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TIKHONOV REGULARIZATION WITH NONNEGATIVITY CONSTRAINT *

D. CALVETTI f, B. LEWIS %, L. REICHEL §, AND F. SGALLARI T

Abstract. Many numerical methods for the solution of ill-posed problems are based on Tikhonov regulariza-
tion. Recently, Rojas and Steihaug [15] described a barrier method for computing nonnegative Tikhonov-regularized
approximate solutions of linear discrete ill-posed problems. Their method is based on solving a sequence of param-
eterized eigenvalue problems. This paper describes how the solution of parametrized eigenvalue problems can be
avoided by computing bounds that follow from the connection between the Lanczos process, orthogonal polynomials
and Gauss quadrature.
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1. Introduction. The solution of large-scale linear discrete ill-posed problems contin-
ues to receive considerable attention. Linear discrete ill-posed problems are linear systems of
equations

(1.1) Az =b, AeR™"  gzcR', beR™”,

with a matrix of ill-determined rank. In particular, A has singular values that “cluster” at
the origin. Thus, A is severely ill-conditioned and may be singular. We allow m # n. The
right-hand side vector b of linear discrete ill-posed problems that arise in the applied sciences
and engineering typically is contaminated by an error e € R™, which, e.g., may stem from
measurement errors. Thus, b = b + e, where b is the unknown error-free right-hand side
vector associated with b.

We would like to compute a solution of the linear discrete ill-posed problem with error-
free right-hand side,

(1.2) Az = b.

If A is singular, then we may be interested in computing the solution of minimal Euclidean
norm. Let & denote the desired solution of (1.2). We will refer to Z as the exact solution.

Let At denote the Moore-Penrose pseudo-inverse of A. Then zy := A'b is the least-
squares solution of minimal Euclidean norm of (1.1). Due to the error e in b and the ill-
conditioning of A, the vector zy generally satisfies

(1.3) llzoll > 12,

and then is not a meaningful approximation of Z. Throughout this paper || - || denotes the
Euclidean vector norm or the associated induced matrix norm. We assume that an estimate of
||Z||, denoted by A, is available and that the components of Z are known to be nonnegative.
We say that the vector Z is nonnegative, and write £ > 0. For instance, we may be able to
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determine A from knowledge of the norm of the solution of a related problem already solved,
or from physical properties of the inverse problem to be solved. Recently, Ahmad et al. [1]
considered the solution of inverse electrocardiography problems and advocated that known
constraints on the solution, among them a bound on the solution norm, be imposed, instead
of regularizing by Tikhonov’s method.

The matrix A is assumed to be so large that its factorization is infeasible or undesirable.
The numerical methods for computing an approximation of Z discussed in this paper only
require the evaluation of matrix-vector products with A and its transpose A7

Rojas and Steihaug [15] recently proposed that an approximation of z be determined by
solving the constrained minimization problem

(1.4) min ||Az —b||,
llz| <A
>0

and they presented a barrier function method for the solution of (1.4).
Let 2§ denote the orthogonal projection of zo onto the set

(1.5) R™" := {z € R" : z > 0},

i.e., we obtain z§ by setting all negative entries of zq to zero. In view of (1.3), it is reasonable
to assume that the inequality

(1.6) lzd [l > A
holds. Then the minimization problems (1.4) and

1.7 min ||Az —b||
llz|=A
z2>0
have the same solution. Thus, for almost all linear discrete ill-posed problems of interest,
the minimization problems (1.4) and (1.7) are equivalent. Indeed, the numerical method
described by Rojas and Steihaug [15, Section 3] solves the problem (1.7).

The present paper describes a new approach to the solution of (1.7). Our method makes
use of the connection between the Lanczos process, orthogonal polynomials, and quadrature
rules of Gauss-type to compute upper and lower bounds for certain functionals. This connec-
tion makes it possible to avoid the solution of large parameterized eigenvalue problems. A
nice survey of how the connection between the Lanczos process, orthogonal polynomials, and
Gauss quadrature can be exploited to bound functionals is provided by Golub and Meurant
[6].

Recently, Rojas and Sorensen [14] proposed a method for solving the minimization prob-
lem

(1.8) min l|Az —bl|,
without nonnegativity constraint, based on the LSTRS method. LSTRS is a scheme for the
solution of large-scale quadratic minimization problems that arise in trust-region methods
for optimization. The LSTRS method expresses the quadratic minimization problem as a
parameterized eigenvalue problem, whose solution is determined by an implicitly restarted
Arnoldi method. Matlab code for the LSTRS method has been made available by Rojas [13].
The solution method proposed by Rojas and Steihaug [15] for minimization problems
of the form (1.7) with nonnegativity constraint is an extension of the scheme used for the
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solution of minimization problems of the form (1.8) without nonnegativity constraint, in the
sense that the solution of (1.7) is computed by solving a sequence of minimization problems
of the form (1.8). Rojas and Steihaug [15] solve each one of the latter minimization problems
by applying the LSTRS method.

Similarly, our solution method for (1.7) is an extension of the scheme for the solution of

1.9 min ||Az —b
(19 min Az 3|

described in [5], because an initial approximate solution of (1.7) is determined by first solv-
ing (1.9), using the method proposed in [5], and then setting negative entries in the computed
solution to zero. Subsequently, we determine improved approximate solutions of (1.7) by
solving a sequence of minimization problems without nonnegativity constraint of a form
closely related to (1.9). The methods used for solving the minimization problems without
nonnegativity constraint are modifications of a method presented by Golub and von Matt [7].
We remark that (1.6) yields ||zo|| > A, and the latter inequality implies that the minimization
problems (1.8) and (1.9) have the same solution.

This paper is organized as follows. Section 2 reviews the numerical scheme described
in [5] for the solution of (1.9), and Section 3 presents an extension of this scheme, which is
applicable to the solution of the nonnegatively constrained problem (1.7). A few numerical
examples with the latter scheme are described in Section 4, where also a comparison with the
method of Rojas and Steihaug [15] is presented. Section 5 contains concluding remarks.

I11-posed problems with nonnegativity constraints arise naturally in many applications,
e.g., when the components of the solution represent energy, concentrations of chemicals, or
pixel values. The importance of these problems is seen by the many numerical methods that
recently have been proposed for their solution, besides the method by Rojas and Steihaug
[15], see also Bertero and Boccacci [2, Section 6.3], Hanke et al. [8], Nagy and Strakos [11],
and references therein. Code for some methods for the solution of nonnegatively constrained
least-squares problems has been made available by Nagy [10]. There probably is not one best
method for all large-scale nonnegatively constrained ill-posed problems. It is the purpose of
this paper to describe a variation of the method by Rojas and Steihaug [15] which can reduce
the computational effort for some problems.

2. Minimization without nonnegativity constraint. In order to be able to compute
a meaningful approximation of the minimal-norm least-squares solution & of (1.2), given
{4, b}, the linear system (1.1) has to be modified to be less sensitive to the error e in b.
Such a modification is commonly referred to as regularization, and one of the most popular
regularization methods is due to Tikhonov. In its simplest form, Tikhonov regularization
replaces the solution of the linear system of equations (1.1) by the solution of the Tikhonov
equations

(2.1) (ATA 4 Xz = ATb.

For each positive value of the regularization parameter A, equation (2.1) has the unique solu-
tion

(2.2) zy = (ATA+ A1) ATD.
It is easy to see that

lim z) = xo lim z, = 0.
ANO ’ A— 00
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These limits generally do not provide meaningful approximations of . Therefore the
choice of a suitable bounded positive value of the regularization parameter X is essen-
tial. The value of X\ determines how sensitive the solution x) of (2.1) is to the error e,
how large the discrepancy b — Ax) is, and how close ) is to the desired solution Z of
(1.2). For instance, the matrix AT A + AT is more ill-conditioned, i.e., its condition number
K(ATA + M) := ||ATA + ||||(AT A + XI)~1|| is larger, the smaller A > 0 is. Hence, the
solution z is more sensitive to the error e, the smaller A > 0 is.

The following proposition establishes the connection between the minimization problem
(1.9) and the Tikhonov equations (2.1).

PROPOSITION 2.1. ([7]) Assume that ||zo| > A. Then the constrained minimization
problem (1.9) has a unique solution z, of the form (2.2) with Aa > 0. In particular,

(2.3) lzasll = A.

Introduce the function
(2.4) 6\ = llzal?,  A>0.

PROPOSITION 2.2. ([5]) Assume that Atb # 0. The function (2.4) can be expressed as
(2.5) d(N) =bTAATA+2AD)724Tb,  X>0,
which shows that ¢() is strictly decreasing and convex for A > 0. Moreover, the equation
(2.6) p(A) =7

has a unique solution A, such that 0 < A < oo, for any = that satisfies 0 < 7 < || ATb]|2.
We would like to determine the solution Aa of the equation

(2.7) p(\) = A2

Since the value of A, in general, is only an available estimate of ||Z]|, it is typically not
meaningful to compute a very accurate approximation of Aa. We outline how a few steps
of Lanczos bidiagonalization applied to A yield inexpensively computable upper and lower
bounds for ¢(\). These bounds are used to determine an approximation of Aa.

Application of £ < min{m,n} steps of Lanczos bidiagonalization to the matrix A with
initial vector b yields the decompositions

(2.8) AVy =Up1Coyre,  ATU=ViCF, b= 01Use,

where V; € R™*¢ and Upyq € R™* (1) satisfy V'V, = I and U, ,Ugyy = Ipqr. Further,
U, consists of the first £ columns of U,y and o1 = ||b]|. Throughout this paper I; denotes
the j x j identity matrix and e; is the jth axis vector. The matrix Cy1 ¢ is bidiagonal,

p1 0
g2 P2
(2.9) Coy1p = . € R((-‘rl)xﬁ,
o pe
O O¢+1
with positive subdiagonal entries o2, 03, . . ., g¢4+1; C¢ denotes the leading £ x £ submatrix of

C+1,¢. The evaluation of the partial Lanczos bidiagonalization (2.8) requires £ matrix-vector
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product evaluations with both the matrices A and A”. We tacitly assume that the number of
Lanczos bidiagonalization steps £ is small enough so that the decompositions (2.8) with the
stated properties exist with o1 > 0. If o441 vanishes, then the development simplifies; see
[5] for details.

Let Cry1.0 = Qry1,0Re denote the QR-factorization of Cyyy ¢, i.6., Qpy1,e € REFDXE
has orthonormal columns and R, € R®*¢ is upper bidiagonal. Let R,_; , denote the leading
(€ — 1) x £ submatrix of R, and introduce the functions

(2.10) o7 (N) = ||ATD||%e] (R Ry + MLp) " 2en,
(2.11) dF (V) == |ATb|Pe] (R{_y yRe—1, + M) 2ex,

defined for A > 0. Using the connection between the Lanczos process and orthogonal poly-
nomials, the functions ¢>2‘E()\) can be interpreted as Gauss-type quadrature rules associated
with an integral representation of ¢(\). This interpretation yields

(2.12) ¢ (V) <o(N) <gf(N),  A>0;

details are presented in [5]. Here we just remark that the factor ||A7b|| in (2.10) and (2.11)
can be computed as ||ATb|| = pyo1, where the right-hand side is defined by (2.8) and (2.9).
We now turn to the zero-finder used to determine an approximate solution of (2.7). Eval-
uation of the function ¢(\) for several values of A can be very expensive when the matrix A
is large. Our zero-finder only requires evaluation of the functions ¢2t (M) and of the derivative

d
(2.13) 8 (V) = =20 ATblel (R (Rere + Mi) e

for several values of A\. When the Lanczos decomposition (2.8) is available, the evaluation
of the functions ¢jt()\) and derivative (2.13) requires only O(¥£) arithmetic floating point
operations for each value of A; see [5].

We seek to find a value of A such that

(2.14) AP < §(N) < A2,

where the constant 0 < n < 1 determines the accuracy of the computed solution of (2.7). As
already pointed out above, it is generally not meaningful to solve equation (2.7) exactly, or
equivalently, to letn := 1.

Let A be a computed approximate solution of (2.7) which satisfies (2.14). It follows from
Proposition 2.2 that X is bounded below by Aa, and this avoids that the matrix A7 A + AT has
a larger condition number than the matrix AT A + Aa1.

We determine a value of ) that satisfies (2.14) by computing a pair {£, A}, such that

(2.15) AP <gr (N, oF(N) < A%

It follows from (2.12) that the inequalities (2.15) imply (2.14). For many linear discrete ill-
posed problems, the value of £ in a pair {¢, A} that satisfies (2.15) can be chosen fairly small.

Our method for determining a pair {£, A} that satisfies (2.15) is designed to keep the
number of Lanczos bidiagonalization steps £ small. The method starts with £ = 2 and then
increases £ if necessary. Thus, for a given value of £ > 2, we determine approximations )\f_ﬂ),
j=0,1,2,..., of the largest zero, denoted by A, of the function

hE(A) = ¢f (N) — A%
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PROPOSITION 2.3. ([5]) The function ¢/ (), defined by (2.11), is strictly decreasing
and convex for A > 0. The equation

(2.16) ofN) =1

has a unique solution ), such that 0 < A < oo, for any 7 that satisfies 0 < 7 < || Atb]|2.
The proposition shows that equation (2.16) has a unique solution whenever equation (2.7)

has one. Let the initial approximation A&O) of A\, satisfy Ay < )\§0). We use the quadratically
convergent zero-finder by Golub and von Matt [7, equations (75)-(78)] to determine a mono-

tonically decreasing sequence of approximations A, j=1,2,3,...,0f A,. The iterations
with the zero-finder are terminated as soon as an approximation )\5”), such that

1
(2.17) TG DA%+ A% < oF APy < A2
has been found. We used this stopping criterion in the numerical experiments reported in
Section 4. A factor different from 1/10 could have been used in the negative term in (2.17).
The factor has to be between zero and one; a larger factor may reduce the number of iterations
with the zero-finder, but increase the number of Lanczos bidiagonalization steps.

If AP also satisfies
(2.18) Aff < gy (),

then both inequalities (2.15) hold for A = )\g”), and we accept )\y’) as an approximation of
the solution Aa of equation (2.7).

If the inequalities (2.17) hold, but (2.18) does not, then we carry out one more Lanczos
bidiagonalization step and seek to determine an approximation of the largest zero, denoted
by A¢y1, of the function

hz_+1 (’\) = ¢2_+1 ()‘) - A27

using the same zero-finder as above with initial approximate solution ,\Efjr)l = /\Ef’).
Assume that /\,(_,”) satisfies both (2.17) and (2.18). We then solve

(2.19) (RTRe + AP 1)y = || ATb|les.
The solution, denoted by , yields the approximation
(2.20) Z:=Vy

of zx,. The vector Z is a Galerkin approximation of Tr) such that [|Z||* = ¢, (Agp));

see [3, Theorem 5.1]. We remark that in actual computations, ¢ is determined by solving a
least-squares problem, whose associated normal equations are (2.19); see [5] for details.

3. Minimization with nonnegativity constraint. This section describes our solution
method for (1.7). Our scheme is a variation of the barrier function method used by Rojas and
Steihaug [15] for solving linear discrete ill-posed problems with nonnegativity constraint.
Instead of solving a sequence of parameterized eigenvalue problems, as proposed in [15], we
solve a sequence of Tikhonov equations. Similarly as in Section 2, we use the connection
between the Lanczos process, orthogonal polynomials, and Gauss quadrature to determine
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how many steps of the Lanczos process to carry out. Analogously to Rojas and Steihaug
[15], we introduce the function

1 n
(3.1 fulz) == imTATAm —bT Az — /LZ In¢;,
j=1
which is defined for all vectors z = [£1,&a, . .., &,]7T in the interior of the set (1.5). Such

vectors are said to be positive, and we write z > 0. The barrier parameter z > 0 determines

how much the solution of the minimization problem

3.2 min T

42 o S

is penalized for being close to the boundary of the set (1.5). We determine an approximate

solution of (1.7) by solving several minimization problems related to (3.2) for a sequence of

parameter values u = (), j = 0,1,2,... , that decrease towards zero as j increases.
Similarly as Rojas and Steihaug [15], we simplify the minimization problem (3.2) by

replacing the function f,(x) by the first few terms of its Taylor series expansion at z =

[€17§27 LR 7€n]Ty
0@+ 1) = fu(e) + (VI (@) h+ WV F ()b,
where
Viu(z)=ATAz — ATb—pXte, V2fu(z)=ATA+puX 2% X = diag[z],

ie., X = diag[¢, &, .. .,&,]. Here and below ¢ = [1,1,...,1]7 € R*. For u > 0 and z
fixed, we solve the quadratic minimization problem with respect to A,

min  g,(z + h).
Hw+’}1b||=A

This is a so-called trust-region subproblem associated with the minimization problem (3.2).
Letting z := 2 + h yields the equivalent quadratic minimization problem with respect to z,

(3.3) ”nﬁinA {%zT(ATA +uX "2z — (ATb + 2uX_1c)Tz} )
zll=

We determine an approximate solution of the minimization problem (1.7) by solv-
ing several minimization problems of the form (3.3) associated with a sequences of pairs
{wz} = {u@, 2}, j =0,1,2,... , of positive parameter values and positive approxi-
mate solutions of (1.7), such that the former converge to zero as j increases. The solution z ()
of (3.3) associated with the pair {u(?), 2(/)} determines a new approximate solution z(+1)
of (1.7) and a new value (1) of the barrier parameter; see below for details.

We turn to the description of our method for solving (3.3). The method is closely related
to the scheme described in Section 2.

The Lagrange functional associated with (3.3) shows that necessary and sufficient con-
ditions for a feasible point z to be a solution of (3.3) and A € R to be a Lagrange multiplier
are that the matrix AT A + X =2 + \I be positive semidefinite and

(i) (ATA+pX2+X)z=ATb+2uX e,
(3:4) (@) A(ll=l* - A% =0,
(ii5) A >0.
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For each parameter value p > 0 and diagonal matrix X with positive diagonal entries,
the linear system of equations (3.4)(i) is of a similar type as (2.1). The solution z depends on
the parameter A, and we therefore sometimes denote it by zy. Introduce the function

»(A) = [laall’, A>0.
Equation (3.4)(i) yields
(35) P\ = bTA+2uc" XTYATA+ uX 2+ 2D 7HA D + 2uX e,

and we determine a value of A > 0, such that equation (3.4)(ii) is approximately satisfied, by
computing upper and lower bounds for the right-hand side of (3.5) using the Lanczos process,
analogously to the approach of Section 2. Application of £ steps of Lanczos tridiagonalization
to the matrix A + X ~2 with initial vector ATb + 2 X ~'c yields the decomposition

(3.6) (ATA + puX )Wy = WeTe + feef
where W, € R**¢ and f, € R” satisfy
W{We =1, Weer=(A"b+2uX""¢)/|ATb+2uX""ell, W[ fr=0.

The matrix T, € R¢*¢ is symmetric and tridiagonal, and since AT A + pX ~2 is positive
definite for 4 > 0, so is T.

Assume that f, # 0, otherwise the formulas simplify, and introduce the symmetric tridi-
agonal matrix Ty, € R XD with leading principal submatrix T, last sub- and super-
diagonal entries || f||, and last diagonal entry chosen so that 7%, is positive semidefinite
with one zero eigenvalue. The last diagonal entry can be computed in O(¢) arithmetic float-
ing point operations.

Introduce the functions, analogous to (2.10) and (2.11),

(3.7) Yy (A) == ||[ATb + 2uX " e|)Pe] (Tt + ALo) ey,
(3.8) WFON) = |ATb + 2uX " te| |2l (Trg1 + Meyr) " 2er.

Similarly as in Section 2, the connection between the Lanczos process and orthogonal poly-
nomials makes it possible to interpret the functions wﬁi(A) as Gauss-type quadrature rules
associated with an integral representation of the right-hand side of (3.5). This interpretation
yields, analogously to (2.12),

(3.9) vy () <o) <gF(N),  A>0;

see [4] for proofs of these inequalities and for further properties of the functions @b?:()\).
Let 0 < n < 1 be the same constant as in equation (2.14). Similarly as in Section 2, we
seek to determine a value of A > 0, such that

(3.10) A% < () < A%

This condition replaces equation (3.4)(ii) in our numerical method. We determine a pair
{¢€, A}, such that

(3.11) APp? <y (N), () < A%

The value of A so obtained satisfies (3.10), because it satisfies both (3.9) and (3.11). For many
linear systems of equations (3.4)(i), the inequalities (3.11) can be satisfied already for fairly
small values of £.
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For ¢ = 2,3,4, ..., until a sufficiently accurate approximation of (1.7) has been found,
we determine the largest zero, denoted by A,, of the function

(312) gF () = 9 () — (A% 4 oo (1~ DA?),

using the quadratically and monotonically convergent zero-finders discussed by Golub and
von Matt [7]. The iterations with the zero-finders are terminated when an approximate zero

A%%) has been found, such that

1 . .
(3.13) 1_0(772 —1A2 + A% < 9F(AP) < A2

cf. (2.17). The purpose of the term 55 (> — 1)A? in (3.12) is to make the values ¢j(A§j)),
j=0,1,2,..., converge to the midpoint of an interval of acceptable values; cf. (3.13).
If, in addition, ' satisfies

(3.14) A%p? <7 (AP,

then both inequalities (3.11) hold for A = )\E,”), and we accept ,\ﬁ”) and as an approximation
of the largest zero of 1, ().

If (3.13) holds, but (3.14) is violated, then we carry out one more Lanczos tridiagonal-
ization step and seek to determine an approximation of the largest zero, denoted by A4, of
the function g7, | (A) := ¢, | (A) — A%

Let )\ff’) satisfy both inequalities (3.11). Then we determine an approximate solution
of the linear system of equations (3.4)(i) using the Lanczos decomposition (3.6). Thus, let §
denote the solution of

(Te + AP I )y = |ATb + 2uX ~Leljes.
Then
(3.15) 3 :=Wyj

is @ Galerkin approximation of the vector z, ().
£

We are in a position to discuss the updating of the pair {4, 2(/) }. Let # be the computed
approximate solution of the minimization problem (3.3) determined by p = p© and z =
z(9) . Define h\9) := 7 — 2(9) and compute the candidate solution

(3.16) # = 20 4 ap®

of (1.7), where the constant d > 0 is chosen so that & is positive. As in [15], we let
T 1.(5)
. N
(3.17) d:=min < 1, 0.9995 eglzlilo Th)]
1<k<n

Let § > 0 be a user-specified constant, and introduce the vector

818) UV =[6,6,...,&)", & :=max{defi}, 1<k<n,
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and the matrix X = diag[z+1)]. The purpose of the parameter ¢ is to avoid that z(+1) has
components very close to zero, since this would make || X ~1|| very large. Following Rojas
and Steihaug [15], we compute

(3.19) s=pu(X %2 -2X 1)

and update the value of the barrier parameter according to

(3.20) plth) = z|sTx(j+1)|, o:=1-10"2
n

In our computed examples, we use the same stopping criteria as Rojas and Steihaug [15].
Let f(z) be the quadratic part of the function f, () defined by (3.1), i.e.,

1
flz) = EJUTATA.QJ —vT Az
The computations are terminated and the vector % given by (3.16) is accepted as an approxi-

mate solution of (1.7), as soon as we find a vector z(+1) | defined by (3.18), which satisfies
at least one of the conditions

[f@UHD) = f@U)] < e[ faUD)),
(3.21) 20D 20| < ellzHV),
|ST:1;(.7+1)| S esllx(J+1)||

Here s is defined by (3.19), and €y, €, and €, are user-supplied constants.

We briefly comment on the determination of the matrix X and parameter x = p() in
the first system of equations (3.4)(i) that we solve. Before solving (3.4)(i), we compute an
approximate solution Z, given by (2.20), of the minimization problem (1.9) as described in
Section 2. Let X = )\((3”) denote the corresponding value of the regularization parameter,
and let #+ be the orthogonal projection of & onto the set (1.5). If & is a sufficiently ac-
curate approximate solution of (1.7), then we are done; otherwise we improve Z+ by the
method described in this section. Define z(*) by (3.18) with j = 0 and & replaced by , let
X = diag[z(V], and let (") be given by (3.20) with j = 0 and s := ATb— (ATA—XI)z().
We now can determine and solve (3.4). The following algorithm summarizes how the com-
putations are organized.

ALGORITHM 3.1. Constrained Tikhonov Regularization

1. Input: A € R™*™, b e R™, 4, €f, €, €5, 0.

Output: A, u, approximate solution & of (1.7).

2. Apply the method of Section 2 to determine an approximate solution # of (1.9).
Compute the associated orthogonal projection Z+ onto the set (1.5) and let % := &+.
If Z is a sufficiently accurate approximate solution of (1.7), then exit.

3. Determine the initial positive approximate solution z(¥) by (3.18), let X =
diag[zM], and compute = pu(V) as described above. Define the linear system
(3.4)(i). Letj :=1.

4. Compute the approximate solution Z, given by (3.15), of the linear system (3.4)(i)
with A = /\Ep) and the number of Lanczos tridiagonalization steps £, chosen so that
the inequalities (3.13) and (3.14) hold.

5. Determine # according to (3.16) with d given by (3.17), and (1) using (3.18).
Compute s by (3.19). If the pair {z(/+1), s} satisfies one of the inequalities (3.21),
then accept the vector Z as an approximate solution of (1.7) and exit.

6. Let X = diag[z/+V] and let u = p9+1) be given by (3.20). Define a new linear
system of equations (3.4)(i) using {y, X }. Let j := j + 1. Goto 4.
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4. Computed examples. We illustrate the performance of Algorithm 3.1 when applied
to a few typical linear discrete ill-posed problems, such that the desired solution & of the
associated linear systems of equations with error-free right-hand side (1.2) is known to be
nonnegative. All computations were carried out using Matlab with approximately 16 signif-
icant decimal digits. In all examples, we let A := ||Z|| and chose the initial values £ = 2
and )\go) = 10. Then ¢2(/\g0)) < A? e, )\go) is larger than A, the largest zero of ¢o ().
The error vectors e used in the examples have normally distributed random entries with zero
mean and are scaled so that e is of desired norm.

exact and computed approximate solutions

0.4 T T
— exact
— (2.20)

0.35 —— projected (2.20)
—— (3.16)

0.3

0.25

0.2

0.15

0.1

0.05

-0.05 I I I I I
0 50 100 150 200 250 300

Fi1G. 4.1. Example 4.1: Solution £ of the error-free linear system (1.2) (blue curve), approximate solution &
determined without imposing nonnegativity in Step 2 of Algorithm 3.1 (black curve), projected approximate solution
Z1 determined in Step 2 of Algorithm 3.1 (magenta curve), and approximate solution determined by Steps 4-6 of
Algorithm 3.1 (red curve).

Example 4.1. Consider the Fredholm integral equation of the first kind

6
(4.1) / k(7,0)z(0)do = b(r), -6 <7<6,
-6

discussed by Phillips [12]. Its solution, kernel and right-hand side are given by

_J 1+cos(30), if|o| <3,
(4.2) z(0) := { 0, otherwise,

k(1,0) == z(1 — 0),
(4.3) b(r) 1= (6~ [r)(1 + 5 cos(

3

We discretize the integral equation using the Matlab code phillips from the program
package Regularization Tools by Hansen [9]. Discretization by a Galerkin method using
300 orthonormal box functions as test and trial functions yields the symmetric indefinite
matrix A € R300x300 and the right-hand side vector b € R399, The code phillips also

9 . m
) + py sm(§|7'|).
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x107° blow-up of exact and computed approximate solutions
T T T

— exact
— (2.20)
—— projected (2.20) B
— (3.16)

-8 I I I I I
50 100 150 200 250 300

F1G. 4.2. Example 4.1: Blow-up of Figure 4.1.

determines a discretization of the solution (4.2). We consider this discretization the exact
solution & € R*°. An error vector e is added to b to give the right-hand side b of (1.1) with
relative error ||e||/||b]] = 5 - 10~3. This correspondsto |le|]| = 7.6 - 1072.

Let A := ||Z|| and 5 := 0.999. Then Step 2 of Algorithm 3.1 yields an approximate
solution &, defined by (2.20), using only 8 Lanczos bidiagonalization steps; thus only 8
matrix-vector product evaluations are required with each one of the matrices A and A7,
Since the vector Z is not required to be nonnegative, it represents an oscillatory approxi-
mate solution of (1.2); see the black curves in Figures 4.1 and 4.2. The relative error in % is
|# —2||/||2]| = 1.91- 1072,

Let z+ denote the orthogonal projection of # onto the set (1.5). The magenta curves in
Figures 4.1 and 4.2 display £. Note that + agrees with Z for nonnegative values. Clearly,
#T is a better approximation of # than Z; we have ||z — %||/||2]| = 1.36 - 1072,

Let the coefficients in the stopping criteria (3.21) for Algorithm 3.1 be given by e; :=
1-107%, €, := 1-107%, and €, := 1-10~'2, These are the values used in [15]. Let§ := 1-1073
in (3.18). These parameters are required in Step 5 of Algorithm 3.1. The red curves of Figures
4.1 and 4.2 show the approximate solution & determined by Steps 4-6 of the algorithm. The
computation of & required the execution of each of these steps twice, at the cost of 21 Lanczos
tridiagonalization steps the first time, and 8 Lanczos tridiagonalization steps the second time.
In total, 79 matrix-vector product evaluation were required for the computations of Z. This
includes work for computing . The relative error || — Z||/||2|| = 5.42 - 10~2 is smaller
than for z+; this is also obvious form Figure 4.2. Specifically, the method of Section 3 gives
a nonnegative approximate solution &, whose error is about 1/3 of the error in z+. O

Example 4.2. This example differs from Example 4.1 only in that no error vector e is
added to the right-hand side vector b determined by the code phillips. Thus, b = b. Rojas and
Steihaug [15] have also considered this example. In the absence of an error e in b, other than
round-off errors, fairly stringent stopping criteria should be used. Letting 5 := 0.9995 yields
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exact and computed approximate solutions
0.4 T T

— exact
— (2.20)
—— projected (2.20)
— (3.16)

-0.05 1 1 1 1 1
0 50 100 150 200 250 300

FiG. 4.3. Example 4.2: Solution & of the error-free linear system (1.2) (blue curve), approximate solution &
determined without imposing nonnegativity in Step 2 of Algorithm 3.1 (black curve), projected approximate solution
41 determined in Step 2 of Algorithm 3.1 (magenta curve), and approximate solution determined by Steps 4-6 of
Algorithm 3.1 (red curve).

after 6 Lanczos bidiagonalization steps the approximate solution Z in Step 2 of Algorithm 3.1.
The relative error in 7 is || — £||/||2]] = 7-61 - 102, The associated orthogonal projection
#* onto (1.5) has relative error ||+ — £||/||#|| = 5.50 - 10~3. The computation of # and Z+
requires the evaluation of 6 matrix-vector products with A and 6 matrix-vector products with
AT. Rojas and Steihaug [15] report the approximate solution determined by their method
to have a relative error of 1.01 - 10-2 and its computation to require the evaluation of 631
matrix-vector products.

The approximate solution Z+ can be improved by the method of Section 3, however, at
a fairly high price. Usinge; :=1-107%, €, :=1-107% ¢, :=1-107%3,and § := 1 - 1073,
we obtain the approximate solution Z with relative error || — Z||/||Z|| = 5.15- 103, The
evaluation of & requires the computation of 129 matrix-vector products, with at most 19
consecutive Lanczos tridiagonalization steps.

We conclude that when the relative error in b is fairly large, such as in Example 4.1,
the method of the present paper can determine an approximate solution % with significantly
smaller error than the projected approximate solution zZ+. However, when the relative error
in b is small, then the method of the present paper might only give minor improvements at
high cost. O

Example 4.3. Consider the blur- and noise-free image shown in Figure 4.5. The figure de-
picts three hemispheres, but because of the scaling of the axes, they look like hemi-ellipsoids.
The image is represented by 256 x 256 pixels, whose values range from 0 to 255. The pixel
values are stored row-wise in the vector & € R236” | which we subsequently scale to have unit
length. After scaling, the largest entry of 2 is 1.5 - 10~2. The image in Figure 4.5 is assumed
not to be available, only A := ||#|| and a contaminated version of the image, displayed in
Figure 4.6, are known. We would like to restore the available image in Figure 4.6 to obtain
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o x107° blow-up of exact and computed approximate solutions
T T T T T
— exact
61 — (2.20) 7
—— projected (2.20)
— (3.16)
4+ i
2 — -
0
_2 - .
_4 — -
_6 - .
-8 1 1 1 1 1
50 100 150 200 250 300

FI1G. 4.4. Example 4.2: Blow-up of Figure 4.3.

0.015

0.01

0.005

Fi1G. 4.5. Example 4.3: Blur- and noise-free image.

(an approximation of) the image in Figure 4.5.

The image in Figure 4.6 is contaminated by noise and blur, with the blurring operator
represented by a nonsymmetric Toeplitz matrix A € R256” *256” of jl|-determined rank; thus,
A is numerically singular. Due to the special structure of A, only the first row and column
have to be stored. Matrix-vector products with A and AT are computed by using the fast
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0,012~ e
0.01-]..-
0.008-.-
0.006-.-
0004

0.002-].--"

F1G. 4.6. Example 4.3: Blurred and noisy image.

F1G. 4.7. Example 4.3: Computed approximate solution without positivity constraint (2.20).

Fourier transform. The vector b := Az represents a blurred but noise-free image. The error
vector e € R256” represents noise and has normally distributed entries with zero mean. The
vector is scaled to yield the relative error ||e||/||b]| = 1 - 10~2 in the available right-hand side
vector b = b + e. The latter represents the blurred and noisy image shown in Figure 4.6. The
largest entry of bis 1.0 - 1072,

The method of Section 2 with n = 0.99 requires 26 Lanczos bidiagonalization steps
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0.015

0.01

0.005

F1G. 4.8. Example 4.3: Projected computed approximate solution without nonnegativity constraint.

0.015

0.01

0.005

F1G. 4.9. Example 4.3: Computed approximate solution with nonnegativity constraint (3.16).

to determine the vector &, given by (2.20) and displayed in Figure 4.7, with relative error
|z — #||/||2|| = 8-3- 10~2. Note the oscillations around the bases of the hemispheres. The
nonnegative vector z*, obtained by projecting # onto (1.5), is shown in Figure 4.8. It has
relative error ||+ — #||/||Z|| = 8.1 - 10~2. The largest entry of #+ is 1.5 - 1072,

The oscillations around the hemispheres can be reduced by the method of Section 3.
With§ :=5-107°% € := 1-1073, ¢, := 1-1073, and €5 := 1 - 1071%, we obtain the
vector %, given by (3.16), with relative error || — Z||/||Z|| = 7.3 - 10~2. Figure 4.9 depicts
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Z. Note that the oscillations around the bases of the hemispheres are essentially gone. The
largest component of % is 1.5 - 10~2. The computation of & required the completion of Steps
4 and 5 of Algorithm 3.1 once, and demanded computation of 27 Lanczos tridiagonalization
steps. The evaluation of # required that a total of 110 matrix-vector products with 4 or AT
be computed, including the 52 matrix-vector product evaluations needed to compute z+. O

50

150 -

200 i

250 C 1 1 1 1 1 ]
50 100 150 200 250
F1G. 4.10. Example 4.4: Blur- and noise-free image.

50 R
100+ —
150 - g
200 b
250 - ) B

I L L L
50 100 150 200 250

Fi1G. 4.11. Example 4.4: Blurred and noisy image.
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50 b

100~
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250 | 1 | | ]
50 100 150 200 250

F1G. 4.12. Example 4.4: Computed approximate solution without positivity constraint (2.20).
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100

150 L

200 b

250 - b

! ! ! ! I

50 100 150 200 250

F1G. 4.13. Example 4.4: Projected computed approximate solution without nonnegativity constraint.

Example 4.4. The data for this example was developed at the US Air Force Phillips
Laboratory and has been used to test the performance of several available algorithms for
computing regularized nonnegative solutions. The data consists of the noise- and blur-free
image of the satellite shown in Figure 4.10, the point spread function which defines the blur-
ring operator, and the blurred and noisy image of the satellite displayed in Figure 4.11. The
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F1G. 4.14. Example 4.4: Computed approximate solution with nonnegativity constraint (3.16).

images are represented by 256 x 256 pixels. The pixel values for the noise- and blur-free
image and for the contaminated image are stored in the vectors & and b, respectively, where
b is the right-hand side of (1.1). Thus, & and b are of dimension 2562 = 65536. The matrix
Ain (1.1) represents the blurring operator and is determined by the point spread function; A
is a block-Toeplitz matrix with Toeplitz blocks of size size 65536 x 65536. The matrix is
not explicitly stored; matrix-vector products with A4 and A” are evaluated by the fast Fourier
transform. Similarly as in Example 4.3, the vector b= Az represents a blurred noise-free
image. We consider the difference e := b— b to be noise, and found that ||b— b|| = 3.3-10*
and ||b — b||/||b]] = 4.7 - 10~2. Thus b is contaminated by a significant amount of noise.

Let A := ||#||, and assume that the blur- and noise-free image of Figure 4.10 is not
available. Given 4, b and A, we would like to determine an approximation of this image. We
let n := 0.935 in Algorithm 3.1.

The method of Section 2 requires 47 Lanczos bidiagonalization steps to determine the
vector Z, given by (2.20) and shown in Figure 4.12. The relative error in Z is ||Z — Z||/||Z]| =
0.354. The projection Z* of  onto the set (1.5) has relative error ||zt — Z||/||Z|| = 0.346.
As expected, this error is smaller than the relative error in Z. Figure 4.13 displays z+. We
remark that the gray background in Figure 4.12 is of no practical significance. It is caused
by negative entries in the vector Z. This vector is rescaled by Matlab to have entries in the
interval [0,255] before plotting. In particular, zero entries are mapped to a positive pixel value
and are displayed in gray.

The accuracy of the approximate solution Z+ can be improved by the method of Section
3. We use the same values of the parameters 6, e¢, €, and €, as in Example 4.3. After
execution of Steps 4-6 of Algorithm 3.1 followed by Steps 4-5, a termination condition is
satisfied, and the algorithm yields & with relative error ||z — Z||/||Z|| = 0.339. Figure 4.14
shows &. Step 4 requires the evaluation of 113 Lanczos tridiagonalization steps the first time,
and 51 Lanczos tridiagonalization steps the second time. The computation of % demands a
total of 427 matrix-vector product evaluations with either 4 or AT, including the 94 matrix-
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vector products required to determine Z and .

The relative error in % is smaller than the relative errors in computed approximations
of Z determined by several methods recently considered in the literature. For instance, the
smallest relative error achieved by the methods presented in [8] is 0.356, and the relative error
reported in [15] is 0.358. O

We conclude this section with some comments on the storage requirement of the method
of the present paper. The implementation used for the numerical examples reorthogonalizes
the columns of the matrices V;, U,, and W, in the decompositions (2.8) and (3.6). This
secures numerical orthonormality of the columns and may somewhat reduce the number of
matrix-vector products required to solve the problems (compared with no reorthogonaliza-
tion). However, reorthogonalization requires storage of all the generated columns. For in-
stance in Example 4.3, Lanczos bidiagonalization with reorthogomalization requires storage
of Vae and Usg, and Lanczos tridiagonalization with reorthogonalization requires storage of
Wae. The latter matrix may overwrite the former. We generally apply reorthogonalization
when it is important to keep the number of matrix-vector product evaluations as small as
possible, and when sufficient computer storage is available for the matrices Vg, Uy, and W.
The effect of loss of numerical orthogonality, that may arise when no reorthogonalization is
carried out, requires further study. Without reorthogonalization, the method of the present
paper can be implemented to require storage of only a few columns of V,, U,, and W, si-
multaneously, at the expense of having to compute the matrices V,, Uy, and W, twice. The
scheme by Rojas and Steihaug [15] is based on the implicitly restarted Arnoldi method, and
therefore its storage requirement can be kept below a predetermined bound.

5. Conclusion. The computed examples illustrate that our numerical method for
Tikhonov regularization with nonnegativity constraint can give a more pleasing approximate
solution of the exact solution Z than the scheme of Section 2, when the latter gives an oscil-
latory solution. Our method is closely related to a scheme recently proposed by Rojas and
Steihaug [15]. A careful comparison between their method and ours is difficult, because few
details on the numerical experiments are provided in [15]. Nevertheless, we feel that our
approach to Tikhonov regularization with nonnegativity constraint based on the connection
between orthogonal polynomials, Gauss quadrature and the Lanczos process, is of indepen-
dent interest. Moreover, Examples 4.2 and 4.4 indicate that our method may be competitive.
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