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A BLOCK VERSION OF BICGSTAB FOR LINEAR SYSTEMS WITH MULTIPLE
RIGHT-HAND SIDES

�
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�
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�
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�
Abstract. We present a new block method for solving large nonsymmetric linear systems of

equations with multiple right-hand sides. We first give the matrix polynomial interpretation of the
classical block biconjugate gradient (Bl-BCG) algorithm using formal matrix-valued orthogonal
polynomials. This allows us to derive a block version of BiCGSTAB. Numerical examples and
comparisons with other block methods are given to illustrate the effectiveness of the proposed method.

Key words. block Krylov subspace, block methods, Lanczos method, multiple right-hand sides, nonsymmetric
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1. Introduction. Many applications such as in electromagnetic scattering problem and
in structural mechanics problems require the solution of several linear systems of equations
with the same coefficient matrix and different right-hand sides. This problem can be written
as

(1.1)
�����	��


where
�

is an ���� nonsingular and nonsymmetric real matrix,
�

and
�

are ���� rect-
angular matrices whose columns are ������� 
 ������� 
�������
 ��� �!� and "#���$� 
 "%����� 
������&
 "#� �!� , respectively,
where � is of moderate size with �('�� .

When � is small, one can use direct methods to solve the � given linear systems. We can
compute the )+* decomposition of

�
at a cost of ,.-/�1032 operations and then solve the system

for each right-hand at a cost of ,.-/�1�32 operations. However, for large � , direct methods may
become very expensive. Instead of solving each of the � linear systems by some iterative
method, it is more efficient to use a block version and generate iterates for all the systems
simultaneously.

Starting from an initial guess
�547698;:=< � , block Krylov subspace methods determine,

at step > , an approximation of the form
�7?9���.4A@CBD?

, where
BD?

belongs to the block
Krylov subspace E ? - �=
GF(4 2 � �$HJILK;M F(4N
G�(FO4P
�������
�� ?�Q

� F(4SR
with

F(4T�U�WVX�O�.4
. We

use a minimization property or an orthogonality relation to determine the correction
BY?

.
For symmetric and positive definite problems, the block conjugate gradient (Bl-CG) al-

gorithm [15] and its variants [14] are useful for solving the linear system (1.1).
When the matrix

�
is nonsymmetric, the block biconjugate gradient (Bl-BCG) algorithm

[15] (see [20] for a stabilized version), the block generalized minimal residual (Bl-GMRES)
algorithm introduced in [24] and studied in [21], and the block quasi minimum residual (Bl-
QMR) algorithm [7] (see also [13]) are the best known block Krylov subspace methods. The
purpose of these block methods is to provide the solutions of a multiple right-hand sides
system faster than their single right-hand side counterparts. We note that block solvers are
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effective compared to their single right-hand versions when the matrix
�

is “relatively dense”.
They are also attractive when a preconditioner is added to the block solver.

In [9] and [10] we proposed new methods called global GMRES and global Lanczos-
based methods. These methods are obtained by projecting the initial block residual onto a
matrix Krylov subspace.

Another approach for solving the problem (1.1) developed in the last few years consists in
selecting one seed system and the corresponding Krylov subspace and projecting the residuals
of the other systems onto this Krylov subspace. The process is repeated with an other seed
system until all the systems are solved. This procedure has been used in [23] and [4] for the
conjugate gradient method and in [22], when the matrix

�
is nonsymmetric for the GMRES

algorithm [18]. This approach is also effective when the right-hand sides of (1.1) are not
available at the same time (see [16], [17] and [26]). Note also that block methods such as the
block Lanczos method [8], [5] and the block Arnoldi method [19] are used for solving large
eigenvalue problems.

The Bl-BCG algorithm uses a short three-term recurrence formula, but in many situations
the algorithm exhibits a very irregular convergence behavior. This problem can be overcome
by using a block smoothing technique as defined in [11] or a block QMR procedure [7]. A
stabilized version of the Bl-BCG algorithm has been proposed in [20]. This method converges
quite well but is in general more expensive than Bl-BCG.

As for single right-hand side Lanczos-based methods, it cannot be excluded that break-
downs occur in the block Lanczos-based methods.

We note that some block methods include a deflation procedure in order to detect and
delete linearly or almost linearly dependent vectors in the block Krylov subspaces generated
during the iterations. This technique has been used in [7] for the Bl-QMR algorithm. See also
[14] for a detailed discussion on loss of rank in the iteration matrices for the block conjugate
gradient algorithm.

In the present paper, we define a new transpose-free block algorithm which is a gen-
eralization of the well-known single right-hand side BiCGSTAB algorithm [25]. This new
method is named block BiCGSTAB (Bl-BiCGSTAB). Numerical examples show that the
new method is more efficient than the Bl-BCG, Bl-QMR and Bl-GMRES algorithms.

The remainder of the paper is organized as follows. In Section 2, we give a matrix
polynomial interpretation of Bl-BCG using right matrix orthogonal polynomials. In Section
3, we define the Bl-BiCGSTAB algorithm for solving (1.1). Finally, we report in Section 4
some numerical examples.

Throughout this paper, we use the following notations. For two �  � matrices
�

and�
, we consider the following inner product: � � 
 ����� ���
	 - ��� � 2 , where

�
	 - B 2 denotes the
trace of the square matrix

B
. The associated norm is the Frobenius norm denoted by  �  � .

We will use the notation � 
 � � for the usual inner product in
8 :

. For a matrix � 6T8;:=< � , the
block Krylov subspace E ? - �=
 � 2 is the subspace generated by the columns of the matrices
� 
G� � 
�������
�� ?�Q

��� . Finally, , � and � � will denote the zero and the identity matrices in8 � < � .

2. Matrix polynomial interpretation of the block BCG algorithm.

2.1. The block BCG algorithm. The block biconjugate gradient (Bl-BCG) algorithm
was first proposed by O’Leary [15] for solving the problem (1.1). This algorithm is a gen-
eralization of the well-known BCG algorithm [6]. Bl-BCG computes two sets of direction
matrices M�� 4N
�������
 � ?LR

and M��� 4N
�������
 �� ?LR
that span the block Krylov subspaces E ?��

� - �=
GF(4 2
and E ?��

� - ���D
 �FO4 2 , where
F(4X� � V � �.4

and �F(4
is an arbitrary �  � matrix. The

algorithm can be summarized as follows [15]:
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ALGORITHM 1: Block BCG�.4
is an � �� initial guess,

F 4 �	�CV � �.4
.

�F(4
is an arbitrary � �� matrix.

� 4 �	F 4
, �� 4 � �F 4

.
For > ��� 
��N
������

compute� ? � - �� �? � � ? 2
Q

� �F �? FA?
� ?��

�
�	� ? @ � ? � ?

F ? �
�

� F ?(V � � ? � ?
�� ? � - � �? ��� �� ? 2

Q
� F �? �FA?

�F ? �
�

� �F ?(V � � �� ? �� ?
�J? � -��F �? F ? 2

Q
� �F �?�� �

F ? �
��� ? � - F �? �FA? 2

Q
� F �?�� � �

F ? �
�� ? �

�
� F ?��

�
@ � ?�� ?

�� ? �
�

� �F ?��
�

@ �� ? �� ?
end.

The algorithm breaks down if the matrices �� �? � � ?
or �F �? F ?

are singular. Note also
that the coefficient matrices computed in the algorithm are solutions of � �� linear systems.
The matrices of these systems could be very ill-conditioned and this would affect the iterates
computed by Bl-BCG.

Bl-BCG can also exhibits very irregular behavior of the residual norms. To remedy
this problem one can use a block smoothing technique [11] or a block quasi-minimization
procedure (see [7] and [20]).

The matrix residuals and the matrix directions generated by ALGORITHM 1 satisfy the
following properties.

PROPOSITION 1. [15] If no breakdown occurs, the matrices computed by the Bl-BCG
algorithm satisfy the following relations

- � 2 �F �� F	�O�
�
and �� �� � � � ���

for ���� .
-��P2 �GH ILK;M�� 4S
�������
 � ?LR(� �GHJIPK;M FO4N
�������
�� ? F(4SR � E ?��

� - �=
�FO4 2 .
-��L2 �GH ILK;M �� 4S
�������
 �� ?LR(� �GHJIPK;M �FO4N
�������
�� � ?

�FO4NR � E ?��
� - � � 
 �FO4 2 .

-�� 2 F ?XV FO4 6 E ? - � 
GF(4 2 and the columns of
FA?

are orthogonal toE ? - � � 
 �F(4 2 .
From now on, we assume that no breakdown occurs in the Bl-BCG algorithm.

In the following subsection, we use matrix-valued polynomials to give a new expression of the
iterates computed by Bl-BCG. This will allow us to define the block BiCGSTAB algorithm.

2.2. Connection with matrix-valued polynomials. In what follows, a matrix-valued
polynomial � of degree > is a polynomial of the form

(2.1) �7- � 2 �
?
�
��� 4 � ��� � 


where
� � 6T8 � < � and

�+6 8
.

We use the notation � (used in [21]) for the product

(2.2) �7- � 2�� � �
?
�
��� 4 � � � � � 
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where
�

is an �  � matrix, and we define, for any �  � matrix � , the matrix polynomial
��� by

(2.3) -����A2&- � 2 �
?
�
��� 4 � � � � � �

With these definitions, we have the following properties:
PROPOSITION 2. Let � and � be two matrix-valued polynomials and let

�
and � be

two matrices of dimensions � �� and � �� , respectively. Then we have- � 2 -��7- � 2�� � 2�� � -����A2&- � 2 � � ,- �N2 -�� @ �(2�- � 2�� � � �7- � 2 � � @ � - � 2�� � .
Proof. - � 2 Let � be the matrix polynomial of degree > defined by (2.1). Then using (2.2)

and (2.3) it follows that

-����A2&- � 2�� � �
?
�
��� 4 � � � � � � � - �7- � 2 � � 2�� �

The relation - �N2 is easy to verify.
When solving a single right-hand side linear systems

� " � � , it is well-known that
the residual

	 ?
and the direction H ?

computed by the BCG algorithm can be expressed as	 ? ��� ? - � 2 	 4 and H ? ��� ? - � 2 	 4 . These polynomials are related by some recurrence
formulas [1].

Using matrix-valued polynomials we give in the following proposition new expressions
for the residuals and the matrix directions generated by Bl-BCG.

PROPOSITION 3. Let - FA? 2 and - � ? 2 be the sequences of matrices generated by the Bl-
BCG algorithm. Then there exist two families of matrix-valued polynomials -
	 ? 2 and -�� ? 2
of degree at most > such that

(2.4)
F ? � 	 ? - � 2 � F 4 


and

(2.5) � ?=� � ? - � 2 � F(4N�
These matrix polynomials are also related by the recurrence formulas

(2.6) 	 ?��
� - � 2 � 	 ? - � 2 V � � ? - � 2 � ? 


and

(2.7) � ?��
�

� 	 ? �
� - � 2 @ � ? - � 2 � ? 


with � 4 - � 2 � 	 4 - � 2 � � � for
�+6�8

.
Proof. The case > � �

is obvious. Assume that the relations hold for > . The residualFA?��
� computed by the Bl-BCG algorithm is given by

F ? �
�

�	F ? V � � ? � ? �
Hence by the induction hypothesis, we get

FA?��
�

� 	 ? - � 2 � F(4 V � - � ? - � 2 � F(4 2 � ? �
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Then using Proposition 2, we obtain

F ?��
�

� 	 ? - � 2�� F 4 V - � � ? � ? 2&- � 2�� F 4
��� 	 ? V � � ? � ?�� - � 2 � F 4
� 	 ?��

� - � 2 � F 4 

where 	 ? �

� - � 2 � 	 ? - � 2 V � � ? - � 2 � ?
. This proves the first part of the proposition.

The matrix direction � ?��
� computed by Bl-BCG is given as

� ?��
�

� F ? �
�

@ � ?�� ? 

hence using (2.4) and the induction hypothesis, it follows that

� ? �
�

��� 	 ?��
� - � 2 @ - � ? � ? 2&- � 2 � � FO4

� � ?��
� - � 2�� F(4N


where the matrix-valued polynomial � ?��
� is defined by

� ?��
� - � 2 � 	 ?��

� - � 2 @ � ? - � 2 � ? �

Let � be the functional defined on the set of matrix-valued polynomials with coefficients
in

8 � < � and given by

(2.8) � - � 2 � �F �4 -��7- � 2 � FO4 2 

where � is a matrix-valued polynomial.

We also define the functional � ���$� by

(2.9) � ���$� - � 2 � � - � � 2 �
With these definitions, it is easy to prove the following relations.

PROPOSITION 4. The functional � defined above satisfies the following properties:
- � 2�� - � @ � 2 � � -�� 2 @ � -�� 2 .
-��P2�� - � � 2 � � - � 2 � if

� 6T8 � < � .
The same relations are also satisfied by � � ��� .

This result shows that the functionals � and � ����� are linear. The matrix polynomials 	 ?
and � ?

associated by (2.4) and (2.5) with the residual and the direction polynomials generated
by BCG belong to families of formal orthogonal polynomials with respect to � and � ���$� (see
[1]). These results are generalized in the next proposition.

PROPOSITION 5. Let -
	 ? 2 and -�� ? 2 , >�� �
, be the sequences of matrix-valued poly-

nomials defined in Proposition 3. If 	 � is an arbitrary matrix-valued polynomial of degree � ,
� �
� 
��P
������&
 > V �

, then we have the following orthogonality properties

(2.10) � -
	 ? 	 � 2 � , 
��� �� > 

and

(2.11) � ���$� -�� ? 	 � 2 � , 
��� �� > �
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Proof. We have seen (Proposition 1) that at step > , the columns of the residual
F ?

produced by Bl-BCG are orthogonal to the block Krylov subspace E ? - � � 
 �F 4 2 . This can be
expressed as

(2.12) �F �4 � � F ? � , �

 
��  � � � 
�������
 > V �P�

Using (2.4) of Proposition 3, it follows that

�F �4 - � � 	 ? - � 2$2 � F 4 � , �

 
��  � � � 
������&
 > V �P�

This shows that

� - � � 	 ? 2 � � 
 � �
� 
������&
 > V �N�
By the linearity of � (expressed in Proposition 4) we can conclude that if 	 � is a matrix-valued
polynomial of degree � ( � � � 
������&
 > V �

), we have

� -
	 ? 	 � 2 � , �

 
��  � � � 
������&
 > V �P�

To prove (2.11), we use the relation

� � ? � - F ? V F ?��
� 2 �

Q
�?

to get

�F �4 � � � � � ?=� �F �4 � � - F ? V F ? �
� 2 �

Q
�? 


and using (2.12), we obtain

�F �4 � � � � � ? � , � 
��  � � � 
������&
 > V �P�
Since � ?A� � ? - � 2 � FO4

, it follows that

�F �4 � � � � - � ? - � 2 � F 4 2 � , �

 � � � 
�������
 > V �P


therefore

� ���$� - � � � ? 2 ��� 
 � � � 
������&
 > V �N

and thus

� ���$� -�� ? 	 � 2 � , � 
��  � � � 
������&
 > V �P�

The results of Proposition 5 show that 	 ?
and � ?

are the matrix-valued polynomials
of degree at most > belonging to the families of matrix-valued orthogonal polynomials with
respect to � and �;���$� respectively and normalized by the conditions 	 ? - � 2 � � � and � ? - � 2 �
� � . Note that if * � is a scalar polynomial we also have � - * � � ? 2 � , � and �;���$� - * � � ? 2 � , �
for � �
� 
������&
 > V �

. In general, this is not true in the block case.
Using these matrix-valued polynomials, we will see in the next subsection how to define

the block BiCGSTAB algorithm.
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3. The block BiCGSTAB algorithm. The single right-hand side BiCGSTAB algorithm
[25] is a transpose-free and a smoother variant of the BCG algorithm. The residuals produced
by BiCGSTAB are defined by

	�? � � ? - � 2 � ? - � 2 	�4L

where

� ?
is the scalar residual polynomial associated with the BCG algorithm and

� ?
is

another polynomial of degree > updated from step to step by multiplication with a new linear
factor with the goal of stabilizing the convergence behavior of the BCG algorithm:

� ? �
� - � 2 � - � V�� ? � 2 � ? - � 2 �

The selected parameter
� ? �

� is determined by a local residual minimization condition.
The search direction H ?

is defined by

H ? � � ? - � 2 � ? - � 2 	�4P

where

� ?
is the search direction polynomial associated with the BCG algorithm.

In detail the BiCGSTAB algorithm for solving a single right-hand side linear system� " � � is defined as follows [25]:

ALGORITHM 2: BiCGSTAB" 4
an initial guess;

	 4 � � V � " 4
; H 4 � 	 4

;

�	 4 is an arbitrary vector satisfying � �	 4 
 	 4 � �
��
�

;
for > � � 
��P
 � 
������
� ?A� � H ?

;� ? � � �	�4L
 	3? � �
� � �	�4L
 � ? � � ;� ? � 	�? V � ? � ? ;�$?A� � � ?

;�;? � � �$? 
 � ? � �
� � �$? 
 �$? � � ;" ?��

�
� " ? @ � ? H ? @��;? � ?

;	�?��
�

� � ?(V�� ? �$?
;

� ? � � �	�4L
 	�? �
� � �� �	 4 
 	 ? � �

� ?
� ? ;

H ?��
�

� 	 ? �
�

@ �J? - H ? V�� ? � ? 2 ;
end.

We will see later that the coefficient
� ?

used in ALGORITHM 2 can be computed by a simpler
formula. Techniques for curing breakdowns in BiCGSTAB are given in [3].

We define now a new block method for solving (1.1), which is a transpose-free and a
smoother converging variant of the Bl-BCG algorithm. The new method is named block
BiCGSTAB (Bl-BiCGSTAB) since it is a generalization of the single right-hand side
BiCGSTAB algorithm.

We have seen that the residual
F	��
 Q ���?

and the matrix direction � ��

Q ���?

computed
by the Bl-BCG algorithm are such that

F �
 Q �����? � 	 ? - � 2 � FO4L
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and

� ��

Q ���? � � ? - � 2 � FO4P


where 	 ?
and � ?

are the matrix-valued polynomials satisfying the relations (2.6) and (2.7).
The Bl-BiCGSTAB algorithm produces iterates whose residual matrices are of the form

(3.1)
FA? � -�� ? 	 ? 2&- � 2 � FO4P


where � ?
is still a scalar polynomial defined recursively at each step to stabilize the conver-

gence behavior of the original Bl-BCG algorithm. Specifically, � ?
is defined by the recur-

rence formula

(3.2) � ?��
� - � 2 � - � V�� ? � 2 � ? - � 2 �

As will be seen later, the scalar
� ?

is selected by imposing a minimization of the Frobe-
nius residual norm. It is also possible to choose

� ?
different for each right-hand side. In all

our numerical tests, we obtained similar results for these two cases.
We want now to define a recurrence formula for the new residuals defined by (3.1). From

(2.6), we immediately obtain

� ?��
� 	

?��
�

� � ? �
� - 	 ? V � � ? � ? 2 �

Therefore

(3.3) � ?��
� 	

?��
�

� -�� ? 	 ?(V � � ? � ? � ? 2 V�� ? � � ? - 	 ? V � � ? � ? 2 �
Using (2.7) and (3.2) we get

(3.4) � ?��
� �

?��
�

� � ? �
� 	

? �
�

@ -�� ? � ?(V��;? � � ? � ? 2 � ? �
We also have

(3.5) � ? 	 ?��
�

� � ? 	 ? V � � ? � ? � ? �
We now define the new matrix direction � ?

by

(3.6) � ?A� -�� ? � ? 2&- � 2�� F(4N

and we set

(3.7) � ? � -�� ? 	 ?��
� 2�- � 2 � F 4 �

Then, using these formulas, the iterates
F ?

and � ?
are computed by the following recurrence

formulas

(3.8)
FA?��

�
� � ? V��;?3� � ? 


and

(3.9) � ?��
�

�	FA?��
�

@ - � ? V��;?3� � ? 2 � ? �
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The scalar parameter
� ?

is chosen to minimize the Frobenius norm of the � 9� residualF ? �
�

� � ? V�� ? � � ?
. This implies that

� ? � � � � ? 
 � ? � �
� � � ? 
G� � ? � � �

Finally, we have to compute the �( � matrix coefficients � ?
and

� ?
needed in the recur-

rence formulas. This is done by using the fact that the polynomials 	 ?
and � ?

belong to the
families of formal matrix orthogonal polynomials with respect to the functionals � and �D� ��� 

respectively. Hence, using the relations (2.6) and (2.7), Proposition 5 and the fact that � ?

is
a scalar polynomial, we have

(3.10) � -�� ? 	 ? 2 � � ���$� -�� ? � ? 2 � ? 

and

(3.11) � ���$� -�� ? 	 ?��
� 2 � V � ���$� -�� ? � ? 2 � ? �

Therefore, by the definitions of the functionals � and � ���$� , the relations (3.10) and (3.11)
become

(3.12) - �F �4 � � ? 2 � ? � �F �4 F ? 

and

(3.13) - �F �4 � � ? 2 � ? � V �F �4 � � ? �
So, the � T� matrices � ?

and
� ?

can be computed by solving two �=�� linear systems with
the same coefficient matrix �F �4 � � ?

. They will be solved by computing the )Y* factorization
of the matrix - �F �4 � � ? 2 .

Putting all these relations together, the Bl-BiCGSTAB algorithm can be summarized as
follows

ALGORITHM 3: Bl-BiCGSTAB� 4
an initial guess;

F 4 � � V �O� 4
; � 4 � F 4

;
�FO4

an arbitrary � �� matrix;
For > �
� 
��P
 � 
������
� ? � � � ?

;
solve - �F �4 � ? 2 � ?=� �F �4 F ?

;
� ? � F ? V � ? � ?

;
� ? � � � ?

;� ?A� � � ? 
 � ? � � � � � ?L
 � ? � �
;��?��

�
� ��? @ � ? � ? @ � ? � ?

;F ?��
�

� � ? V�� ? � ?
;

solve - �F �4 � ? 2 � ? �CV �F �4 � ?
;

� ?��
�

� F ?��
�

@ - � ? V�� ? � ? 2 � ?
;

end.
Note that when a single linear system is solved, ALGORITHM 3 reduces to BiCGSTAB.

However, the coefficient
� ?

computed by ALGORITHM 3 with � � �
is given by

� ?9�V � �F(4N
 � ? � �
� � �F(4N
 � ? � � . This expression for

� ?
is simpler than the one given in ALGO-

RITHM 2 but requires an extra inner product.
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The Bl-BiCGSTAB algorithm will also suffer from a breakdown when �F �4 � ?
is singular.

In situations where the matrix �F �4 � ?
is nonsingular but is very ill-conditioned the computa-

tion of the iterates will also be affected. To overcome these problems, one can restart with a
different �F(4

. Look-ahead strategies could also be defined, but this will not be treated in this
paper.

Due to the local Frobenius norm minimization steps, Bl-BiCGSTAB has smoother con-
vergence behavior than Bl-BCG. However, the norms of the residuals produced by Bl-
BiCGSTAB may oscillate for some problems. In this case, we can use the block smoothing
procedure defined in [11] to get nonincreasing Frobenius norms of the residuals.

For solving the linear system (1.1), Bl-BiCGSTAB requires per iteration the evaluation
of �P� matrix-vector products with

�
and a total of �N� ��� @ �P� � @ ,.- ��0�2 multiplications. This

is to be compared to � matrix-vector product with
�

, � matrix-vector product with
� �

and a
total of �P� � � @ ,.- � 0 2 multiplications needed at each iteration for Bl-BCG.

Storage requirements (excluding those of
�

,
�

and
�

) and the major computational
costs (multiplications) per iteration for the Bl-BCG and the Bl-BiCGSTAB algorithms are
listed in Table 1.

Table 1
Memory requirements and computational costs (multiplications)

for Bl-BCG and Bl-BiCGSTAB
��� � � � Bl-BCG Bl-BiCGSTAB

Mat-Vec with
� � �P�

Mat-Vec with
� � � -

Multiplications �N�1��� + ,.- ��0�2 �N� ��� + �P�1� + ,.- ��0�2
Memory locations �S�1� @ ,.- � � 2 �L� � @ ,.- � � 2

The costs of Bl-BCG and Bl-BiCGSTAB rapidly increase with the number � of right-
hand sides. However, these block solvers converge in fewer iterations than their single right-
hand side counterparts since the dimensions of the search spaces E ? - �=
GF 4 2 and E �

? - �=
GF 4 2
increase by � and �N� , respectively, in each step.

4. Numerical examples. In this section we give some experimental results. Our exam-
ples have been coded in Matlab and have been executed on a SUN SPARC workstation.

We compare the performance of Bl-BiCGSTAB, Bl-QMR, Bl-GMRES and Bl-BCG for
solving the multiple linear system (1.1). For the experiments with Bl-QMR, we used the
algorithm that generates a band matrix with a deflation procedure to eliminate nearly linearly
dependent columns of the search space [7]. In all but the last experiment, the initial guess
was

� 4 � �
and

� � 	 ILK��J-/� 
 ��2 , where function the
	 ILK�� creates an � 5� random matrix

with coefficients uniformly distributed in [0,1] except for the last experiment.

Example 1. In this example, we use two sets of experiments. The tests were stopped as soon
as

max ��� �	� � 
FA? -�
 
 ��2  �

max ��� �	� � 
F 4 -�
 
 ��2  �

 � � Q�� �
Experiment 1: The first matrix test

�
� represents the five-point discretization of the

operator

(4.1) )(-�� 2 �CV ����� V ����� @�� ���
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on the unit square [0,1]  [0,1] with Dirichlet boundary conditions. The discretization was
performed using a grid size of �

� � � � � which yields a matrix of dimension � � � � � � . The
matrix

�
� is nonsymmetric and has a positive definite symmetric part. We choose

� � � �
.

The number of second right-hand sides was � � � �
. We set �F(4 � F(4

in the Bl-BiCGSTAB
and the Bl-BCG algorithms. Figure 1 reports on convergence history for Bl-BiCGSTAB, Bl-
QMR, Bl-BCG and Bl-GMRES(10). In this figure, we plotted the maximum of the � residual
norms (on a logarithmic scale) versus the flops (number of arithmetic operations).

0 1 2 3 4 5 6 7

x 10
9

−8

−6

−4

−2

0

2

4

6

flops

m
ax

i ||
 R

k(:
, i

) 
|| 2

Bl BiCGSTAB
Bl−QMR
Bl−GMRES
BLBCG

Figure 1:
� �	�

� ; � � � �

In Figure 2, we plotted for the same example only the results obtained with the Bl-
BiCGSTAB and the Bl-QMR algorithms. As observed from Figure 1 and Figure 2, Bl-
BiCGSTAB returns the best results.
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flops
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 R
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Figure 2:
� � �

� ; � � � �
Experiment 2: For the second experiment, we used the matrix test

�
0 =pde900 from

Harwell-Boweing collection (the size of the nonsymmetric matrix
�

0 is � ��� � �
and the

number of nonzeros entries is K K��J- � 0 2 � � � � � ). Figure 3 reports on results obtained for
Bl-BiCGSTAB, Bl-QMR, Bl-BCG and Bl-GMRES(10). For this experiment the number of
second right-hand sides was � � � .

As can be seen from Figure 3, Bl-BiCGSTAB requires lower flops for convergence when
compared to the other three block methods. The Bl-BCG algorithm failed to converge.

0 0.5 1 1.5 2 2.5 3
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k(:
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Bl BiCGSTAB
Bl−QMR
Bl−GMRES
BLBCG

Figure 3:
�

0
�

pde900; � � �
Example 2. For the second set of experiments, we used matrices from the Harwell-Boeing
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collection using ILUT as a preconditioner with a drop tolerance � � � � Q��
. We compared the

performance (in term of flops) of the Bl-BiCGSTAB algorithm, the Bl-GMRES(10) algorithm
and the BiCGSTAB algorithm applied to each single right-hand side. For all the tests the
matrix

�
was an �W=� random matrix. Two different numbers of right-hand sides were used:� � � and � � � �

. The iterations were stopped when

max ��� � � � 
F ? -�
 
 ��2  �  � � Q�� �

In Table 2 we list the effectiveness of Bl-BiCGSTAB measured by the ratios
�
� - ��2 and�

� - �32 where� � � - �32 =flops(Bl-BiCGSTAB)/(flops(BiCGSTAB)),� � � - �32 =flops(Bl-BiCGSTAB)/flops(Bl-GMRES(10)).
We note that flops(Bi-CGSTAB) corresponds to the flops required for solving the �

linear systems by applying the Bi-CGSTAB algorithm � times.

Table 2
Effectiveness of Bl-BiCGSTAB as compared to Bl-GMRES(10) and BiCGSTAB

using the ILUT preconditioner. Matrices are from the Harwell-Boeing collection.

Matrix � � � � � � � � � � � � � �
Utm 1700a ( � � ��� � �

)
�
� - �N2 ��� � � � �

� - � � 2 ��� � � � �
� - �N2 � � � � � �

� - � � 2 � � � � �
( K K��J- � 2 � � � � � � )

SAYLR4( � � � � � � )
� � - �N2 ��� �	�
� � � - � � 2 ��� � � � � � - �N2 � � � � � � � - � � 2 � � ��� �

( K K��J- � 2 � � � � � � )
SHERMAN5 ( � � � � � � )

�
� - �N2 ��� � � � �

� - � � 2 ��� � � � �
� - �N2 � � � � � �

� - � � 2 � � ��� �
( K K��J- � 2 � � ��� � � )

SHERMAN3 ( � � � � � �N2 � � - �N2 ��� � � � � � - � � 2 � �N��� � � � - �N2 � � � � � � � - � � 2 � � � � �
( K K��J- � 2 � � � � � � )

K K�� - � 2 denotes the number of nonzero entries in
�

As shown in Table 2, Bl-BiCGSTAB is less expensive than Bl-GMRES and than
BiCGSTAB applied to each single right-hand side linear system except for the last exam-
ple with � � � �

for which
�
� - � � 2 � �N���

.
The relative density of the matrices and the use of preconditioners make the multiple

right-hand side solvers less expensive and then they are more effective.

5. Conclusion. We have proposed in this paper a new block BiCGSTAB method for
nonsymmetric linear systems with multiple right-hand sides. To define this new method, we
used formal matrix-valued orthogonal polynomials.
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