
Electronic Transactions on Numerical Analysis.
Volume 18, pp. 137-152, 2004.
Copyright 2004, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University
etna@mcs.kent.edu

ON THE SHIFTED QR ITERATION APPLIED TO COMPANION MATRICES∗

DARIO A. BINI †, FRANCESCO DADDI ‡, AND LUCA GEMIGNANI §

Abstract. We show that the shifted QR iteration applied to a companion matrix F maintains the weakly
semiseparable structure of F . More precisely, if Ai − αiI = QiRi, Ai+1 := RiQi + αiI, i = 0, 1, . . .,
where A0 = F , then we prove that Qi, Ri and Ai are semiseparable matrices having semiseparability rank at
most 1, 4 and 3, respectively. This structural property is used to design an algorithm for performing a single step
of the QR iteration in just O(n) flops. The robustness and reliability of this algorithm is discussed. Applications
to approximating polynomial roots are shown.

Key words. companion matrices, QR factorization, QR iteration, semiseparable matrices, eigenvalues, poly-
nomial roots.

AMS subject classifications. 65F15, 15A18, 65H17.

1. Introduction. Let p(x) =
∑n

i=0 aix
i, be a polynomial of degree n with leading

coefficient an = 1, let f = (fi) 6= 0 in C
n be such that fi = −ai−1, i = 1 : n and

consider the associated companion matrix

(1.1) F = F (f) =

0 . . . 0 f1

1
. . .

... f2

. . . 0
...

O 1 fn

.

Since the eigenvalues of F coincide with the zeros of p(x), algorithms for computing ma-
trix eigenvalues can be applied for approximating the zeros of p(x). In fact, the Matlab
function roots, which provides approximations to the zeros of a polynomial, is based on
the shifted QR iteration

Ak − αkI = QkRk

Ak+1 = RkQk + αkI = QH
k AkQk

(1.2)

k = 0, 1, 2, . . ., applied with A0 = F , suitably balanced by means of a diagonal scaling.
Here and hereafter, QH denotes the transpose conjugate of Q.

Despite F being sparse and structured, after a few steps of (1.2), the matrices Ak are
dense and apparently with no structure, except that they are in upper Hessenberg form. In
this way, the arithmetic cost of each iteration is O(n2) arithmetic floating point operations
(flops) and the QR algorithm does not seem to take advantage of the initial structure of
F . In [4] an attempt to overcome this drawback has been performed by using a restarting
technique. In [1], [18], the related problem of computing the eigenvalues of a unitary matrix
in Hessenberg form is investigated.

Observe that the matrix F is such that any submatrix contained in the lower triangular
part of F has rank at most 1. The same rank property holds for the submatrices contained
in the upper triangular part (diagonal included). In general, we call a matrix A weakly
semiseparable of rank (h, k) if all the submatrices in the strictly lower triangular part have
rank at most h, and the submatrices in the strictly upper triangular part have rank at most k,
where the values h and k are achieved by some submatrix. We say that A is semiseparable

∗Received October 31, 2003. Accepted for publication August 30, 2004. Recommended by L. Reichel.
†Dipartimento di Matematica, Università di Pisa, via Buonarroti 2, 56127 Pisa. E-mail:

bini@dm.unipi.it. This work was partially supported by MIUR, grant number 2002014121 and by GNCS-
INDAM grant “Metodi numerici innovativi per il trattamento di matrici strutturate e sparse.”

‡Dipartimento di Matematica, Università di Pisa, via Buonarroti 2, 56127 Pisa.
§Dipartimento di Matematica, Università di Pisa, via Buonarroti 2, 56127 Pisa. E-mail:

gemignan@dm.unipi.it.

137

ETNA
Kent State University
etna@mcs.kent.edu

138 On the shifted QR iteration applied to companion matrices

of rank (h, k) if there exist matrices L and U of rank h and k, respectively, such that the
strictly lower triangular part Tril(A) of A coincides with the strictly lower triangular part
Tril(L) of L and the strict upper triangular part Triu(A) of A coincides with the strict upper
triangular part Triu(U) of U . According to these definitions, F is weakly semiseparable of
rank (1, 1). In particular, Tril(F) is weakly semiseparable of rank (1, 0) while Triu(F) is
semiseparable of rank (0, 1) since Triu(F) =Triu(feT

n).
Semiseparable matrices are closely related to the inverses of banded matrices and have

further nice properties which relate them to their inverses and to their LU and QR factor-
izations (see [5], [6], [7], [9], [11], [12], [13], [14], [16], [17] and the references therein).
In particular, the matrices Li and Ui, generated by the LU iteration applied to a semisepa-
rable matrix for eigenvalue computation, are semiseparable [11]. Based on the well-know
relations between the QR and LR iteration algorithms [19], it can be shown that a similar
property holds for the matrices Qi and Ri generated by the QR iteration provided that A is
real symmetric [8]. Counterexamples easily can be given where the semiseparability prop-
erty is not maintained by the QR iteration if A is not symmetric. Algorithms for computing
the LU factorization and for solving linear systems with a semiseparable matrix in O(n)
ops have been designed in [11], [5]. Weakly semiseparable matrices have been introduced
in [15].

In this paper we prove that the matrices Ak, Qk and Rk generated by (1.2) for
k = 1, 2, . . ., with A0 = F , are weakly semiseparable of rank (1, 3), (1, 2) and (1, 4),
respectively. Moreover, Triu(Ak) and Triu(Qk) are semiseparable of rank (0, 3) and (0, 1)
respectively. These facts enable us to represent Qk, Ak and Rk with O(n) memory space
and to design algorithms for computing Ak+1, given Ak, with complexity O(n).

The paper is organized in the following way. In section 2 we prove the structural
properties of Ak, Qk and Rk by providing an algorithm for computing the QR factorization
of Ak−αkI in O(n) ops. In section 3 we describe different methods for performing the RQ
step, still in O(n) ops. Section 4 contains some remarks concerning the implementation
of the algorithms. In section 5 we report the results of some numerical experiments which
show that the provided algorithms are promising but still lack the robustness properties
needed for a reliable use inside a numerical package. Future research is also discussed.

2. Structural properties of the matrix sequences generated by the QR iteration.
In this section we analyze the structural properties of the matrix sequences {Ak}k∈N,
{Qk}k∈N, {Rk}k∈N, generated by the shifted QR iteration (1.2) applied with A0 = F ,
where F is the companion matrix (1.1) associated with the vector f = (fi) ∈ Cn, and we
assume that det F 6= 0, i.e., f1 6= 0.

Let us recall that from (1.2) it follows that

Ak = P H
k FPk ,

Pk = Qk−1Qk−2 · · ·Q1,
(2.1)

that is, Ak is unitarily similar to F .

2.1. Structure of Ak. We note that, since F is in upper Hessenberg form, all the
matrices Ak, k = 0, 1, . . ., are in upper Hessenberg form, that is, a

(k)
i,j = 0 if i > j + 1,

where Ak = (a
(k)
i,j).

The following simple observation plays a substantial role for the derivation of our
results.

REMARK 1. If f1 6= 0 then a direct inspection shows that

(2.2) F (f)−1 =

−f2/f1 1
−f3/f1 0 1

...
. . .

. . .
−fn/f1 1
1/f1 0

.

ETNA
Kent State University
etna@mcs.kent.edu

Dario A. Bini, Francesco Daddi, and Luca Gemignani 139

Moreover,

(2.3) F = F−H + UV H , U, V ∈ C
n×2,

where

(2.4) U =

−1 f1

0 f2

...
...

0 fn

 , V =

f2/f1 1
f3/f1 0

...
...

fn/f1 0
−1/f1 0

.

Pre-multiplying equation (2.3) by P H
k and post-multiplying it by Pk, from (2.1) we

immediately obtain the following identity

(2.5) Ak = A−H
k + UkV H

k , k = 0, 1, . . . ,

where

(2.6) Uk = QH
k Uk−1, Vk = QH

k Vk−1.

Since Ak is in upper Hessenberg form, the entries in the upper triangular part of A−H
k

are given by

(2.7) (A−H
k)i,j =

1

y
(k)
n

x
(k)
i y

(k)
j , i ≤ j,

where x = (x
(k)
i) = A−H

k en and y(k)T = (y
(k)
i) = eT

1 A−H
k are the last column and the

first row of A−H
k , respectively. This property is a direct consequence of the following

LEMMA 2.1. Let B = (bi,j) be a matrix in lower Hessenberg form, and define βi =

bi,i+1, d̂i = det B̂i, d̃i = det B̃i, where B̂i and B̃i are the leading and trailing i × i
principal submatrices of B, respectively. Then

(B−1)i,j =
(−1)i+j

det B
d̂i−1d̃n−j

j−1∏

`=i

β`, i ≤ j,

where, if i = j, the product in the right hand side is 1, and d̂0 = d̃n = 1.
Proof. The result follows from the relation (B−1)i,j = (−1)i+j det Bi,j/ detB,

where Bi,j is the submatrix of B obtained by removing the j-th row and the i-th column.
From this lemma we may also represent the upper triangular part of A−H

k , by means

of a pair of vectors w(k) = (w
(k)
i) = ((−1)i−1d̂

(k)
i), z(k) = (z

(k)
i) = ((−1)n−id̃

(k)
n−i), as

(2.8) (A−H
k)i,j = w

(k)
i z

(k)
j

1

f̄1

j−1∏

`=i

b̄
(k)
` , i ≤ j,

where b
(k)
` = a

(k)
`+1,`, ` = 1 : n − 1, are the lower diagonal entries of Ak, d̂

(k)
i and d̃

(k)
i are

the determinants of the leading and trailing i× i principal submatrices of AH
k , respectively,

and we use the fact that det Ak = det F H = (−1)n+1f̄1. Here and below, we denote with
ā the complex conjugate of the complex number a.

We have the following representation result for Ak.
THEOREM 2.2. The matrix Ak = (a

(k)
i,j), generated at the k-th step of the QR iteration,

is such that

a
(k)
i,j =

0 for i > j + 1,
1

y
(k)
n

x
(k)
i y

(k)
j + u

(k)
i,1 v̄

(k)
j,1 + u

(k)
i,2 v̄

(k)
j,2 for i ≤ j,

ETNA
Kent State University
etna@mcs.kent.edu

140 On the shifted QR iteration applied to companion matrices

where

1

y
(k)
n

x
(k)
i y

(k)
j = w

(k)
i z

(k)
j

1

f̄1

j−1∏

`=i

b̄
(k)
` ,

and b
(k)
` = a

(k)
`+1,`, ` = 1 : n − 1.

Summing up, all the matrices Ak generated by the QR iteration are determined by
7n − 1 parameters, namely:

(i) The subdiagonal entries b(k) = (b
(k)
1 , . . . , b

(k)
n−1).

(ii) The last column x(k) and the first row y(k)T of A−H
k , respectively, defining the upper

triangular part of A−H
k .

(iii) The columns u
(k)
1 , u

(k)
2 of Uk,

(iv) The columns v
(k)
1 , v

(k)
2 of Vk .

In particular, the matrices Ak are weakly semiseparable of rank (1, ν), with ν ≤ 3, and
Triu(Ak) is semiseparable of rank at most 3.

2.2. Structure of Rk. The structure of the sequence {Rk}k∈N easily can be described
from the QR factorization of Ak − αkI . Therefore in this section we describe the QR step
applied to Ak and, as a byproduct, we obtain the structure of Rk.

Let us recall that Ak is of upper Hessenberg form with lower diagonal entries
b
(k)
1 , . . . , b

(k)
n−1, and with entries a

(k)
i,j = 1

y
(k)
n

x
(k)
i y

(k)
j +u

(k)
i,1 v̄

(k)
j,1 +u

(k)
i,2 v̄

(k)
j,2 for i ≤ j, i.e., in

the upper triangular part. Let us also denote, with a(k) = (a
(k)
i), the vector formed by the

diagonal entries of Ak and, with d(k) = (d
(k)
i), g(k) = (g

(k)
i), the vectors formed by the

diagonal and superdiagonal entries of Rk, respectively. The reduction to upper triangular
form of Ak − αkI can be achieved by means of a sequence of Givens rotations

G
(k)
i =

Ii−1

c
(k)
i s

(k)
i

−s̄
(k)
i c

(k)
i

In−i−1

 = Ii−1 ⊕ G

(k)
i ⊕ In−i−1, i = 1 : n − 1,

where c
(k)
i ∈ R, |c(k)

i |2 + |s
(k)
i |2 = 1 and Ii denotes the i × i identity matrix. At the first

step G
(k)
1 is chosen so that the entry in position (2, 1) of G

(k)
1 (Ak − αkI) is zero. In this

way, only the entries in the first two lines of G
(k)
1 Ak differ from the corresponding entries

of Ak − αkI . Moreover, for j > i + 1, the former entries are given by 1

y
(k)
n

x̂
(k)
i y

(k)
j +

û
(k)
i,1 v̄

(k)
j,1 + û

(k)
i,2 v̄

(k)
j,2 , i = 1, 2, j > i, where

[
x̂

(k)
1

x̂
(k)
2

]
= G

(k)
1

[
x

(k)
1

x
(k)
2

]
,

[
û

(k)
1,1

û
(k)
2,1

]
= G

(k)
1

[
u

(k)
1,1

u
(k)
2,1

]
,

[
û

(k)
1,2

û
(k)
2,2

]
= G

(k)
1

[
u

(k)
1,2

u
(k)
2,2

]
,

while the remaining entries in the 2×2 leading principal submatrix of G
(k)
1 (Ak −αkI) are

given by
[

d
(k)
1 g

(k)
1

0 d
(k)
2

]
= G

(k)
1

[
a
(k)
1 − αk

1

y
(k)
n

x̂
(k)
1 y

(k)
2 + û

(k)
1,1 v̄

(k)
2,1 + û

(k)
1,2 v̄

(k)
2,2

b
(k)
1 a

(k)
2 − αk

]
.

The values of d
(k)
1 , x̂

(k)
1 , û

(k)
1,1, and û

(k)
1,2 are not modified by the subsequent Givens

rotations, while the values of x̂
(k)
2 , û

(k)
2,1 and û

(k)
2,2 and d

(k)
2 are modified only at the second

step where G
(k)
1 (Ak − αkI) is pre-multiplied by G

(k)
2 . At the i-th step, G

(k)
i is chosen so

that the entry in position (i + 1, i) of G
(k)
i−1 · · ·G

(k)
1 (Ak − αkI) is zero.

ETNA
Kent State University
etna@mcs.kent.edu

Dario A. Bini, Francesco Daddi, and Luca Gemignani 141

At the end of the entire procedure the matrix Rk turns out to be represented in terms of
its diagonal entries d

(k)
1 , . . . , d

(k)
n , its superdiagonal entries g

(k)
1 , . . . , g

(k)
n−1, by the vectors

x̂
(k), y(k) and by the matrices Ûk = (û

(k)
i,j), Vk = (v

(k)
i,j) as

(2.9) r
(k)
i,j =

d
(k)
i for i = j,

g
(k)
i for i = j − 1,
1

y
(k)
n

x̂
(k)
i y

(k)
j + û

(k)
i,1 v̄

(k)
j,1 + û

(k)
i,2 v̄

(k)
j,2 for i < j − 1,

0 for i > j.

In this way the matrix Rk can be stored by using only 8n − 1 parameters. The entire
process for computing the above representation of Rk is synthesized below.

ALGORITHM 1.
INPUT: The matrices Uk, Vk and the vectors x(k), y(k), and b(k) which define the entries of
Ak by means of Theorem 2.2. (For a certain use of the algorithm, which we will describe
later on, we might give as input the vector a(k) with the diagonal entries of Ak). The shift
parameter αk.
OUTPUT: The Givens parameters s

(k)
i and c

(k)
i , i = 1 : n − 1, together with the vectors

d
(k)
i , x̂

(k), y(k) and the matrices Ûk = (û
(k)
i,j), Vk = (v

(k)
i,j) which define the entries of Rk

through (2.9), where QkRk = Ak − αkI .
COMPUTATION:

1. Let a(k) = (1

y
(k)
n

x
(k)
i y

(k)
i + u

(k)
i,1 v̄

(k)
i,1 + u

(k)
i,2 v̄

(k)
i,2)i=1:n, b̂

(k)
= b(k), Ûk = Uk,

x̂
(k) = x(k).

2. Set a(k) = a(k) − αk(1, . . . , 1).
3. For i = 1 : n − 1 do

(a) (Compute Gi)

i. γi = 1/

√
|a

(k)
i |2 + |b

(k)
i |2, νi = a

(k)
i /|a

(k)
i |, (νi = 1 if a

(k)
i = 0),

θi = γi/νi,

ii. c
(k)
i = a

(k)
i θi, s

(k)
i = b

(k)
i θi.

(b) (Update Rk)
i. d

(k)
i = γi/νi, t = 1

y
(k)
n

x̂
(k)
i y

(k)
i+1 + û

(k)
i,1 v̄

(k)
i+1,1 + û

(k)
i,2 v̄

(k)
i+1,2,

ii. g
(k)
i = c

(k)
i t + s

(k)
i a

(k)
i+1,

iii. d
(k)
i+1 = −s̄

(k)
i t + c

(k)
i a

(k)
i+1.

(c) (Update Ûk)
i. t = c

(k)
i û

(k)
i,1 + s

(k)
i û

(k)
i+1,1, û

(k)
i+1,1 = −s̄

(k)
i û

(k)
i,1 + c

(k)
i û

(k)
i+1,1, û

(k)
i,1 = t,

ii. t = c
(k)
i û

(k)
i,2 + s

(k)
i û

(k)
i+1,2, û

(k)
i+1,2 = −s̄

(k)
i û

(k)
i,2 + c

(k)
i û

(k)
i+1,2, û

(k)
i,2 = t.

(d) (Update x̂
(k))

i. t = c
(k)
i x̂

(k)
i + s

(k)
i x̂

(k)
i+1,

ii. x̂
(k)
i+1 = −s̄

(k)
i x̂

(k)
i + c

(k)
i x̂

(k)
i+1,

iii. x̂
(k)
i = t.

4. End do

2.3. Structure of Qk. By construction, the matrix Qk in the QR factorization Ak =
QkRk is the product of n − 1 Givens rotations

Qk = G
(k)
1

H

· · ·G
(k)
n−1

H

.

We recall, from [10], [3], [16], the following lemma about the structure of Qk, adjusted

ETNA
Kent State University
etna@mcs.kent.edu

142 On the shifted QR iteration applied to companion matrices

to the complex field.
LEMMA 2.3. Let c

(k)
i ∈ R and s

(k)
i ∈ C, i = 1 : n − 1, be the parameters defining

the Givens rotations G
(k)
i , i = 1 : n − 1. Define

(2.10)
Ds(k) = diag(1,−s

(k)
1 , s

(k)
1 s

(k)
2 , . . . , (−1)n−1s

(k)
1 s

(k)
2 · · · s

(k)
n−1),

p(k) = D−1
s(k) [1, c

(k)
1 , c

(k)
2 , . . . , c

(k)
n−1]

T ,

q(k) = Ds(k) [c
(k)
1 , c

(k)
2 , c

(k)
3 , . . . , c

(k)
n−1, 1]T .

Then

Qk = G
(k)
1

H

· · ·G
(k)
n−1

H

=

q
(k)
1 p

(k)
1 q

(k)
2 p

(k)
1 q

(k)
n p

(k)
1

s̄
(k)
1 q

(k)
2 p

(k)
2 . . . q

(k)
n p

(k)
2

s̄
(k)
2

. . .
...

. . . q
(k)
n−1p

(k)
n−1 q

(k)
n p

(k)
n−1

O s̄
(k)
n−1 q

(k)
n p

(k)
n

.

Thus, the entries q
(k)
i,j of Qk are given by

q
(k)
i,j =

0 if i > j + 1

s̄
(k)
i if i = j + 1

(−1)i+jc
(k)
i−1c

(k)
j

∏j−1
`=i s

(k)
` if i ≤ j

where we assume c
(k)
0 = c

(k)
n = 1.

3. Constructive issues and algorithms. The results of the above section allow us to
design a fast algorithm for implementing the single QR step in O(n) ops provided that A0

is a companion matrix. In this section we discuss some related computational issues and
describe in details the new algorithm.

For the sake of clarity, we first provide the description of an algorithm for the QR
and RQ steps by ignoring numerical issues like overflow/underflow problems. Numerical
drawbacks and the way to overcome them will be discussed later on in section 3.3

3.1. The QR step. The QR step can be carried out by using Algorithm 1. For real
data, the arithmetic cost of this algorithm is 5n ops for computing the Givens rotations,
11n ops for computing Rk, 12n ops for updating Ûk and 6n ops for updating x̂

(k). The
overall cost is 34n ops.

3.2. The RQ step. In order to complete the QR iteration we have to compute the
vectors b

(k+1), x(k+1), y(k+1) and the matrices Uk+1, Vk+1, which define the matrix
Ak+1 = RkQk + αkI by means of Theorem 2.2, given the matrices Qk and Rk of the
factorization Ak − αkI = QkRk. By allowing redundancy of representation, we use as
input variable also the vector a(k) with the diagonal entries of Ak. More precisely we have
to perform the following task:

GIVEN:
(i) the vectors s(k) and c(k) defining Qk by means of the Givens rotations,
(ii) the last column x(k) and the first row y(k)T of A−H

k , respectively, defining the upper
triangular part of A−H

k by means of (2.7),
(iii) the matrices Uk, Vk, such that (2.5) holds,
(iv) the vectors d(k), g(k), x̂

(k) and the matrix Ûk defining (together with y(k) and Vk)
the matrix Rk through (2.9),

(v) the shift parameter αk.
COMPUTE:

(j) the vectors a(k+1), b(k+1) defining the diagonal and subdiagonal entries of Ak+1,

ETNA
Kent State University
etna@mcs.kent.edu

Dario A. Bini, Francesco Daddi, and Luca Gemignani 143

(jj) the vectors x(k+1), y(k+1) defining the upper triangular part of A−H
k+1,

(jjj) the matrices Uk+1 and Vk+1 such that (2.5) holds for Ak+1.
The computation of a(k+1) and b(k+1) is straightforward and follows from the relation

Ak+1 = RkQk + αkI in the light of the representations of Qk and Rk, given in Lemma
2.3 and in (2.9), respectively:

a
(k+1)
i = d

(k)
i c

(k)
i−1c

(k)
i + gis̄

(k)
i + αk i = 1 : n, where c0 = cn = 1,

b
(k+1)
i = d

(k)
i+1s̄

(k)
i , i = 1 : n − 1.

Observe also that from the equations Uk+1 = QkUk and Vk+1 = QkVk we may easily
compute Uk+1 and Vk+1 by just applying n − 1 Givens rotations to the two columns of
Uk and Vk at the cost of 24(n − 1) ops. For the orthogonality of Givens rotations, this
computation is robust and stable.

The computation of x(k+1) and y(k+1) deserves special attention. We propose
different algorithms for this subtask.

Method 1 Rewrite (2.5) as

A−H
k+1 = QH

k AkQk − Uk+1V
H
k+1

and from x(k+1) = A−H
k+1en, y(k+1)T = eT

1 A−H
k+1 obtain that

x(k+1) = QH
k AkQken − Uk+1V

H
k+1en,

y(k+1)T = e1Q
H
k AkQk − eT

1 Uk+1V
H
k+1.

The computational cost of the above expression is O(n) ops. In fact, multiplication of a
vector by Qk is reduced to applying n − 1 Givens rotations and the product of a vector by
the matrix Ak still has a linear cost due to the semiseparability of Ak.

Method 2 From the equation Ak+1 = QH
k AkQk obtain that

x(k+1) = QH
k A−H

k Qken,

y(k+1)T = eT
1 QH

k A−H
k Qk.

In this way the computation is reduced to computing products of Givens rotations with
vectors and to solving systems having a semiseparable coefficient matrix in Hessenberg
form. The latter computation can be accomplished by computing the QR factorization of
the matrix Ak and by solving two triangular semiseparable systems. Both the computations
clearly have linear cost. In fact, the QR factorization of Ak can be computed by applying
Algorithm 1, while the solution of triangular semiseparable systems can be computed by
means of Algorithm 2 in Section 4.

Method 3 From the equation Ak+1 = RkAkR−1
k we deduce that

x(k+1) = A−H
k+1en = R−H

k A−H
k RH

k en = r̄(k)
n,nR−H

k x(k),

y(k+1)T = eT
1 A−H

k+1 = eT
1 R−H

k A−H
k RH

k =
1

r̄
(k)
1,1

y(k)T

RH
k .

The computation of x(k+1) and y(k+1) based on the latter formulas is reduced to solving a
triangular semiseparable system and to multiplying a triangular semiseparable matrix with
a vector, respectively. Both computations can be performed in O(n) ops (compare with
Algorithm 2 in Section 4).

ETNA
Kent State University
etna@mcs.kent.edu

144 On the shifted QR iteration applied to companion matrices

Method 4 From the equation A−H
k+1 = QH

k A−H
k Qk deduce that (y(k+1))T = hT Qk,

where hT is the first row of QH
k Ak . Now, since QH

k = G
(k)H
n−1 · · ·G

(k)H
1 , it follows that h

is a linear combination of the first two rows of A−H
k . More precisely

h = c
(k)
1 (eT

1 A−H
k) + s

(k)
1 (eT

2 A−H
k),

that is, from the structure of A−H we find that

eT
1 A−H

k =
x

(k)
1

y
(k)
n

(y
(k)
1 , y

(k)
2 , . . . , y(k)

n) = (y
(k)
1 , y

(k)
2 , . . . , y(k)

n),

eT
2 A−H

k =
x

(k)
2

y
(k)
n

(ξ(k), y
(k)
2 , . . . , y(k)

n),

where ξ(k) =
y
(k)
n

x
(k)
2

(A−H
k)2,1, i.e., from (2.5)

ξ(k) =
y
(k)
n

x
(k)
2

(b̄
(k)
1 + u

(k)
2,1 v̄

(k)
1,1 + u

(k)
2,2 v̄

(k)
1,2).

Once y(k+1) has been computed, the vector x(k+1) can be recovered from the nonlinear
system

AH
k+1x

(k+1) = en,

which can be solved by means of substitution in the following way. Rewrite the system as
(where for the sake of simplicity we omit the index k and we consider n = 5)

ā1 b̄1

x̄1ȳ2 ā2 b̄2

x̄1ȳ3 x̄2ȳ3 ā3 b̄3

x̄1ȳ4 x̄2ȳ4 x̄3ȳ4 ā4 b̄4

x̄1ȳ5 x̄2ȳ5 x̄3ȳ5 x̄4ȳ5 ā5

+

2∑

i=1

0
ū1,iv2,i 0
ū1,iv3,i ū2,iv3,i 0
ū1,iv4,i ū2,iv4,i ū3,iv4,i 0
ū1,iv5,i ū2,iv5,i ū3,iv5,i ū4,iv5,i 0

x1

x2

x3

x4

x5

=

0
0
0
0
1

.

(3.1)

Set x1 = yn and compute x2 from the first equation, compute x3 from the second
equation, and so forth until xn is computed from the (n − 1)-st equation. Once again the
semiseparable structure of Ak enables us to compute x(k+1) in O(n) ops.

A similar substitution technique can be applied to compute y(k+1) once the vector
x(k+1) has been computed.

Method 5 This method is valid if αk = 0, i.e., if no shift is performed in the QR
iteration. In fact, in this case we have Ak+1 = RkQk so that we obtain

x(k+1) = R−H
k Qken

y(k+1) =
1

r̄
(k)
1,1

QH
k e1

(3.2)

ETNA
Kent State University
etna@mcs.kent.edu

Dario A. Bini, Francesco Daddi, and Luca Gemignani 145

3.3. Numerical issues. In this section we are concerned with numerical issues of sta-
bility and robustness of the different algorithms for performing the QR iteration described
in the previous section.

An important observation related to these issues concerns the growth of the vectors
u

(k)
1 , u

(k)
2 , v

(k)
1 , v

(k)
2 .

REMARK 2. Since Qk is unitary, it follows from the relations u
(k+1)
1 = Qku

(k)
1 ,

u
(k+1)
2 = Qku

(k)
2 , v

(k+1)
1 = Qkv

(k)
1 , v

(k+1)
2 = Qkv

(k)
2 that

‖u
(k)
1 ‖ = ‖u

(0)
1 ‖ = 1,

‖u
(k)
2 ‖ = ‖u

(0)
2 ‖ = (

n∑

i=1

|fi|
2)

1
2 ,

‖v
(k)
1 ‖ = ‖v

(0)
1 ‖ =

1

|f1|
(

n∑

i=1

|fi|
2)

1
2 ,

‖v
(k)
2 ‖ = ‖v

(0)
2 ‖ = 1,

where ‖ · ‖ denotes the Euclidean norm. Therefore, in the computation of Uk and Vk, we
do not have to expect numerical problems such as overflow or breakdowns.

A different situation holds for the vectors x(k) and y(k); their computation is numeri-
cally much more delicate.

We may easily obtain uniform bounds for ‖x(k)‖ and ‖y(k)‖. In fact, since x(k) =
A−H

k e1, we have

‖x(k)‖ ≤ ‖A−H
k ‖ = ‖F−H‖ ≤ ‖F−H‖F =

√√√√n − 1 +
1

|f1|2
(1 +

n−1∑

i=1

|fi|2),

where ‖ · ‖F denotes the Frobenius norm. Similarly we have

‖y(k)‖ ≤ ‖F−1‖ ≤

√√√√n − 1 +
1

|f1|2
(1 +

n−1∑

i=1

|fi|2).

Moreover, from the relation |ai,j | ≤ ‖A‖F , valid for the Frobenius norm ‖ · ‖F , we deduce
that

x
(k)
i y

(k)
j /y(k)

n = x
(k)
i y

(k)
j /x

(k)
1 ≤

√√√√n − 1 +
1

|f1|2
(1 +

n−1∑

i=1

|fi|2), i ≤ j.

Indeed these relations are useful to keep under control the rounding errors generated by
a floating point computation of the algorithms of the previous section. However, unlike
the case of the matrices Uk and Vk, the uniform boundedness of x(k) and of y(k) does
not guarantee that numerical breakdown is avoided. The following example clarifies the
situation.

Consider the matrix A = (ai,j) such that ai,j = εj−i, j ≥ i, where 0 < ε < 1, say ε =
1/10. The first row yT and the last column x of A are such that yT = (1, ε, ε2, . . . , εn−1)
and x = (εn−1, . . . , ε2, ε, 1)T . Clearly it holds ai,j = xiyj/x1 for j ≥ i. Moreover,
the moduli of the components of x, y and of xiyj/x1 are bounded from above by 1. If
n > 309, working with the IEEE floating point arithmetic, we encounter underflow in the
computation of x1 = 10−n+1 so that the expression xiyj/x1 would generate a breakdown
due to a division by zero.

The situation illustrated by this example is not artificial at all as it could seem at first
glance. In fact, during convergence of the QR iteration, the matrix Ak tends to an upper

ETNA
Kent State University
etna@mcs.kent.edu

146 On the shifted QR iteration applied to companion matrices

triangular matrix, and, if the shift strategy is applied for approximating a simple eigenvalue,
the entry in position (n, n− 1) of Ak converges superlinearly to zero. This implies that the
last column of A−H

k converges superlinearly to a multiple of en, that is, x
(k)
1 converges to

zero.
An attempt to keep handle this difficulty is to use a suitable representation of the vec-

tors x(k) and y(k). To this regard, it is important to point out that the representation of Qk

given in Lemma 2.3 shows that the last column as well as the first row of Qk suffer from
the same problem as x(k) and y(k). In fact, from the equations

Qken = (−1)n−1(s
(k)
1 · · · s

(k)
n−1)D

−1
s(k)

1

c
(k)
1
...

c
(k)
n−1

 ,

QH
k e1 = Ds(k)

c
(k)
1
...

c
(k)
n−1

1

 ,

Ds(k) = diag(1,−s
(k)
1 , s

(k)
1 s

(k)
2 , . . . , (−1)n−1s

(k)
1 · · · s

(k)
n−1),

(3.3)

which we deduce from Lemma 2.3, we find that computing the components of p(k) and q(k)

may generate overflow and underflow even for moderate values of n due to the property
|s

(k)
i |, |c

(k)
i | ≤ 1, i = 1 : n− 1. In fact, the matrix Qk is more conveniently represented by

means of the Givens parameters s
(k)
i , c

(k)
i , i = 1 : n−1, rather than by means of the vectors

q(k) and p(k). Moreover, this latter representation of Qk allows one to perform numerical
computations with Qk, such as the evaluation of matrix-vector products, without incurring
in any numerical breakdown.

Another useful remark is that the representation of y(k+1) given by (3.2), in the case
where no shift strategy is applied, is given in terms of the first row of Qk, i.e. (compare
with (3.3)),

y(k+1) =
1

r̄
(k)
1,1

QH
k e1 =

1

r̄
(k)
1,1

Ds(k)

c
(k)
1
...

c
(k)
n−1

1

 .

These considerations suggest to represent the vectors x(k+1) and y(k+1) by means of
the Givens parameters s

(k)
i and c

(k)
i and by auxiliary vectors w(k+1) and z(k+1), such that

x(k+1) = (−1)n−1(s
(k)
1 · · · s

(k)
n−1)D

−1
s(k)z

(k+1),

y(k+1) = Ds(k)w
(k+1).

(3.4)

In this way, if no shift strategy is applied, then from (3.2) and (3.4) we find that

w(k+1) =
1

r̄
(k)
1,1

(c
(k)
1 , . . . , c

(k)
n−1, 1)T ,

z(k+1) = Ds(k)R−H
k D−1

s(k)(1, c
(k)
1 , . . . , c

(k)
n−1)

T .

(3.5)

Thus, w(k+1) is readily available from the Givens rotations and from r
(k)
1,1 without numer-

ical problems, while z(k+1) is obtained by solving a triangular semiseparable system. For
the computational issues related to the latter problem we refer the reader to section 4 and to

ETNA
Kent State University
etna@mcs.kent.edu

Dario A. Bini, Francesco Daddi, and Luca Gemignani 147

Algorithm 2. With this representation we expect more robustness even in the computation
of z(k+1).

A different way to represent x(k) and y(k) is derived from equation (2.8), where the
upper triangular part of A−H

k is given in terms of the lower diagonal entries of Ak by means
of two auxiliary vectors. Let us rewrite this representation below, where this time w(k+1)

and z(k+1) denote the vectors with components ((−1)i−1d̂
(k)
i) and ((−1)n−id̃

(k)
n−i), re-

spectively (compare with Lemma 2.1),

x(k+1) = (b
(k+1)
1 · · · b

(k+1)
n−1)D−1

b(k+1)z
(k+1),

y(k+1) = D
b(k+1)w(k+1).

(3.6)

4. Implementation. We are ready to describe implementations of the QR and RQ
steps which aim to remove the breakdown situations encountered in the original computa-
tions of section 3. They are based on the representation of x(k) and of y(k) provided in
(3.4). Similar implementations can be based on (3.6).

Let us consider the QR step as described in Algorithm 1 and replace the vectors x(k),
x̂

(k), y(k) by z(k), ẑ
(k) and w(k), respectively, such that

x(k) = (−1)n−1(s
(k−1)
1 · · · s

(k−1)
n−1)D−1

s(k−1)z
(k),

x̂
(k) = (−1)n−1(s

(k−1)
1 · · · s

(k−1)
n−1)D−1

s(k−1) ẑ
(k),

y(k) = Ds(k−1)w(k).

These replacements modify the computational scheme of Algorithm 1 only in the stages 1,
(b) and (d), which now become

1. a(k) = (
1

w
(k)
n

z
(k)
i w

(k)
i +u

(k)
i,1 v̄

(k)
i,1 +u

(k)
i,2 v̄

(k)
i,2)i,1,n, b̂

(k)
= b(k), Ûk = Uk, ẑ

(k) = z(k).

(b) (Update Rk)

(i) d
(k)
i = γ

(k)
i , t =

1

w
(k)
n

ẑ
(k)
i w

(k)
i+1s

(k−1)
i + û

(k)
i,1 v̄

(k)
i+1,1 + û

(k)
i,2 v̄

(k)
i+1,2,

(ii) g
(k)
i = c

(k)
i t + s

(k)
i a

(k)
i+1,

(iii) d
(k)
i+1 = −s

(k)
i t + c

(k)
i a

(k)
i+1.

(d) (Update ẑ
(k))

(i) t = c
(k)
i ẑ

(k)
i −

s
(k)
i

s
(k−1)
i

ẑ
(k)
i+1 ,

(ii) ẑ
(k)
i+1 = s

(k)
i s

(k−1)
i ẑ

(k)
i + c

(k)
i ẑ

(k)
i+1,

(iii) ẑ
(k)
i = t.

The computational cost of this modification is slightly higher than the one of Algorithm
1 but still remains linear in n. Possible numerical troubles in this modification might be

encountered in the computation of the ratio
s
(k)
i

s
(k−1)
i

. It is worth observing that if s
(k−1)
i is

numerically zero, then convergence has taken place and the algorithm stops (or continues
after deflating the approximated eigenvalue). Moreover, in the case of linear convergence

it holds that limk→∞

s
(k)
i

s
(k−1)
i

is a nonzero constant, whereas in the case of superlinear

convergence it holds limk→∞

s
(k)
i

s
(k−1)
i

= 0.

Concerning the implementation of the RQ step, consider the most simple case where
no shift strategy is applied so that we may rely on method 5. Indeed, from (3.5) we may
recover w(k+1) at no additional cost, whereas for computing z(k+1) we have to solve the

ETNA
Kent State University
etna@mcs.kent.edu

148 On the shifted QR iteration applied to companion matrices

linear system

Ds(k)RH
k D−1

s(k)z
(k+1) = b,

b = (1, c
(k)
1 , . . . , c

(k)
n−1)

T ,
(4.1)

where Rk = (r
(k)
i,j) is defined by the vectors d(k), g(k), x̂

(k), y(k) and by the matrices Ûk,
Vk as in (2.9).

The following algorithm solves the triangular semiseparable system (4.1). The algo-
rithm relies on the structure of the matrix Ds(k)RH

k D−1
s(k) which is obtained from (2.9) and

whose entries are reported below

d̄
(k)
i if i = j,

−s
(k)
i ḡ

(k)
i if i = j + 1,

(s
(k)
j . . . s

(k)
i−1)

(
1

w̄
(k)
n

w̄
(k)
i ẑ

(k)

j (s̄
(k−1)
j · · · s̄

(k−1)
i−1)+

(−1)i+j(v
(k)
i,1 û

(k)

j,1 + v
(k)
i,2 û

(k)

j,2)
)

if i > j + 1,

0 if i < j.

ALGORITHM 2.
INPUT: The vectors d(k), g(k), ẑ

(k), w(k), and the matrices Ûk = (û
(k)
i,j), Vk = (v

(k)
i,j),

together with the Givens parameters s
(k−1)
i and c

(k−1)
i which define the entries of Rk by

means of (2.9). The right-hand side vector b and the components of s(k).
OUTPUT: The solution z(k+1) of the system (4.1).
COMPUTATION:
Set z

(k+1)
1 = b1/d̄

(k)
1 , z

(k+1)
2 = (b2 + ḡ

(k)
1 s

(k)
1 z

(k+1)
1)/d̄

(k)
2 , γ2,1 = γ2,2 = φ2 = 0.

For i = 3 : n do
1. γi,j = s

(k)
i−1(−γi−1,j + û

(k)

i−2,js
(k)
i−2z

(k+1)
i−2), j = 1, 2,

2. φi = s
(k)
i−1s̄

(k−1)
i−1 (φi−1 − ẑ

(k)

i−2s̄
(k−1)
i−2 s

(k)
i−2z

(k+1)
i−2),

3. z
(k+1)
i = (bi + ḡ

(k)
i−1s

(k)
i−1z

(k+1)
i−1 − v

(k)
i,1 γi,1 − v

(k)
i,2 γi,2 + w̄

(k)
i φi/w

(k)
n)/d̄

(k)
i ,

End do
The more general case when the QR iteration is applied with a shift can be treated

similarly. For instance, applying method 3 with the replacement (3.4) yields

w(k+1) =
σn

r̄
(k)
1,1

D
−1

s(k)RkDs(k)Diag(σ−1
1 , σ−1

2 , . . . , σ−1
n)w(k),

z(k+1) = r̄(k)
n,nDs(k)R−H

k D−1
s(k) Diag(σ̄1, σ̄2, . . . , σ̄n)z(k),

σ1 = 1, σi =

i−1∏

j=1

θj , i = 2 : n, θi = s
(k−1)
i /s

(k)
i , i = 1 : n − 1.

The computation of z(k+1) involves the solution of a triangular semiseparable system of the
same kind as (4.1) where b = 1

r̄
(k)
n,n

Diag(σ̄1, . . . , σ̄n)z(k), so that we may apply Algorithm

2. The computation of w(k+1) requires the multiplication of a triangular semiseparable
matrix and a vector. Also this task can be carried out in O(n) ops.

5. Numerical experiments. We have implemented the QR iteration for computing
a given number m of eigenvalues of the matrix F based on the method 3 and 5 (if shift
is not performed) and relying on the representation (3.4). For the sake of simplicity the
implementation and the numerical experiments have been performed in the real field. The
program has been written in Fortran 90 and tested under the Linux system on a computer
with an Athlon 1600 cpu.

ETNA
Kent State University
etna@mcs.kent.edu

Dario A. Bini, Francesco Daddi, and Luca Gemignani 149

test 1: Wilkinson’s polynomial p(x) =
∏n

i=1(x − i) for n = 10, 20.
test 2: Reversed Wilkinson’s polynomial. p(x) =

∏n

i=1(x − 1/i) for n = 10, 20.
test 3: Polynomial with well separated roots, p(x) =

∏n

i=1(x − 1/2i), n = 40.
test 4: p(x) = (xn−m + 1)

∏m+1
i=2 (x − 1/i) for m = 20 and n ≤ 106.

test 5: p(x) = (xn−m + 1)
∏m

i=1(x − 1/2i) for m = 40 and n ≤ 106.
The shift technique is applied if the difference between two subsequent approximations

a
(k+1)
n,n − a

(k)
n,n has modulus less than 1/10. As stopping condition for the QR iteration we

chose |a
(k)
n,n−1| < ε|a

(k)
n,n| with ε = 10−11. Once an eigenvalue λ has been approximated,

we deflated the matrix Ak by removing the last row and the last column and continued to
apply the algorithm to the submatrix obtained in this way.

In the case of the Wilkinson polynomial of degree n = 20 the algorithm failed to
converge if starting with no shift, i.e., with α0 = 0. Starting with α0 = 22, i.e., by approx-
imating the eigenvalues in decreasing order, the algorithm provided the approximations
shown in Table 2. In Tables 1,2,3, we report the values i, λi and the number of required
iterations. In Tables 4 and 5, we report the value of the cpu time, in seconds, required for
computing the first m zeros of the polynomial of degree n where n takes values up to 106.
We do not report the approximation errors since they seem to be almost independent of the
degree n.

As we can see from the tables, our algorithm has a cost which grows linearly with n,
and allows us to handle polynomials of very large degree with no problems of memory
storage. In certain cases the approximations are reasonably precise, in other cases (see
the Wilkinson polynomial of degree 20 with zeros approximated in increasing order) the
algorithm fails to converge. Other cases of breakdown due to overflow/underflow have
been encountered. This means that the algorithm, even where implemented with the rep-
resentation based on (3.4), is not robust and needs more investigation. One reason for this
weakness is the fact that the representation of Ak somehow involves the expression of the
inverse A−1

k , and consequently requires performing divisions. Algorithms for the QR iter-
ation which perform unitary transformations and do not require divisions (by numbers of
small modulus) have shown to be stable and robust. More precisely, we refer the reader
to the paper [2] where the QR iteration is specifically designed for computing eigenval-
ues of a special class of matrices including arrowhead matrices and matrices of the kind
diagonal+rank 1.

A way to overcome this difficulty is to apply the QR iteration directly to the matrix
A0 = F + F−1 which generates the sequence Ak such that Ak = AH

k + U (k)V (k)H for
suitable n × 2 matrices U (k) and V (k). Even in this case the weak semiseparable structure
of A0 is maintained; moreover, no inversion of Ak is needed anymore in the representation
formulas, except that of A0 = F . When the eigenvalues µ1, . . . , µn have been computed,
we may find the eigenvalues λi of F in the set of the solutions of the equations λ + λ−1 =
µi, i = 1, . . . , n. Alternatively, the representation of F as a unitary Hessenberg plus a rank
one matrix could be another way for designing inversion-free algorithms for performing
the QR step. These will be the subjects of our next research.

Acknowledgments. We thank an anonymous referee for valuable suggestions that
improved the presentation.

ETNA
Kent State University
etna@mcs.kent.edu

150 On the shifted QR iteration applied to companion matrices

i λi iter
1 1.000000000081050 17
2 1.999999993547419 6
3 3.000000043477431 6
4 3.999999980710313 5
5 4.999999447874695 5
6 6.000001980752747 5
7 6.999996815436769 5
8 8.000002744205705 5
9 8.999998765156054 4

10 10.00000022875783 1

i λi iter
1 10.00000000004859 10
2 8.999999999765816 6
3 8.000000000480380 5
4 6.999999999455802 5
5 6.000000000369495 5
6 4.999999999846834 5
7 4.000000000037894 5
8 2.999999999994979 5
9 2.000000000000302 5

10 0.9999999999999289 1
α0 = 0 α0 = 12

TABLE 5.1
Wilkinson’s polynomial n = 10.

i λi iter i λi iter
1 20.00004391793787 10 11 10.00101029035203 5
2 18.99958361338783 6 12 8.999690499995966 5
3 18.00179081927481 5 13 8.000065781753833 5
4 16.99529972600241 5 14 6.999992485609691 5
5 16.00827840794409 5 15 5.999999762404186 5
6 14.98930172974257 5 16 5.000000226762443 5
7 14.01045173655527 5 17 3.999999966695113 5
8 12.99200882355489 5 18 3.000000002193996 5
9 12.00498158865593 5 19 1.999999999923354 5

10 10.99750062124958 5 20 1.000000000003987 1
TABLE 5.2

Wilkinson’s polynomial, n = 20, α0 = 22.

REFERENCES

[1] G. S. AMMAR AND W. B. GRAGG, Schur flows for orthogonal Hessenberg matrices, in Hamiltonian and
gradient flows, algorithms and control, Fields Inst. Commun., 3, Amer. Math. Soc., Providence, RI,
1994, pp. 27–34.

[2] D. A. BINI, L. GEMIGNANI, AND V. Y. PAN, QR-like algorithms for generalized semiseparable matrices,
Technical Report 1470, Dipartimento di Matematica, Università di Pisa, 2003.

[3] D.A. BINI, L. GEMIGNANI, AND F. TISSEUR, The Ehrlich-Aberth method for the nonsymmetric tridiag-
onal eigenvalue problem, Technical Report 428, Manchester Centre for Computational Mathematics,
University of Manchester, 2003.

[4] D. CALVETTI, S. KIM, AND L. REICHEL, The restarted QR-algorithm for eigenvalue computation of
structured matrices, J. Comput. Appl. Math., 149 (2002), no. 2, pp. 415–422.

[5] S. CHANDRASEKARAN AND M. GU, A fast and stable solver for recursively semi-separable systems
of linear equations, in Structured matrices in mathematics, computer science, and engineering, II,
Boulder, CO, 1999, Contemp. Math., 281, Amer. Math. Soc., Providence, RI, 2001, pp. 39–53.

[6] Y. EIDELMAN AND I. GOHBERG, Inversion formulas and linear complexity algorithm for diagonal plus
semiseparable matrices, Comput. Math. Appl., 33 (1997), pp. 69–79.

[7] Y. EIDELMAN AND I. GOHBERG, On a new class of structured matrices, Integral Equations Operator
Theory, 34 (1999), pp. 293–324.

[8] D. FASINO, Personal communication.
[9] D. FASINO, N. MASTRONARDI, AND M. VAN BAREL, Fast and stable algorithms for reducing diagonal

plus semiseparable matrices to tridiagonal and bidiagonal form, in Fast Algorithms for Structured
Matrices: Theory and Applications, Vadim Olshevsky, ed., Contemp. Math., 323, Amer. Math. Soc.,
Providence, RI, 2003, pp. 105–118.

[10] P. E. GILL, G. H. GOLUB, W. MURRAY, AND M. A. SAUNDERS, Methods for modifying matrix factor-
izations, Math. Comp., 28 (1974), pp. 505–535.

[11] I. GOHBERG, T. KAILATH, AND I. KOLTRACHT, Linear complexity algorithms for semiseparable matri-
ces, Integral Equations Operator Theory, 8 (1985), no. 6, pp. 780–804.

[12] I. KOLTRACHT, Linear complexity algorithm for semiseparable matrices, Integral Equations Operator

ETNA
Kent State University
etna@mcs.kent.edu

Dario A. Bini, Francesco Daddi, and Luca Gemignani 151

i λi iter i λi iter
1 9.090699628083369E-13 6 21 9.536743164062561E-07 3
2 1.819421487856309E-12 4 22 1.907348632812494E-06 3
3 3.637691425913883E-12 3 23 3.814697265624970E-06 3
4 7.275960482738636E-12 3 24 7.629394531250017E-06 3
5 1.455201315732692E-11 3 25 1.525878906250005E-05 3
6 2.910390935284155E-11 3 26 3.051757812499990E-05 3
7 5.820770837885015E-11 3 27 6.103515625000001E-05 3
8 1.164153475948272E-10 3 28 1.220703124999984E-04 3
9 2.328306570434075E-10 3 29 2.441406250000034E-04 3

10 4.656612941269948E-10 3 30 4.882812499999877E-04 3
11 9.313225780556513E-10 3 31 9.765625000000256E-04 3
12 1.862645150958509E-09 3 32 1.953124999999959E-03 3
13 3.725290299327524E-09 3 33 3.906250000000027E-03 3
14 7.450580597357062E-09 3 34 7.812499999999941E-03 3
15 1.490116119406440E-08 3 35 1.562499999999997E-02 3
16 2.980232238780377E-08 3 36 3.125000000000010E-02 3
17 5.960464477544437E-08 3 37 6.249999999999958E-02 3
18 1.192092895508090E-07 3 38 0.1249999999999997 3
19 2.384185791015752E-07 3 39 0.2500000000000002 3
20 4.768371582031278E-07 3 40 0.4999999999999996 1

TABLE 5.3
Polynomial

∏
40
i=1

(x − 1/2i), α0 = 0.

n cpu n cpu
100 0.01 16000 1.59
200 0.02 32000 3.12
400 0.04 64000 6.47
800 0.07 125000 12.63
1600 0.11 250000 25.1
3200 0.26 500000 52.3
6400 0.51 1000000 108.8

n cpu n cpu
100 0.00 16000 1.56
200 0.01 32000 3.38
400 0.02 64000 6.78
800 0.04 125000 13.02
1600 0.08 250000 28.02
3200 0.16 500000 52.51
6400 0.36 1000000 116.02

p(x) = (xn−m + 1)
∏m+1

i=2 (x − 1/i), p(x) = (xn−m + 1)
∏m+1

i=1 (x − 1/2i),

m = 20 m = 40
TABLE 5.4

Computing m zeros of p(x): cpu time in seconds.

Theory, 29 (1997), no. 3, pp. 313–319.
[13] P. FAVATI P. RÓZSA, R. BEVILACQUA AND F. ROMANI, On the inverse of block tridiagonal matrices

with applications to the inverses of band matrices and block band matrices, Oper. Theory Adv. Appl.,
40 (1989), pp. 447–469.

[14] P. RÓZSA, R. BEVILACQUA, F. ROMANI, AND P. FAVATI, On band matrices and their inverses, in
Proceedings of the First Conference of the International Linear Algebra Society, Provo, UT, 1989,,
Linear Algebra Appl., 150 (1991), pp. 287–295.

[15] E. E. TYRTYSHNIKOV, Mosaic ranks for weakly semiseparable matrices, in Large-scale scientific com-
putations of engineering and environmental problems, II, Sozopol, 1999, Notes Numer. Fluid Mech.,
73, Vieweg, Braunschweig, 2000, pp. 36–41.

[16] R. VANDEBRIL, M. VAN BAREL, AND N. MASTRONARDI, An implicit qr algorithm for semisepara-
ble matrices, to compute the eigendecomposition of symmetric matrices, Technical Report TW367,
Department of Computer Science, Katholieke Universiteit, Leuven, August 2003.

[17] R. VANDEBRIL, M. VAN BAREL, AND N. MASTRONARDI, An orthogonal similarity reduction of a ma-
trix to semiseparable form, Technical Report TW355, Department of Computer Science, Katholieke
Universiteit, Leuven, February 2003.

[18] T. WANG AND W. B. GRAGG, Convergence of the shifted QR algorithm for unitary Hessenberg matrices,
Math. Comp., 71 (2002), no. 240, pp. 1473–1496.

ETNA
Kent State University
etna@mcs.kent.edu

152 On the shifted QR iteration applied to companion matrices

[19] H. XU, The relation between the QR and LR algorithms, SIAM J. Matrix Anal. Appl., 19 (1998), no. 2,
pp. 551–555.

