this into account the value of � corresponding to ��� 	 � 	 	 � is � �����	��� .

In this way, the computation of the SVD for each matrix obtained by evaluating the
Sylvester matrix at the point � ��
� 	�� � of the curve gives us the corresponding value of � (i.e.
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the solution of the inversion problem) when the rank is " �$# �%� , which is the usual case (i.
e. the case of a regular point).

As the matrices whose SVD have to be computed are of order " ��# and rank " �# � � , and we are only interested in computing the right singular vector associated to its
smallest singular value, we can consider, for computing this SVD, the partial singular value
decomposition algorithm (PSVD) described in [22] and [23], and whose FORTRAN code is
available in netlib (see www.netlib.org/vanhuffel/psvd-doc).

Finally, we illustrate the algorithm presented in this section with the following small
example, taken from [3]. For the sake of completeness we show the application of the al-
gorithm by using the computer algebra system Maple. When numerical computations are
required (steps 3, 4 and 5 of the algorithm) they are performed fixing ��� digits of precision
(by using the sentence Digits:=16). The first two steps are carried out by using exact
rational arithmetic.

Example. Let � � � �R� � � � � � � 	 � � � � (with �&� � ����� � ) be a rational Bézier curve of degree�
where

� � � ��� � � ��� �

 � ��� � � � �S �O� � � ��� � �� � S �J� � � � � � �� � � �O� � � � � �S ���

�O� � � � � � � S � �O� � � � � � �S � S �O� � � � � � � S � � �J� � � � S � � S � � �O� � � � � � � �

	 ��� � � � S ��� �

RS ��� � � �S �O� � � ��� � �� � �J� � � � � � �� � S �O� � � � � � �� � � �O� � � � S � �� � � �J� � � � � �S ���

�O� � � � � � � S � �J� � � � � � �S � S �O� � � � � � �S � � �O� � � � S � �S � � �J� � � � � � � �

and let � ��� � � � � ��� � � 	 ��� � � (with � � � ����� � ) be a polynomial Bézier curve of degree �
where

� ��� � � � �� � �O�R� � ��� � ���  � S �J� � � �
	 ����  � � �O� � � � � � ��  � � �O� � � � �� ���  � 	 �O� � � � S � �� � � �O� � � � �
	 ��� � � � �

� �J� � � ��� � �  � �O�R� � � � ������� � S �O� � � � 	 � ����-� � � �O� � � � �

���,����� � � �O� � � � � � ����-� � � �O� � � � � ������� � 	 �J� � � � S � �  � � �O� � � �X� �
� ��� �

Our aim is to compute the points where these two curves intersect (see Fig. 2.1).
The results obtained at each step of our algorithm are presented below.

-Step 1. Let � � � � ��� ��� � 
 � � � � and � � � S � � ��� 	 
 S ��� � . The following Maple instruction

S:=sylvester(p,q,t);

computes the Sylvester matrix of � and � with respect to � . We will need it in Step 5 and we
will denote it by S:
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The polynomial defining the implicit equation of � ��� � is the determinant of
�

:

' ��� � 	�� � � � � �
�  � � � 4� � �

��� � � 	 �  ��  �� �� � � � � �  �
� � � �  � �

��� � � 	 � ��� �

�  � � 	 S � � ���  ���� �� � S
� � �-�  �

 � � 	 S � S � � ���  �� �� � S 	 � ��� ���� � S 	 � � ��������� ���� �� � 	 � �� � �� �� � �  ���  �
 � � 	 S �

� ��� �  �
 � � � 	 � � � �

� � 	 � � � �  �� �� 	 � � ���� � �� �  	 S � � � �  �
 � � 	 � � �� � �

��� 	 � ����
��� 	 � �

-Step 2. The polynomial obtained by substituting � ��� � � � � ��� � � 	 ��� �
� into ' �����
	�� is
an irreducible polynomial of degree �,� whose leading term is

���������� �� 4��������� � �,��� � � �  �
 ��� � � �

	
�

-Step 3. The polynomial computed in Step 2 has the following roots:

� � ��� � � ���� ��� � ��� �� �������  � ��� &0S
�0S ��� �  ����������� � � � ��� �-�-� � ��� & �
� � ��� � �� � ������  � � ���������
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� � ��� � ������� ������������� ����
� � ��� � ,����� � �������� ���� �� �
� 	 ��� � �� ��� ���� �� � �
� �
�����
� � � � � � ����-�,�  � � ��  �� � ���
� � � � � � � � � � � � ����� � � ����� � � ��� & � �

They have been computed by using the Maple command fsolve.

-Step 4. As � ��� � is a Bézier curve and � � � � � �� � � ��� � , there are only � possible points
in the intersection of the two curves:

��� � �
	 � � � �O� � � ��� � ��� � �����������   � ����� � � ��������� ����� � �4� � ���
�4� � ��� & � �
���0S �
	-S � � �O� � � ������� � ���-� ������ ���4��� � � � �������� � �  ����������� � � �
��� � �
	 � � � �O� � � � � �� � ���-���,� ����� �� � ��� & � ��� � � � ��� �  � � � �� ��� � �-��� � ��� & � �
��� � �
	 � � � � � � �������� �� ����� � � �,� � ��� & � � � � �7����� � ���� � �����4����� � ��� & � �
��� � �
	 � � � � � � � ����� � �������� �,� ��� �  ���R� � � � ��4�  � � � �����  �� � ��� & � �
��� 	 �
	 	 � � � � � �� � � � � � � � �,� � � � � ���2� � � �������  � ��� � � ������� � ��� & � � �

-Step 5. Let us consider the point � � � �
	 � � . The following Maple code returns the singular
values of 
 and the value of the parameter t corresponding to � � � � 	 � � :
M:=subs({x=-0.1370658337732254,y=-0.06346706453153401, op(S));
evalf(Svd(M,V,’right’)); t1:=V[9,10]/V[10,10];

� � � �-� � ������� � � � � �� � �  � � �� � ��� ��� �4����� ��-� ���-� � �4� ��� ,����� ���������� � � � ����� ����� ������ � �����  �
 �  ��,�������� �������� � � ��� �  �
� � ��� �� ��,� � � ��� � � � � �-� � � 4� ���4���������������2� � �7�  � ���4������� � �� ��� � �� �  4��������� ���-������� � � � �2� � ��� ������ � �� � �-�,����� � ��� & � 	 �

� � ��� � �
���,�����7���,�-� �����������
Let us observe that the system is only computing the singular values and the matrix ] ,

and not the full singular value decomposition.
As � � � � ����� � , the interval where Bézier curves are defined, � � � � 	 � � is a point in � ��� � ,

and therefore it is a point in the intersection of the two curves.
Proceeding in the same way for the other five points we obtain

�OS ��� � ��� ��-� � �� � ���,�-���� �
� � ��� � � � ��-� � �������� ��� � � �
� � ��� � ��� ����-�,��� � �� � ���  �
� � ��� � �,� � � ���� �7������� � � ���
� 	 ��� � ���  � �������� � � ��� �����
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and therefore the � points calculated in Step 3 are all the points in which � � � � and � ��� �
intersect.

Remark 1. Let us observe that if we solve the homogeneous linear system 
 � � � by
means of the following Maple code

v:=vector([0,0,0,0,0,0,0,0,0,0]); linsolve(M, v);

instead of computing the SVD of 
 we obtain the trivial solution � � � , and the value
of the parameter � � cannot be computed.

It is illustrative to observe that although nothing is said in the description of the command
nullspace of Maple, if the user asks for more information from the system (for example by
writing the instruction infolevel[nullspace]:=5), then the system admits Gaussian
elimination is not being used, by showing the following message:

nullspace: doing a singular value decomposition

Of course, the cost of using the singular value decomposition is much higher that that
of using Gaussian elimination, but it must be taken into account that here reliability is much
more important than efficiency, as it is stressed in Section 1.2 in a general setting. This is the
fact that Maple is implicitly recognizing.

Remark 2. Let us point out that in this example multiple precision arithmetic is needed in
order to represent the exact coefficients of the polynomial obtained in Step 2. This necessity
has also been recognized in [3].

3. Remarks on the special features of the SVD problem. Our aim in this paper has
been to show how in the inversion problem, very common in CAGD applications, the com-
putation of the SVD can be a valuable tool. The special structure of the SVD problem which
arises in the last step of the intersection algorithm should motivate the research of algorithms
adapted to it. In this last section we will remark some of the special features of the problem
and we will give a brief overview of some related work.

To begin with, let us observe that the Sylvester matrix of � � � � �R� � 
 � � � � and � S � � � �
� 
 S ��� � evaluated at each possible intersection point has the following block structure:


 � �

 �

 S�� �

In addition, the blocks 
 � and 
 S are upper triangular Toeplitz matrices.
On the other hand, it can easily be seen that 
 has a displacement rank equal to two (see

[14]).
Algorithms for the computation of very accurate singular value decompositions of ma-

trices with unit displacement rank have recently been presented in [6]. Although the author
claims those results cannot be extended to matrices with displacement rank higher than one,
we think the case of displacement rank equal to two may be an interesting problem. Accord-
ing to [6], it is likely that in that case higher precision will be needed.

It is also important to take into account that, as we explained in Section 2, only a small
part of the SVD of the evaluated Sylvester matrix 
 is needed. In fact we know that 
 has
the singular value zero and only the last column of ] is needed.

For this reason we include in this section a brief review of some papers related to the
computation of partial singular value decompositions which have appeared in the last few
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years, and which can serve as a guide to find improved algorithms adapted to the specific
problem we have described.

Of course, the computation of the largest singular values and associated singular vectors
is the natural choice when one considers the problem of approximating a matrix by another
matrix of lower rank ([11], [2]). In addition, it must be taken into account that the computation
of the smallest singular values is usually a more difficult task than the computation of the
largest ones.

A portion of the singular values and vectors of a large sparse matrix A is computed in
[12] by using a Jacobi-Davidson type method which makes use of the block structure of the
augmented matrix � � [[ U � � �

In [10], a block Lanczos method for computing the greatest singular values and associ-
ated vectors of a large and sparse matrix is presented.

Another procedure for the computation of a few of the largest singular values and the
associated singular vectors of large sparse matrices has been given in [24]. In this case the
method has its roots in the theory of orthogonal polynomials (see [7], in particular

�
5.5) . In

addition, an overview of a parallel implementation is presented.
In [18], a modification of the preconditioning step of Davidson method is used for com-

puting the smallest singular values and the corresponding right singular vectors of large sparse
matrices.

The subject of the computation of the smallest singular value and the corresponding
singular vectors of a matrix has also been considered in [19]. In this case, as in our application
to the inversion problem, the matrix is assumed to be a square matrix of order # , and for its
rank the cases � � # and � � # ��� are treated.

Among the recent research devoted to the subject of the computation of a few of the
smallest singular values, the work presented in [22] and [23] deserves a special attention, due
to two important reasons: the algorithm is available in netlib and the study of the computa-
tional complexity is carried out in detail in [23]. In addition, the application to the computa-
tion of the nullspace of a matrix is stressed, as well as the applicability to total least squares
problems ([2], [11]).

The partial singular value decomposition algorithm (PSVD) presented in [22] and [23]
is specially suitable in our case because only the smallest singular value and its associated
right singular vector are required, and the gap between the singular values associated to the
desired and undesired singular vectors is large. It must be noticed that if in this situation
we consider a square matrix of order # , the computational cost of the PSVD algorithm is of
� # � ��� ��� � # S � multiplications (or divisions) while the computational cost of the classical
algorithm for the computation of the full SVD (i.e. ^ ,

\
and ] ) is of 4� # � �  ��� � # S �

multiplications, and the computational cost of the classical SVD for computing ^ and ]
is of � # � ��� � # S � multiplications. It is also a remarkable fact that the PSVD algorithm is
only 4 times more expensive than Gaussian elimination (which has a cost of # � ��� ��� � # S �
multiplications) despite it is much more reliable when floating point arithmetic is used [23].
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[16] A. MARCO AND J. J. MARTÍNEZ, Using polynomial interpolation for implicitizing algebraic curves, Com-
puter Aided Geometric Design 18 (2001), pp. 309–319.

[17] N. M. PATRIKALAKIS AND T. MAEKAWA, Shape Interrogation for Computer Aided Design and Manufac-
turing, Springer-Verlag, Berlin, 2002.

[18] B. PHILIPPE AND M. SADKANE, Computation of the fundamental singular subspace of a large matrix, Linear
Algebra Appl. 257 (1997), pp. 77–104.

[19] H. SCHWETLICK AND U. SCHNABEL, Iterative computation of the smallest singular value and the corre-
sponding singular vectors of a matrix, Linear Algebra Appl. 371 (2003), pp. 1–30.

[20] T. W. SEDERBERG AND J. ZHENG, Chapter 15: Algebraic methods for Computer Aided Geometric Design,
in: Farin, G., Hoscheck, J. and Kim, M. S. (Eds.), Handbook of Computer Aided Geometric Design,
Elsevier, 2002.

[21] G. STRANG, Linear Algebra and Its Applications, 3rd edition, Harcourt Brace Jovanovich, San Diego, 1988.
[22] S. VAN HUFFEL, Partial singular value decomposition algorithm, J. Comput. Appl. Math. 33 (1990), pp.

105–112.
[23] S. VAN HUFFEL, J. VANDEWALLE AND A. HAEGEMANS, An efficient and reliable algorithm for computing

the singular subspace of a matrix, associated with its smallest singular values, J. Comput. Appl. Math.
19 (1987), pp. 313–330.

[24] S. VARADHAN, M. W. BERRY AND G. H. GOLUB, Approximating dominant singular triplets of large sparse
matrices via modified moments, Numer. Algorithms 13 (1996), pp. 123–152.


