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GRADIENT METHOD WITH DYNAMICAL RETARDS FOR LARGE-SCALE
OPTIMIZATION PROBLEMS
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Abstract. We consider a generalization of the gradient method with retards for the solution of large-scale uncon-
strained optimization problems. Recently, the gradient method with retards was introduced to find global minimizers
of large-scale quadratic functions. The most interesting feature of this method is that it does not involve a decrease
in the objective function, which allows fast local convergence. On the other hand, nonmonotone globalization strate-
gies, that preserve local behavior for the nonquadratic case, have proved to be very effective when associated with
low storage methods. In this work, the gradient method with retards is generalized and combined in a dynamical way
with nonmonotone globalization strategies to obtain a new method for minimizing nonquadratic functions, that can
deal efficiently with large problems. Encouraging numerical experiments on well-known test problems are presented.
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1. Introduction. We consider the unconstrained minimization problem
������
	���

���������
(1.1)

where
��������� �

is continuously differentiable and its gradient is available. We are
interested in the large-scale case for which the Hessian of

�
is either not available or requires

a prohibitive amount of storage and computational cost.
Spectral gradient methods, introduced by Barzilai and Borwein [1] and analyzed by Ray-

dan [12], have a number of interesting features that make them attractive for the numerical
solution of (1.1). The most important features of these methods are that only gradient di-
rections are used, that the memory requirements are minimal, and that they do not involve
a decrease in the objective function, which allows fast local convergence. They have been
applied succesfully to find local minimizers of large scale real problems ([2, 3, 4, 5, 9, 14]).

In a recent paper, Friedlander, Martı́nez, Molina and Raydan [7] extended the spectral
gradient methods and introduced the Gradient Method with Retards (GMR) to find the unique
global minimizer of quadratic functions of the form

�������! #"$ �&%(')�+*-,.%/�0�(1.2)

where
'213���546�

is large, sparse, symmetric and positive definite (SPD). The GMR is in fact
a large class of methods that can be written as

�87.9;:< =��7>* "?�@�A 7.BDC 7E�(1.3)

where C 7 is the gradient vector of
�

evaluated at
��7

, and

?�@�A 7.B  C %@�A 7FB ')G
A 7.B
C @�A 7.B

C %@HA 7.B ' A G A
7.BJI�:KB

C @HA 7.B>L(1.4)
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In (1.4), � ���6� and � ���6� are arbitrarily chosen in the sets
� ����� * " � L L L ���	� � ��
 ��� *������ �

(1.5)

and
��� : � ��� � L L L � ���� � �(1.6)

respectively, where
�

is a given positive integer, and
���

is a given positive integer for �  
" � $ � L L L ��� . For instance, when � ���&�  " for all

�
and � ���6�  ��

, then the GMR reduces to the
classical steepest descent method or Cauchy method. If � ���6�! " for all

�
and � ���6�  ���* " ,

then the GMR becomes the spectral gradient method. Extensive numerical results discussed
in [7] indicate that some members of the GMR family clearly outperform the spectral gradient
method, requiring less computational work.

For the nonquadratic case, the GMR needs to be incorporated in a globalization strat-
egy. Since the method does not enforce decrease in the objective function, a nonmonotone
line search strategy will be used. In particular, the nonmonotone line search technique intro-
duced by Grippo, Lampariello and Lucidi [10] has proved to be very effective for large-scale
optimization problems. This line search essentially enforces the following condition

������7F9;: ��� �! #"$&%(')%+* ������7DI ' �-,/. C %7 ����7.9;:�* �87
�.�(1.7)

where 0 is a nonnegative integer and
.

is a small positive number.
The new algorithm combines and extends the following results: the globalization of the

spectral gradient method by Raydan in [13] that is based on (1.7), and the gradient method
with retards by Friedlander, Martı́nez, Molina and Raydan [7]. In particular, a special dynam-
ical retard that takes advantage of the approximating property of eigenvectors is developed
and included in the algorithm.

The rest of the paper is divided into sections as follows. In Section 2 we present a general
nonmonotone gradient algorithm for which we can establish classical convergence results. In
Section 3 we present our dynamical version of the global gradient method with retards for
the minimization of nonquadratic functions. In Section 4 we discuss implementation details
and show numerical results on some classical test functions. Finally, in Section 5 we present
some final remarks.

2. Nonmonotone gradient methods. For the minimization of nonquadratic functions,
nonmonotone methods like the spectral gradient method, need to be incorporated with a
globalization strategy. Raydan [13] proposed a globalization scheme for the spectral gradient
algorithm that fits nicely with the nonmonotone behavior of this family of methods. Roughly
speaking, the main idea is to accept the step if it satisfies a weak condition of the form
given by (1.7). When 0 1 


this condition allows the objective function to increase at
some iterations and still guarantees global convergence, as we discuss later. First, in this
section, we would like to present a general nonmonotone gradient algorithm for which we
can establish classical convergence results.

Algorithm 2.1: Global Nonmonotone Gradient Method
Given

� $ , 
3254�2 " , ? $ 176 4 � "98 4�: , integer 0;1 
 , . 1 � 
 � " � , 
32=< : 25< � 2 " .
Set

�  

.

while ( > C 7 >?1A@CB9D�E&F �HG�I E ) do

set J  "�8 ? 7
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while (
����� 7 * J C 7 � 1 max $�% ')% � � � A 7 � * B � � 7DI ' �<* . J C %7 C 7 � do

choose
< 1/6 < :
� < � : �

and set J  < J L
endwhile

set J 7  J � and
�87.9;:) ��7>* J 7 C 7 L

set C 7.9;:< ��3�����87.9;:F�

choose ? 7.9;: 1 6 4 � "�8 4�: � and set
�  � , "

endwhile

We will describe various possibilities for the parameter tolerance later. The choice of? 7.9;: in Algorithm 2.1 is quite general. Specific choices of steplength related to the gradi-
ent method with retards that produce fast convegence will be discussed in the next section.
However, even at this level of generality we can establish a global convergence result.

THEOREM 2.1. Assume that �  � � 1 ��� �8������� �2����� $ ��� is a bounded set. If
�

is
continuously differentiable on an open set that contains � , then Algorithm 2.1 is well defined
and any accumulation point of the sequence

� � 7 �
that it generates is a stationary point.

Proof. If
� 7

is not a stationary point, then C %7 C 7 1 

. Since

. 2 " , then for sufficiently
small values of J the following condition holds:

����� 7 * J C 7 � � �! #"$&%(')%���� 	 A 7 � * B
�/� 7DI ' ��*�. J C %7 C 7 L

Hence, a stepsize satisfying the nonmonotone line search will be found after a finite number
of trials, and Algorithm 2.1 is well defined.

For the second part of the proof notice that, choosing 
 7  �� for all
�

and  1=6 4 � "�8 4�: ,
the Global Preconditioned Spectral Gradient algorithm (Basic version) in [11, pp. 243-244]
reduces to Algorithm 2.1. Therefore, the result follows from Theorem 2.1 in [11, p. 244].

In a recent work, Dai [6] presents additional convergence results for nonmonotone line
search techniques under additional assumptions. In particular, he establishes an R-linear rate
of convergence result for uniformily convex functions.

3. Global gradient method with retards. Motivated by the GMR method introduced
in [7] for convex quadratics, we can extend (1.3) and present methods of the following type

�87.9;:E ��7>* � "98 ?�@�A 7FB � C 7 �(3.1)

where

? @HA 7.B  ��
% @�A 7.B�� @HA 7.B
� % @HA 7.B � @�A 7.B

�
(3.2)

� @�A 7FB  �� @HA 7.B�9 : * � @�A 7.B , � @HA 7.B  C @HA 7.B�9 : * C @�A 7.B and � ���6� is arbitrary chosen in the set� 
 � " � L L L ��� � .
For the convex quadratic case, � ���6� is chosen in the set (1.5) and the GMR method

converges to global minimizers. A direct extension of the GMR for quadratics, combined
with the nonmonotone line search, produces our first version of the global GMR that can be
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obtained by substituting the choice of ? 7.9;: in Algorithm 2.1 by the following step:

Choose ? 7.9 :>1 � � � %$ � $ � / � � %$ � $ �.� L L L � � � % 7 � 7
� / � � % 7 � 7 ��� , and set
�  �� , " .

At every iteration we need to fit the scalar
�
� % 7 � 7 � / � � % 7 � 7 � in the interval

6 4 � "�8 4�: , as
follows: if ? 7 � 4 or ? 7��

:
� , then ? 7   , for a given positive  176 4 � "98 4�: .

Based on the theory discussed in the previous section, global convergence is established
for this particular case. However, it is still quite general for practical purposes. Indeed, exten-
sive numerical experimentation in [7] indicate that the use of very old retards deteriorates the
speed of convergence. Moreover, they observed that a retard that oscillates between 1 and 2 is
ideal for fast convergence. On the other hand, it would be interesting to detect the presence of
approximated eigenvectors as descent directions. We have seen, and it has been discussed by
Glunt et al. [9], that in the spectral gradient case the approximation of eigenvectors frequently
happens. In fact, if the gradient direction is an eigenvector of �

� ������7
�
then the best option

is by all means the Cauchy choice of steplength, i.e., no retard, since in the quadratic case it
would imply termination at the solution in the next iteration. This motivates us to include the
following strategy for choosing the steplength.� If

� 7
is “close to the solution” and

I B � 7�� � C %7 � 7 �
> C 7 >�> � 7 >	� " �

then ? 7  � % 7 � 7 / � % 7 � 7 (steepest descent).
The motivation for this choice is that if

I B � 7 � " then C 7 is a good approximation to
an eigenvector of �

� ����� 7 �
and the steepest descent (Cauchy) choice is an excellent

choice. Indeed,
I B � 7 is the cosine of the angle between C 7 and the average Hessian

matrix 

:
$ �

� ����� 7DI�: , @ � 7DI : ��� @ times C 7 . Therefore, if
I B � 7  " , then C 7 is an

eigenvector of the average Hessian matrix. Close to the solution, the average Hessian
matrix closely approximates the Hessian of

�
at the solution, and the Cauchy choice

of steplength would closely approximate the minimizer.� If
I B � 7DI : � I B � 7 , then (double retard), i.e.,

? 7F9;:  � % 7�I�: � 7DI�: 8 � % 7DI : � 7DI : L
The motivation here is that the bigger the cosine the closer the gradient to an eigen-
vector. Moreover, ? 7.9;: would be closer to an eigenvalue, and we obtain longer
steps, which is suitable once we are close to the solution and the norm of the gradi-
ent is close to zero.� Otherwise ? 7.9;:  � % 7 � 7 / � % 7 � 7 (spectral choice).

All the previous remarks lead us to the following algorithm.

Algorithm 3.1: GGMR
Given

� $ , 
3254�2 " , ? $ 176 4 � "98 4�: , integer 0;1 
 , . 1 � 
 � " � , 
 L  2��52 " ,
 1 
 , 
 25< : 2A< � 2 " .
Set

�  

, ? �����  ? $ , B9D ��I< 
 ��G E�� I  


.

while ( > C 7 >?1A@CB9D�E&F �HG�I E ) do
set J  "�8 ? 7
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/* Nonmonotone Line Search */
while (

�����87)* J C 7
� 1 max $�% ')% � � � A 7 � * B � �
7DI ' �<* . J C %7 C 7H� do
choose

< 1/6 < : � < �): �
and set J  < J L

endwhile

set J 7  J � and
�  � 7 * J 7 C 7

set
C  �3���)�5�.� and �  C * C 7

/* Updating the cosines */
if (“close to the solution”) then

set B9D �HI  G E � IH� and
G E � I< � C %7 � � 8 � > C 7 > > � > �

endif

set ? ��� �  2* � C %7 � � 8 � J 7 C %7 C 7
�

if ( ? ����� � 4 or ? � ��� � "�8 4 ) then
set ? �����   1 6 4 � "�8 4�:

endif

/* Cauchy choice */
if (“close to the solution” and

G E � I � �
) then

set ? 7� ? � ���
else

/* Retarded choice */
if (“close to the solution” and B9D ��I � G E � I ) then

set ? 7.9;:< ? 7
else

set ? 7.9;:< ? � ���
endif

set C 7.9;:� ��3�����87.9;: �
set

��7F9;:< � �
and

�  �� , "
endif

endwhile

We would like to close this section with the most relevant characteristics of Algorithm
3.1:

1. Requires
� G

storage locations.
2. Every iteration requires � � G � flops and one gradient evaluation, unless the Cauchy

choice is used. In that iteration, the gradient is evaluated twice.
3.
�����87
�

is not monotonically decreasing.
4. Since �

7  * J 7 C 7 , then the definition of ? ��� � in the algorithm is equivalent to the
one given in (3.2). The advantage of this equivalent expression is that it avoids the
storage of the vector �

7
.

4. Numerical Results. We compare the Global Gradient Method with Retards (GGMR)
with the Global Spectral Gradient (GSG) [13], and the Polak-Ribiere implementation ( ���

9
)

of Gilbert and Nocedal [8], on some classical test functions listed on Table 4.1. The ���
9

code requires
� G

storage locations and it is, to the best of our knowledge, the most effective
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implementation of the conjugate gradient method for nonquadratic functions. The GSG can
be viewed as a particular case of Algorithm 3.1, ignoring the Cauchy choice and the retarded
choice.

All experiments were run on a Pentium III at 750Mhz, 128MRAM, and double precision
Fortran 77. We used the following stopping criterion:

> C 7 > � � " 

I�� � " , � ������7
� � � L

For our numerical experiments, “close to the solution” means

> C 7 > � � " 

I � � " , � ������7
� � �F�

and the following parameters were used:
.  " 


I��
, 0  " 
 , < :3 
 L " , < �  
 L � ,

4  
" 

I�: $

, ? $  " , and
�  
 L  � . The parameter  is chosen as follows:

  �3 #" � " � � � � � "�8 4 � > C 7 > � � L
For descriptions of the test functions and the starting points, see [8].

Problem Name
1 Brown almost linear
2 Broyden tridiagonal
3 Extended ENGLV1
4 Extended Freudenstein and Roth
5 Generalized Rosenbrock
6 Oren’s power
7 Penalty 1
8 Extended Powell singular
9 Extended Rosenbrock

10 Tridiagonal 1
11 Trigonometric
12 Variably dimensioned
13 Wrong extended Wood
14 Strictly convex 1
15 Strictly convex 2
16 Extended Box 3-D
17 Extended Biggs EXP6

TABLE 4.1
Classical test functions

The numerical results are shown in Tables 4.2 and 4.3. We report the function and the
dimension (

� 8 G ), the number of iterations required for convergence (It), the number of gra-
dient evaluations (g), the number of iterations for which the retard choice was used (Rt), and
the number of iterations for which the Cauchy or steepest descent choice was used (SD). For
GSG and GGMR the number of iterations and gradient evaluations are equal, and so it is re-
ported under the label (It/g). The asterisk (*) that appears under the multicolumn ���

9
means

that the method could not find a local solution after 5000 iterations. The results of Tables 4.2
and 4.3 are summarized in Table 4.4. We report, in Table 4.4, the number of problems for
which each method was a winner in number of iterations, and number of gradient evaluations.

We observe that GSG and GGMR are both very robust for finding local minimizers of
large-scale nonquadratic functions. GSG failed to converge only for function 11 and

G2 
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���
9

GSG GGMR� 8 G It g It/g It/g Rt SD
1/1000 * * 4 3 0 1
1/10000 * * 8 5 0 3
2/1000 43 90 47 45 26 1
2/5000 43 91 107 58 25 0
3/1000 19 57 33 28 14 4
3/10000 * * 28 26 15 3
4/1000 13 43 4823 263 103 4
4/10000 * * 133 132 2 4
5/100 275 574 1711 1025 544 2
5/500 1089 2202 4603 4037 2097 2

6/1000 130 268 376 333 198 7
6/10000 23 89 63 46 0 22
7/1000 * * 63 31 12 26
7/10000 * * 73 43 28 35
8/1000 152 367 2172 468 225 44
8/10000 * * 3380 482 250 42
9/1000 25 74 101 35 25 9
9/10000 * * 69 60 7 5

TABLE 4.2
�����

, GSG, and GGMR on classical test functions

���
9

GSG GGMR� 8 G It g It/g It/g Rt SD
10/1000 332 667 131 630 337 2

10/10000 239 484 131 133 70 0
11/1000 * * 111 111 57 1

11/10000 * * * 67 30 0
12/100 * * 38 22 7 21
12/500 * * 55 28 12 2

13/1000 35 80 79 66 33 3
13/10000 * * 61 70 40 3
14/1000 5 18 8 6 0 3

14/10000 4 15 8 6 0 3
15/1000 107 218 237 162 83 3

15/10000 14 45 19 19 5 1
16/300 51 155 85 44 20 10

16/3000 140 327 898 50 27 12
17/600 131 319 2881 678 346 32

17/1200 67 181 2313 692 179 14
TABLE 4.3

��� �
, GSG, and GGMR on classical test functions

" 
�
 
�
 , and GGMR never failed to converge. They both outperform ���
9

in number of
gradient evaluations, except for problems with a very ill-conditioned Hessian at the solution.
For some of these problems, GGMR is still competitive. However, if the Hessian is singular
at the solution as in functions 8 and 17, then ���

9
clearly outperforms GSG and GGMR.
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Method IT g
�����

17 7
GSG 3 3
GGMR 13 22

TABLE 4.4
Number of winners for each method

On the other hand, ���
9

outperforms GSG and GGMR in number of iterations, except
for some problems where ���

9
failed to converge before 10000 iterations.

We also observe that GGMR outperforms GSG in most cases (28 out of 36). In some of
those cases, the difference between them is remarkable.

Finally, we would like to comment that for ���
9

a line search is required at every iter-
ation. Whereas for GSG and GGMR a line search is needed at very few iterations. For very
ill-conditioned problems they both require approximately a line search for every 5 iterations,
which implies a significant reduction in CPU time.

5. Final remarks. The recently developed GMR method can be globalized with a non-
monotone line search to produce fast convergent gradient methods for the minimization of
nonquadratic functions. In particular, the feature of approximating eigenvalues and eigenvec-
tors help to accelerate the convergence of gradient related methods. Our numerical results
indicate that the globalized GMR new method represents a fast and robust option for uncon-
strained optimization, that requires few line search.
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