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A RATIONAL SPECTRAL PROBLEM IN FLUID–SOLID VIBRATION
�

HEINRICH VOSS
�

Abstract. In this paper we apply a minmax characterization for nonoverdamped nonlinear eigenvalue problems
to a rational eigenproblem governing mechanical vibrations of a tube bundle immersed in an inviscid compressible
fluid. This eigenproblem is nonstandard in two respects: it depends rationally on the eigenparameter, and it involves
non-local boundary conditions. Comparison results are proved comparing the eigenvalues of the rational problem to
those of certain linear problems suggesting a way how to construct ansatz vectors for an efficient projection method.
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1. Introduction. In this paper we study a model which governs the vibrations of a tube
bundle immersed in a inviscid compressible fluid under the following simplifying assump-
tions. The tubes are rigid, assembled in parallel inside the fluid, and elastically mounted in
such a way that they can vibrate transversally, but they can not move in the direction perpen-
dicular to their sections. The fluid is assumed to be contained in a cavity which is very long
along the generating lines of the tubes. Due to these assumptions three dimensional effects
are neglected, and the problem is studied in any transversal section of the cavity.

The mathematical model describing the dynamical behaviour of this system was obtained
by Planchard in [9] and was studied in [2], [3], e.g. It is an elliptic eigenvalue problem
with non-local conditions on the boundaries of the tubes which depend nonlinearly on the
eigenparameter and which can be transformed to a rational eigenvalue problem.

Using methods from linear functional analysis Conca, Planchard and Vanninathan [3]
proved that this problem has a countable set of eigenvalues which are positive and real and
which converge to infinity. To this end they transformed the rational eigenproblem to a linear
compact eigenproblem on a Hilbert space which is nonselfadjoint but can be symmetrized
easily.

In this paper we prove that the eigenvalues of the underlying rational eigenproblem can
be characterized as minmax values of a Rayleigh functional, from which we immediately
obtain the existence of countably many real and positive eigenvalues. Moreover, considering
the nonlinear problem as perturbation of suitable linear eigenproblems we obtain inclusion
results for the eigenvalues. These comparison theorems at the same time suggest how to de-
termine ansatz spaces for projection methods yielding efficient methods to solve the nonlinear
eigenvalue problem numerically.

The paper is organized as follows. Section 2 briefly summarizes variational character-
izations of the eigenvalues of symmetric nonlinear eigenvalue problems. In Section 3 we
present the mathematical model which describes the problem governing free vibrations of a
tube bundle immersed in an inviscid, slightly compressible fluid, and show that the eigen-
values are minmax values of a Rayleigh functional, and in Section 4 the comparison results
are derived. Finally, in Section 5 we propose a projection method based on the comparison
results of Section 4, and we demonstrate its efficiency by a numerical example.
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2. Characterization of eigenvalues of nonlinear eigenproblems. We consider the
nonlinear eigenvalue problem ���������
	��
(2.1)

where
�������

is a selfadjoint and bounded operator on a real Hilbert space  for every
�

in
an open real interval � . As in the linear case

��� � is called an eigenvalue of problem (2.1)
if equation (2.1) has a nontrivial solution

���	��
. Such an

�
is called an eigenelement or

eigenvector corresponding to
�

.
We assume that ����� ���� � ������ �!� "� # ���������$� �!%(2.2)

is continuously differentiable, and that for every fixed
��� '& , (& � 	 *)�+ �-, , the real

equation � ����� �!�.	/�
(2.3)

has at most one solution in � . Then equation (2.3) implicitly defines a functional 0 on some
subset 1 of 2& which we call the Rayleigh functional.

We assume that 33 � � �4�$�5�6�877:9<;!=8>@?BADC �
for every

�2� 1(E(2.4)

Then it follows from the implicit function theorem that 1 is an open set and that 0 is contin-
uously differentiable on 1 .

For the linear eigenvalue value problem
������� � 	F�HG(IKJ

where
J � L�  is

selfadjoint and continuous the assumptions above are fulfilled, 0 is the Rayleigh quotient and1 	 (& . If
J

additionally is completely continuous then
J

has a countable set of eigenvalues
which can be characterized as minmax and maxmin values of the Rayleigh quotient by the
principles of Poincaré and of Courant, Fischer and Weyl.

For the nonlinear case variational properties using the Rayleigh functional were proved
for overdamped systems (i.e. if the Rayleigh functional is defined on �& ) by Duffin [4] and
Rogers [10] for the finite dimensional case and by Hadeler [5], [6], Rogers [11] and Werner
[15] for the infinite dimensional case, and for nonoverdamped systems by Werner and the
author [14], [13]

In this section we assemble the results of [14] concerning the minmax characterization
of the nonlinear eigenvalue problem (2.1) corresponding to the Poincaré principle.

We denote by NM the set of all O -dimensional subspaces of  and by P�Q � 	 +BR � P �S R S 	UTV,
the unit sphere of the subspace P of  .

We assume that for every fixed
�2� � there exists W �4�!� C �

such that the linear operator���4�!�YX W �����5G
is completely continuous. Then the essential spectrum of

�N�4�!�
contains only

the point
I W �4�!�

, and every eigenvalue Z C I W �4�!�
of

�N�4�!�
can be characterized as maxmin

value of the Rayleigh quotient of
�������

. In particular, if
�

is an eigenvalue of the nonlinear
problem (2.1), then Z 	[�

is an eigenvalue of the linear problem
��������\]	 Z \

, and therefore
there exists ^ �(_

such thatZ�` �4�!� � 	ba]c8degfVhji alknmo fperq # ������� R � R %s	/� E(2.5)

In this case we call
�

an ^ -th eigenvalue of the nonlinear eigenvalue problem (2.1).
The following results were proved in [14]
THEOREM 2.1. Under the conditions given above the following assertions hold:
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Fig. 1: Domain � &
(i) For every ^ ��_

there is at most one ^ -th eigenvalue of problem (2.1) which can be
characterized by � ` 	 alknm����� i���	��
��

�����o fpe���� 0 � R � E(2.6)

The minimum is attained by the invariant subspace � of
���4� ` � corresponding to the^ largest eigenvalues of

����� ` � , and ����� o f������ 0 � R � is attained by all eigenvectors
of (2.1) corresponding to

� ` . The set of eigenvalues of (2.1) is at most countable.
(ii) If � ` 	 knm������� i���	��
��

�����o fpe���� 0 � R � � �(2.7)

for some ^ ��_
then

� ` is the ^ -th eigenvalue of (2.1) and (2.6) holds.
(iii) If there exists the � -th and the ^ -th eigenvalue

���
and

� ` in � and �! �^ then �
contains the " -th eigenvalue

��#
for �$ %"& ^ andk@m�� �' � �)( � �+* Q ( EBE E ( � `, ���-� �-E

(iv) If
� Q � � and

� ` � � for some ^ � _
then every P �  M with P/. 1 �	10

and
� M 	 �����-2 fpe3��� 0 �54 �

is contained in 1 , and the characterization (2.6) can be
replaced by � M 	 alknm������6� q87 � a]c do fperq 0 � R � O 	 TV� E E E � ^ E(2.8)

The characterization of the eigenvalues in Theorem 2.1 is a generalization of the minmax
principle of Poincaré for linear eigenvalue problems. In a similar way as in [14] the maxmin
characterization of Courant, Fischer and Weyl can be generalized to the nonlinear case (cf.
[13]).

3. A rational eigenvalue problem in fluid structure interaction. This section is de-
voted to the presentation of the mathematical model which describes the problem governing
free vibrations of a tube bundle immersed in a slightly compressible fluid under the following
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simplifying assumptions: The tubes are assumed to be rigid, assembled in parallel inside the
fluid, and elastically mounted in such a way that they can vibrate transversally, but they can
not move in the direction perpendicular to their sections. The fluid is assumed to be contained
in a cavity which is infinitely long, and each tube is supported by an independent system of
springs (which simulates the specific elasticity of each tube). Due to these assumptions,
three-dimensional effects are neglected, and so the problem can be studied in any transversal
section of the cavity. Considering small vibrations of the fluid (and the tubes) around the state
of rest, it can also be assumed that the fluid is irrotational.

Mathematically this problem can be described in the following way (cf. [9], [3]). Let
��� � � (the section of the cavity) be an open bounded set with locally Lipschitz continuous
boundary � . We assume that there exists a family � M �	 0

, O 	 TV� E EBE ��� , (the sections of
the tubes) of simply connected open sets such that �� M � � for every O , �� M .���	� 	 0

forO �	�

, and each � M has a locally Lipschitz continuous boundary � M . With these notations we

set � & � 	 � )���M ; Q �.MVE Then the boundary of � & consists of
� X T

connected components
which are � and � M , O 	UT � E EBE ��� .

We denote by  Q � � & � 	 + 4 ��� � � � & � �� 4 ��� � � � & � � , the standard Sobolev space
equipped with the usual scalar product� 4Y� R � � 	��

���
�54 � �6� R � �6�jX � 4j� �!��� � R � �6�5��� � E

Then the eigenfrequencies and the eigenmodes of the fluid-solid structure are governed by
the following variational eigenvalue problem (cf. [9], [3])

Find
�(� � and

4(�  Q � � & � such that for every R �  Q � � & �
� � �� �

� 4�� � R � �
	/���
� �
4 R � �lX ��M ; Q

�! &" M I � � M �" 6 4 ^ �$#�%�" 6 R ^ �&# E(3.1)

Here
4

is the potential of the velocity of the fluid, � denotes the speed of sound in the
fluid,

 & is the specific density of the fluid, " M represents the stiffness constant of the spring
system supporting tube O , � M is the mass per unit length of the tube O , and ^ is the outward
unit normal on the boundary of � & .

The eigenvalue problem is non–standard in two respects: The eigenparameter
�

appears
in a rational way in the boundary conditions, and the boundary conditions are non-local.

In Conca et al. [3] it was shown that the eigenvalues are the characteristic values of a
linear compact operator acting on a Hilbert space. The operator associated with this eigen-
value problem is not selfadjoint, but it can be symmetrized in the sense that one can prove
the existence of a selfadjoint operator which has the same spectrum as the original operator.
Hence, the set of eigenvalues is a countably infinite set of positive real numbers that converge
to infinity.

Obviously
��	K�

is an eigenvalue of (3.1) with eigenfunction
4�	

const. We reduce the
eigenproblem (3.1) to the space

 � 	 + 4(�  Q � � & � � �
� �
4 � �6��� �
	��-,

and consider the scalar product

# 4j� R % � 	��
� �
� 4 � �6�'� � R � �!�!�V� E
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on  which is known to define a norm on  which is equivalent to the norm induced by
� �@� � �

.
By the Lax–Milgram lemma the variational eigenvalue problem (3.1) is equivalent to the

nonlinear eigenvalue problem
Determine

�
and

4'�  such that

���4�!� 4 � 	 ��I G X �HJ X #�M ; Q
 & �" M I � � M � M � 4
	 �

(3.2)

where the linear symmetric operators
J

and
� M are defined by

# J 4j� R % � 	��
� �
4 R � � for every

4Y� R � (3.3)

# � M 4j� R % � 	�� �
" 6
4 ^ �$#������ �" 6 R ^ �&#�� for every

4Y� R � 2E(3.4)

J
is completely continuous by Rellich’s embedding theorem and � � 	�� M 4 , O 	�T � E EBE � " , is

the weak solution in  of the elliptic problem

	 � 	/�
in � & �

33 ^ � 	 �
on

3
� & ) �6M �

33 ^ � 	 ^ � �" 6 4 ^ �&# on � MVE
By the continuity of the trace operator

� M is continuous, and since the range of
� M is twodi-

mensional spanned by the solutions � � �  of

	 � � 	 �
in � & �

33 ^ � 	��
on

3
� & ) � M �

33 ^ � 	 ^ � on �6M � 
 	UTV��
 �
it is even completely continuous. Hence, the general conditions of Section 2 are satisfied.

Rayleigh functionals corresponding to problem (3.2) are defined by the real function� �4�$��4 � � 	 # ���4�!� 4j��4 %
	*I � � �� �� � 4 � � �V�]X � �

� �
4 � �V�lX ��M ; Q

 & �"rM I � � M 777 �" 6 4 ^ �&#
777 � E(3.5)

Since 33 � � �4�$��4 �.	��
� �
4 � �V�lX ��M ; Q

 & "rM� " M I � � M � � 777 �" 6 4 ^ �&#
777 � C �

for
���	 "8M

� M(3.6)

for every interval ��� � such that
# 6� 6 �� � for O 	�TV� E EBE � " there exists a Rayleigh functional

corresponding to the eigenvalue problem (3.2) and the results of Section 2 apply: if the open
interval ��� � * does not contain

# 6� 6 , O 	 TV� EBE E � � then all eigenvalues of problem (3.2) in� are minmax values of the Rayleigh functional defined by (3.5).

4. Comparison Results. We now assume that the quotients
# 6� 6 are ordered by magni-

tude � 	 � " &� &  " Q
�2Q ( " �

� � ( E E E ( " �� �  �� 	 � " � * Q� � * Q E
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If
#�� � q� � � q  #��� � for some

� � + TV� E E E ��� X�TV,
then problem (3.1) has a Rayleigh functional 0��

corresponding to the interval ��� � 	�� #�� � q� � � q � #��� � � which is defined in the domain of definition
denoted by 1 � .

For � � � � we consider the linear eigenvalue problem
Find

�(� � and
4(� 2& such that for every R � 2&

� � ����
� 4 � � R �V� X ��� Q�

M ; Q
 & �

�-� M I " M �" 6 4 ^!M �&# � �" 6 Rp^!M �$#
	 � � �

� �
4 R � �lX �� M ; �

 &" M I �-� M �" 6 4 ^!M �&# �%�" 6 R ^!M �&# � �(4.1)

and we denote by

	�
��54 � � 	 � ����� �
� 4
�
� � �lX ��� Q�M ; Q

 & ��-� M I "rM 777 �" 6 4 ^!M �&#
777 �

�� � 4 � � �lX ��M ; �
 &"rM I �-� M 777 �" 6 4 ^!M �$#

777 �

the Rayleigh quotient of problem (4.1).
LEMMA 4.1. Assume that � � � � and

	
��54 �D� � � for some
4'� 2& . Then

4(� 1 � , anda k@mj� � ��	 
 � 46� � ( 0�� �54 � ( a]c d � � ��	 
 �54 �5� E(4.2)

Proof. From

� ��	
-�54 � ��46�g	 I � � ���� � � 4 � � � � I ��� Q�
M ; Q

	
��54 �  &	 
 �54 � � M I " M 777 �" 6 4 ^!M �$#
777 �

X �� M ; �
	
��54 �  &" M I�	 
 �54 � � M 777 �" 6 4 ^!M �$#

777 � X�	
��54 ���
� �
4 � �V�

	 I � � ���� � � 4 � � � � I ��� Q�
M ; Q �  &��� M I " M 777 �" 6 4 ^!M �$#

777 �
X�	
H� 46� � �� M ; �

 &" M I �-� M 777 �" 6 4 ^!M �&#
777 � X �

���
4 � � � �

X ��� Q�
M ; Q � �  &��� M I " M I 	�
��54 �  &	 
 � 46� � M I " M � 777 �" 6 4 ^!M �$#

777 �
X�	
H� 46� �� M ; � �

 &" M I�	 
 � 46� � M I  &" M I ��� M � 777 �" 6 4 ^!M �&#
777 �
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	  & � 	�
!�54 �jI � � ��� Q�
M ; Q "8M� 	 
 �54 � � M I " M � � ��� M I " M � 777 �" 6 4 ^!M �&#

777 �
X�	
��54 �  & ��	
��54 � I � � �� M ; � � M� " M I 	 
 �54 � � M � � " M I �-� M � 777 �" 6 4 ^!M �$#

777 �
� ( �

for
	
H� 46� ( �� �

for
	 
 � 46� � �

and

� � � ��46�g	UI � � �� � � � 4 � � � � I ��� Q�M ; Q �  &��� M I "8M 777 �" 6 4 ^ M �$#
777 �

X �� M ; � �  &"rM I �-� M 777 �" 6 4 ^ M �&#
777 � X � �� �

4 � �V�
	 � � I 	 
 � 46� � � �

���
4 � � �lX �� M ; �

 &"8M I �-� M 777 �" 6 4 ^ M �&#
777 � �

� � �
for

	
��54 � ( �( �
for

	
��54 � � � E
it follows that in both cases

4(� 1 � andalknmY� � ��	 
 �54 �5� ( 0 � �54 � ( a]c8d�� � ��	 
 �54 �5� E
From Lemma 4.1 we obtain comparison results. First we consider the case

� 	�T
because

in this case
knm�� 2 f � q 0 Q � 46� � � Q , and even the characterization (2.8) of the eigenvalues in � Q

holds.
LEMMA 4.2. knm��2 f � q 06Q �54 � C �
Proof. The proof is given by contradiction. Assume that

knm�� 2 f �gq 0 Q �54 �]	 �
, and let+ 4�� , � 1]Q such that

� � �� � �
� 4��

�
� � �
	UT

and � kna����� 0 Q �54�� �.	/� E
We consider the comparison problem (4.1) for � 	 � E
	 a k@m M # 6� 6 . Then for the smallest

eigenvalue Z Q and for every
42� 2& Rayleigh’s principle yields

� � �� � �
� 4
�
� � � � ZYQ � ���� 4 � � � X ��M ; Q

 &" M I ��� M 777 �" 6 4 ^!M �$#
777 � � �
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and for 0 Q � 4 � �  � we obtain the contradiction

� 	 I � � �� � � � 4 � � � � � X 06Q �54�� � � �� � 4 � � �V� X ��M ; Q
 &"8M I 06Q �54��V� � M 777 �" 6 4 � ^!M �&#

777 � �
( I � � �� � � � 4 � � � � � X 06Q �54�� � � �� � 4 � � �V� X ��M ; Q

 &"8M I ��� M 777 �" 6 4 � ^!M �&#
777 � �

( I � � ����� � 4 � � � � � X 06Q �54�� � � �Z Q ���� � � 4�� � � �V�	 � � � 0 Q �54 � �ZYQ I T � �
� � �

� 4 �
�
� � �2I � I T

for W � ��E
THEOREM 4.3. Let � � � Q . Assume that the comparison problem (4.1) has � eigenvalues

ZYQ ( Z � ( EBE E ( Z��
in � Q . Then the rational eigenvalue problem (3.1) has � eigenvalues� Q ( � � ( EBE E ( �

�

in � Q , and for the � -th eigenvalue
� �

of (3.1) the following inequality holdsa knmY� Z ��� � � ( �-� ( a]c8d � Z �l� � � � O 	 TV� E EBE � � E(4.3)

Proof. We first show that there exist � eigenvalues of problem (3.1) in � Q . Since by
Lemma 4.2

knm�� o f � q 0 Q � R �N� � Q we only have to prove that there exists � � �� such that
� & � 1 Q and

# 4 0 o f�� � 06Q � R � � � Q .
Let � � �� be the invariant subspace of problem (4.1) corresponding to ZjQ � E E E � Z�� , i.e.

Z�� 	 a knme fVh�� a]c8do fpe � 	
H� R �s	�a]c8do f�� � 	�
�� R �  a k@mM "8M
� M E

Then
	
H� R � ( Z��  a knm M # 6� 6 for every R � � & , and it follows from Lemma 4.1 � & � 1 Q ,

and

0 Q � R � ( a]c8d � � ��	 
 � R � � ( a]c d � � � Z � �  alknmM " M
� M E

Hence, the rational eigenproblem (3.1) has (at least) � eigenvalues
� Q ( � � ( EBE E ( �

� in� Q .
We now prove the inequality (4.3). For � � + TV� EBE E � � , let

�K�  � such that

Z � 	 a k@me fVh
	 a]c8do fpe � 	 
 � R �.	 a]c8do f�� � 	 
 � R � E
Then

� & �%� & � 1 Q , and from 0 Q � R � ( a]c8d�� � ��	
H� R � � for every R �� & we obtain���[	 a k@m����� 	� � 7 � q a]c do fpe � 06Q � R � ( a]c8do f�� � 06Q � R � ( a]c d6� � � a]c8do f�� � 	
H� R � �.	�a]c d6� � � Z � � �
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which proves the upper bound of
� �

in (4.3).
To obtain the lower bound let �

�  � such that � & � 1 Q and���K	 a k@m����� 	� � 7 � q a]c8do fpe � 0 Q � R �.	�a]c8do f�� � 06Q � R � E
For every

4(�
� &��	 � � 06Q � 46� ��4 �g	UI � � �� � � � 4 � � �V� X 0 Q �54 ���� � 4 � � �lX ��M ; Q 0 Q �54 �  &"rM I 0 Q � 46� � M 777 �" 6 4 ^!M �&#

777 � �
and for 0 Q � 46� ( � it follows

� ( I � � ���� � � 4 � � � �lX 0 Q � 46� � �
� �
4 � �V�lX ��M ; Q

 &"rM I ��� M 777 �" 6 4 ^ M �$#
777 � � �

from which we obtain 0�Q � 46� � 	�
!�54 �
.

Hence, if 06Q �54 � ( � for every
4(� � & , then� � 	 a]c8d2 f�� � 0 Q � 46� � a]c8d2 f�� � 	 
 �54 � � a knmegfVh 	 a]c8d2 fpe � 	 
 �54 �g	 Z � E(4.4)

If Z � ( � then the first part of the proof implies 0 Q �54 � ( � �/( a]c8d�� � � Z � �s	 � for every42� � & , and (4.4) yields
� � � alknm$� � � Z � � E

For Z � C � the lower bound in (4.3) follows by contradiction, since from
� �  � we

again would get
� � � Z � C � from (4.4).

THEOREM 4.4. Let � � � � , � 	�
-� E EBE ��� X�T
and assume that the � -th eigenvalue Z �

of the comparison problem (4.1) satisfies Z � � � � . Then the rational eigenvalue problem
(3.1) has an � -th eigenvalue

� �U� � � , andalknm$� Z � � � � ( � �/( a]c8d�� Z � � � � E(4.5)

Proof. We prove that
(i) there exists P �  � such that P%. 1 � �	 0

and ����� 2 f�� ��� � 0 � �54 � ( a]c8d�� � � Z ���
(ii) �����-2 fpe���� � 0 � � 46� � a k@m$� � � Z � �

for every P �  � such that P%.
1 � �	 0
.

Then � � � 	 knm������� 	���	� � 
��
�����2 fpe3��� �$0�� �54 �D� � � �

i.e.
���

is an � -th eigenvalue of problem (3.1), and inequality (4.5) holds.
Let � �  � and � � � & such that

Z � 	 a c d2 f�� � 	 
 �54 �g	 	 
 � � � E
Then by Lemma 4.1 � � 1 � , i.e. � . 1 � �	 0

.
	�
��54 � ( Z � for every

42� � & yields

I � � ���� � � 4 � � � �6X ��� Q�
M ; Q �  &" M I �-� M 777 �" 6 4 ^!M �&#

777 � X �� M ; � Z �  &" M I �-� M 777 �" 6 4 ^!M �&#
777 � X Z ������ 4 � � � � � E
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For � � 	�a]c d6� � � Z � �
it follows

I � � �� � � � 4 � � � �lX ��M ; Q �  &"8M I ��� M 777 �" 6 4 ^!M �&#
777 � X � �� � 4 � �V� � �-�

and therefore 0 � �54 � ( � for every
42� 1 � . � . Hence, for � �  � it holds

� . 1 � �	 0
and �����2 f������ �$0 � �54 � ( a c d6� � � Z � � E(4.6)

(ii) is shown by contradiction. Assume that there exists P �  � such that P).�1 � �	 0
and ����� o fpe3��� � 0�� � R �  alknmY� � � Z � �

. Let
4 e � P such that

	 
 � 4 e � 	 a]c8d o fpe � 	 
 � R � .
Then

	 
 �54 e � �� � � , for otherwise it follows from Lemma 4.1
4 e � 1 � , and 0�� �54 e � �a k@m$� � ��	 
 �54 e �5�

, i.e.

�����2 fpe���� � 0 � � 46� � 0 � �54 e � � a k@mj� � ��	 
 � 4 e �5� � alknmY� � � Z � � E
For � � 	�a knm$� � � Z � �s� ( a k@mj� � ��	
H� 4 e �5�

� � � ��4 e �g	UI � � �� � � � 4 e � � � �lX ��� Q�
M ; Q �  &"8M I ��� M 777 �" 6 4 e ^ M �&# 777 �

X �� M ; � �  &"8M I ��� M 777 �" 6 4 e ^ M �&# 777 � X � �� � 4 � e � �
( I � � �� � � � 4 e � � � �lX ��� Q�

M ; Q �  &"8M I �-� M 777 �" 6 4 e ^ M �&# 777 �
X �� M ; �

	 
 � 4 e �  &"8M I �-� M 777 �" 6 4 e ^ M �$# 777 � X 	 
 �54 e � �
���
4 � e �V�
	 � E

For fixed
4�� P . 1 � let � ���5� � 	�� 42X ��TNI��5� 4 e and � ���5� � 	 � � � � � ���5� �

. Then � is
continuous on � �H� T	� , and � � � ��4 e �.	 � �4� �  �  
� �5T<�g	 � � � ��4 �
yields the existence of �� � � �H� T<�

such that
� � � � � � �� � �l	 �

. Hence, � � �� � � � .�1 � and0 � � � � �� �5�g	/a k@m$� � � Z � �
.

5. A projection method. Iterative projection methods (Lanczos, Arnoldi, Jacobi-
Davidson, e.g.), where approximations of the wanted eigenvalues and corresponding eigen-
vectors are obtained from projections to subspaces which are expanded in the course of the
algorithm a very efficient for linear sparse eigenproblems.

Generalizations of this approach to the nonlinear eigenvalue problem
����������	 �

are
contained in recent papers by Ruhe [12] and Hager and Wiberg [8], [7] who updated linear
eigenvalue problems which approximate the projection of the nonlinear eigenproblem to a
Krylov space of

��� � � � Q �N�4�!�
for some shift � and varying

�
, and for symmetric nonlinear

problems having a Rayleigh functional by Betcke and the author [1] who constructed ansatz
vectors for a projection method by a Jacobi-Davidson type approach.

The comparison results in the last section suggest to derive an ansatz space for a projec-
tion method for the numerical solution of problem (3.1) in the following way:
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1. Choose a small number of shifts � Q � E EBE � � � � � � .
2. For O 	 T � E EBE � � determine the eigenvectors

4 M # , " 	 TV� E E E � # M , of the linear prob-
lem (4.1) with shift � M corresponding to eigenvalues in � � .

3. Let U be the matrix with columns
4 M # , O 	 TV� E EBE � � , " 	 T � EBE E � # M . Determine the

QR factorization with column pivoting which produces the QR factorization of ���
where � denotes a permutation matrix such that the absolute values of the diagonal
elements of

	
are monotonely decreasing.

4. For every O with �
� M M �  �� � � � Q Q � drop the O -th column of � where � � � �-�BT<� is a

given tolerance, and denote by P the space that is spanned by the remaining columns
of � .

5. Project the nonlinear eigenvalue problem (3.1) to P and solve the projected problem
by inverse iteration with variable shifts.

As a numerical example we consider the rational eigenvalue problem (3.1) where � is
the square

��I 	 � 	 � � ��I 	 � 	 � , and the tubes are defined by � Q 	 ��I��H� I 
 � � �5I��-� I 
 �
,

� � 	�� 
-���p� � ��I��-�BI 
V�
, �
	 	���I��H� I 
 � � � 
 ��� �

, �� 	�� 
 ���p� � � 
-���p�
. We assume � 	 T

, & 	UT
, " M 	 T

for all O , � Q 	 	 , � � 	 	 , ��	 	 

and ��� 	 T

.
We discretized this eigenvalue problem with linear elements obtaining a matrix eigen-

value problem

J ��	/� � � X �T I 	 �� Q �lX �T I 	 ��� � �NX �T I 
V��	 �lX �T I ����� �(5.1)

of dimension ^ 	 
�� 	���� . Problem (5.1) has � eigenvalues
� Q ( E EBE ( ���

in the interval� Q 	 � �H� � E 
 � , � eigenvalues ���� ( E EBE ( �� Q & in � � � 	 � � E 
-� � E 	 � , � eigenvalues ���� ( E EBE (
�� Q � in ��	 � 	b� � E 	 � T E �p� ,and

TB�
eigenvalues �� Q 	 ( E EBE ( �� ��� in ��� 	 �5TV��
V�

. Notice that
(5.1) is not just a small perturbation of the linear eigenproblem

J �
	[� ���
which has only  

eigenvalues in each of the intervals � Q , � � , and �!	 .
To approximate the eigenvalues in � Q we solved the linear eigenvalue problem" �[X TT I 	�� � Q X TT I 	�� � � X TT I 
 � ��	 X TT I � ���$# �
	 Z �4J X � �l� �

by Lanczos’ method with complete reorthogonalization for different parameters of � obtain-
ing approximations to eigenvectors of problem (5.1). We added � � on the right hand side
with a small � C �

since
J

is singular.
With  parameters �6Q 	 � E T , � � 	 � E T 	 , � 	 	 � E T � 	 and � � 	 � E T ��� 	 and tolerances�<Q 	UT&% I T

, � � 	 T$% I'�
, and � 	 	 �

we obtained eigenvalue approximations to
� Q � EBE E � ���

the relative errors of which are displayed in Figure 2 on the left. The dimensions of the
projected eigenvalue problems were

T$�
,

V�

and

��

, respectively.
On an Intel Pentium 4 with 2 GHz and 1 GB RAM it took 19.34 seconds to solve the 4

linear eigenvalue problems, and 0.20 seconds for the QR factorization with column pivoting.
To solve the projected nonlinear eigenvalue problems by safeguarded inverse iteration it took� E � T ,

� E �� and
� E �� seconds, respectively.

To approximate the eigenvalues in � � we solved the linear problem" � X TT I 
 � �	 X TT I � �(� # � 	 Z " J X �
	 � I T�� Q X �

	 � I T�� � X � � # �
for  parameters � Q 	b� E � , � � 	 � E  , � 	 	 � E  	 , and � � 	 � E  �� 	 , and with the same
tolerances as before we obtained the relative errors in Figure 2 on the right. The dimensions
of the projected problems are

T � , 
�� and

 � , respectively. The CPU times in this run were
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Fig. 2: relative errors; eigenvalues in (0,0.2) and (0.2,0.5)
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Fig. 3: relative errors; eigenvalues in (0.5,1.0) and (1.0,2.0)

� 
 E �  seconds for the linear eigenproblems,
� E 
 � seconds for the QR factorization, and

� E ��� ,� E ��� , and
T E � 	 seconds for inverse iteration.

Figure 3 shows the relative errors of eigenvalues �� M , O 	 � � E EBE � T  , in the interval � 	 	� � E 	 � T<� which were obtained with shift parameters ��Q 	 � E � and � � 	b� E � , � 	 	b� E � 	
and � � 	 � E ��� 	 , and the relative errors of �� Q 	 � E EBE � �� � � in the interval

��T � 
 �
obtained with

shifts �6Q 	 T E 
 	 , � � 	 T E 	 and � 	 	 T E � 	 . For the eigenvalues in � 	 the dimensions of the
nonlinear projected problem were

T � ,

��

, and
�V�

, respectively, and the CPU times were  � E � 	
seconds for the linear eigenproblems,

� E ��� second for the QR factorization, and
T E ��� ,

T E 
�� ,
and

T E � � seconds for inverse iteration. For the eigenvalues in � � we needed �!� E T � seconds
to solve the linear eigenproblems,

� E � T seconds for the QR factorization, and
T E ��� ,

T E 
�� andT E � � seconds to solve the projected problems of dimensions

 	 ,

� �
, and  
 , respectively.

The Jacobi-Davidson type method proposed in [1] achieved the same accuracy as our
method for � 	��

for the eigenvalue approximations in �HQ � E EBE � � � , respectively, projecting
problem (5.1) to a rational eigenproblem of dimension


 T
,

 


,
� 


, and  !� , and requiringTVT  HE � � ,
TB� � E
	 � ,

T$� � E � 	 and
T 	 
 E T$� seconds, respectively. Hence, the method considered
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here is more efficient than the method from [1] which on the other hand applies to a much
wider class of nonlinear eigenproblems, including non-symmetric problems.
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