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TRANSIENT BEHAVIOR OF POWERS AND EXPONENTIALS OF LARGE
TOEPLITZ MATRICES

�
ALBRECHT BÖTTCHER

�
Abstract. The message of this paper is that powers of large Toeplitz matrices show critical behavior if and

only if the ��� norm of the symbol is greater than one. Critical behavior means that the norms of the powers grow
exponentially to infinity or that they run through a critical transient phase before decaying exponentially to zero. We
summarize several known results that are relevant to the problem. Moreover, the paper contains some new results
and illuminates the question from a perspective that might be new. The paper may serve as an introduction to a few
basic phenomena one encounters in the field.
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1. Introduction. Let
���

be a complex �
	�� matrix. The behavior of the norms � ��� �
is of considerable interest in connection with several problems. We specify ����� to be the
spectral norm (i.e., the operator norm associated with the ��� vector norm). The norms � ��� �
converge to zero as ����� if and only if ��� �������! 

, where ��� ����� denotes the spectral radius
of
�"�

. However, sole knowledge of the spectral radius or even of all eigenvalues of
�#�

does
not tell us whether the norms � � � � run through a critical transient phase, that is, whether
there are � for which � ��� � becomes very large, before eventually decaying exponentially to
zero.

We here embark on the case where
� �

is a Toeplitz matrix or where
� �

can be approxi-
mated by a sum of products of Toeplitz matrices. An �$	%� Toeplitz matrix is a matrix of the
form

(1.1) �'&)(+*  � �(-, /.1032
4555556

&87 & * 0 & * � 9:9;9 & *1< � * 0>=& 0 & 7 &?* 0 9:9;9 & *1< � * � =& � & 0 & 7 9:9;9 & *@< � *�A �
...

...
...

. . .
...& � * 0 & � * � & � *�A 9:9;9 & 7

B:CCCCCDFE
and an infinite Toeplitz matrix is given by

(1.2) �G& (+*  �IH(I, /.J0 2
4556 &87 & * 0 & * �K9:9:9& 0 &87 & * 0 9:9:9& � & 0 &L7 9:9:99;9:9K9:9;9 9:9;9K9:9:9

B CCD E
where MN&LO:P:O-QSR is a sequence of complex numbers. It is well-known that many properties
of a Toeplitz matrix are encoded in its so-called symbol. This is an object whose Fourier
coefficients are the numbers &8O ( �#T$U ). We here assume that the symbol is an V H function.
Thus, let & be a complex-valued function on the complex unit circle W and suppose &XTV HZY 2 V H �'W � . The Fourier coefficients of & are defined by

&LO 2  [S\$] �-^7 &_�'`�acb � ` * a O b+dLe �f��TgU � 9h
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2 Powers and exponentials of large Toeplitz matrices

We denote the matrices (1.1) and (1.2) by � � �G& � and � �G& � , respectively. A 1911 result by
Otto Toeplitz states that � �'& � induces a bounded operator on ��� Y 2 �:�)��� � and that ��� �'& � � 2�+& � H , where ���8� H is the norm in V H (see, e.g., [10], [11]).

What can be said about the norms ��� � �'& � � Y 2 �)��� � �G& �>�I � ? The computer is expected
to give a reliable answer in the case where � is small. We therefore assume that � is large.
The message of this paper is that ��� � �'& � � has critical behavior as � increases if and only if�+& � H��  

. In other words, to find out whether ��� � �G& � � shows critical transient or limiting
behavior, we need only look whether the V H norm of the symbol is greater than one. Notice
that it is much more difficult to decide whether ����� � �G& �>� or 	�
���������� H � ��� � �G& �I� is smaller than

one.
We think of �

�
as a subspace of �;� and denote by � � the orthogonal projection of �N�

onto �
�

. The range (i.e., the image) of � � will be denoted by ����� � . On identifying an ��	��
matrix

���
with

�"� � � , we may regard
���

as an operator on �:� .
First of all we remark that � � �G& � is the compression of � �G& � to ����� � 2 �

�
, that is,

� � �G& � 2 � � � �'& � � ��� ����� � . This implies at once that

(1.3) ��� � �G& � ��� ��� � �'& � �  � ��� �G& � �  2 �+& � H
for all � and � . Thus, for the norms of powers of Toeplitz matrices we have the simple
universal upper estimate (1.3). In particular, if �+& � H �  

, then there is no critical behavior.
The following theorem shows that (1.3) reduces to equality as � ��� . This theorem may

be viewed as an argument in support of the statement that ��� � �G& � � shows critical behavior
whenever �:& � H �  

.
THEOREM 1.1. If &%TgV H , then

(1.4) 	
����� H ��� � �G& � � 2 �+& � H
for each natural number � .

Proof. For fixed � , the operators � � �'& � converge strongly (i.e., pointwise) to �  �'& � as� � � . Hence, by the Banach-Steinhaus theorem,

(1.5) 	�
��
��! ��� H ��� � �G& � ��" ���  �'& � � 9
By (1.3) and (1.5), we are left with proving that ���  �'& � �#" �+& � H . But ���  �G& � �$"� ���  �'& �I� 2 � � ��� �G& �>�I�> , and the Hartman-Wintner theorem (see, e.g., [10]) says that the
spectrum of � �G& � contains the essential range of & , whence � ��� �G& �>� "X�+& � H .

The problem studied here amounts to looking for peaks of the “surface” �'� E � �&%���� � �'& � � along the lines � 2 constant, while Theorem 1.1 concerns the behavior of ��� � �G& � �
along the lines � 2 constant. We will return to this question later, especially in Section 7. For
the moment, let us consider an example.

EXAMPLE 1.2. The simplest nontrivial Toeplitz matrix is the Jordan block

(1.6) ' � �)( � 2
4555556
( * * 9:9;9 * ( * 9:9;9 *
*  ( 9:9;9 *
...

...
...

. . .
...

* * * 9:9;9 (

B CCCCCD 9
Clearly, ' � ��( � 2 � � �G& � with &_��+ � 2 (-,�+ ( +�T W ). Figure 1.1 indicates the shape of the

“surface” �'� E � ��%� �.' � ��* 9 / � � . We will omit the quotation marks in the following and will
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simply speak of the norm surface. We will also silently identify the surface with its “map” in
the � E � plane, that is, we will not distinguish the point � � E � E � �'� E � �>� on the surface from its
projection �'� E � � in the plane. The spectral radius of ' � ��* 9 / � equals * 9 / , while the V H norm
of the symbol is �+& � H 2  9 / . We see that the surface has a lowland (say below the curve�.' � ��* 9 / � � 2  * *�� , a steep (say between the curves � ' � ��* 9 / � � 2  * *�� and � ' � ��* 9 / � � 2 *L� ), and a part where it grows enormously (say above the curve �.' � ��* 9 / � � 2  *L� ). We call
the last part the sky region.
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FIG. 1.1. Level curves ������
	��� ��� ����� for ����� ����� , � ��� , � ����� , � ���� , � ���!� , � �#"%$ (the lower curve
corresponds to �&�'� � ��� , the upper to � � "%$ ). We took ()�+*�,.-/,!0�, 12 ,43 � and 56�70�,2� � ,��10�, 11 ,40 �#� .
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FIG. 1.2. Movement on the surface 	 58,�( �:9; ������
	��� ��� � along the horizontal line (��=< � (left) and along
the vertical line 5>�7< � (right).
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If � is fixed and � increases, we move horizontally in Figure 1.1. On the surface, we will soon
be in the sky region, then step down the steep, and finally be caught in the lowland forever.
Thus, we have the critical transient phase shown in the left picture of Figure 1.2. On the other
hand, if we fix � and let � increase, then this corresponds to a vertical movement of Figure
1.1. This time we will fairly quickly reach the sky region and move at nearly constant height
for the rest of the journey, as shown the right picture of Figure 1.2. Note that in the right
picture of Figure 1.2 the norms converge to the limit

 9 / � 7 2  [ 9 ��� �  *�� and that the norms
are already very close to this limit beginning with � between

[ * and � * .
The problem of determining the spectral radius of � � �'& � is not trivial. If & is a rational

function (without poles on W , because otherwise & would not be in V H ), then ����� � �G& �>�
converges to a limit as � � � , and formulas for this limit are known in a few important
special cases; see [14], [15], [27] and Section 7. However, in practice one can compute this
limit numerically: the spectral radii of � 0 7-7L�G& � or even of � A 78�G& � are often already very close
to the limit. Things are more complicated for nonrational symbols. In that case it is known
that, under certain assumptions, the inequality �+& � H �  

implies that � ��� � �'& �>� �  
for all

sufficiently large � . This is, for example, true in the following two situations.
(i) The function & is continuous but not � H on W and there is a point + 7 T�W such that &

is � H on W��"M + 7 P ; see [35], [36] and [11, pp. 168–169].
(ii) There is a point + 7 TXW such that & is ��� on W�� M + 7 P , the limits &_��+ 7
	 * � and&���+ 7 , * � exist but do not coincide, and��� ������ &���+ 7 	 * � 	 (�� 	 ������ &���+ 7 , * � 	 (�� ��� � [ \

for each ( outside the essential range of & , where ���� denotes any continuous argument of&���+ � 	 ( ( +�T�W��"M + 7 P ); see [11, p. 181].
Figure 1.3 shows two examples, one for case (i) and another one for case (ii).
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FIG. 1.3. The symbols are � 	������ � � 	 ��� ���� � � ����� and � 	������ � �"!$# � � �%��& � in the left and right pictures,
respectively. We see the image of ' under � and the eigenvalues of (*) � 	 � � .
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In Figure 1.3, we observe that the eigenvalues cluster around the curve &��'W � . Consequently,
there will be eigenvalues near the point(s) of this curve having maximal distance from the
origin. This implies that � ��� � �'& �I� is close to �+& � H . Thus, if & satisfies (i) or (ii) and if�+& � H �  

, then ��� � �'& � � � � as �$� � whenever � is sufficiently large. The situation
is different for rational symbols. In that case the eigenvalues cluster along certain curves that
may stay away from &��GW � (see Figure 1.4). Hence, there may remain a gap between ����� � �G& �>�
and �:&�� H , which may result in a critical transient phase before the exponential decay to zero.
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FIG. 1.4. The symbols are � 	���� � ! � ��0 �%�
��� 3 �!� � (left) and � 	���� � ! � � �!��" (right). The pictures show� 	 ' � and the eigenvalues of ( ) � 	 � � .
2. Polynomial numerical hulls. Let

� �
be an � 	#� matrix. The polynomial numerical

hull
�  � � � � of degree � is defined as

�  � � � � 2 M���T � Y � � �	� � � � � � � � � � � for all
� T�
� P E

where 
� is the set of all polynomials of the form

� ��� � 2 � 7 , � 0 � , �:�;� , �  �  9
The objective of

�  � � � � is to employ the obvious inequality� � � � � � ��" � ���� Q�����<���� = � � ��� � �
in order to get a lower estimate for � � � � � � � . The sets

�  � � � � were introduced by Olavi
Nevanlinna [24], [25] and were independently discovered by Anne Greenbaum [21], [22].
Their works describe various properties of polynomial numerical hulls. In general, polyno-
mial numerical hulls can be computed only numerically (see, e.g., [21]), and the development
of algorithms and software for polynomial numerical hulls is still far away from the advanced
level of the pseudospectra counterpart [37], [38].

Faber, Greenbaum, and Marshall [17] obtained pretty precise results on the polynomial
numerical hulls of Jordan blocks. Let ' � �)( � be the Jordan block (1.6). If � is greater than
the degree of the minimal polynomial of

� �
, then

�  � � � � collapses to the spectrum of
� �

.
Thus,

�  ��' � ��( �>� 2 M ( P for � " � . In [17], it is shown that if
 � � � � 	  

, then



ETNA
Kent State University 
etna@mcs.kent.edu

6 Powers and exponentials of large Toeplitz matrices

�  � ' � ��( �>� is a closed disk with the center ( whose radius �  , � satisfies

��� � \� ,  2 � 0 , � " �  , � " � � * 0 , � 2  	 	 � � � [ � �� , 	 � � ��	 � � � [ � �>�� ,�� �  ��� 9
Consequently, �.' � ��( � � " � ���� 	 *�
 � �� ��� � � � �  2 � � ( � , �  , � �  9
It is also shown in [17] that � � * 0 , � is greater than or equal to the positive root of

[�� � , � 	  2
* , which implies that

� � * 0 , � �  	 	 � � � [ � �� for all � 9
In fact, in [17] it is proved that � � * 0 , � is extremely close to the positive root of

[�� � , � 	  2 * ;
if � is even, one actually has equality. This yields, for instance, �.'�� 70 7-7 ��* 9 / � � "  * 0 ��� 0-0 .
Matlab gives us the exact value: �.' � 70 7I7 ��* 9 / � � 2  * 0 ��� � � .

It should be mentioned that once Faber, Greenbaum, and Marshall had completed the
original version of [17], they observed that their asymptotic formula

� � * 0 , � 2  	 	 � � � [ � �� , 	 � � ��	 � � � [ � �>�� ,�� �  ���
is in fact a very old result. Namely, the problem of determining � � * 0 , � is equivalent to
a classical problem in complex approximation theory (closely related to the Carathéodory-
Fejér interpolation problem) which was explicitly solved by Schur and Szegö [28] and then
rediscovered with a different proof by Goluzin [19], [20, Theorem 6, pp. 522-523]. Anne
Greenbaum wrote [23]: “It indicates that it is a fundamental question that probably has ap-
plication in a lot of areas, so this gives one more confidence that the idea of the polynomial
numerical hull is a fundamental concept that we should be investigating.”

We also remark that a matrix with a norm that is gigantic in comparison with the matrix
dimension must have a gigantic entry. For � � � , the � th entry of the first column of the

lower-triangular Toeplitz matrix ' � ��( � is �  O � (  *�O . Taking the value � 2�� ��� �  , � ( � �! ,
where � �  denotes the integer part, we get

�.' � �)( � ��" � �� ��� �  , � ( � �" � � ( �  *$# �% < 0 � � 
 � ='& 9
This simple observation delivers

� ' � 70 7-7 ��* 9 / � ��" � � *[ � � * 9 / � A 2  * 0-0 � ( 7 E
which is fairly good.

3. Pseudospectra and resolvent norm. Let
�

be a bounded operator on some Hilbert
space ) . Note that we may think of an �
	 � matrix as an operator on �

�
with the �:� norm.

For * � * , the * -pseudospectrum � �,+ � is defined as the set

(3.1) ���-+ � 2 M.(�T � Y �S� � 	 (,. � * 0 ��"  �/*�P E
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with the convention that �S� � 	 (,. � * 0 � 2 ,#� if
� 	 (,. is not invertible. A great deal of

information about pseudospectra is in [11], [12], [16], [26], [29], [30]. We note in particular
that � � + � admits the alternative description

(3.2) ��� + � 2 ������ � + ��� � � ,�� � E
where ��� � � ,�� � denotes the spectrum of

� ,�� and the union in (3.2) is over all bounded
operators � on ) whose norm does not exceed * .

Tom Wright’s package EigTool [37] provides us with fantastic software for computing
pseudospectra numerically. In 1999, Trefethen [31] wrote: “In 1990, getting a good plot
of pseudospectra on a workstation for a ��*g		��* matrix took me several minutes. Today I
would expect the same of a � *�* 	
� *�* matrix, and pseudospectra of matrices with dimensions
in the thousands are around the corner.” Concerning the computation of pseudospectra of
dense matrices, Wright notes in his 2002 thesis [38]: “What was once a very expensive
computation has become one that is practically of a similar order of complexity to that of
computing eigenvalues.”

The role of pseudospectra in connection with the norms of powers of matrices and oper-
ators is as follows: norms of powers can be related to the resolvent norm, and pseudospectra
decode information about the resolvent norm in a visual manner. A relation between resol-
vent and power norms is established by the Kreiss matrix theorem. Let

� �
be an ��	�� matrix

with ��� � � � �  
. For ( outside the closed unit disk � , put � � �)( � 2 �)� � � 	 (,. � * 0 � . The

Kreiss matrix theorem says that

������ 
 �  0 � � ( � 	  N� � � �)( � � � ����� 7 � � � � � `N�������� 
 �  0 � � ( � 	  N� � � ��( � 9
We refer the reader to [33] for a delightful discussion of the theorem. The “easy half” of the
Kreiss matrix theorem is the lower estimate. It implies that if we pick a point ( T&� with� Y 2 � ( � �  

, then the maximum of the norms � ��� � ( � "�* ) is at least � � 	  N� � � �)( � . Thus,
the maximum is seen to be large whenever we can find a ( outside � with large resolvent
norm.

The following theorem and its proof are due to Nick Trefethen [32]. This theorem is
similar to but nevertheless slightly different from the lower estimate of the Kreiss matrix
theorem.

THEOREM 3.1. Let
�

be a bounded linear operator and let ( T � � ��� � . Put � 2 � ( �
and � �)( � 2 �)� � 	 (�. � * 0 � . If ����( � �  �8� , then

(3.3) � ���0 � ( �  � � ( ��" � �� �  , �  	  � 	   ��� �)( � 	  � 9
Proof. Put �  2 � ��� 0 � ( �  � � ( � . By assumption, �����)( � 	  

is positive, so the term in
the large brackets of (3.3) is at least

 
and the right-hand side of (3.3) is thus at most �  . If �

does not exceed the spectral radius of
�

, then (3.3) is accordingly trivial. We may therefore
assume that � is larger than the spectral radius of

�
. In this case we have

(1��(,. 	 ��� * 0 2 � . 	 ( * 0 ��� * 0 2 . , �)( * 0 ��� , ��( * 0 ��� � , �)( * 0 ��� A , �:�;�
and the corresponding bound

(3.4) ������( � �  , � * 0 � � � , � * � � � � � , � *�A � � A � , �:�;� 9
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Let us take the case � 2 [
for illustration. Clearly,� � � E � � � ��� � � E � � A � E � � � � � � �� E � � � � E � � � ��� � A� E

and so on. Grouping the terms in (3.4) accordingly into pairs gives������( � �  , � � * � � � � �  , � � , � � * � � � � � �  , � � , �:�;� 9
If � � "!� � , then (3.3) is true, so we may assume that � * � � � �! 

. In this case

������( � �  , � * ��� � �  , � � 	 � * � � � 2  , � ,  � � � � � 	  9
For general � , we obtain similarly that ������( � is at most , � � *  �  � �  , �:�;� , �  * 0 � , � � *  �  � � �  , �:�;� , �  * 0 � , �:�;�2  ,  , � , �;�:� , �  * 0�  � �  	  E
that is,

������( � 	  � �  	  � 	   �  � �  	  9
It follows that  �����)( � 	  " � 	  �  	  � � �  	  � E
which implies that � �  	  � �  	  � 	   ������( � 	  9
This is (3.3).

Thus, if � � � is known to be a subset of the closed unit disk � and if there is an * �  
such that the pseudospectrum ��� + � contains points outside � , then, by (3.1), each point
(�T ���-+ � � � yields an estimate

(3.5) � � �0 � ( �  � � ( � "!�  � �  , �  	  � 	   ��� * 	  �
with � 2 � ( � . Different choices of ( give different values of the right-hand sides of (3.3) and
(3.5), and we want these right-hand sides to be as large as possible. Tom Wright [37], [38]
has implemented the search for an optimal ( in EigTool.

Let
�

denote the set of all rational functions without poles on the unit circle W . If & T �
,

then & T�V H . Now fix & T �
and consider � � �G& � . We put

�  � � � 2 � ���0 � ( �  ��� (� �G& � � E � � � � 2 	
�� � H �  � � � 9
Clearly, � � � � 2 ����� �� 0 �  � � � , that is, � � � � is the height of the highest peak of ��� � �G& � �
as � ranges over � . Thus, the powers of � � �G& � go to infinity if and only if � �G� � 2 � and
they have a critical transient behavior before decaying to zero if and only if � � � � is large
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but finite. We assume that the plane Lebesgue measure of � � � �G& � is nonzero. Equivalently,
we assume that there exist points in the plane that are encircled by the (naturally oriented)
curve &��GW � with nonzero winding number. Suppose �+& � H �  

. Then there exist points
(
T � � &��GW � such that � 2 � ( � �  

and the winding number of & about ( is nonzero. It is
well-known that

� � �)( � Y 2 �)��� � �G& � 	 (,. � * 0 � 2 ��� * 0� �'& 	 ( � �
increases at least exponentially (see [26] and [5, Theorem 3.13]), i.e., there exist positive
constants � 2 ���G& E ( � and � 2 � �G& E ( � such that

(3.6) � � ��( � " ��`�� �
for all � "  

. (Note that if & is merely continuous or piecewise continuous, then the growth
rate of � � ��( � may drop down to ��� 0 � + or even ��� ��	 � � � �-0 � + ; see [4] and [7].) Conse-
quently, � � �)( � �  

for all sufficiently large � and we obtain from Theorem 3.1 that

�  � � � "!�  � �  , �  	  � 	   ��� � ��( � 	  � E
and

(3.7) � � � � " � � 	  �� � ��� � ��( � 	  N� 9
This, in conjunction with (3.6), gives

(3.8) � � � � " � � 	  �� � ����` � � 	  N� E
that is, there must be critical transient or limiting behavior of ��� � �G& � � for all � larger than
a moderately sized � 7 . We will now say something about the constants in (3.6) and (3.8)

We denote by 
�� (
� "  

) the set of all Laurent polynomials of degree at most
�
, that is,

the set of all functions of the form

(3.9) &���+ � 2 ��( . * � &S(�+ ( 9
Obviously, if & T 
 � , then � �'& � is banded with bandwidth

[�� ,  
. Let & T 
 � , suppose�+& � H �  

, and choose ( as above. We then have

+ � �G&���+ � 	 ( � 2���a .10 ��+ 	
	 a � � ��a . � � 0 ��+ 	
� a � E
with

� 	 a � �  
and

� � a � �! 
. It follows that

&���+ � 	 ( 2 + *� ��a .J0 ��+ 	
	 a � � ��a . � � 0
�  	 � (+ � E

where � 2�� 	 �
. Without loss of generality assume that � "  

(otherwise replace &_��+ � by&��  � + � , which amounts to replacing � � �'& � by the transpose matrix). Put

d_��+ � 2 ��a .J0 ��+ 	
	 a � * 0 2 Y H�( . 7 d ( + ( ��+�T�W � E(3.10)

��� � d�� � 2 � * 0�( . 7 � d ( � � E ��� � d�� � 2 H�( . � � d ( � � 9(3.11)
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The following result is a slight modification of Theorem 3.13 of [5].
THEOREM 3.2. For all � "  

,

� � �)( � " ��� � d���+& 	 (J� H ��� � d_� 9
Proof. Put � 2 & 	 ( . With the notation �  ��+ � 2 +  , we have � 2 � *���N*�� � (a so-called

Wiener-Hopf factorization), where

�N* ��+ � 2 � ��a . � � 0
�  	 � a+ � E � � ��+ � 2���a .10 ��+ 	 	 a � 9

Define � < � = T � � and � Tg�:� by

� < � = 2 �GdL7 E 9:9;9 E d � * 0 � E � 2 �'d)7 E d 0 E 9:9:9 � 9
Since � ��� � 2 � ���N* � � ��� * � � � ��� � � (see, e.g, [11, Section 1.5]), we obtain

(3.12) � � ��� � � < � = 2 � � � ���N* � � ��� * � � � ��� � � � < � = 9
Because � "  

, we have � � � ��� * � � ��� *� � `N7 2 * , where `N7 2 �  E * E * E 9:9;9 � . As � ��� � � � 2`N7 , it follows that

(3.13) � � � ����* � � ��� *� � � ��� � � � 2 * 9
From (3.12) and (3.13) we get

� � ��� � � < � = 2 � � � ��� * � � ��� * � � � ��� � � ��� < � = 	 � � 2 � � � ��� � ��� < � = 	 � � 9
Taking into account that �	� < � = 	 � � 2 ��� � d_� , we arrive at the estimate��� � ��� � � < � = ���X��� ��� � � ����
 d�� 2 ���S� H ��� � d�� E
and since �� < � = � 2 ��� � d�� , it results that��� * 0� ��� � � " �� < � = ���� � ��� � � < � = � " ��� � d�����S� H ��� � d�� 9

For the sake of simplicity, assume the zeros 	 0 E 9:9:9 E 	 � are distinct and
� 	 0 �1� � 	 a � for

all � " [
. Decomposition into partial fractions gives

(3.14) d_��+ � 2 �� a .10
� a 	 + � 	 a 2

H�( . 7 �� a .10
� a
	 ( a + ( E

with explicitly available constants
� 0 E 9:9:9 E � � . Theorem 3.2 in conjunction with the estimates

��� � d_��" � dL7 � 2 ����� �
� a .10 � a

����� 2 ��a .10
 
� 	 a �

and

��� � d_� � 2 H�( . �
����� �
� a .10

� a
	 ( a

�����
� � � �� a .J0

H�( . � � � a � �� 	 a � � ( 2 �� a .10
� � a � �� 	 a � � � 	  � � 	 a � �2 Y �� a .J0

� a� 	 a � � � 2 � 0� 	 0 � � � �  , �� a . �
� (� 0 ���� 	 0	 a

���� � ���
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yields

(3.15) � � �)( � � " � 	 0 � � �� 0 �:& 	 (1� �H�� �a .10 � 	 a � �
  ,�� �a . � � � (�� � 0 � � 	 0 � 	 ( � � � 9

In practice, we could try computing � � ��( � directly via the Matlab command � � �)( � 2�����
	 ��� �� ��� � �'& 	 ( �>�>� or � � ��( � 2  � 	 � � ��� �� ��� � �'& 	 ( �I�>� . However, as (3.6) shows, this
is an ill-conditioned problem for large � . Estimate (3.15) is more reliable. It first of all shows
that (3.6) and (3.8) are true with

� 2 	 � � � 	 0 � 9
To get the constants contained in (3.15) we may proceed as follows. We first determine
the zeros 	 0 E 9;9:9 E 	 � , we then use Matlab’s RESIDUE command to find the numbers

� a in
formula (3.14), and finally we define

� a 2 � � � a � � � �  	  � � 	 a � � � . Note that � is in general
much smaller than � , so that possible numerical instabilities are no longer caused by large
matrix dimensions but at most by unfortunate location of the zeros 	 0 E 9;9:9 E 	 � . Notice also
that (3.10) implies that the numbers d 7 E 9;9:9 E d � * 0 are the entries of the first column of the
lower-triangular Toeplitz matrix �

�
�'d � . Thus, alternatively we could solve the � 	 � system

�
�
�Gd � � 2 ` 7 to obtain d 7 E 9;9:9 E d � * 0 and then, taking into account (3.14), find the constants� 0 E 9:9;9 E � � as the solutions of the � 	 � Vandermonde system45556

  9;9:9   � 	 0  � 	 � 9;9:9  � 	
�...

...
... � 	 � * 00  � 	 � * 0� 9;9:9  � 	 � * 0�

B:CCCD
45556
� 0� �...�
�

B:CCCD 2
45556

dL7d 0
...d
�
* 0

B:CCCD 9
Here is an example that can be done by hand.

EXAMPLE 3.3. Let &���+ � 2 + * 0 ,��J� + with * � � �  � [ . The range &_�'W � is the ellipse

�?��  ,�� � � � , � ��  	 � � � � 2  
and the eigenvalues of the matrix � � �'& � are densely spread over the interval � 	 [ � E [ � � be-
tween the foci of the ellipse. The spectral radius is� ��� � �G& �I� 2 [ � ��� � \� ,  9
This is smaller than

 
but may be close to

 
. The norm of the symbol is given by �+& � H 2 ,�� � �  

. Fix ( 2 � T
�  E  ,�� � � . The zeros of ++�'&���+ � 	 � � are

	 0 2 � 	�� � � 	 � �[ � � E 	 � 2 � , � � � 	 � �[ � � 9
The numbers 	 0 and 	 � are greater than

 
, and we have� 0 2  

	 0 	
	 � E � � 2  
	 � 	 	 0 E� 0 2 [ � � 0 	  � 	 � 0 E � � 2 [ � �� 	  � 	 �� 9
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Thus, (3.15) becomes

� � ��( � � " ��� 	 � �0� 0 � � ,  ,�� � � � � �  , � �� 0 � 	 0
	 � � �

� � 9
Here are a few concrete samples. In each case we picked ( 2 � 2  9 *  . Note that (3.7) with� 2  9 *  gives

� �G� � "�* 9  �  9 *  � � �  9 *  N� 	  �� E
which is almost the same as the Kreiss estimate � � � � "�* 9  � � �  9 *  �� .�������	�
� We have 	 0 2  9 * � [ � , 	 � 2 [ � 9 [  ���

,

� � �  9 *  �� "  * 7 � 7 0 A ( � * 0 � 7 ( �-A 2 Y � 7 � � � � � 9
In particular, � 7 � � �  * *�* � 2  * 0 ��� � 7 . Matlab result: � 0 7-7I78�  9 *  �� 2  * 0 � � 7 A .���������� Now 	 0 2  9 [)[���� , 	 � 2 � 9 * / [�� ,

� � �  9 *  �� "  * 7 � 7 (�� � � * 7 � � A 0 � 2 Y � 7 � � � � � 9
We get � 7 � � �  *�* � 2  * (�� 7 � and � 7 � � �  *�* * � 2  * ( (�� � � , while Matlab gives � 0 7I78�  9 *  �� 2 *���� � ( and � 0 7I7-7L�  9 *  �� 2  *�� 7 � � ( .�����������
� This time 	 0 2  9 � � � �

, 	 � 2 [ 9 �  [  ,
� � �  9 *  N� "  * 7 � � 7 � � � * 0 � �-� A-A 2 Y � 7 � ��� � � � 9

We obtain

� 7 � ��� � � * � 2  * (�� � 0 E � 7 � ��� �  *�* � 2  * 0 ��� 7 � E� 7 � ��� �  * *�* � 2  * � 7 0 � A ( E � 7 � ��� � [ *�* * � 2  * � 7 A � � ( E
and Matlab delivers

� � 7 �  9 *  N� 2  * 0 7 � �I� E � 0 7I7 �  9 *  �� 2  * � 7 � A � E � 0 7-7-7 �  9 *  N� 2  * � 7 ��� � 0 E
the last two values with a warning. Matlab returns a warning without a value for � 2 [ * *�* .
Thus, we have eventually beaten the unbeatable Matlab.

4. Simply norms. In this section we collect some known results on the asymptotic be-
havior of the norms of Toeplitz-like matrices.

Frequently one has not to deal with pure Toeplitz matrices but with matrices that are
composed of Toeplitz matrices. Let ���f�N� � be the � � -algebra of all bounded linear operators
on �:� and let �$�GV H � denote the smallest closed subalgebra of ���f�N� � that contains all Toeplitz
operators � �G& � with & T V H . For example, if MN&L(  P is a finite collection of functions in V H ,
then

(4.1)
� a � ( � �'&S(  � T�� �GV H � 9

Notice also that `���� <	� = T �$�'V H � for each !�T � and each &%TgV H , because"""" ` ��� <#� = 	 � .�, ! �$ � �G& � , ! �[ $ � � �G& � , 9:9:9 , !&%' $ � % �'& � � """" � *
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as
' ��� . We define � < * � = and � � on �:� by� <G* � = Y ��� 0 E � � E �_A E 9;9:9 � %� ��� � � 0 E � � � � E 9:9;9 � E� � Y ��� 0 E � � E � A E 9:9:9 � %� ��* E 9:9:9 E * E � 0 E � � E 9;9:9 � � � zeros

� 9
THEOREM 4.1. If

� T �$�'V H � , then the strong limit

s- 	
����� H � < * � = � � �
exists and is a Toeplitz operator � �'& � with &%TgV H .

For the history of this theorem, see [1] and [11, p. 152]. A full proof is in [10]. The
function & of Theorem 4.1 is referred to as the symbol of the operator

�
and is denoted by

��� � �
. Since, obviously, � � � "Z��� < * � = � � � � for all � , Theorem 4.1 in conjunction with

the Banach-Steinhaus theorem implies the useful estimate

(4.2) � � ��" ��� ����� � ��� � 2 ����� � � � H 9
The symbol of the operator (4.1) and of ` � � <#� = is � ( �  &)(  and `�� � , respectively.

Let � denote the set of all sequences M ��� P H� .10 , where
���

is an � 	 � matrix and

(4.3) ��M � � P H� .10 � Y 2 ������ � 0 � � � � � � 9
The set � becomes a � � -algebra with the norm (4.3) and the operationsM �"� P , M � � P 2 M �"� , � � P E � M ��� P 2 M � �"� P EM �"� PLM � � P 2 M ��� � � P E M �"� P � 2 M � �� P E� ��

denoting the Hermitian adjoint of
� �

. Given a subset
�

of V H , we define � � � � as
the smallest closed subalgebra of � that contains all elements of the form M � � �G& � P H� .10 with& T �

. Important cases are
� 2 V H ,

� 2 � � , and
� 2 � . Here � and � � denote the � � -

algebras of all continuous and piecewise continuous functions on W , respectively. A function& on W is said to be piecewise continuous if & T V H and the one-sided limits &_��+ 	 * � and&���+�, * � exist for each + on the counter-clockwise oriented unit circle. For instance, if & (  are
finitely many functions in

�
, then

(4.4)

�� 	 � ( �  � � �'&S(  ��
 �
H
� .10 T�� � � � E

and if & T �
, then �)`���� �8<#� =�� H� .10 T�� � � � for each !gT � .

The operator � � is defined on �:� by� � Y ��� 0 E � � E � A E 9:9;9 � %� ��� � E � � * 0 E 9:9;9 E � 0 E * E * E 9;9:9 � 9
Thus, � � is � � followed by reversal of the coordinates.

THEOREM 4.2. Let M ��� P H� .10 T�� �'V H � . Then the sequences M ��� P H� .10 and M�� � �"� � � P H� .10
converge strongly to the operators

�
and �� in � �GV H � , respectively, and

(4.5) 	
� 
�! � � H � � � ��" � ��� �I� � � E ���� � � 9
If M � � P H� .J0 T�� ��� � � , then

(4.6) 	�
�� � H � ��� � 2 � ��� �I� � � E ���� � � 9
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A proof of the existence of the strong limits
�

and �� is in [10], for example. Estimate
(4.5) is a simple consequence of the equality ��� � � � � � � 2 � � � � and the Banach-Steinhaus
theorem. Equality (4.6) was established in [3], and a full proof is also contained in [11].

An easy computation shows that � � � � �G& � � � 2 � � � � & � , where � &���+ � Y 2 &��  � + � ( + T W ).
In other terms, � � � � & � is simply the transpose of � � �G& � . If M � � P is of the form (4.4), then� 2 � ( �  � �'&)(  � E �� 2 � ( �  � � � &)(  � 9
In particular, for

� � 2 � � �G& � we obtain
� 2 �  �G& � and �� 2 �  � � & � , so that �� is just

the transpose of
�

. Note also that (4.5) can be sharpened to (1.4) in this case. If
� � 2��� � ��� � � � ��� �>�> , then

� 2 ��� ��� � � ��� �I�> and �� 2 ��� � � � � � � � � �I�> . Now �� is not necessarily the
transpose of

�
. Combining Theorem 4.1 and (4.2) we obtain

	
���
��� ��� H �S��� � ��� � � � ��� �>�  � " � ��� �I�)��� ��� � � ��� �I�  � E �S��� � � � � � � � � �I�  � �(4.7)

" � � � �I�S����� �  � H E �)����� �  � H � 2 �����)� H 9
We also remark that it may happen that � �� � � � � � . For example, Proposition 4.12 of [5]
implies that if

� ��+ � 2 + 	
�
+ 	��

and �S��+ � 2  	�� + 	 � + ��+ T�W �
with

�
�
���! 

and
� � � �! 

, then ��� ��� � � ��� � � � ��� � � � � � � � � � � .
The next question after Theorems 1.1 and 4.2 is the question about the convergence

speed. Recall that
�

stands for the rational functions without poles on W . The following
result is from [6] (also see [5, Theorem 4.1]).

THEOREM 4.3. Let & T �
and assume that the modulus

� & � is not constant on W . Denote
by
[
� T M [ E � E � E 9:9;9 P the maximal order of the zeros of �:&�� H 	 � &���+ � � for + T W . Then there

exist constants � E d such that * � �
� d � � and

(4.8) �+& � H 	 d� ��� �X��� � �G& � ��� �:&�� H 	 �� ���
for all � "  

. On the other hand, if
� & � is constant on W , then there are constants d and � in��* E � � such that for all � "  

,�+& � H 	 dL` *	� � �X��� � �G& � ��� �:&�� H 9
EXAMPLE 4.4. Let & T �

be of the form &���+ � 2 � H( . 7 &)( + ( , that is, suppose � �'& � is
lower-triangular. Assume that

� & � is not constant on W . We have � � �G& � 2 � � �'&  � , and hence
(4.8) is applicable. It follows that there are constants �  and d  such that�:&�� H 	 d � �
� � ��� � �G& � ��� �+& � H 	 � � ���
for all �&"  

. However, the constants �  and d  may be large if � is large. We remark that
the constants � of inequalities like

(4.9) �:&�� H 	 � &���+ � � � � � + 	 + 7 � �
�
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enter into the d of (4.8). For the powers of & , we obtain from (4.9) something like�+& � H 	 � &  ��+ � ��� �#� �+& � H � + 	 + 7 � �
� E
and since �#� �+& � H is large whenever �+& � H �  

and � is large, we can expect that d  is also
large.

Let us consider a concrete example. Take

&_��+ � 2  * � 	   � 	  
� +�, + � 	  

� + A 	   � + � � 2  * + � �  ) / 	   � �  	 + � � � 9
In this case

[
� 2 � . The spectral radius of � � �'& � is about * 9 � � and �+& � H equals

 ) * � / 2 � 9 ���
. The level curves of the norm surface are shown in Figure 4.1 and we clearly see the

expected critical transient behavior. An interesting feature of Figure 4.1 is the indents of the
level curves. These indents correspond to vertical valleys in the surface. For instance, along
the horizontal line � 2  

/ we have Figure 4.2. The interesting piece of Figure 4.2 is between� 2  �
and � 2 � * . If we move vertically along one of the lines � 2  �

, � 2 [ * , 9:9;9 , � 2 � * ,
we obtain Figure 4.3. Figure 4.4 reveals some mild turbulency in the steep, but Figure 4.3
convincingly shows that in the sky region everything goes smoothly. In particular, the speed
of the convergence of ��� � �G& � � to ���  �G& � � 2 �+& � H is not affected by small fluctuations of� .

We now consider matrices of the form

(4.10)
��� 2 � � ��� � , � ��� � � , � ��� � � E

where � T �
and

�
and

�
are “small” in comparison with the “Toeplitz part” � � ��� � . To be

more precise, we suppose that the moduli
� � (  � and

� � (  � of the entries are bounded from
above by ��� ( �  with constants � � � and � T ��* E  N� . These conditions guarantee thatM � � P belongs to � � � � . The operators

�
and �� of Theorem 4.2 can be shown to be� 2 � ��� � , � E �� 2 � � � � � , � 9

From Theorem 4.2 we infer that � � � � � ' as � � � , where' Y 2 � ��� �I��� ��� � , � � E ��� � � � � , � � � 9
Put ' 7 Y 2 ��� ��� � � 2 ���S� H 9
Since ��� �!��� ��� � , � � 2 � and ��� � ��� � � � � , � � 2 � � , we deduce from (4.2) that always' 7 � ' .
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FIG. 4.1. The symbol is � 	���� � � ���	� ���� � �$ � � � � � �$ � " � ���� � $�� . The plot shows the level curves

� ( �� 	 � � � �+� for �&�'� � ��� , � , � � � , � � $ , �2 , � � �!$ (the lower curve corresponds to � �'� � � � , the upper to � � �!$ ).
We took 3���(���- � and 5>� � � ,��10�,.< � , �2 ,4- �#� .
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FIG. 4.2. The symbol is as in Figure 4.1. The picture shows the norms � ( ��� 	 � � � for ����5�� � �#� .
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FIG. 4.3. The symbol is again as in Figure 4.1. We see the values of of ����� ��� � ( �� 	 � � � for 3�� ( ��� � and
5>�'�10�,!< � ,4<#0�, �2 ,4- � . Eventually higher curves correspond to higher values of 5 .
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FIG. 4.4. A close-up of Figure 4.3.
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The following theorem was established in [6] (it is also Theorem 4.16 of [5]).
THEOREM 4.5. If

' � ' 7 , then��� � � � � 	 ' ��� 2�� � ` * ��� � �
for some � � * , and if

' 2 ' 7 , then

��� � � � � 	 ' ��� 2�� � 	 � � �� � 9
Now pick &
T �

. One can show that then
� � 2 � � �'& � is of the form (4.10) up to an

exponentially small term. The � equals &  . Thus,

(4.11) � � �G& � 2 � � �'&  � , � ���  � � , � � �  � � ,�� � E
where � � � � 2�� �'` * � � � for some � � * . Consequently, we can apply Theorem 4.5 to this
situation. Since

� 2 �  �G& � and �� 2 �  � � & � , it follows that
' 2 ' 7 , and hence, we cannot

extract more than � ��	 � � �$��� � convergence speed, which is nevertheless more than nothing.
Finally, suppose

���
is of the form (4.10) with some Laurent polynomial ��T 


�
and with

� 	 � matrices
�

and
�

. In this case the results of [9] (see also Theorems 4.3 and 4.4 of [5])
give the following.

THEOREM 4.6. If � " �  � , then

' 7 �  	 �  �� � �X� � � � � ' �  , [ �� � 9
In particular, for

' 2 ' 7 and � " �  � we have

(4.12)
' �  	 �  �� � �X� � � � � ' �  , [ �� � 9

If
' � ' 7 and � " / � , [ , then

' �  	 ��� � � � � �"� � � ' �  , ��� � � E
where

� 2 [ � � '' 7�� � � 0 % < � � = E � 2 � ' 7' � 0 % < � � = 9
If &gT 
 � , then � � �G& � differs from � � �G& S� only by

� � � 	  N� 	 � �'� 	  ��
matrices in the

upper-left and lower-right corners, and, moreover, these matrices are independent of � (see
Lemma 6.1). In other words, (4.11) is valid with � 2 � �'� 	  N�

. Thus, Theorem 4.6 with
��2 � �'� 	  N�

and
' 2 ' 7 2 �+& � H yields the inequality

(4.13) �+& � H �  	 �  � �'� 	  N�� � �X��� � �'& � ��� �:& � H
for all � and � . Inequality (4.13) will have its grand scene in Section 7.
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5. Gauss-Seidel for large Toeplitz matrices. To solve the � 	 � system � � � 2 � , one
decomposes � � into a sum � � 2 V � ,�� � of a lower-triangular matrix V � and an upper-
triangular matrix �

�
with zeros on the main diagonal. If V � is invertible, then the system� � � 2 � is equivalent to the system

(5.1) � 2 	 V * 0� � � � , V * 0� � 9
Gauss-Seidel iteration consists in choosing an initial � 7 and in computing the iterations by

(5.2) �  � 0 2 	 V * 0� � � �  , V * 0� � 9
Sometimes (5.1) and (5.2) are written in the form

� 2 � , V * 0� � � 	 � � � � E �  � 0 2 �  , V * 0� � � 	 � � �  � 9
The iteration matrix is

��� 2 	 V * 0� � � 2 . 	 V * 0� � � , and the iteration converges whenever��� �"���%�  
. The problem is whether a critical transient behavior of the norms � �#� � may

garble the solution.
Now suppose � � 2 � � � � � is a Toeplitz matrix and let us, for the sake of simplicity,

assume that

�)��+ � 2 H�( . * H � ( + ( E where

H�( . * H �
�-( � � � 9

We write � � 2 V � ,�� � 2 � � ��� � � , � � ��� * � with

� � ��+ � 2 H�( . 7 � ( + ( E � * ��+ � 2 * 0�( . * H � ( + ( 9
If � � ��� ���2 * for

� � � �  
, then the inverse of � � ��� � � is � � ��� * 0� �

and the iteration matrix
becomes � � 2 	 � � ��� * 0� � � � � ��* � 9
The spectrum of

���
is the set of all complex numbers ( for which

	 � � ��� * 0� � � � ����* � 	 (,. 2 	 � � � � * 0� � � � ����* , ( � �
�

is not invertible. Since � � � � * 0� �
is invertible by assumption, we have to look for the ( ’s for

which � � � ��* , ( � �
�

is not invertible. From (4.7) we deduce that

(5.3) 	
���
��� ��� H � � � ��" � � * 0� � * � H E
and, since M � � P%T � � � � , the limit inferior is actually a limit. Thus, if � is large enough, a
critical transient phase will certainly occur in case � � * 0� � * � H �  

.
If &���+ � 2 & * 0 + * 0 , &87 , & 0 + (which means that � �'& � is tridiagonal), then the eigenvalues

of � � �'& � are known to be& 7 , [�� & 0 &?* 0 ��� � \���-,  � � 2  E 9;9:9 E � � 9
Hence, in case � is a trinomial, �S��+ � 2 � * 0 + * 0 , �/7 , � 0 + , the matrix � � ��� * ,�( � �

�
has the

eigenvalues

( �/7 , [ � � 0 � * 0 � ( ��� � \���-,  � � 2  E 9;9:9 E � � 9
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It follows that

��� � � 2 � 	 � � 0 ��* 0
� �7 ��� � � \��� ,  Y � 2  E 9;9:9 E ��� E

and

� � � � � 2 � � � 0 � � � * 0 ��
� 7 � � ��� � � \� ,  9

I learned from [29] that these two formulas are a
 � � * result by Frankel [18].

Anne Greenbaum [21] discussed the example

�S��+ � 2 	  9  � + * 0 ,  , * 9  � + 9
The spectral radius of

���
is about * 9 � � . Using (numerically computed) polynomial numerical

hulls, she obtained that � � ���A 7 ��"  9 [ � � ����� � * * and trying the computer directly, she arrived
at the much better result � � � �A 7 ���  * � . Our estimate (5.3) with � � ��+ � 2  , * 9  � + and
��* ��+ � 2 	  9  � + * 0 gives

	�
� 
�! ��� H � � ���� � "X� � * 0� ��*�� � �H 2 � ���� Q�� ���� 	
 9  � + * 0 , * 9  � + ���� � �(5.4)

2 �  9  � 	 * 9  � � ��� 2  9 � /  � � 2  * � � 7 � 9
Thus, although (5.4) is an “ � � � ” result, it is already strikingly good for � about ��* . Figure
5.1 shows the norm surface.

Nick Trefethen [29] considered the symbol

�S��+ � 2 + * 0 	 [ , + 9
In this case � � ��+ � 2 	 [ , + and � * ��+ � 2 + * 0 , so

� � * 0� ��*�� H 2 � ���� Q�� ���� + * 0	 [ , +
���� 2  E

and hence (5.3) does not provide any useful piece of information. However, the brute estimate

� � � ��� ��� � � � * 0� � �  ��� � ��� * � �  � � � * 0� � H � � * � H 2 � � �� Q�� ����
 

	 [ , +
����
 �   2  
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shows that there is no critical behavior. The spectral radius of
���

is ��� �>� ^� � 0 , which is ap-
proximately * 9 ����� * � [ � for � 2  * * . Matlab gives � � � 0 7I7 � 2 * 9 ����� * (fantastic!) and tells us
that the norms � ��0 7-7 � are * 9 � * / * , * 9 �  ��� , and * 9 � / *�� for � 2  *�* E � *�* E  * *�* , respectively.
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FIG. 5.1. The norm surface for � � � ( � 	 � �
�� � ( � 	 � � � with � � 	���� � � � �� �13 � and � � 	���� � � �  �13 � �
� .
The picture shows the level curves ��� �� � � � for � � � � � � , � , � � � , � � $ , � � � (the lower curve corresponds to
�&� � ����� , the upper to � � ) ). We took *���( � 0 � and 56�70�,2� � ,1�10�, 21 ,��10 � .

6. Genuinely finite results. Theorem 4.5 is an asymptotic result. In contrast to this,
Theorem 4.6 and estimate (4.13) are genuinely finite. However, the lower bound of (4.13)
is positive for � � �  � � � 	  N�

only, which is not yet of much use for � ’s below
 *�* * . The

following well-known lemma repeats what was said before (4.13). This lemma is already
applicable to � � [�� �'� 	  N�

.
LEMMA 6.1. Let & T 
 � and � � [�� �'� 	  N�

. Then

� � �G& � 2 � � �'&  � , � � �  � � , � � �  � �
with

� � � 	  �� 	 � �'� 	  ��
matrices

�  and
�  independent of � .

Proof. For � 2  
, the assertion is true with

� 0 2 � 0 2 * . Assume the asserted equality
is valid for � . We prove it for � ,  

. Obviously,

�  � 0� �'& � 2 � � �G&  � � � �'& � , � ���  � � � �G& � � � , � ���  � � � � � �G& � � � 9
By a famous formula of Harold Widom [34] ( see also [11, Prop. 2.12]),

� � �G&  � � � �'& � 2 � � �G&  � 0 � 	 � � ) �G&  � ) � � & � � � 	 � � ) � � &  � ) �'& � � � E
where ) � � � is the infinite Hankel matrix ���/( �  * 0 � H(I, /.J0 . We have

) �'&  � 2
4555556

� 0I0 9:9;9 � 0> * 9;9:9...
...

...� ;0 9:9;9 � + * 9;9:9* 9:9;9 * * 9;9:99;9:9 9:9;9 9;9:9 9;9:9 9;9:9

B:CCCCCDFE ) � � & � 2 46 � * 9:9;9* * 9:9;99:9;9 9:9;9 9:9;9
BD E
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with certain
� 	 � blocks

� a ( and � , which implies that

) �G&  � ) � � & � 2
4555556

� 0-0 � * 9:9;9...
...� :0 � * 9:9;9* * 9:9;99;9:9 9:9;9 9:9;9

B CCCCCD 9
Thus, � � ) �G& S� ) � � & � � � 2 � ����� � 0 � � with a � � 	 � matrix

��� � 0 independent of � . Anal-
ogously, � � ) � � &  � ) �G& � � � 2 � � ��� � 0 � � with some � � 	 � matrix

��� � 0 . Further,

�  2
4555556

� 0I0 9;9:9 � 0 ,  * 0 * 9:9;9...
...

...�  * 0 , 0 9;9:9 �  * 0 ,  * 0 * 9:9;9* 9;9:9 * * 9:9;99;9:9 9;9:9 9;9:9 9;9:9 9:9;9

B:CCCCCD E

� �G& � 2 4556
� 7 � * 0� 0 � 7 � * 0� 0 � 7 � * 09:9;9 9:9;9 9;9:9

B:CCD
with

� 	 � blocks
� a ( and

� O independent of � . This shows that at most the first � � 	  N� � rows
of
�  � � � �G& � are nonzero. For

 � � � � 	  
and � " � ,  

, the
� E � block of

�  � � � �'& � is * 0�
� .10 � ( � � � *?O 2 � (I, O-* 0 � * 0 , � (I, O � 7 , � (I, O � 0 � 0 E

and as
� (I, O-* 0 2 � (-, O 2 � (-, O � 0 2 * for � " � ,  , it follows that at most the first � � columns

of
�  � � � �G& � are nonzero. Thus, � � �  � � � �G& � � � 2 � � ��� � � 0 � � with some � � 	  �� � 	�� �

matrix
��� � � 0 independent of � . Finally,

� � �  � � � � � �G& � � � 2 � � �  � � � � � & � � � E
and the same argument as above shows that this is � � ��� � � 0 � � with some �'� 	  �� � 	
� �
matrix

��� � � 0 that does not depend on � .
The � 	  

st Fejér mean � � � of a function �3T V H is defined by

� � � � � ��+ � 2 �� ( � � � * 0 �  	 � � �
� � � ( + ( ��+�T W � 9

The following result was established in [8]. We cite the proof because it is a pleasure.
THEOREM 6.2. If ��T�V H , then ��� � ��� � ��"X� � � �S� H for every ��"  

.
Proof. Fix + 2 ` a b T�W and let � � T � � be the vector

� � 2  
�
�

�  E + E 9:9;9 E + � * 0 � 9
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We have �	� � � 2  
and thus ��� � ��� � ��" � ��� � ��� � � � E � � � � . Since

��� � ��� � � � E � � � 2  
�

� * 0�(I, /. 7 �I(+*  ` * a  b ` a ( b 2  
�

� * 0�(-, /. 7 �I(+*  ` a < (+* += b2  
�

�� ( � � � * 0 � � 	 � � � � � ( `�a ( b 2 � � � � � �'`�acb � E
it follows that ��� � ��� � �-" � � � � � � �'` acb � � 2 � � � � � � ��+ � � . As + T W can be chosen arbitrarily,
we arrive at the assertion.

COROLLARY 6.3. If &%T 
 � and � � [�� � � 	  ��
, then��� � �'& � � " � � � * � � <  * 0>= �G&  � � H 9

Proof. By Lemma 6.1,

� � �G& � 2 � � �G&  � , 46 �  * *
* * *
* * �  �  � 

BD 2 46 � � �

� � �

� � �

BD E
where

�  and �  �  �  are �'� 	  �� � 	 � � 	  �� �
matrices and

� 2 � � * � � <  * 0 = �'& )� . This
implies that ��� � �G& � ��"X� � � 2 ��� � * � � <  * 0>= �'&  � � 9
It remains to combine the last inequality and Theorem 6.2.

We denote by ������� the Wiener norm of a Laurent polynomial,���S��� 2 � ( � �I( � 9
THEOREM 6.4. If & T�
�� and � � [�� �'� 	  N�

, then

��� � �'& � ��"X�+& � H 	 � �� 	 [�� �'� 	  N� �:& �  � 9
Proof. For ��T�
  � ,

� � � � � ��+ � 2 �� ( � �  � �  	 � � �
� � �-( + ( 2 �� ( � �  � �I( + ( 	  

�

�� ( � �  � � � � �-( + ( E
whence

� � � � � � ��+ � � " ������
�� ( � �  � �I( + (

������ 	 � �
�

�� ( � �  � � �-( � E
and thus � � � �)� H "X���)� H 	 � �

�
���S��� 9
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This inequality in conjunction with Corollary 6.3 gives the assertion of the theorem.
COROLLARY 6.5. If &%T 
 � and &)( " * for all

�
, then

��� � �'& � ��" � 	 �L� �� 	 [ � � � � ( & (��  for � " �L� � 9
Proof. In this case �:&�� H 2 �+& ��� 2 � ( &)( and hence, by Theorem 6.4,

��� � �G& � ��" �  	 � �� 	 [�� �'� 	  N� � � � & (��  " � 	 �L� �� 	 [ � � � � & (��  9
EXAMPLE 6.6. Let &���+ � 2 + ,��J� + * 0 with � T�� . From Corollary 6.5 we infer that [ �  ,�� � �  � ��� �  �'& � ��� �  ,�� � � 

for all � "  
.

EXAMPLE 6.7. Suppose & T
V H and � �G& � is lower-triangular. Then � � �G& � 2 � � �'& )�
for all � and � , and hence we can have immediate recourse to Theorem 6.2 to obtain that

(6.1) � � � �G&  � � H � ��� � �G& � ��� �+& � H
for all � and � .

Let &���+ � 2 ( , + . Thus, � � �G& � is the Jordan block ' � ��( � . For � � � ,

� � � �G&  �I� ��+ � 2 �( . 7 �  	 ���� � � � � ( � * ( + ( 2 ��( , + �  �  	 �� +
+�, ( �

and hence (6.1) yields�  	 ��   , � ( � � �  , � ( � �  �X�.' � ��( � � �!�  , � ( � �  � � � � � 9
In particular, * 0 ��� � � �X�.' � 70 7-7 ��* 9 / � � �  * 0 ��� � � E  * � � � 0 � � � ' 0 7-70 7I7 ��* 9 / � � �  * � � � � A E
which is better than the results of Section 2.

Now let &���+ � 2 +�, +>� . Then � � �G& � is a “super Jordan block” [29]. For every � ,

� � �  �'&  � � H 2 �  * 0�( .@ �  	 �[ ��� � �� 	 � � 2 �
/
[  E

and thus (6.1) implies that � � � / � [  � ��� �  �G& � � � [ 
. We remark that � � �G& � is triangular,

so that genuinely finite results can also be derived from [17].

7. The sky region contains an angle. Let & T 
 � and suppose �+& � H��  
. In Figures

1.1 and 4.1, the sky region looks approximately like an angle: it is bounded by a nearly
vertical line on the left and by a curve close to the graph of a linear function � 2 �:� ,$d from
the right and below. The question is whether this remains true beyond the cut-outs we see in
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the pictures and whether this is valid in general. To be more precise, we fix a (large) number�
and we call the set �

� 2 M��'� E � � Y ��� � �'& � � � � P
the sky region (for our choice of

�
). The following theorem proves that the lower-right

boundary of the sky region is always linear or sublinear.
THEOREM 7.1. If & T 
 � and �+& � H �  

, then there exist positive constants � and �L7 ,
depending on & and

�
, such that

�
� contains the angle M8�'� E � � Y � � �L7 E � � �:�_P .

Proof. This is a simple consequence of inequality (4.13), which shows that

(7.1) ��� � �G& � ��" �+& � H �  	 �  � �� �
for all � and � : if � � � 7 , where �:& � ��H � [ �

and � � / [�� � , then the right-hand side of (7.1)
is greater than

�
.

Thus, if we walk on the norm surface �'� E � � %� ��� � �'& � � along a curve whose projection
in the � E � plane is given by � 2�� �'� � , then we will eventually reach any height

�
and

stay above this height forever provided � �'� � �S��� � . Note that this is satisfied for � �'� � 2� 	 � � 	 � � � . Or in yet other terms, if � � � � �)� � � , then ��� � < /= �G& � �3��� .

Theorem 7.1 is the deciding argument in support of the statement that ��� � �G& � � runs
through a critical transient phase if 	�
� � � H ����� � �'& �>� �  

but �+& � H �  
. Suppose, for

example, � 2  * * . If the sky region were roughly of the form

�
� 2 M8� � E � � Y � � � 7 E � �� � P , then ��� 0 7-7� �'& � � were larger than

�
for � �  *�* *�* only. It is the linearity or sublinearity

of the lower-right border of the sky region that allows us to conclude that ��� 0 7-7� �'& � � is already
larger than

�
for � in the hundreds.

We call the number V � �G� � 2�� M � Y ��� � �G& � � � � P
the length of the critical transient phase for the matrix dimension � . Theorem 7.1 implies
that V � � � � � �$� � 	 � 7 . In other words, V � �G� � increases at least linearly with the matrix
dimension � . Equivalently, and a little more elegantly,

	�
� 
�! ��� H V � � � �� � * 9
May the lower-right boundary of the sky region be strictly sublinear? Or equivalently,

may the lowland contain an angle? Let & T 
 � be given by &���+ � 2 � �( . * � &)( + ( . For
	 T
��* E � � , we define &
	%T�
 � by

& 	 ��+ � 2 ��( . * � & ( 	 ( + ( 9
THEOREM 7.2. Let & T�
 � , �:&�� H �  

, and
� �  

. If there exists a number 	 T ��* E � �such that �+&
	�� H �  
, then

�
� is contained in an angle M8� � E � � Y � � �+� , d�P with � � *

and d � * .
Proof. The key observation, due to Schmidt and Spitzer [27], is that

� � �G& � 2�� * 0	 � � �G& 	 � � 	 E
where � 	 2� 
 ��� �  E 	 E 9;9:9 E 	 � * 0:� . Letting � 2 � � � � 	 E  � 	 � , we get��� � �'& � ��� � � * 0	 � � �G&�	 � � 	 ���X� � * 0	 � ��� � �'& � � � � 	 � � � � * 0 �+&�	_� H
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for all � and � . Thus, if �'� E � � T
�
� , then

� � � � * 0 �+& 	 � H . Since � �  
, it follows that

� � � 	 � � �  ���+&�	�� H �	 � � � , 	 � � �
	 � � � ,  2 Y �+� , d E

and as �+&�	�� H �  
and

� �  
, we see that � � * and d � * .

Schmidt and Spitzer [27] showed that always

	
���� H � ��� � �G& �>� � 
��! 	8Q < 7 , H = �+& 	 � H
(see also [36]) and that in certain special cases the equality

(7.2) 	
����� H � ��� � �G& �>� 2 
��! 	8Q < 7 , H = �+& 	 � H
holds. Equality (7.2) is in particular true if � �'& � is Hermitian or tridiagonal or triangular or
nonnegative, where nonnegativity means that &8(-" * for all

�
(see also [15] for the nonneg-

ative case). Hermitian matrices are uninteresting in our context, because for them the value
given by (7.2) coincides with �+& � H . However, if � �G& � is tridiagonal or triangular or non-
negative and if 	�
� � ��� � �G& �I�3�X 

, then (7.2) implies that we can find a 	 T ��* E � � such that�+& 	 � H �  
and hence, by Theorem 7.2, the sky region is contained in an angle. Equivalently,

the lowland contains an angle. It also follows that in these cases

	
����������� H V � � � �� � � 9
Suppose now that & T 
 � , 	
��!����� � �G& �>� �  

, and �+& � H �  
. If the lower border of

the sky region is strictly sublinear, then, by Theorem 7.2, 
�! J�+& 	 � H must be at least
 
. I

looked for such symbols in 
3A and observed that they are difficult to identify. The determina-
tion of 
��! �+&�	 � H for a given & T 
 A is simple. The problem comes with checking whether
	
��!����� � �G& �>� is smaller than

 
for a given candidate &%T 
3A . It turns out that 
��! �+&
	�� H and	
��!����� � �G& �>� are usually extremely close. I took ��* *�* random symbols & T 
"A whose real

and imaginary parts of the
�

coefficients &�*_A E 9;9:9 E &8A were drawn from the uniform distribu-
tion on � 	  E  N� . Each time Matlab computed

� 2 
�! 	8Q < 7 , H = �:&�	�� H �8� ��� � � �G& �I� 9
The result was as follows: 9 *�* � � �  9 * [ in

[ � � � samples � 2 � � 9  �� � 9 * [ � � �  9 *�� in
 L �

samples � 2 � 9 � � � 9 *�� � � �  9 * � in � / samples � 2  9 � � � 9 * � � � �  9 * / in
[ � samples � 2 * 9 ��� � � 9 * / � � �  9  * in
 * samples � 2 * 9 � � � � 9  * � � �  9 [ * in
�

samples � 2 * 9 � � �
and there was no sample with � "  9 [ * . Thus, the dice show that if ����� � � �'& �I� � * 9 � / , then
�! J�+&�	 � H is at most

 9 * [ � * 9 � / 2 * 9 ������� �  
with probability about

� � � and if � ���&� � �'& �>� �* 9 / � , then 
��� J�+&�	 � H does not exceed
 9 [ * ��* 9 / � 2 * 9 ����� �  

almost surely. This result
reveals that if we had a symbol & T 
3A for which 	�
�!����� � �G& �>� �  

and 
�! J�:&�	 � H "  
,

then 	
��!����� � �G& �>� were dramatically close to
 
. Ensuring that 	�
�!����� � �'& �I� is really strictly
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smaller than
 

and guaranteeing at the same time that 
��� 1�+& 	 � H "  
requires subtle tiny

adjustments in the higher decimals after the comma of the coefficients. As I was not sure
whether these subtleties survive the numerics needed to plot the norm surface, that is, to
compute ��� � �G& � � for � in the ��* ’s and � in the hundreds, I gave up. Thus, I do not know
a single symbol with strictly sublinear lower-right border of the sky region or, equivalently,
with a lowland that does not contain an angle.

EXAMPLE 7.3. Figure 7.1 shows the norm surface for the symbol &���+ � 2 + * 0 , * 9 � � ��+ .
The spectral radius of � � �'& � is exactly * 9 � / ��� � ^� � 0 and �+& � H 2  , * 9 � � � 2  9 [ � *  .
We clearly see the critical transient behavior of ��� � �G& � � for � exceeding

[ * or � * . We also
nicely see the indents in the level curves. The matrix � �G& � is nonnegative, and hence, by
Theorem 7.2, the sky region must be contained in an angle. The strange thing with Figure 7.1
is that the lower-right pieces of the level curves nevertheless look slightly sublinear. Let� 2 � � �'� � be the equation of the lower-right piece of the level curve ��� � �'& � � 2 �

. If � �
were sublinear, then � � �'� � �S� would approach zero as � � � . The left picture of Figure 7.2,
showing

 * � � �'� � �S� and
 * � � �'� � 	 � � ���S� for

 *�* �X� �  *�*�* does not yet convincingly
indicate that � � �'� � �S� tends to a positive finite limit. However, the right picture of Figure 7.2,
where we extended the range of the � ’s up to ��* *�* , reveals that there must be a positive finite
limit for the lower curve

 * � � � � � �)� .
REMARK 7.4. Theorem 7.1 tells us that the lower-right boundary of the sky region is

always sublinear and Theorem 7.2 shows that it is superlinear in many cases. Things are
completely different for the �%	 � truncations

� �
of arbitrary bounded linear operators on �N� .

Let � Y � � �G` E � � be any function such that ��� � � � � as � � � . We put

� � � � 2 ��� � �
	 � � ��� � � E ( � 2 ` * 0 %�� < � = 9

Clearly,
 � ` � ( � �! 

. We define the operator
�

by� 2  
 ��� ��' � ��( 0 � E ' � ��( � � E 9;9:9 �Y 2  
 ��� � � ( 0 * ( 0 � E � ( � * ( � � E 9:9:9 � 9
Since ( � �! 

for all � , the operator
�

is bounded on �N� . We have� � 2 �  
 ��� ��' � �)( 0 � E 9:9;9 E ' � �)( � �>� for � 2 [
� E 
 ��� ��' � �)( 0 � E 9:9;9 E ' � �)( � � E ( � � 0 � for � 2 [

� ,  9
The equality

' � ��( � 2 � (  *��(  * 0 (  �
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FIG. 7.1. The symbol is � 	���� � �!��� � �� -�� � � . The picture shows the level curves � ( �� 	 � � � �'� for � � � ,
� � , � ��� , � �#" , 11 , � �#� (the lower curve corresponds to � � � , the upper to � � � ). We took * � ( � - � and
56�70�,2� � ,1�10�, 21 ,4- �#� .
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FIG. 7.2. The symbol is � 	���� � �%�
� � �� -�� � � . The pictures show � ����� 	 5 ��� 5 and � ���	� 	 5 � ����� 5 � 5 for
 � � ��� ) over two different ranges of 5 .
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and the condition
 � ` � ( �  

imply that��(  � ��(  * 0 � � ' � �)( � � �&(  , ��(  * 0 � �  , ` � � (  9
Consequently, up to constants independent of � and � , we may replace � � � � by ��( � with
� 2 � �$� [  . The function

�
� ��� � Y 2 � (��� has its maximum at

� � � � and
�
� � � � � �>� 2�  � ` � � � � � . If � " ��� � � , then

�
� �'� � � �

� � ��� � �>� because
�
� is monotonically decreasing

on the right of ��� � � (note that ��� � � " � � � � ). As
�
� � ��� � �I� 2  

, it follows that

(7.3)

�
��� M8�'� E � � Y � � ��� � �$� [  f� P

once
�

is large enough, say
� �  * . Thus, on choosing very slowly increasing functions � ,

we obtain very narrow sky regions. In particular, the sky regions need not contain any angles.
This is the right point to come back to what was said after Theorem 7.1. For the operator�

just constructed, we have � � � ��� � (  # � % � & � � as � ��� 9
Thus, when moving along the line � 2  * � on the norm surface, we will eventually be at a
height of about

 * � and may conclude that � ��� � is close to
 *�� for all sufficiently large � .

But if, for example, ��� � � 2 	 � � � for large � , then (7.3) shows that we will be in

� 0 7�� % � only
for the � ’s satisfying 	 � � � �$� [  � � 2  * � , that is, for � � [	� � � �  *�� � � [ �  *�� A � A . We
beautifully see that in this case movement along the lines � 2 constant does practically not
provide us with information about the evolution of the norms along the lines � 2 constant.
Moral: Theorem 1.1 is a good reason for expecting critical behavior whenever �+& � H �  

,
but it is Theorem 1.1 in conjunction with Theorem 7.1 that justifies this expectation within
reasonable dimensions.

In the language of critical transient phase lengths, (7.3) says that

	
���� � ���� H V � � � �
��� � �$� [  f� � �

for the operator constructed above. An estimate in the reverse direction is also easy. Namely,
it is readily seen that

�
�

�  [ � � � � � 2  [ � ` � � � � E �
� � [ � � � �>� 2 [[ ` � � � � � E

and since
[ � ` � �! � � [ � ` � , this shows that

�
� �'� � � [` � � � � � for

 [ � � � � � � � [ � � � � 9
Consequently, V � � � � "!� � � [ � � � � �$� [  f� if only � [ � ` � � � � � �$� [  � � �

. As the last inequality is
satisfied for all sufficiently large � , we arrive at the conclusion that

	
���
��� ��� H V � � � �� � � �$� [  f� " � [ 9
Finally, since

� � � � 2 ��� � � � 	 � � ��� � � , it follows that

	
� 
�! ��� H V � �G� �
��� � �$� [  � 	 � � ��� � �$� [  � � * 9

Rapidly growing functions � , such as ��� � � 2 ` � , therefore yield gigantic critical phase
lengths.
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8. Oscillations. Let &���+ � 2 + * 0 ,-* 9 � � ��+ be as in Example 7.3. While plotting ��� A 7 �G& � �
for � between

 
and ��*�* , I saw Figure 8.1 on the screen and my first thought was that I had

done something wrong. However, after a while I began to understand the reason for the
oscillating behavior of the norms and now I am sure that Figure 8.1 is correct.

Let
� �

be an � 	g� matrix and suppose � � � � �"�  
. For the sake of simplicity, assume

that all eigenvalues ( 0 E 9;9:9 E ( � of
� �

are simple. We then have
� � 2 ��� � * 0 , where

� 2  
 ��� ��( 0 E 9:9;9 E ( � � and � is an invertible �
	g� matrix. It follows that
��� 2 ���  � * 0 ,

and hence

(8.1)
� � 2 � 0 (  0 , 9;9:9 , � � ( �

for certain � 	 � matrices � 0 E 9;9:9 E � � that do not depend on � (note that � ( is simply the
product of the

�
th column of � by the

�
th row of � * 0 ).

0 50 100 150 200 250 300
0

1

2

3

4

5

6
x 10

4

FIG. 8.1. The symbol is � 	���� � �%�
� � �� -�� � � . We see the norms � ( �"%� 	 � � � for 5 � �#,.<�,!*�, 12 ,.* �#� . A
close-up is in the left picture of Figure 8.2.

Assume that � ( 0 � 2 9;9:9 2 � (
�
� � � � �( �

� �
0 � ( ( � 9

Then (8.1) gives � � 2 � 0 (  0 , 9:9:9 , �
�
( 
�
, � � �  �

with � 2 � � � ( �
� �
0 � (�( � � � ( 0 ���  

. Thus, if � is large, then

(8.2) � � � � � � � 0 (  0 , 9:9;9 , �
�
( 
�
� E
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which has good chances for oscillatory behavior due to the fact that ( 0 to (
�

have equal
moduli.

In the case where
� � 2 � � �G& � with &���+ � 2 + * 0 ,�� � + , the eigenvalues are given by[ � ��� � \���-,  � � 2  E 9;9:9 E � � 9

The two dominating eigenvalues are

( 0 2 [ � ��� � \� ,  and ( � 2 [ � ��� � � \� ,  2 	 [ � ��� � \�-,  9
Consequently,

(8.3) ��� � �'& � � � � � [ � � ��� � \� ,  �  � � 0 , � 	  ��  � � �
for large � . Thus, the damping factor

� [ � �  ��� �  ^� � 0 has an amplitude that equals � � 0 , � � �
for even � and � � 0 	 � � � for odd � . If the damping factor is not too small, then (8.3) (which
holds for large � only) should be already valid in the critical transient phase, so that we can
see it with our eyes. This would be an explanation for the oscillating behavior in Figure 8.1.
Let us check our example. Thus, take � 2 * 9 � � and � 2 � * . Then

��� 0 7-7A 7 �'& � � 2  * � � � � � � E � * 9 � / ��� � \�  � 0 7-7 � � 0 , � � � 2  * � � 0 � A ( E��� 0 7 0A 7 �'& � � 2  * � � � 7 0 � E � * 9 � / ��� � \�  � 0 7 0 � � 0 	 � � � 2  * � � 0 � � � E
that is, (8.3) cannot be said to be satisfied. The point is that the modulus of the quotient of the
dominant eigenvalues and the next eigenvalue is very close to

 
, which implies that approxi-

mation (8.3) is not yet good enough in the high transient phase. However, consideration of a
few more terms does set things right:

� * 9 � / ��� � \�  �  """"" � 0 , � 	  N�  � � , � � A , � 	  N�  � � � � ��� �;� [S\ ���  ����� �N� \ � �  �� �  """""
equals

 *�� � � � � � and
 *�� � � � 7 0 for � 2  *�* and � 2  *  , respectively, and

� * 9 � / ��� � \�  �  """"" � 0 , � 	  ��  � � , � ��A , � 	  N�  � � � � ��� �:� [S\ ���  N���� �:� \ ���  �� � 
, � � � , � 	  ��  �>� � � ��� �:� � \ � �  N���� �:� \ ���  N� �  """""

is
 *���� � � 0 � and

 *���� � 7 � � for � 2  * * and � 2  *  , respectively.
From the paper [13] by Brian Davies, I learned that such oscillation phenomena for

semigroup norms are well-known. I also learned from [13] that the kind of oscillation may
depend on the norm chosen. Figures 8.2 and 8.3 show the different oscillatory behavior of
the spectral norms ��� � �'& � � and the Frobenius norms ��� � �'& � ��� fairly convincingly. Finally,
Figure 8.4 illustrates what happens when walking on the norm surface along the lines � 2
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constant.
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FIG. 8.2. The symbol is � 	���� � �!��� � �� -�� � � . The left picture is a close-up of Figure 8.1. The right picture
shows the Frobenius norms � ( �"%� 	 � � ��� .
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FIG. 8.3. The symbol is � 	���� � � �
� � �� -�� � � . We see the norms � ( ��.� 	 � � � (lower curve) and the Frobenius
norms � ( ��.� 	 � � � � (upper curve) for 5 ���#,.<�,4*�, 22 ,1� �#� . The picture reminds me of Steven Spielberg’s white
shark.
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FIG. 8.4. The symbol is again as in Figure 8.1. The pictures show the norms � ( ���%�� 	 � � � (solid) and
� ( ��� �� 	 � � � (dashed) for two different ranges of ( .

Another example is considered in Figures 8.5 and 8.6. Now the symbol is &_��+ � 2 0 70 � ��+ ,+ * � � . We have ����� A 7L�'& �I� 2 * 9 � / � �
and �:&�� H 2  9 *�� . The dominating eigenvalues of

� A 78�G& � are

( 0 2 	 E ( � 2 	�� E (�A 2 	�� � � 	 2 * 9 � / � � E � 2 ` �-^ a % A �
and hence

��� A 7 �G& � � � �� 	 � � 0 , � � , � A�� � 	 �  for ��� *"��� �  � �� � 0 , � � � , � A � �L� � 	 �  for ���
 ��� �  � �� � 0 , � � � � , � A � � � 	 �  for ���
[ ��� �  � �

The period � is nicely seen in the right picture of Figure 8.6.
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FIG. 8.5. The range � 	 ' � for � 	���� � ���� � 	�� � �!� �#� and the eigenvalues of ( "%� 	 � � . The three dominating

eigenvalues are �� � � - � , �� � � - ��� , �� � � - ��� � with � � � ��� ��& " . The maximum modulus of the remaining < �
eigenvalues is �� �#0 -�� .
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FIG. 8.6. The pictures show the norms � ( �"%� 	 � � � for the symbol � 	���� � ���� � 	�� � � � � � .

9. Exponentials. Let
� �

be an � 	
� matrix and let ! � * . Then �:` � ��� � � * as! � � if and only if the spectrum of
� �

is contained in the open left half-plane. Now let� � 2 � � �'& � with & T V H . The decomposition & 2�� � & , � ��� & of & into the real and
imaginary parts yields

� � � � Y 2  [ � � � , � �� � 2 � � � � � & � E��� �"� Y 2  [ � � ��� 	 � �� � 2 � � ����� & � 9
We put

����� � � & Y 2 � ��� ������ Q�� � � &���+ � 9
Notice that ����� � � & 2 � ��� � � & if & is continuous. Here is the analogue of Theorem 1.1.

THEOREM 9.1. Let &%T�V H . Then

(9.1) �:` � � � <#� = ��� ` �������	��
 �
for all ! � * and all � T � . Moreover,

(9.2) 	
����� H �:` � � � <#� = � 2 ` �	������	
 �
for each ! � * .

Proof. We have �:` ��� � � �+`��	
 ��� � for every matrix
� �

(see, e.g., [2, p. 258]). Fur-
thermore, �+`���
 � � � 2 ` 
������+< �	
 � � = , where (������ � � � � � � is the maximal eigenvalue of the
Hermitian matrix � � � � . Thus,�:` � � �8<#� = � � ` � 
 ����� < � � < ��
 � = = 9
It is well-known that (���������� � � � � & �>� does not exceed ����� � � & . The proof is as follows.
Pick 	 � � ��� � � & and assume � � � � � & � � 2 	 � for some nonzero � 2 ����( � � * 0( . 7 T � � .
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Put

�J�G` acb � 2 ��7 , � 0 ` acb , 9:9;9 , � � * 0 ` a < � * 0>= b 9
A straightforward computation shows that

(9.3) ��� � � 	 	 � � & � � E � � 2  [ \ ] �-^7 � 	 	 � � � & � �G`�acb �>� � �J�G`�a b � � � dLe E
and since � � � 	 	 � � & � � 2 * , the right-hand side of (9.3) must be zero. As �J�G` acb � vanishes
only at finitely many ` a b T!W , it follows that 	 	 � � & 2 * almost everywhere, which is
impossible for 	 � ����� � � & . Thus, the proof of (9.1) is complete

Since � � �G& � � � �'& � strongly and hence ` ��� � <#� = � `���� <	� = strongly, the Banach-
Steinhaus theorem gives

	
� 
�! ��� H �:` ��� �8<#� = � "X�+` � � <#� = � 9
The symbol ��� � ` ��� <#� = is nothing but the function ` � � , and hence we deduce from (4.2) that

�+` � � <#� = � "X��� �'` � � � � 2 �:` � � � H 9
Since �+`�� � � H 2 `��������	��
 � , we get

	�
� 
�! � � H �:` � � �8<#� = � " ` ��������	
 � 9
This and (9.1) imply (9.2).

Thus, Theorem 9.1 tells us that if � is large, then ` ��� �8<	� = has critical behavior if and only
if � � � � � & � * . To get realistic estimates, one can employ the analogue of (3.5). Trefethen’s
note [32] contains an analogue of Theorem 3.1 for exponentials. This result implies that if the
pseudospectrum ���-+ � contains points in the open right half-plane, then each point ( T � � + �
with � Y 2 � � ( � * gives us an estimate of the form

� ���7 � � � � � �+` � � � " `�� � � � �  , * ` � � � 	  
� �

(see also [13] and [38]).

The goal of the rest of this section is to establish an analogue of Theorem 7.1. Things
are a little more complicated, because I do not know an analogue of (4.13). We begin with an
example.

EXAMPLE 9.2. Let � �G& � be the tridiagonal matrix generated by &���+ � 2 + * 0 , �J� + 	 (
with � T � * E � � and ( T � . The eigenvalues of � � �'& � are densely spread over the interval� 	 [ � 	 ( E [ � 	 ( � . Hence �+`���� � <#� = ��� * as ! � � for each � if and only if

[ � � � � ( .
We have � ��� � � & 2 	 � � ( ,  , �J� . Consequently, �:` � � � <#� = � has a critical transient phase
before decaying to zero for large � if and only if

[ � � � � ( �  ,�� � . Figure 9.1 reveals
that the norm surfaces of exponentials look much like their counterparts for powers.
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FIG. 9.1. The symbol is � 	���� � � �
� �7* � � � � . The picture shows the level curves � ��� � ������� � � � for
� � � � � � , � , � � � , � � $ , 11 , � � ��� (the lower curve corresponds to � � � � ��� , the upper to � � ��� ). We took
*�� ( ��3 � and 	6�70�,1� � ,1�10�, �2 ,!< �#� .

LEMMA 9.3. If & T �
, then there are constants � E 	 E � T ��* E � � depending only on &

such that �+` ��� �8<#� = � " � � # � % A & �'` � � � � H 	 � ` 	 � * � � % �
for all sufficiently large � .

Proof. Let & T �
and ( T �"� � � � �G& � . In [6], we proved that

� * 0� �G& 	 ( � 2 � � � �G& 	 ( � * 0  , � � � 
�� � , � � � 
 � � , � 
S, � E
where

� 
 and
� 
 are compact operators on �;� whose entries satisfy

� � � 
 � (I, O � � � ` * � < ( � O = E � � � 
 � (I, O � � � ` * � < ( � O = E
and � 
), � is an � 	 � matrix such that � � 
), � �-� � ` * � � . Here � and � are positive finite
constants depending only on & and ( . A check of the computations and estimates of [6]
reveals that the constants � and

 � � are uniformly bounded on compact subsets of � �
��� � �G& � . Consequently, from the representation` � � �8<#� = 	 � � �G` � � � 2 �[ \ ]�
 ` � 
 � � * 0� �G& 	 ( � 	 � � � �G& 	 ( � * 0  ��d ( E
where � is a counter-clockwise oriented smooth curve in � � ��� � �G& � that encircles � � � � �'& �
exactly once, we obtain that ` � � �8<#� = 	 � � �G` � � ��� (I, O � � ` 	 � � ` * � < ( � O = , ` * � < � � *�(+*�O = , ` * � � �
with some constant 	 TX��* E � � depending only on & and � . For �$��� � � E � � [ �$� � , this
gives  ` � � �8<#� = 	 � � �G` � � � � (-, O � � ` 	 � � ` * � � � % A , ` * � � � % A , ` * � � � � � � ` 	 � * � � � % A 9
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It follows that the Frobenius norm of the block of `�� � �8<#� = 	 � � �'`�� � � that is formed by the
entries with �$��� � � E ��� [ �$��� is at most �)� � ` 	 � * � � � % A , which does not exceed � ` 	 � * � � % �
if � is large enough. Theorem 6.2 and the argument of the proof of Corollary 6.3 therefore
yield �+` ��� �8<#� = � " � � # � * � � % A & �'` � � � � H 	 � ` 	 � * � � % � 2 � � # � % A & �G` � � � � H 	 � ` 	 � * � � % � E
which completes the proof.

LEMMA 9.4. Let & T �
and ! "  

. Then for each * � * there exists a constant �
depending only on & and * such that

� � � �'` � � � � H "X�+` � � � H �  	 � ! ��	 � � � �I0 � +
� �

for all ��"  
.

Proof. We may, without loss of generality, assume that �+`�� � � H 2 � `�� �N< 0 =�� . We put� � e � Y 2 &��'` a b � for e T � . The function � is smooth and we have � ��* � 	 &��  N� 2 * . Hence,
there is a constant � depending only on & such that

� � � e � 	 &��  N� � ��� � e � for
� e � � \

. Let �
be the maximum of

� � �Ge � 	 &��  N� � for
� e � � \

. If
� � � � � , then

�  	 ` � � 2 � � �
����  , �[ $ , �8�� $ , 9;9:9 ����

� � � �
�  , �[ $ , � �� $ , 9;9:9 � 2 � � � ` � 	  

� 2 Y �
�
� � � 9

Thus,

(9.4)
���  	 ` � < 
 < b = *��N< 0>= = ��� � ! �

�
� � � e � 	 &��  �� � � !�� �

�
� e �

for
� e � � \

. With the Fejér kernel

�
� � e � 2  [ \

�

� 
� � � �ge � [ �
��
�� � � e � [ � E

we have

(9.5)

�
� �

� `�� �` � �N< 0>= � � �  N� 2  	 ] � b � � ^ � � �Ge �
�  	 `�� 
>< b =` � ��< 0 = � dLe 9

Put � � 2  � ��	 � � � �I0 � + . We split the integral � � b � � ^ on the right of (9.5) into two integrals. 0 2 � � b � � ��� and . � 2 � � b �  ��� . Using (9.4), we can estimate the first integral as follows:

� . 0 � �  [S\
�
] ���* � � ��
�� � � �ge � [ �

� 
� � �Ge � [ � ���  	 ` � < 
>< b = *���< 0 =G= ��� dLe
�

 [S\
�
] ���* � � ��
�� � � �ge � [ �

� 
� � �Ge � [ � ! � � � � e � d)e2 ! � � �\
�

] ���7 � 
� � � � e � [ �
��
�� � � e � [ � e d)e

� ! � � �\
�

] ���7 � 
� � � � e � [ ��Ge � \ � � e d)e
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2 ! \ � � ��
] ���7 ��
�� � � � e � [ �e dLe

2 ! \ � � ��
] � ��� % �7 ��
� � �� d �

� ! \ � � ��

� ] 07 ��
�� � �� d � , ] � � � % �0 d ��
�

� ! \ � � ��

�  [ , 	 � � � � �[ �2 ! \ � � ��

�  [ , 	 � � � 	 �  , * � 	 � � 	 � � � 	 	 � � [ �
�

� ! 	 � � �
�

for some constant
�

depending only on & and * . Since
� ` � 
>< b = � ` � �N< 0>= � �  

, the modulus of
the second integral is

� . � � �  [S\
�
] � b �  � � � 
� � � �ge � [ �

��
�� � � e � [ � ���  	 ` � < 
>< b = * �N< 0>= = ��� dLe
�

[[S\
�
] � b �  � � � 
� � � �ge � [ �

��
�� � � e � [ � d)e
2 [\

�
] ^
���

��
� � � � e � [ �
� 
� � � e � [ � dLe

�
[\
�
] ^
���

��
� � � � e � [ �� e � \ � � dLe
2 [S\
�
] ^
� �

��
�� � � �ge � [ �e � dLe
2 \ ] � ^ % �

� ��� % � ��
�� � �� � d �
� \ ] � ^ % �

� � � % � d �� � 2 \ � [
� � � 	 [

�
\ � � [S\

� � �2 [S\
�
��	 � � � � 0 � + 9

In summary, � � � �G`�� � � � H�+` � � � H "
� � � � �'`�� � �I� �  �� �� ` � ��< 0 = � 2 ����

�
� �

� `�� �` � �N< 0 = � � �  N� ����2 �  	 . 0 	 . � � "  	 � . 0 � 	 � . � �
"  	 � ! 	 � � �

�
	 [S\ ��	 � � � �I0 � +

�
"  	 � ! ��	 � � � �I0 � +

�

with � 2 � , [S\ (recall that ! "  
).

The following result is an analogue of Theorem 7.1. Clearly, this result is weaker than
Theorem 7.1, because of the presence of the factor ��	 � � ! � 0 � + . From a practical point of view
we can say that, for large ! , this factor may be ignored in comparison with ! . As for the
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theoretical side of the problem, we remark that this factor emerges from our techniques and
that it can probably be removed by more powerful machinery.

THEOREM 9.5. Let & T �
and suppose � ��� � � & � * . For

� � * , put�
� 2 M8� ! E � � T
��* E � � 	 � Y �+` ��� �)<	� = � � � P 9

Then, for each * � * , there exist positive and finite constants ! 7 and � depending only on� E & E * such that �
��� �?� ! E � � Y ! � !+7 E � � � ! ��	 � � ! � 0 � + � 9

Proof. We abbreviate � � � � � & to � . Combining Lemmas 9.3 and 9.4 we get

�+` ��� �L<#� = ��" �  	 � ! ��	 � � � �$���  f�-0 � +� �$���  � ` � �
	 � ` 	 � * � � % �
2 �  	 � ! ��	 � � � �$���  f�-0 � +� �$���  	 � ` < 	8* � = � * � � % � � ` � �

for all sufficiently large � and all ! �  
. Throughout what follows we assume that ! � ` , so

that 	 � � ! and 	 � � 	 � � ! are positive. Put

(9.6) � 2 � ��� �  , [
�
� 	 	 � � E � � � �

and let � � � ! ��	 � � ! �-0 � + . There is a ! 0 such that `���� � � � � . If 	 � � , then � ` < 	8* � = � * � � % � � � � for all ! � ! � . So assume that 	 � � . We then have

(9.7) � ` < 	8* � = � * � � % � � � ` < 	8* � = � * ��� � <�� ��	 � = ��
� % � � ` < 	8* � * ��� % � = � <�� ��	 � = ��
� E
and because 	 	 � 	 � �/� [ � * by virtue of (9.6), the last term of (9.7) is certainly smaller
than

 ��� for all ! � ! � . Clearly,

(9.8)
� ! ��	 � � � �$���  �I0 � +� �$���  �

[ � ! ��	 � � � �$� � �I�I0 � +�$� �
for all � large enough. As the function on the right of (9.8) is monotonically decreasing for
all sufficiently large � , it follows that

� ! ��	 � � � �$���  f�-0 � +� �$���  �
[ � ! ��	 � � �I��� � � � ! ��	 � � ! �-0 � + �>�I0 � +��� � � � ! ��	 � � ! � 0 � +(9.9)

2 � �
�

� 	 � � ��� � � � , 	 � � ! , �  , * � 	 � � 	 � � !
	 � � ! � 0 � + 9

Since the right-hand side of (9.9) converges to
� ��� � as !$� � and since

� � � � �  � � due
to (9.6), we arrive at the conclusion that (9.9) is smaller than

 ��� for all ! � !;A . Thus, if! 7 2 � � � � ! 0 E ! � E !:A � , then

�:` ��� � <#� = � � �  	  
� 	  

� � � � 2 �
for ! � ! 7 and � � � ! ��	 � � ! �-0 � + .
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Theorem 9.5 implies that if & T �
and � ��� � � & � * , then �:` � ��� ����� <#� = �#� � as soon

as

� � ! �! ��	 � � ! � 0 � + � � for some * � * 9
It also follows that the length of the critical phase satisfies

	�
� 
�! ��� H V � � � �� ��	 � � � � 0 � + � * for each * � * 9
In analogy to Theorem 7.2 we have the following.
THEOREM 9.6. Let &XT 
 � , � � � � � & � * , and

� �  
. If there exists a number

� T ��* E � � such that � ��� � � &	� � * , then

�
� is a subset of M8� ! E � � Y � � ��! , d�P for

certain � � * and d � * .
Proof. We have � � �G& � 2�� * 0� � � �G&	� � � � and hence�:` ��� � <#� = � 2 � � * 0� ` ��� � <#��
 = � � �

�X� � * 0� � �:` ��� � <	��
 = � � � � �
�X� � * 0� � � � ��� ` � ����� ��
 � 


(recall (9.1)). Thus, with � Y 2 � � � � � E  � � � �  
,�:` � � �L<#� = ��� � � * 0 ` � ����� ��
 � 
 9

For � ! E � � T
�
� , this yields

� � ! � � ��� � � & � � , 	 � � �
	 � � � ,  9

Let &���+ � 2 + * 0 ,��1� + 	 ( be as in Example 9.2 and suppose that
[ � � � � ( �  , �J� .

Choosing � 2  � � we get � � � � � & � 2 � , � 	 � � ( 2 [ � 	 � � ( � * E and hence the sky
region is contained in an angle. This is nicely seen in Figure 9.1.
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