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A QUADRATURE FORMULA OF RATIONAL TYPE FOR INTEGRANDS WITH
ONE ENDPOINT SINGULARITY

�
J. ILLÁN

Abstract. The paper deals with the construction of an efficient quadrature formula of rational type to evaluate
the integral of functions which are analytic in the interval of integration, except at the endpoints. Basically our
approach consists in introducing a change of variable ��� into the integral
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We report some numerical examples to illustrate the behavior of the method for several values of the parameters.
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1. Introduction. In applications the solution of a problem often involves the numeri-
cal integration of functions with singularities. The traditional approach in this subject has
been based on the use of Gauss quadrature formulas of polynomial type, though more re-
cently some rational versions have also been considered. The latter concerns classes of Gauss
quadrature formulas which require the largest degree of exactness for simple rational func-
tions y�z�{(|h}�~!��� . These rational rules are connected with multipoint Padé approximation of
Stieltjes functions [12, 13, 14, 15, 16, 17, 28], and with the evaluation of integrals whose
integrand has poles close to the integration interval [7, 8, 9, 10].

Another relevant area is that concerned with the use of functions �s{�|q� which transform
the integration interval, and increase the efficiency of the numerical procedures. These trans-
formations modify the distribution of the quadrature nodes �P|o�#� in such a way that the new
ones, namely �4�s{�|q�
��� , exhibit a higher concentration near those endpoints where the sin-
gularities should be located. As far as we know the strategy of fitting a change of variable
into an integration rule to increase the efficiency of a numerical procedure, have only been
investigated in the polynomial context [1, 20, 21, 22, 23, 24, 25].

When compared to polynomials, rational functions are now considered a nicer class to
approximate functions with a variety of singularities. This conclusion has a starting point
in 1964 when Newman [26] proved that the function � |�� , }�y���|���y , can be uniformly
approximated by rational functions much faster than by polynomials. At present, there are
additional reasons to assert that the following formulation

(1.1) �!{����A������ �s{(|!����|��V����{����A�������� {�|q����|u�
�
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where � is a convenient rational function, is expedient when � is an analytic function with a
finite number of singularities on � �!����� , or with some poles close to � �!����� . A basic argument
in favour of the latter is that the term ��� in the error � ��}�~qz��d��� � ����}[~s� z	� , can be better
approximated than � by polynomials ~ , if � annihilates the poles of � closer to � �!����� .

The class of functions to be integrated are those defined on the interval {�}�y���
�� , ���
��y , which admit analytic continuation to the space ��� . Rational approximation of functions
in a Hardy space was earlier investigated by Gonchar in [11] as a continuation to Newman’s
research [26].

In this paper we deal with a method of numerical integration which works, theoretically
speaking, on the Hardy space ��� and is based on interpolation by means of rational functions.
For each ����� this formula has the form given below

(1.2) ���&{����A� � �
��� �s{�|q����|�� � � � �"! �$# �&% �&�s{('��&% �
�*) � �"! �,+ �&% �&�.- �"/ {0
2�1)32 �4% �&{������

where 5�6
7� y , �8�9��� , �)�:������� , }�y��;'��&% ���6
 , # �&% ��� + �&% <�� � , =Y� y���>?>@> ����}A� ,B � y&�C>@>?> ��� ; � -@D / is the E -th derivative of � , and 2)�&% ��{���� is the quadrature error.
Formula (1.2) is a special case of those studied by Bojanov [4], Newman [27], Andersson

[2], Andersson & Bojanov [3]. To understand why rational functions play a role in this theory
it is sufficient to consider the general formulation given below

(1.3) �AFG �s{�|q���IHA{�|q�Q� � � {����A� �KJ LMJ ! � � � {('�f�s{('���N'C� F � ! � DO-
� / 

<P!KQ �� % < �.- <P/ {('������
where }�y��SRT�VU � y , H is a finite and positive measure on {�}�y&�4yP� , � � is some ra-
tional function of order � with poles ' � , W F� ! � Ec{0X��]�Y� , � ' � �Z� y , and � �o{\[��]�] . It
is well-known that � � is a continuous linear functional on � � , and that Cauchy’s integral
formula can be applied to yield the finite sum on the right term of (1.3). The exact bound^`_4a {f}cbed �Fz�~gf � , y
zO~7)�y�z�~ f � y , for the optimal error h?i4j�k.lnm�� � }����Km in ��� , ~�o y , is
found in [2, 3].

The main purpose of this paper is to present a new approach to construct an efficient ratio-
nal quadrature formula to integrate analytic functions with a singularity at only one endpoint
of the interval of integration. More precisely, we consider the problem of defining a transfor-
mation �Kp
{�|q� , ���3� , to be introduced into the integral � � {���� . To evaluate the new form of
the integral we select the points '
�&% � in formula (1.2) from a result by Ganelius (Lemma 2.1),
and the coefficients # �&% � , + �&% � according to an exactness condition based on interpolation
by means of rational functions. Then we prove that the quadrature error is asymptotically
of the order ^�_&a {�}rq�s �u� , for functions in ��� which satisfy an integral Lipschitz condition.
Besides, we expect that the numerical behavior of such a procedure compares favorably with
some other remarkable quadrature rules (cf. [20, 23]).

The paper is organized as follows. Section 2 is devoted to define nodes and coefficients
for integration formulas of the form (1.2). Section 3 deals with the construction of a change

of variable which we fit into the integral t - �"��u /0�� - ���Ku / �s{(|!����| , to reach an order of convergence
which is optimal in � according to the theoretical results obtained by Andersson [2]. Finally,
Section 4 contains some remarks and numerical examples to show the power of the method.

2. Construction of the quadrature formula. The next result can be derived from [6]
and is basic for our approach.
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LEMMA 2.1. For ��o  , � positive integer there exists a constant ��� which only depends
on � , such that

(2.1) ��� _�	��
 QC% �� | � ���"! �
����
|]}�� � % �&% �| )�� � % �&% �

���� ����� ^`_4a {f}cb s ���#���
where � � % �&% �t����{\=d�.z��F{(��}����&% � � , ���&% � � � ��� bed ���	�Fz	�C�g)�y ( � � � denotes the integer part
of � ), � o����=y�yC	� , = � d�4y&�C>@>?>%�P� };� �&% � , ��{������ ^`_4a {0bed �oz ��� ; and �!� % �&% � � y for=t� ��} � �&% �e)Xy���>?>@> ��� .

Lemma 2.1 is based on the strong connection between rational approximation and some
equilibrium problems. This result was used by Ganelius to obtain the exact order of conver-
gence for the best uniform approximation of |�" , �� |c� y , by means of rational functions
of orden � . Next we describe some of the most relevant aspects of Ganelius’ technique to
obtain estimate (2.1).

Given the Green function of the right half plane # , namely

$ {('��&%Q�e�('*)�+
����
'O),%'�}-%

���� �
singular at % , ./% �  , consider the problem of estimating from below the potential of the
positive measure 0 on � d�"y�� defined by �10�{2�d�L�;�/'3)�+�4){5%6�d�����=z � )8�87�{9��}_yP� , where % o�y ,�[���	�#zMb;: , 7 is the Dirac measure concentrated in |c�  , m<0�m � � and � is some positive
number.

By direct calculations it is deduced in [6] that the condition '3)�+=%_� b d {(��} ��� z � must
be assumed, and for all ��> �

� �
Q $ {�|F�?�d���10�{2�d�*)��='*)�+ y| >

b d �={(��}8����) �
� |�{�y )@�d{�y:} |!�.� � : }A�	�6}�y ��b�| d �	�Fz���{�y )@�d{fy:}?|q�f� �K� >

The following step is to take �Z� � �4% � as that given in Lemma 2.1, to find

(2.2) � �
Q $ {�|u�B�d���10�{2�d�*)��='3)�+ y| > b s �	��}�yDC���b : �,>

Notice that �To(�	��y&y�	� implies �-> ���&% � .
At this point the nature of the number � � �"�&% � and the role played by it in this theory

should be clear enough to the reader. Of course, much more details can be seen in the paper
of Ganelius.

After obtaining (2.2) the proof of lemma 2.1 is practically concluded. To derive the
inequality (2.1) from (2.2), it only remains to replace the distribution 0 by a discrete measure
0
� . Despite all the technical difficulties of this proof, the suitable location of the mass-points
� � % �&% � , where the discrete distribution 0&� is supported, doesn’t seem very hard to obtain. The
importance of the points � � % �&% � for our work, comes from the fact that the nodes '&�&% � in (1.2)
will be expressed in terms of the former.

Andersson [2] applied Lemma 2.1 to find the exact rate of convergence of the optimal
quadrature error in Hardy spaces. We also applied this result in Section 3 to obtain an upper
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bound for the quadrature error 2 �&% � {���� generated by formula (1.2) after introducing a change
of variable (see also [18]). The notation in Lemma 2.1 will be kept in the rest of the article.

The proof of the following result is straightforward.

LEMMA 2.2. Let � , 7 , � , � and H be real numbers such that

������ y&��}�y �(7��AH����7������y >
Let � � {�� }����.z�{��Y}�72� and 	 be the circle with center at � � {
��) 72�.z�� and radius� � {��h}A72�.z	� . In addition, let consider the following rational functions

(2.3) �d{('�A�� '6}A7
�h}�' ���I��{(|!�L� � � {(|!�� �o{�}:|q� �

where
� � is given by

� �o{(|!�L� ���"! � {0R��&% �8} |!���
with �� R �&% � � y , =t� y&��>?>?>%�P� , �T��� .
Then, �Z� and � satisfy the following properties

1. 	�� �M'z .��d{('�A�6d� .
2. �d{����L� y .
3. '����d{('� is an increasing function on � � ���F� .

4. ����d{ '#�I��y , '��8� He���I� .
5. If Un��	 then � � � {��d{('�f�"�#� y .

LEMMA 2.3. Let � � and � be the rational functions defined in Lemma 2.2. Let � � be
the rational function given by the following equation

(2.4) � � {('�A� y
�	bKX ��� � � {��d{ U��f�A}�� � {��d{('�f�{\U:} '#���I��{��d{\UP�.� � { U����&U���'��8� He���I���

where
�

is an analytic function in the unit disk � 'q�&� y .
If � {�|!� is a non-negative and continuous function on � 7
��� � then the rational function� � interpolates to

�
at the zeros of � � {��d{('�f� , and the quadrature formula

(2.5) �! % " { � �A� �  
"
� {�|q��� {�|q����|*� �# % "N% � { � �A� �  

" � � {�|q��� {�|q����|u�
is of the form (1.3) and it integrates exactly any rational function $ � { '#� ,

$ � { '#�A� ~�� ��� {('�� ��{�}$�d{('�f� �
where ~ � �K� is a polynomial of degree at most ��}�y .

Proof. We use Fubini’s theorem to obtain

(2.6) �  
" � ��{(|!�%� {�|!�f�&|[� y

�	bKX � � � { '#� � � { '#�� ��{��d{('�f� �I'��
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where � � {('� is the following polynomial of degree at most ��}�y
� � {('�A� �  

"
� � {��d{(|!�f� � � {�}$�d{ '#�.�s} � � {��d{ '#�.� � � {�}$�d{(|!�.�� �o{f}$�d{�|q�f��{(|h} '#� � {(|!�f�&|.>

To deduce the expression of the approximant in (1.3), we consider the expansion of� � { '#� z � � {��d{('�f� in a sum of simple rational functions to which we apply Cauchy’s integral
theorem.

The nodes ' �&% � of formula (2.5) are the zeros of
� � {��d{('�f� , and they can be easily calcu-

lated as follows

(2.7) ' �&% � � � R �&% � ) � 7R��&% �c)�� � =t� y&�C>@>?>%�P� >
Likewise, the zeros ~ �4% � of

� � {f}$�d{('�f� are the poles of � � {��d{ '#�.� . They appear in the
statement of the exactness condition for formula (2.5), and their formulation can be deduced
from the following representation of � � {��d{('�f�
(2.8) �I��{��d{('�f�L� ���"! �

� R �&% � )��
�OR��&% � } �#��� ���"! �

���� ' �&% � } ''!{��*}�R �&% � �
��R��&% �)} � 7 ) y

�	��
 >

The expression of the quadrature error of formula (2.5) is the following

(2.9) 2 � { � �L� �  
" � � {��d{�|q�f� � y

��bKX � � � � {f}$�d{ U��f� � { U��{ U)}?|q� � �o{��d{\UP�.� �&U � � {(|!�f�&|.>
The exactness condition given in the lemma follows from (2.9). In effect, if we put� {('�I�X~ � ��� { '#� z � � {f}$�d{('�f� in (2.9), where ~ � �K� is a polynomial of degree at most �*}Xy ,

the integrand of the integral between parenthesis can be written as a sum of terms of the form� �{\U:} '#�"{ U)}�' �&% � � D ��E � y&�C>@>?>%�P�e�
whose corresponding integrals can be evaluated by means of residues to obtain that all of
them are zero.

The inequality � o  makes possible that ��� R �4% � for some values of � and = . It is
the reason for which formula (2.8) can be considered as a suitable manner of representing the
poles of � � {��d{('�f� . In case of ~ �4% � � [ it means that quadrature formula (2.5) is exact for
some polynomials as well.

We observe that quadrature formula (2.5) depends on the parameters � , 7 , � , H and � .
Moreover, if we put R �&% � � �!� % �4% � for some suitable �;oS , then we obtain a quadrature
approximant of the same form as that in (1.2) with �I� ���&% � .

3. An upper bound for the quadrature error. In this section we construct a special
analytic change of variable ��p , ����� , to be introduced into the integral

�`�P% u {����A� y{fy:} �!� � - ���Ku /0�� - ���Ku / �s{�|q����|u�
where ������Vy , ��A
 � y:}�� , ������� , ~ >Vy .
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Next we evaluate � �P% u {����C���  - % " - { � p % u � , with
� p % u {�|q� � �s{��Kp
{(|!�f� , � {�|q� � � f p {(|!� ,

and �Kp
{�� �4p
��H*p"�M� �S�%} {�y6} �!���P{�y6} �!� 
�� , using the corresponding quadrature approximant
(2.5) to approximate ���P% u with an error of order ^`_4a {f}rq s �	�u� (Lemma 3.7). The last step of
the procedure consists in evaluating �C�P% Q by using the same approximant with ���  .

Let us consider the rational functions�
� { '#�A� '6} �y:} �N' >

For �5�_{f}�y&�"y�� the function

�
� is a conformal mapping from the unit disk onto itself which

satisfies

�
� {�}�yP�A� }�y and

�
� {fyP�A� y . Here we will only consider the case ,���5� y .

To construct � p we need the following sequences.

DEFINITION 3.1. For every � and R , ,� �7��y , }�y � R � y , we define the sequence

(3.1) # p 4 � {0Rf�L� �n) # p2{0Rf�y )A� # p {0Rf� � �6�;d�4y&��>?>?> # Q�{0Rf�Q�6R">
In particular # p � # p { �� , � ��� .

Let 2 be a non empty set and $�� 2 � 2 be a function on 2 . As usual we define$ p {�|q�L� $ { $ p ��� {(|!�f� , � >�y , and $ Q {(|!�L� | , | ��2 .

LEMMA 3.2. For every �5o  , � >  and ������ y , we have the following relations

(3.2)

�
� - {(|!�L�

�
p� {�|q���

(3.3) RA�
�
� - { # p2{(Rf�f�`>

Proof. Relation (3.2) is trivially true for �?� y . It remains to show that the assertion
relative to the integer � implies the assertion relative to the integer � )_y . It means that we are
assuming that

�
� {
�
� - {�|!�.�L�

�
p 4 �� {�|q� .

Therefore, we obtain�
� {
�
� - {�|q�f�Q� � |F{fyZ)A� # p �s} {(� ) # p �{�y )3� # p �s}?|�{(�n) # p � � � � |h} # p 4 �y:} | # p 4 � � �

�
� -���� {�|q�">

Equation (3.3) is directly obtained from the definition of # p {0Rf� .
LEMMA 3.3. Let R be a fixed number in {�}�y��"yP� . The following properties take place.

1. # p {0R : � o # p {0R � � provided that ynoAR : o�R � oV}�y , ��� =�"y&� ���C>@>?>
2. yno # p 4 � {0Rf� > # p {0Rf� > R�� � ���I�
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3. '@h*�7p���� # p2{(Rf�L� y , ����5� y ,
4. '@h*� � � � # p2{(Rf�L� y��T� > yI>
5. y:} # p2{(Rf�A� {�y:} ��� p {fy:}TRf�{fy )3� # p �K� {0Rf�.�������4{�y )3� # � {0Rf�.��{�y )3�NRf� , � >�y .

6. # p {0R : �e} # p {0R � �A� {�y:} �!:P� p {0R : }�R � �{fyZ)A� # p ��� {(R : �f�"{�yZ)A� # p �K� {0R � �.�������4{fyZ)3�NR : ��{�y )A�NR � � ,

where R � �PR : � {f}�y&�4yP� and � > y .

Proof. It is trivial that property 1 is true for ���  . For ��)[y we use that R � { �1)7Rf�.zd{�yg)�NRf� is a non decreasing function with respect to R as well as the induction hypothesis on � .
The existence of the limit in property 3 is guaranteed by property 2, and its value is obtained
by taking limits on both sides of equation (3.1). After assuming that property 5 is true for �
we multiply both sides by the factor {�y)}����.zd{�y )A� # p
{0Rf�.� to obtain the relation for �c)Xy .

Property 6 follows from the following equality (see (3.1))

(3.4) # p 4 � {0R : �s} # p 4 � {(R � �A� {�y:} �!:P��{ # p {0R : �e} # p {0R � �f�{�y )A� # p2{(R � �.��{�y )3� # p&{0R : �f� >
Both properties 2 and 4 can also be easily proven by induction on � . The proof of Lemma 3.3
is complete.

From now on we will assume that �h�	��{�y:} �� with ��
� � y , �5�_{(d�4yP� .
LEMMA 3.4. Let 
 , � and � be real numbers such that 5�6
 � y)}�� , 5� ��� y . Put

7 p � # p {f}�yK) �!z��&� , � p � # p {f{fyF}��!��{(
.) yP� z	��� , H p � # p {�}�y�)��!� and � p � # p {0
�{�y�}��!�f� ,� ��� . Then

(3.5) }�y � 7 p ��H p � � p ��� p ��y&�
(3.6) �,pI}�H*p�� {�y:} �� p ���

� p � : � �e� >Vy���� � y&�
(3.7) � p } � p � {fy }���� p {�y:}�
2�

� p � : {0
 )Xy���{(
c) ��� ��� > y��T� � y&�
(3.8) � p }A7 p � {�y:} ��� p �K�

� p ��� � ��� >Vy���� � y&�
(3.9) H*pI}A7Cp�� {�y:} �� p ���

� p � : � � � >�y&��� � yI>
Proof. We use property 1 and 2 of Lemma 3.3 to obtain (3.5).
Let ~ > y . From the definition of # p2{(Rf� we get the expression

y )A� # Q�{f}�y )��!�A� {fy:}����"{�yZ)�����
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from which we obtain the following formula

(3.10) y )A� # p {�}�y )��!�A� {fy:}���� p )��{ 0�{ ���.)A���e{ ���f�{fy:}���� p �K� )� 0�{(��� �
where '?h3� � � � �e{ ���6� '@h*� � � � 0�{ ���6� � p ��� , �e{(���e)�0�{ �� � { ��) y�� p and �e{ ��I} 0�{(�����{�y8}���� p , � >�y . From relation (3.10) we deduce that yr)6� # p
{f}�yc)��� � � , � � y , for� > y .

A similar deduction is made to obtain that y )A� # p2{f}�y )��qz	��� � � , � � y , � >�y .
On the other hand, y )A� # Q {fy } �!��{(
 )Xy��.z	���e� y )��q{�y:}����"{0
 ) yP�.z�� , and for ~ > y

we have y ) � # p2{.{�y } ���"{0
 ) yP� z	�&��� � , as � � y . Similarly, we easily obtain thaty ) # Q {.{�y }��!� 
2�L� y )3�q{�y:}��!� 
 , and y )A� # p&{f{�y:}��!� 
2� � � as � � y , � >�y .
Now we apply property 6 of Lemma 3.3 to all of the differences � p } � p , � p } H p , � p } 7 p

and H p }A7 p to finish the proof of Lemma 3.4.

Below we construct a suitable interval transformation to be coupled with the quadrature
formula (2.5). We start considering the substitution

�
� {�|q�

(3.11) � - �"��u /0��K� 4 u �s{(|!�f�&|�� �  �
" � �s{

�
� {�|q�f�`�

�
� {(|!� � f �&|.>

Next, we give an extension of formula (3.11) in order to put the parameter � into the integral.

LEMMA 3.5. The following equality takes place for ��� � , ��� ���c{(d�4yP�
(3.12) � - �"��u /0��K� 4 u �s{�|!�f�&|�� {fy:} # : p �=�  -

" - �s{
�
� - {�|!�.� �&|{fy)} | # p4� : >

Proof. Equation (3.12) is proved by induction on � using Lemma 3.2 and the definition
of both sequences {�� p � and {0H p � .

Equality (3.12) can be seen as a consequence of applying � times the change of variable
(3.11) to the integral in the left hand side of (3.12).

The approximation formula which is given in (3.13) is the result of coupling the approx-
imant � ��% u % � {���� in (2.5) by putting �Y� �4p , H_� H*p , 7,� 7Cp and � � �,p with the change of
variable in (3.12). The final version of our quadrature formula is

(3.13) � �
�K� �s{(|!�f�&|����  -

" - � u % p % � {(|!�%� u % p % � {�|q����|�� � ��% u % �&% p % � {����*)A2r�P% u % �&% p % � {������
where

(3.14)
� u % p % � {�|q�Q�V�s{

�
� - {(|!�.���

(3.15) � �P% u % �4% p % � {����A� y{�y:}���� �  - % " - % ��{ � u % p % � ���
(3.16) 2r�P% u % �&% p % � {����A� 2)��{ � u % p % � ���
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where 2 � { � � is the quadrature error whose expression is given in (2.9), and

(3.17) � u % p % � {�|q�L� {fy } # : p �{�y:}����"{�y:} | # pP� : >
Equations (3.11–3.13) comprise the process of constructing the substitution � p {�|q�[��

� - {�|q� which we will introduce into the integral �C��% u {���� . The factor {�yA} �!� �K� in (3.15) and
(3.17) is given in connection with the integral modulus of continuity which is used below in
the analysis of error (see Definition 3.8).

Property 3 of Lemma 3.3 and (3.12) suggest that the effect which the parameter � pro-
duces in formula (3.13) as � � y , should be the same as that produced by � , as � � [ .

The following lemma can be deduced from the theory in Newman [26].

LEMMA 3.6. For ����7��y we have the estimate

�b � �
� � �IR� � ) � � G � �@'*)�+

� y )��y:} � � >
Let � � � � �P% u % �&% p % � be the rational function which produces the quadrature approxima-

tion in (3.13). It means that � � is the rational function associated with
� u % p % � according to the

procedure given by (2.5). The weight function given by (3.17) corresponds to the statement
of Lemma 2.3, and will play a relevant role in applying Lemma 2.1 to our approach.

Though we are mainly interested in evaluating the integral t ���� �s{�|q����| , �;� ��� , y*�~ � [ , we need the following result.

LEMMA 3.7. Let � be a positive integer. Let � � � � , ~�> y and 
 ��{ d�"y�� . Let����{����,� �n�P% u % �&% p % � {���� be the quadrature approximant of formula (3.13) with nodes (2.7)
for which the points R �&% � are selected as those given by Lemma 2.1. For � sufficiently large, � �5� y , ��o  , � >  , ����� and 
 �Vy:}�� the following estimate holds.

(3.18) � �`�P% u {����s}_����{����4�� � Q{�y:} ���� '3)�+
� yy:} � � ^�_&a {�}cb s �������

where the positive constant
� Q depends neither on � nor � , �]�	��{�y:}���� and �C���n) � � }y:}�y
zO~ .

Proof. Let
� p % � be the function given by (3.14). We also assume that � p % � is the weight

function defined in (3.17) and that � � is the rational function given by (2.4) with respect to
the points �Ip % �&% � , � � �4p , H[� H*p , 7���7Cp and �����4p (see Lemma 2.3 and 3.4).

From (2.9) we easily deduce the following expression for the error of the modified
quadrature formula (3.13).

(3.19) 2r�P% �&% p % � {����A���  -
" -

� ��{��d{�|q�f�� � {f}$�d{�|!�.�
	 y
�	bKX � � - p /

� ��{�}$�d{\UP�.� � p % � { U��{\U } |!� � � {��d{ U��f� �&U�
 � p % � {(|!�f�&|F�
where 	L{ �2� is the circle with center at �cp � {
�,pe)�7�p��.z�� and radius

� p:� {
�,pI}�7�p"�.z�� .
From property 5 of Lemma 2.2, and (3.19) we obtain the following inequality .

(3.20) � 2 �P% �&% p % � {����4�� y
�	b �  -

" - �d{(|!� � ����
� �u{��d{�|q�f�� ��{�}$�d{(|!�.�

����

	 � � - p /
����
� p % � {('�{ '�}?|q�

���� � �N'!� 
 � p % � {�|q�
�d{(|!� � ��|*>
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In (3.20) we can consider the distribution

� H u % p % � % � {(|!�L� �Tp % � {�|q�
�d{(|!� � ��|u�

thanks to property 4 of Lemma 2.2 which assures that �d{(|!�co  , for '��8� H p �%� p � .
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From Lemma (3.2) the distance from the circle 	L{ ��8�
�
� - {�	Q{(�2�f� to � � 'q����y`� is �qz	� .

We apply to � the principle of maximum to obtain (see [5], pp. 29,36)

(3.21) � � _L � � - p / � � p % � {('�"�&� � � _L � � - Q�/ � �s{('�"��� � � _J LMJ ! �"��u�� : � �s{('�"�� ��: � �$m"� m �
� ��� � {fy } �� ��� � >

where m �Nm � is the norm of the space ��� .
From Lemma 3.6 and the inequality

� U } 'q�!> � U ) y:} ��� �
for all ' � � H p ��� p � , Un� 	 , we have that

(3.22) � � � �N'!�� U }�'q� � b '*)�+
� 
 )��6},� �

� � ��� �
'*)�+

� y
� � � >

Let �8o ���=y�yC	� . Using lemmas 2.1 and 3.3, and equations (3.20), (3.21) and (3.22) we
derive the following estimate.

(3.23) � 2 �P% �&% p % � {����4��� � '*)�+
� yy:}�� � ^`_4a {f}cb s �����{�y } ��� ��� � �  -

" - �Tp % � {('�
�d{('� � �N'=�

where
� o  does not depend1 on the parameters � and � .

Let � >  and � � Ec{(�2�=}[y
zO~r)�� where E � Ec{(�2� � � will be selected conveniently.
From property 4 of Lemma 2.2 and Lemma 3.4 we obtain

y6� y
�d{ '#� � � D � {��4pI}�H*p"� � � D {��4pI}�7�p�� � � D{�� p } � p � � � D {0H p }�7 p � � � D ��� � y{fy }���� � � D � �

where ' � � H p �%� p � , � >�y .
If � p � {�� p }�� p �.zd{�� p } 7 p � then using Lemma 3.4 we find that � p �Y= Q�{fy�} ��� as� � y for some = Qno  . On the other hand we obtain by means of integration that

(3.24) �  -
" - y{(|h}A7 p � D {�y:} | # p � : �&|Y� D 

<P! :
� <#{�� p }TH p ��� < � :p{0H p }A7 p � < �K� {�� p }A7 p � < �K� )

� � '*)�+ ����
� p }A7 pH*pI}A7Cp

���� )
	 � '3)�+
����
y:} � p # py:}�H*p # p

���� )�	 : # p {(H p } � p �{�y }�H*p # p4��{fy } �4p # p"� �
where �ep�� {�y:} ��� p ��� .

The terms in the right side of (3.24) have the following asymptotical behaviour as � � y ,
respectively.

�
� y{�y:} �� - < �K� / - p �K� / � ����{fyP�q���

�
'3)�+

� yy:} � � � ���
� y{�y } ��� p � �

where {fy�} ��� � -?D ��� / - p ��� / , � o y , E o y , is the fastest term of those which converge to
infinity as � � y .

1But it does depend on  as can be deduced from [6].
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The contribution of the factors y�} # p , {
� p }AH p � D and {fy�} ��� � D leads us to selectEU� � �6}Xy , � > y , in order to cancel all those terms which tend to infinity as ��� y , with
the exception of {�y)}���� ����� � which is grouped together with y
z�{�yZ} ��� � �K��� � .
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TABLE 3.1
Absolute errors when

�#� $&���Y$ ��� ��� ,
N6��rP	���	��

, � � G ,
3e��E

.�A� G w �
,
W!�	� ��� �s� G w �

,
W!� � �!� �e� G w �

,
Wq� � � �B N6��r B N6��� B N6���

0.0000000e+00 2.0e–01 0.0000000e+00 1.4e–01 0.0000000000e+00 9.8e–03
1.0000000e–01 2.0e–01 1.0000000e–01 1.3e–01 2.0000000000e–01 8.4e–03
3.0000000e–01 1.8e–01 2.0000000e–01 1.2e–01 5.0000000000e–01 6.1e–03
5.0000000e–01 1.6e–01 3.0000000e–01 1.0e–01 7.0000000000e–01 4.2e–03
7.0000000e–01 1.2e–01 5.0000000e–01 7.1e–02 8.0000000000e–01 3.0e–03
7.5000000e–01 1.1e–01 6.0000000e–01 5.4e–02 9.0000000000e–01 1.5e–03
8.0000000e–01 8.2e–02 8.0000000e–01 1.4e–02 9.5000000000e–01 3.4e–04
8.9000000e–01 9.5e–03 8.6000000e–01 5.7e–04 9.5910000000e–01 2.5e–06
8.9700000e–01 4.4e–04 8.6260000e–01 5.2e–07 9.5915000000e–01 4.1e–07
8.9730000e–01 3.5e–05 8.6260200e–01 8.1e–08 9.5915900000e–01 3.8e–08
8.9732485e–01 1.7e–06 8.6260235e–01 3.8e–09 9.5915970654e–01 2.3e–10

TABLE 3.2
Absolute errors when

�#�%$&����$ �!� ��� , N6��E��P	 ��r
, � � G ,

3��?E
,
�A� G w �

.Wq� � �!� W!�	� � �B N6�?E�� B N6����r
0.000000000000000e+00 1.4e–01 0.000000000000000e+00 6.4e–07
2.000000000000000e–01 1.2e–01 5.000000000000000e–01 6.4e–07
6.000000000000000e–01 6.6e–02 9.999000000000000e–01 5.9e–07
9.900000000000000e–01 3.4e–03 9.999100000000000e–01 5.8e–07
9.997000000000000e–01 2.1e–05 9.999300000000000e–01 5.6e–07
9.997260000000000e–01 4.6e–07 9.999500000000000e–01 5.3e–07
9.997265600000000e–01 2.8e–09 9.999600000000000e–01 5.1e–07
9.997265635000000e–01 1.2e–10 9.999946849310000e–01 3.8e–07
9.997265635029350e–01 7.4e–11 9.999942747252746e–01 1.2e–11
9.997265635029354e–01 3.5e–12 9.999942747252747e–01 7.8e–12

DEFINITION 3.8. The integral modulus of continuity of � � � � is given by

(3.25) %){��!��

� 72�L� 	�
 aQ�� u �� � �
��� � �s{�|!�e}c�s{.{�y:}�����|!�"� ��|u�3��@7���y >

The analysis of error in terms of the modulus (3.25) is the following

(3.26)

���� � �
�K� �s{(|!����|]}_� �P% u % � {���� ���� �@%){��!�P

�B72�*) � � �P% u {����s}c� ��% u % � {����4�">

It is well-known that '@h*�  � Q %){��!��

� 72�L�  , for all �9��� � , and �� 
 � y (cf. [5, 18]).
Besides, the behaviour of %){��!��

� 72� as 7 �  does not depend essentially on 
 ,  � 
 � y ,
but on the nature of � in a neighbourhood of the endpoint |�� }�y .

THEOREM 3.9. Let � � � , ������� , yn��~ � [ , ���
�� y#} � and � � �g) � ��} y#} y�z�~ ,� >  . Let {(��d� be a sequence such that
1. �� �� � y ,
2. '@h*�t� �#�t� y ,
3. '@h*�t��'3)�+){fy
z�{fyI} ��d�f� ^�_&a {�}cb s ���O) ��'*)�+�{fy�zd{�y:} �#�d�.�f�L�  .

Then the quadrature rule � �P% �&% p {���� given by (3.13) with �[� �� , converges to t ��K� �s{�|!�d�&|
for all ������� .
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TABLE 3.3
Absolute errors when

�#� $&�=��$ �!� ��� ,
N8� � ��	fEfr �

, � � G ,
3e��E

,
W!�	� � �

� .�A� G w � �e� G w �B N8�	� � B N8�?Efr �
0.000000000000000e+00 2.1e–09 0.000000000000000e+00 1.1e–09
1.000000000000000e–01 2.0e–09 2.500000000000000e–01 8.5e–10
3.000000000000000e–01 1.9e–09 5.000000000000000e–01 6.2e–10
5.000000000000000e–01 1.8e–09 7.500000000000000e–01 3.5e–10
7.000000000000000e–01 1.6e–09 9.000000000000000e–01 1.7e–10
9.000000000000000e–01 1.5e–09 9.500000000000000e–01 9.8e–11
9.900000000000000e–01 1.4e–09 9.900000000000000e–01 2.7e–11
9.999571142857000e–01 9.0e–10 9.960000000000000e–01 5.5e–12
9.999571142857140e–01 7.5e–12 9.989981684981680e–01 4.4e–13
9.999571142857143e–01 8.6e–12 9.989981684981686e–01 2.0e–15

Proof. From Lemma 3.7 and inequality (3.26) with � � 7�� {fyC} ��� , we have the
following estimate.

(3.27)

���� � �
��� �s{�|q����|h}_� �P% �&% p % � {���� ���� � � {2%){��!��

�P{�y:} ���f�*) � {(�!�P

�P����u�.�q�

where

� { �!��

�P��P�u�A��'*)�+
� yy:}�� � ^`_4a � }cb s ���O) �/'*)�+ � yy:}�� � � �

�n�P% �&% p % � {���� is the approximant given by (3.13), and the positive constant
�

depends neither
on � nor � .

Convergence follows from estimate (3.27).
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.

If �3o  then every sequence of the form �d� � y8} � � G�� � with R � b s �z � , satisfies
the conditions of Theorem 3.9. Besides, the rate of convergence of the quadrature error with
respect to t ��K� �s{(|!�f�&| depends on the behavior of the sequence�<%){��!��

�4{fyZ}���=�.�O� �� ! � >
The following result states a class of functions for which we should expect a good behavior
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TABLE 3.4
Absolute errors when

�#� $&�=��$ � ��� , N6��rP	���	 �
, � � G ,

3��?E
,
W!� � �!� � .�e� G w � �s� G w � �e� G w �B N6��r B N8��� B N6� �

0.000000000000e+00 3.2e–02 0.00000000e+00 1.1e–02 0.0000000e+00 5.8e–05
5.000000000000e–01 3.0e–02 1.00000000e–01 1.2e–02 2.0000000e+00 4.9e–05
7.000000000000e–01 1.4e–02 5.00000000e–01 1.9e–02 5.0000000e–01 2.1e–05
7.500000000000e–01 5.7e–03 9.50000000e–01 2.0e–02 6.0000000e–01 2.8e–06
7.710000000000e–01 1.4e–03 9.75000000e–01 2.9e–03 6.1000000e–01 5.1e–07
7.750000000000e–01 5.4e–04 9.77000000e–01 1.1e–04 6.1210000e–01 1.3e–08
7.760000000000e–01 3.1e–04 9.77050000e–01 3.3e–05 6.1213000e–01 6.3e–09
7.773000000000e–01 1.1e–05 9.77070000e–01 2.6e–06 6.1213307e–01 5.6e–09
7.773300000000e–01 4.0e–06 9.77072000e–01 3.7e–07 7.0000000e–01 2.7e–05
7.773385518591e–01 2.0e–06 9.77072402e–01 9.7e–07 9.0000000e–01 2.5e–04

of the corresponding numerical procedure. It also shows the effect which the parameter �
produces in the quadrature error.

THEOREM 3.10. Let � be a function in ��� , y �_~9�;[ , such that %){��!��

� 72�Q� �,{ 7��!� , ��� � y , 
 � {(=�"y�� . Let �n�P% �&% p � �n�P% �&% p % � be the approximant given by (3.13). There
exists � � �={ ~u�P����F�Zo  such that for � sufficiently large the following estimate holds.

(3.28)

���� � �
�K� �s{(|!�f�&|Y}c� �P% �&% p2{���� ���� � � s � ^`_4a�� }cb d ���;�	� �

where
� o  depends neither on � nor � .

Proof. Let us take � � s �?}
� in the proof of Lemma 3.7. We observe that we must
consider �7o y for ~[��� � y , and � > y otherwise. Now the term

� {(�!�P

�P����u� in estimate
(3.27) becomes

� {(�!��

������e���F�A��'*)�+
� yy:}�� � ^`_4a � }cb s ��� )V{ d �*}��F��'3)�+ � yy:} � � � >

Let � be a function in ��� such that it satisfies a Lipschitz condition of order � . If �V�y } ^`_4a {f}cRPs �u� with RQ� b d �#z� and ��� ��{�y)} ��� , 5�	�O� y , then we have %){��!��

� ��� �� ^`_4a {�}cb s �����F� .
Using estimate (3.27) with

� { ���P

�P��P�e���F� instead of
� {(�!��

������u� we find (3.28).

Choosing � as that in Theorem 3.10 we see that � > �={(� }Vy�� , so the upper bound in
(3.28) can be transformed into s � ^�_4a {�}cb.s ����� , with � � ��L{ �C} yP� , which only works
for � o y . If ~To y then we may consider �[� �	�6} y }Xy�z�~ , � > y . If we take �,���_� y
then the latter corresponds to the exact order of convergence for the optimal quadrature error
in ��� , ~ o y (cf. [2, 3]).

The order of the upper estimate (3.18) can be improved up to ^�_&a {�}rq"�u�.� , q�o: , if we
select the quadrature nodes as those given by Gonchar’s technique [11]. However, even in
that case the order of convergence given by the corresponding new version of Theorem 3.10
could not be faster than that in (3.28). Besides, the numerical procedure when Gonchar’s
nodes are considered, is not so efficient as that produced by Ganelius’.

4. Numerical examples. In this section we consider the problem of the numerical eval-
uation of the integral �!{���� given in formula (1.1), where � is analytic on {(q
� �	� . For simplicity
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TABLE 3.5
Absolute errors when

�#� $&���Y$ � ��� ,
N8�?E��P	 ��r

, � � G ,
3e�[E

,
�e� G w �

,
Wq� � ��� .B N��[E�� B N6����r

0.00000000e+00 2.4e–05 0.000000000000e+00 6.6e–06
1.00000000e–01 2.2e–05 2.000000000000e–01 5.0e–06
2.00000000e–01 1.9e–05 5.000000000000e–01 2.9e–06
4.00000000e–01 1.3e–05 7.000000000000e–01 1.6e–06
6.00000000e–01 7.8e–06 9.000000000000e–01 4.1e–07
8.00000000e–01 2.9e–06 9.900000000000e–01 2.4e–08
9.00000000e–01 4.0e–07 9.950000000000e–01 7.4e–09
9.15200000e–01 1.8e–08 9.970000000000e–01 3.4e–10
9.15500000e–01 9.6e–09 9.970800000000e–01 2.9e–11
9.15823525e–01 2.8e–10 9.970862745095e–01 1.6e–12

TABLE 3.6
Absolute errors when

�#�%$&�!�Y$ � ��� ,
N8� � ��	fEfr �

, � � G ,
3���E

,
W!� � ��� .�s� G w � �A� G w �B N8� � � B N��[Efr �

0.000000000000000e+00 6.6e–06 0.00000000000000e+00 6.6e–06
6.000000000000000e–01 2.2e–06 2.00000000000000e–01 5.0e–06
9.500000000000000e–01 1.8e–07 5.00000000000000e–01 2.9e–06
9.950000000000000e–01 1.1e–08 9.00000000000000e–01 4.1e–07
9.995000000000000e–01 1.7e–09 9.99000000000000e–01 1.7e–09
9.999787058000000e–01 2.5e–11 9.99967920000000e–01 1.3e–10
9.999787058820000e–01 6.1e–12 9.99967921568600e–01 2.9e–11
9.999787058823529e–01 5.5e–14 9.99967921568627e–01 2.1e–13

TABLE 3.7
Absolute errors when

�#� $&�=��$ � ��� � � ,
N��YrP	 ��	��

, � � G ,
3s�?E

,
Wq� � ��� .�A� G w � �e� G w � �e� G w �B N��Yr B N8��� B N8� �

0.00000000e+00 8.7e+00 0.000000000e+00 8.4e+00 0.0000000000e+00 8.7e+00
1.00000000e–01 8.7e+00 1.000000000e–01 8.3e+00 2.0000000000e–01 8.5e+00
3.00000000e–01 8.7e+00 3.000000000e–01 8.1e+00 4.0000000000e–01 8.3e+00
6.00000000e–01 8.6e+00 5.000000000e–01 7.8e+00 6.0000000000e–01 8.0e+00
8.00000000e–01 8.3e+00 7.000000000e–01 7.5e+00 9.0000000000e–01 6.9e+00
9.90000000e–01 5.8e+00 9.000000000e–01 7.1e+00 9.9990000000e–01 4.5e+00
9.99920000e–01 1.4e–01 9.999990000e–01 2.3e+00 9.9999999000e–01 3.8e–01
9.99928000e–01 1.6e–02 9.999999500e–01 8.3e–01 9.9999999500e–01 6.3e–02
9.99928940e–01 1.0e–04 9.999999900e–01 2.6e–02 9.9999999560e–01 4.4e–03
9.99928943e–01 4.8e–05 9.999999905e–01 4.8e–04 9.9999999564e–01 2.4e–04

TABLE 3.8
Absolute errors when

�#�%$&�!�Y$ � ��� � � ,
N8��E��P	 ��r

, � � G ,
3s�?E

,
�A� G w �

,
W!�	� �!� .B N8�?E�� B N8����r

0.00000000000e+00 8.7e+00 0.00000000000000e+00 8.7e+00
1.00000000000e–01 8.6e+00 1.00000000000000e–01 8.6e+00
2.00000000000e–01 8.5e+00 2.00000000000000e–01 8.5e+00
4.00000000000e–01 8.3e+00 4.00000000000000e–01 8.3e+00
6.00000000000e–01 8.0e+00 6.00000000000000e–01 8.0e+00
8.00000000000e–01 7.5e+00 9.00000000000000e–01 7.0e+00
9.00000000000e–01 7.0e+00 9.99000000000000e–01 4.6e+00
9.99999999000e–01 8.0e–01 9.99999000000000e–01 2.5e+00
9.99999999900e–01 6.8e–02 9.99999999970000e–01 8.3e–01
9.99999999919e–01 6.9e–03 9.99999999972647e–01 2.7e–03
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TABLE 3.9
Absolute errors when

��%$&�!�h$ � ��� � � ,
N6� � ��	fEfr �

, � � G ,
3e��E

,
Wq�	� ��� .�e� G w � �s� G w �B N6�	� � B N��[Efr �

0.00000000000000e+00 8.7e+00 0.0000000000000e+00 8.7e+00
3.00000000000000e–01 8.4e+00 1.0000000000000e–01 8.4e+00
5.00000000000000e–01 8.1e+00 3.0000000000000e–01 8.4e+00
7.00000000000000e–01 7.8e+00 5.0000000000000e–01 8.1e+00
9.00000000000000e–01 7.0e+00 7.0000000000000e–01 7.8e+00
9.99000000000000e–01 4.6e+00 9.0000000000000e–01 7.0e+00
9.99999000000000e–01 2.5e+00 9.9999000000000e–01 3.1e+00
9.99999999950000e–01 1.1e+00 9.9999999000000e–01 1.6e+00
9.99999999958000e–01 9.2e–01 9.9999999990000e–01 5.6e–01
9.99999999958809e–01 5.5e–02 9.9999999994258e–01 1.6e–01

TABLE 3.10
Absolute errors when

�#�%$&�!� �����
�%$&�
,
N6��rP	���	 �

, � � G ,
3��?E

, .�e� G w � W!� � � � �e� G w � W!�	� ��� �A� G w � W��	� ���B N6��r B N6��� B N�� �

0.00000000e+00 3.2e–02 0.000000e+00 2.7e–01 0.000000e+00 2.4e–01
1.00000000e–01 4.4e–02 1.000000e–01 2.5e–01 1.000000e–01 2.2e–01
3.00000000e–01 5.9e–02 2.000000e–01 2.2e–01 2.000000e–01 2.0e–01
4.00000000e–01 6.0e–02 3.000000e–01 2.0e–01 3.000000e–01 1.8e–01
5.00000000e–01 5.4e–02 4.000000e–01 1.7e–01 5.000000e–01 1.4e–01
6.00000000e–01 3.8e–02 6.000000e–01 9.6e–02 7.000000e–01 9.3e–02
7.00000000e–01 3.0e–03 8.000000e–01 2.1e–03 9.000000e–01 3.9e–02
7.05000000e–01 4.4e–04 8.039000e–01 4.1e–05 9.990000e–01 2.4e–03
7.05851000e–01 4.9e–07 8.039760e–01 3.3e–07 9.992000e–01 8.1e–04
7.05851896e–01 2.9e–08 8.039765e–01 6.6e–08 9.992805e–01 2.6e–07

TABLE 3.11
Absolute errors when

�#�%$&���������
�%$&�
,
N6��E��P	 ��r

, � � G ,
3s�?E

,
�A� G w �

,
W!�	� ��� .B N���E�� B N6� ��r

0.0000000e+00 2.4e–01 0.00000e+00 2.4e–01
1.0000000e–01 2.2e–01 1.00000e–01 2.2e–01
3.0000000e–01 1.8e–01 2.00000e–01 2.0e–01
6.0000000e–01 1.2e–01 4.00000e–01 1.6e–01
9.0000000e–01 3.8e–02 6.00000e–01 1.2e–01
9.9000000e–01 5.1e–03 9.00000e–01 3.8e–02
9.9990000e–01 7.5e–04 9.90000e–01 5.2e–03
9.9998100e–01 2.4e–05 9.99000e–01 6.6e–04
9.9998150e–01 3.2e–06 9.99990e–01 1.0e–05
9.9998158e–01 2.6e–07 9.99999e–01 8.6e–07

TABLE 3.12
Absolute errors when

�#� $&�=�������
� $&�
,
N8� � ��	.Efr �

, � � G ,
3s��E

,
�s� G w �

,
Wq� � � � �

.B N8� � � B N6�?Efr �
0.0e+00 1.4e–10 0.000000000000e+00 6.4e–11
1.0e–01 1.4e–10 1.000000000000e–01 5.8e–11
2.0e–01 1.3e–10 2.000000000000e–01 4.8e–11
3.0e–01 1.3e–10 4.000000000000e–01 3.9e–11
4.0e–01 1.2e–10 6.000000000000e–01 2.7e–11
5.0e–01 1.2e–10 7.000000000000e–01 2.0e–11
6.0e–01 1.1e–10 8.000000000000e–01 1.7e–11
7.0e–01 1.0e–10 9.000000000000e–01 6.9e–12
8.0e–01 9.8e–11 9.780000000000e–01 1.1e–12
9.0e–01 9.2e–11 9.788181818181e–01 9.2e–13
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TABLE 3.13
Absolute errors when

��%$&�=��$ �����
�%$&�
,
N6��rP	���	��

, � � G ,
W��	� ��� .�A� G w �

,
3��?E �s� G w � �

,
3s��r �s� G w E

,
3e�[EB N6��r B N�� � B N6���

0.00000000e+00 1.4e–01 0.000000e+00 1.5e–02 0.0000e+00 3.5e–02
1.00000000e–01 1.4e–01 1.000000e–01 1.8e–02 1.0000e–01 2.9e–02
3.00000000e–01 1.3e–01 2.000000e–01 2.1e–02 2.0000e–01 2.3e–02
4.00000000e–01 6.0e–02 3.000000e–01 2.5e–02 3.0000e–01 1.8e–02
5.00000000e–01 1.3e–01 4.000000e–01 2.9e–02 5.0000e–01 9.9e–03
9.00000000e–01 7.8e–02 6.000000e–01 3.8e–02 7.0000e–01 3.8e–03
9.72000000e–01 1.8e–03 9.000000e–01 5.6e–02 9.0000e–01 1.2e–03
9.72700000e–01 6.0e–06 9.880000e–01 1.3e–03 9.3000e–01 5.0e–04
9.72702200e–01 2.3e–07 9.882700e–01 4.1e–05 9.3950e–01 2.6e–05
9.72702285e–01 2.0e–09 9.882787e–01 1.5e–07 9.3991e–01 5.2e–08

TABLE 3.14
Absolute errors when

�#� $&���Y$������
�%$&�
,
N6�?E��P	 ��r

, � � G ,
3e��E

,
�e� G w �

.W!�	� ��� W��	� �!� �B N6�?E�� B N�� ��r
0.000000e+00 3.5e–02 0.000000000e+00 1.9e–09
1.000000e–01 2.9e–02 1.000000000e–01 1.5e–09
3.000000e–01 1.8e–02 2.000000000e–01 1.2e–09
5.000000e–01 1.0e–02 4.000000000e–01 6.1e–10
7.000000e–01 4.0e–03 5.000000000e–01 3.8e–10
9.000000e–01 5.5e–04 6.000000000e–01 1.9e–10
9.900000e–01 9.5e–06 7.000000000e–01 3.7e–11
9.952700e–01 7.6e–09 7.310000000e–01 1.6e–12
9.952724e–01 3.1e–10 7.318000000e–01 4.8e–14
9.952725e–01 9.8e–14 7.318980068e–01 8.9e–15

we only refer to the case � q
� �	� � � =�"y`� . By means of the affine transformation
� � {�|!���{�|7) yP� z�{0
 ) y�� , ��;
�� y , we apply our method to estimate �!{���� � � � {���� � � �.z�{(
O) yP� ,

for several values of � and 
 . If � �; then it means that no change of variable is made.
The values of the parameter � which we have used to test our approach are ��� y&��>?>?>%�4yC .

In spite of the theoretical results in the previous section we have obtained very good results
for �,� y , though instability shows up for � o y in case of � � ^�_4a {�}�y�� . In this article we
report Fig. 3.4 for �6� � , Fig. 3.7 to validate the role of � in the procedure and Table 3.13 for
the case �6� � .

We use the exactness condition for the rational functions y�zd{ ~ ����&% � |*}�yP� to implement
a numerical procedure for the quadrature rule (3.13). It means that the coefficients � �{ # �&% � �C>@>?>%� # �&% � � � � + �&% � �C>@>?> � + �&% � � of the approximant are calculated as the solution of a lin-
ear system of equations which we trasform in

� {(�!��

�P�u�?����� , where
� { ���P

���u� is an upper

triangular matrix obtained via QR factorization. Table 3.17 shows that after scaling the con-
dition number of

� {(�!�P

���u� should vary a little as 
 ranges from ,> dy to $> C�C .
Many numerical experiments have shown that the equation � � ��{fy�}���� works good

enough in the computer. In our opinion this procedure needs a parameter � which ranges from^`_4a {f}�yP� to ^�_&a {�} ����� . If we make � small it means that either the value of � is very forced
to be near the point � � y , which yields a very high concentration of nodes and poles near the
point |�� }�y , or �:� ^`_4a {f}�yC#� . Instability is associated with small values of � though it can
be observed higher accuracy as well (see Fig. 3.5-3.6). Theorem 3.10 shows that if � is close
enough to one then the quadrature error should be small. This effect is certainly produced by
the change of variable

�
� - {�|q� , though one can detect that the decreasing behaviour of the
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TABLE 3.15
Absolute errors when

�#� $&�=��$������
� $&�
,
N�� � ��	.Efr �

, � � G ,
3s�?E

,
�A� G w �

.Wq�	� � � � Wq� � � �B N6� � � B N��[Efr �
0.00000000000000e+00 1.6e–08 0.00e+00 4.6e–06
1.00000000000000e–01 1.3e–08 1.00e–01 3.8e–06
2.00000000000000e–01 1.1e–08 2.00e–01 3.0e–06
3.00000000000000e–01 8.2e–09 4.00e–01 1.8e–06
4.00000000000000e–01 6.1e–09 6.00e–01 8.3e–07
5.00000000000000e–01 4.3e–09 7.00e–01 4.8e–07
7.00000000000000e–01 1.6e–09 8.00e–01 2.2e–07
9.00000000000000e–01 2.0e–10 9.00e–01 6.1e–08
9.90000000000000e–01 2.2e–12 9.90e–01 7.5e–10
9.90782991202346e–01 —* 9.99e–01 1.3e–13

*The symbol — means that the corresponding numerical result is smaller than 1.00e–15.

TABLE 3.16
Absolute errors when

�#�%$&����$ ��� ��� , N6�[E��P	 ��r
, � � �

,
3s�?E

,
�A� G w �

.Wq�	� �!� W!�	� � �B N8�?E�� B N�� ��r
0.0000000e+00 8.0e–02 0.0000e+00 6.4e–03
1.0000000e–01 7.5e–02 1.0000e–01 6.0e–03
3.0000000e–01 6.6e–02 2.0000e–01 5.5e–03
5.0000000e–01 5.5e–02 3.0000e–01 5.0e–03
7.0000000e–01 4.1e–02 5.0000e–01 3.9e–03
8.0000000e–01 3.2e–02 6.0000e–01 3.3e–03
9.0000000e–01 2.1e–02 8.0000e–01 2.0e–03
9.9000000e–01 2.0e–03 9.9000e–01 2.1e–04
9.9230000e–01 5.1e–05 9.9700e–01 3.8e–05
9.9234833e–01 2.3e–06 9.9763e–01 1.4e–06

error with respect to � is magnified a lot by the condition �Y� ��{�y } ��� . When � is too small
the slope of the error curve with respect to � is also small except for values of � very close to
one. Such a behaviour can be seen in Table 3.1–3.16 for several values of the parameters � ,� , 
 and � .

The variable 
 plays the role of counterpart of � , in the sense that values of 
 close to| � y produce a concentration of nodes on the right side. We display figures 3.1–3.6 to
illustrate the behavior of the error as function of the parameters � and 
 , particularly when
they are close to one simultaneously. The error surfaces 't�:2]{(XO� B � have been defined over
the rectangular grid {0
�{ B �����q{0X��f� , XO� B � y&�C>@>?>%� � ,

� � �	=�B�I , for which yI> C} ����;
�{ B �6�
C,> C � � } dy , ,� �q{0X��Z�@C$> C � � } dy .

Before making any conclusion on whether the selection � �&% pOo  is a reasonable decision
for the numerical procedure one has to take into account that condition � �4% p o  implies that
some derivatives of the integrand are participating in the calculations. Despite the fact of
having used simbolic tools to simulate all the derivatives, it is not surprising that a loss of
accuracy is observed in Table 3.16 with respect to Table 3.2. Naturally, this comparison
clearly indicates that unless we were able to improve the algorithm, the case �4�4% p �  seems
to be preferable. As for the use of an integral representation formula to calculate all the
coefficients of the quadrature rule (3.13), for the moment we have not been able to reach
precision enough in the experiments. For all cases a feature of the integration method (3.13)
is that the error strongly depends on the behavior of � near |Y� }�y . A class of functions with
singularities located at interior points to which can be applied this integration rule, is one as
that defined in [19], namely, piecewise � � functions.
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TABLE 3.17
Condition number of matrices

�A� B2	��O	(N��
,
BQ� G w �

.

� � N���r N6� � N6��� N8�?E�� N8� ��r N8� � � N���Efr �
0 0.01 1.2e+00 4.1e+00 4.9e+01 2.6e+03 1.9e+06 7.7e+10 1.4e+13

0.1 1.3e+00 4.2e+00 4.1e+01 2.7e+03 2.3e+06 8.7e+10 1.7e+13
0.5 1.6e+00 7.0e+00 8.4e+01 5.2e+03 4.3e+06 2.0e+11 7.7e+13
0.9 6.9e+00 1.8e+01 3.1e+02 3.1e+04 3.4e+07 2.1e+12 2.1e+15
0.99 1.7e+01 9.1e+01 8.8e+02 1.9e+05 4.6e+08 5.0e+13 1.3e+17� i N��
0.01 1.3e+00 1.8e+00 4.4e+01 7.1e+03 6.9e+06 1.0e+13 1.8e+20
0.1 1.2e+00 1.8e+00 4.5e+01 6.9e+03 4.2e+07 6.3e+12 6.6e+19
0.5 1.4e+00 4.6e+00 5.6e+02 1.2e+06 5.4e+09 8.2e+16 2.7e+20
0.9 2.0e+00 4.2e+03 3.8e+04 9.0e+10 7.7e+12 1.7e+19 3.7e+23
0.99 2.5e+00 1.1e+06 3.4e+07 1.0e+12 4.8e+17 2.7e+19 7.0e+19

The reader should consult [23] where the � -point Gauss-Legendre rule and several smooth-
ing transformations are applied together to evaluate the integral of functions with one and two
endpoint singularities. To illustrate the efficiency of the method in [23], the authors compare
the corresponding numerical results with those generated by the trapezoidal rule when the
latter has been modified by a change of variable.

Our approach is based on interpolation of rational functions and it is different from that
presented by Monegato and Scuderi in [23]. The latter deals with Gaussian quadrature for-
mulas of polynomial type and smoothing transformations for which some derivatives van-
ish at the endpoints of the integration interval. Instead, we consider the change of variable� p {�|!�]�

�
� - {�|q� which simply modifies the distribution of nodes to diminish the adverse

effect of the endpoint singularity. However, for the purposes of comparison, we mainly refer
to the numerical results in [23] because here we have practically tested the same functions as
those reported in that paper.

In spite of the ill conditioned matrices which arise in our implementation, a conclusion is
that the accuracy which we can obtain with the rational quadrature rule (3.13) is competent,
particularly for those functions � for which estimate (3.28) holds.

All the computations in this work have been performed on a PC using MatLab -�� / .
Acknowledgments. The author would like to thank the referees, who spotted many minor
errors and offered valuable suggestions.
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[15] J. ILLÁN, AND G. LÓPEZ-LAGOMASINO, Quadrature formulas for unbounded intervals, Cienc. Mat. (Ha-
vana), 3 (1982), no. 3, pp. 29–47 (in Spanish).

[16] , A note on generalized quadrature formulas of Gauss-Jacobi type, Proc. Internat. Conf. Constr. Theory
of Functions’ 84, Varna (1984), pp. 513–518.

[17] , Numerical integration based on interpolation and their connection with rational approximation,
Cienc. Mat. (Havana), 8 (1987), no. 2, pp. 31–44 (in Spanish).
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