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A PARAMETER CHOICE METHOD FOR TIKHONOV REGULARIZATION∗

LIMIN WU†

Abstract. A new parameter choice method for Tikhonov regularization of discrete ill-posed problems is pre-
sented. Some of the regularized solutions of a discrete ill-posed problem are less sensitive than others to the pertur-
bations in the right-hand side vector. This method chooses one of the insensitive regularized solutions using a certain
criterion. Numerical experiments show that the new method is competitive with the popular L-curve method. An
analysis of the new method is given for a model problem, which explains how this method works.
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1. Introduction. This paper is concerned with solving the following algebraic least
squares problem

(1.1) min
x

‖Ax− b‖, A ∈ R
m×n, m ≥ n, b ∈ R

m,

when it is ill-posed, that is, when the condition number ofA is large and the singular values of
A decay gradually towards zero. Here and henceforth, ‖ · ‖ is used to denote the 2-norm of a
vector or a function. Ill-posed algebraic least squares problems, which are also called discrete
ill-posed problems, arise frequently from the discretization of ill-posed problems such as
Fredholm integral equations of the first kind. Let A have the singular value decomposition
A =

∑n
i=1 σiuiv

T
i . Then the least squares solution to (1.1) and the 2-norm of the solution

are given by, respectively,

(1.2) xLS =

n
∑

i=1

uT
i b

σi
vi,

and

(1.3) ‖xLS‖ =

(

n
∑

i=1

(

uT
i b

σi

)2
)1/2

.

Our goal is to compute a good estimate of the solution to (1.1). For discrete ill-posed
problems, the formula in (1.2) may not be used for this purpose. The reason is that xLS is
too sensitive to the perturbations in b. That is, a small change in b can produce a large change
in xLS . To deal with ill-posedness in the presence of perturbations in b, various methods of
regularization have been introduced. A comprehensive presentation of such methods can be
found in [11]. One of these methods is the well-known Tikhonov regularization. This method
attempts to provide a good estimate of the solution to (1.1) by a solution xλ of the problem

(1.4) min
x

{

‖Ax− b‖2 + λ2‖x‖2
}

,

for some positive λ value chosen in such a way that both the residual norm ‖Axλ − b‖ and
the solution norm ‖xλ‖ are made small simultaneously. In the literature, λ is called the
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regularization parameter and xλ the regularized solution. The success of Tikhonov regular-
ization of a discrete ill-posed problem depends on making a good choice of the regularization
parameter. The above minimization problem is equivalent to

(1.5) min
x

∥

∥

∥

∥

[

A
λI

]

x−
[

b
0

]∥

∥

∥

∥

2

,

which has the least squares solution

(1.6) xλ =

n
∑

i=1

σ2
i

σ2
i + λ2

uT
i b

σi
vi.

From (1.2) and (1.6) it is obvious that xλ → xLS as λ→ 0.

2. Motivation. In this paper, I propose a new method for choosing a good regularization
parameter λ. To motivate the method, we shall take a look at the Picard condition for Fred-
holm integral equations of the first kind, and then the discrete Picard condition for discrete
least squares problems.

A Fredholm integral equation of the first kind is of the form

(2.1)
∫ d

c

k(x, y)f(y)dy = g(x), a ≤ x ≤ b,

where k and g are given functions, and f is an unknown function. The function k is called the
kernel of equation (2.1). This equation can be written asKf = g, withK the integral operator
mapping f to g. Assume that the kernel is square integrable over [a, b] × [c, d]. Then it is
a classical result that K is a compact operator from Hilbert space L2[c, d] into Hilbert space
L2[a, b]. Also, the kernel k has the singular value expansion k(x, y) =

∑∞
i=1 ηipi(x)qi(x).

According to Picard’s theorem [3, Theorem 1.2.6], in order for (2.1) to have a solution f ∈
L2[c, d], it is necessary and sufficient that g ∈ Range(K) and

(2.2)
∞
∑

i=1

|(pi, g)|2
η2

i

<∞,

where (·, ·) denotes the inner product associated with L2[a, b]. The condition given in (2.2)
is known as the Picard condition. When g ∈ Range(K), the Picard condition is necessarily
satisfied and a solution of (2.1) is given by

(2.3)
∞
∑

i=1

(pi, g)

ηi
qi.

If Range(K) is not dense in L2[a, b], and g = g1 + g2 with g1 ∈ Range(K) and g2 6= 0
in the orthogonal complement of Range(K), then equation (2.1) has least squares solutions

[3, Theorem 1.3.1]. Let fn denote
∑n

i=1
(pi,g)

ηi
qi and sn denote

∑n
i=1

|(pi,g)|2

η2
i

. Under the

assumptions on g, the minimum norm least squares solution fLS of equation (2.1) is given by

(2.4) fLS = lim
n→∞

fn;

see [3, Theorem 1.3.4]. Since {qi} is an orthonormal sequence inL2[c, d] and fLS ∈ L2[c, d],
it follows that

(2.5) ‖fLS‖2 = lim
n→∞

sn.
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If we draw a piece-wise linear curve connecting the points {(n, sn), n = 1, 2, ...}, the
following is evident: ‖fLS‖2 is the horizontal asymptote for the curve and the curve becomes
flatter as n gets larger. In particular, since {sn} is a Cauchy sequence, given any ε > 0, there
exists an integer M(ε) such that for any k > M(ε), we have sk+1 − sk < ε. Note that the
slope of the line segment connecting (n, sn) and (n + 1, sn+1) is given by (sn+1 − sn)/1.
Now we see that a flatter point on the curve corresponds to an fn closer to fLS .

The analog of the Picard condition for discrete least squares problems is the discrete
Picard condition (DPC), recognized by Varah [14] and analyzed by Hansen [6, 7].

DEFINITION 2.1. We say that the right-hand side vector b of the problem in (1.1) satisfies
the DPC if the Fourier coefficients |uT

i b| decay, on the average, to zero faster than the singular
values σi; that is, the sequence

(2.6) |uT
1 b|/σ1, |uT

2 b|/σ2, . . . , |uT
nb|/σn,

generally decreases (occasional exceptions allowed).
The above definition of the DPC represents an attempt to place a requirement on the

right-hand side vector b in (1.1) which is somewhat analogous in finite-dimensional space
to the requirement on the right-hand side function g in the above Picard condition (2.2) in
infinite-dimensional Hilbert space. Of course, the infinite sum in (2.2) must converge, which
means that the terms in the sum must decay to zero; so if problem (1.1) is obtained from
the Fredholm integral equation (2.1) by some method of discretization, it makes sense that
the corresponding discretized quantities in (2.6) should have the kind of behavior that would
mimic the decay expressed in (2.2).

The method of truncated singular value decomposition (TSVD) can be used to regularize
the discrete ill-posed problems; see [8]. This method amounts to truncating the singular value
decomposition of the coefficient matrix A in such a way that the smallest singular values of
A are discarded, and then solving the modified least squares problem. A TSVD solution of
(1.1) can be written as

(2.7) x(k) =

k
∑

i=1

uT
i b

σi
vi, 1 ≤ k ≤ n,

and

(2.8) ‖x(k)‖2 =

k
∑

i=1

(uT
i b/σi)

2.

The integer k is called the truncation parameter. For a discrete least squares problem that sat-
isfies the DPC, the piece-wise linear curve connecting the points {(k, ‖x(k)‖2)} is in general
flatter for larger k, since most of the time, we have

‖x(m)‖2 − ‖x(m−1)‖2 = (uT
mb/σm)2 < ‖x(l)‖2 − ‖x(l−1)‖2 = (uT

l b/σl)
2,

if m > l. Note also that x(k) gets closer to xLS as k gets larger since ‖xLS − x(k)‖2 =
∑n

i=k+1(u
T
i b/σi)

2. In the TSVD method, when b satisfies the DPC, the situation is therefore
similar to that in the infinite-dimensional Hilbert space expressed in (2.5); namely, most of
the time, a flatter point on the curve corresponds to an x(k) closer to xLS .

We now ask the following question: If b satisfies the DPC, what would be a proper curve
to be chosen in the Tikhonov regularization that would promise “the flatter a point on the
curve, the closer its corresponding xλ to xLS”? If we have such a curve, the above discussion
suggests that we should pick a value of the regularization parameter corresponding to a point
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on the flattest portion of the curve. In real problems, typically, the DPC is only partially
satisfied, that is, the sequence

{

|uT
i b|/σi

}

decreases for a while and then begins to increase
after some point i = p < n. This increase apparently represents “noise” resulting from
the fact that the discretization process, or the measurement process, has produced a b-vector
that does not entirely satisfy the DPC. This situation raises the most essential question: How
should we choose the regularization parameter for problems that only partially satisfy the
DPC?

3. The DPC at work. Two examples are given here to show the critical role the DPC
plays for a discrete ill-posed problem to have a reasonable solution. In this section, “exact
solution” is used to refer to an actual solution of an unperturbed algebraic problem,Ax = b.

We shall use the following as a definition of optimal regularization parameter.
DEFINITION 3.1. For discrete ill-posed problems which have some solution that can be

regarded as more or less “exact”, we define the optimal value of the regularization parameter
λ to be the one for which the computed relative error ‖xλ −xexact‖/‖xexact‖ is the smallest.

This definition seems to conform with the common practice in the study of regularization
problems; see Hansen [10]. Clearly, the aim of any parameter choice method ought to be able
to select the optimal value of λ, if the problem has an acceptable exact solution.

Example 1. Consider the least squares problem that has A = diag(1, 10−5, 10−10)
and b = (1, 10−4, 10−8)T . The system has the exact solution xexact = (1, 10, 100)T , that is,
xexact satisfies Axexact = b. The sequence in (2.6) for this problem is 1, 10, 100, so the prob-
lem does not satisfy the DPC. Now we add a small perturbation e = (10−6, 10−6, 10−6)T

to b (‖e‖ =
√

3 · 10−6, ‖b‖ ≈ 1) to obtain a perturbed problem. The sequence in (2.6) for
the perturbed problem is 1+10−6, 10.1, 10100, so the perturbed problem does not satisfy the
DPC either. The TSVD solutions of the perturbed problem are:

x(1) = (1 + 10−6, 0, 0)T , x(2) = (1 + 10−6, 10.1, 0)T , x(3) = (1 + 10−6, 10.1, 10100)T .

Their relative errors are:

‖x(1) − xexact‖
‖xexact‖ ≈ 1.00,

‖x(2) − xexact‖
‖xexact‖ ≈ 0.995,

‖x(3) − xexact‖
‖xexact‖ ≈ 99.5.

We see that all three TSVD solutions have large relative error. This example shows that for
a discrete ill-posed problem that does not satisfy the DPC, its actual solution may not be
obtainable from its perturbed problem.

Example 2. Consider the least squares problem that has A = diag(1, 10−5, 10−10) and
b = (1, 10−7, 10−14)T . The exact solution of the system is xexact = (1, 10−2, 10−4)T .
The sequence in (2.6) for this problem is 1, 10−2, 10−4, so the problem satisfies the DPC.
Again we add a small perturbation e = (10−7, 10−7, 10−7)T to b (‖e‖ =

√
3 · 10−7, ‖b‖ ≈

1) to obtain a perturbed problem. The sequence in (2.6) for the perturbed problem is 1 +
10−7, 0.02, 10−4 + 103, which says that the perturbed problem partially satisfies the DPC.
The TSVD solutions of the perturbed problem are:

x(1) = (1+10−7, 0, 0)T , x(2) = (1+10−7, 0.02, 0)T , x(3) = (1+10−7, 0.02, 10−4+103)T .

Their relative errors are:

‖x(1) − xexact‖
‖xexact‖ ≈ 0.01,

‖x(2) − xexact‖
‖xexact‖ ≈ 0.01,

‖x(3) − xexact‖
‖xexact‖ ≈ 1000.
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We see that the first two TSVD solutions have small relative error but the third one has large
relative error. In this example, we are able to compute good estimates of the solution to the
original system from the perturbed system, when the DPC is satisfied by the original system
and only partially satisfied by the perturbed system. This situation contrasts with that of
example 1 where reasonable TSVD solutions for the perturbed problem are not available.

4. Experimenting on curve (ln(1/λ), ‖xλ‖). For the Tikhonov regularization, we seek
to obtain a curve similar to those discussed in §2 that would have a flat portion where a good
value of the regularization parameter can be located. After trying several possible curves
on the 11 problems in Hansen’s Regularization Tools package [10], I found that the plot of
(ln(1/λ), ‖xλ‖) provided a good choice for use on all of the problems. It is possible that
different choices of scaling of the λ and ‖xλ‖ variables would work better for this set of
problems or problems from other sources. I shall examine the behavior of the curve through
the study of two examples, with a view to locating a good λ value.

Example 1. Let A be the 20× 20 Hilbert matrix, that is,

A =











1/1 1/2 · · · 1/n
1/2 1/3 · · · 1/(n+ 1)

...
...

...
1/n 1/(n+ 1) · · · 1/(2n− 1)











.

Let xexact be the vector of 20 elements with its ith element xexact(i) =
√

0.5i, i =
1, 2, . . . , 20. Consider the problem

(4.1) Ax = b,

where b is produced by b = Axexact in double precision. It is known that the singular value
spectrum of a Hilbert matrix decays toward zero [12]. The computed condition number of A
is on the order of 10+18, which is very large with respect to the double precision used in the
computation. We therefore have a discrete ill-posed problem. We now study the qualitative
behavior of the curves given by

{

(k, ‖x(k)‖); k = 1, 2, . . . , 20
}

and {(ln(1/λ), ‖xλ‖);λ > 0} ,

where x(k) is the kth TSVD solution of (4.1), and xλ is the regularized solution of (4.1) as a
function of λ.

In Figure 1, the graph of ‖x(k)‖ versus the truncation parameter k is plotted using the
MATLAB “plot” command. Rising a little around k = 2, this curve quickly levels off as it
moves to the right. But at about k = 14, it begins to grow very rapidly. At k = 14, just
before the steep rise, ‖x14‖ ≈ 10.263, which is slightly larger than ‖xexact‖ ≈ 10.247. The
optimal value of the truncation parameter k is found to be 11, at which ‖x(11)‖ ≈ 10.247 and
the relative error is about 4.3× 10−6, the smallest among all the relative errors computed by
‖x(k) − xexact‖/‖xexact‖, k = 1, . . . , 20..

The graph of (ln(1/λ), ‖xλ‖) in Figure 2 is plotted using the same MATLAB command
“plot” over a mesh grid of 100 points. The mesh grid is constructed using the method em-
ployed in the MATLAB code l curve.m of Hansen [10]. The method can be described as fol-
lows. Let λ1 = σmax(A) and λl be positive but smaller than max{σmin(A), σmax(A) · ε},
where ε is the machine roundoff unit, σmax(A) and σmin(A) are the largest and small-
est singular values of A. We want to fill l − 2 numbers λ2, . . . , λl−l between λ1 and
λl. Let µi = ln(1/λi), i = 1, 2, . . . , l. Since lnx is an increasing function of x,
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FIG. 1. Truncation Parameter k versus ‖x(k)‖
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FIG. 2. The graph of (ln(1/λ), ‖xλ‖)

we have µ1 < µ2 < · · · < µl. Let h = (µl − µ1)/(l − 1) = ln (λ1/λl)
l−1

. Put
µi = µ1 + (i − 1)h, i = 1, . . . , l. Then µi’s form a uniform mesh grid. Converting µi

back to λi, we obtain a mesh grid for λ: λ1 > λ2 > · · · > λl, with

λi = λ1

(

λl

λ1

)(i−1)/(l−1)

, i = 1, 2, . . . , l.

Table 1 gives some of the 100 data points used for the plot in Figure 2 along with some
other quantities. Here, the fourth column lists ‖xλi

−xexact‖/‖xexact‖, and the fifth column
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lists ‖xλi
‖ − ‖xλi−1

‖. Notice that (‖xλi
‖ − ‖xλi−1

‖)/h gives an approximate slope of
the curve in Figure 2 at µi. It can be observed that the smallest difference and therefore the
minimum slope over the mesh grid occurs at index i = 67, at which λ67 ≈ 4.4×10−12. It can
be seen that the relative error reaches its minimum value 6.15× 10−6 at λ66 ≈ 6.7× 10−12.
For this problem, we may regard λ66 as the optimal value of the regularization parameter for
this choice of the λ grid.

TABLE 1
Regularization Data for Hilbert Matrix

i λi ‖xλi
‖ Re. Error Diff

57 2.57e-10 1.0246951e+01 2.69e-05 1.25e-08
58 1.71e-10 1.0246951e+01 2.28e-05 8.08e-09
59 1.14e-10 1.0246951e+01 2.14e-05 4.33e-09
60 7.60e-11 1.0246951e+01 2.04e-05 2.11e-09
61 5.06e-11 1.0246951e+01 1.87e-05 1.01e-09
62 3.37e-11 1.0246951e+01 1.59e-05 5.75e-10
63 2.25e-11 1.0246951e+01 1.22e-05 5.17e-10
64 1.50e-11 1.0246951e+01 8.74e-06 5.75e-10
65 9.99e-12 1.0246951e+01 6.57e-06 5.16e-10
66 6.66e-12 1.0246951e+01 6.15e-06 3.53e-10
67 4.44e-12 1.0246951e+01 7.40e-06 2.27e-10
68 2.95e-12 1.0246951e+01 1.09e-05 2.75e-10
69 1.97e-12 1.0246951e+01 1.83e-05 8.49e-10
70 1.31e-12 1.0246951e+01 3.24e-05 3.09e-09
71 8.75e-13 1.0246951e+01 5.46e-05 9.01e-09
72 5.83e-13 1.0246951e+01 8.18e-05 1.78e-08
73 3.88e-13 1.0246951e+01 1.06e-04 2.23e-08
74 2.59e-13 1.0246951e+01 1.22e-04 1.86e-08

The above two graphs look very much alike and the one in Figure 2 is smoother. In both
graphs, a corner divides the curve into two pieces. The left piece is flat and more or less
concave down; the right piece is very steep. The flat portion of the curves gets flatter and
flatter as k or λ approaches the optimal truncation parameter or the optimal regularization
parameter (for this particular λ grid), respectively.

Example 2. This example is the inverse heat equation

y(s) =

∫ s

0

k(s− t)x(t)dt, 0 < s ≤ 1,

taken from [10]. The mathematical background associated with this problem is given in [2].
This is a Volterra integral equation of the first kind with [0, 1] as the integration interval. The
kernel is k(s− t) with

k(t) =
t−3/2

2
√
π

exp(
−1

4t
).

The integral equation is discretized by means of simple collocation and the midpoint rule to
obtain the coefficient matrix A. The size of A is taken to be 100 × 100. An exact solution,
xexact, is constructed, and then the right-hand side is produced as b = Axexact in double
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precision. The matrix A, the exact solution xexact and the right-hand side b used for the
testing are generated by running Hansen’s MATLAB code heat(100, 1).

To see how perturbations on the right-hand side influence the regularized solutions, the
right-hand side b has been modified by adding a normally distributed random vector eδ to
produce bδ = b + eδ. Here δ is used to indicate perturbation level in b, which is given by
‖eδ‖/‖b‖. Each eδ was generated by a call to MATLAB routine “randn” with seed = 15. The
components of eδ are normally distributed with a mean of zero and a standard deviation of
one. The systems solved are Ax = bδ.

In Figure 3, the curve (ln(1/λ), ln ‖xλ(bδ)‖) is plotted over a mesh grid of 100 points
(λ1 ≈ 3.6 × 10−1, λ100 ≈ 1.3 × 10−18) for δ at 10−2 and 10−3, where xλ(bδ) is the
regularized solution ofAx = bδ. Note that log-scale on the y−axis is used so that the different
behavior of the two curves can be clearly displayed over the whole mesh grid. Both curves
exhibit two flat portions. The left flat portion is less sensitive to the perturbation than the right
one in that these two curves almost overlap for the left flat portion while they differ noticeably
for the right flat portion. For each of these two curves an optimal value of λ is sought to
produce a regularized solution and we wish the “optimal” regularized solutions computed
from these two perturbed systems would be both close to the exact solution of the unperturbed
system; it is therefore reasonable to choose a λi, for each system, that corresponds to a point
on the left flat portion of the curve.

0 5 10 15 20 25 30 35 40 45
−5

0

5

10

15

20

25

30

FIG. 3. The graph of (ln(1/λ), ln(‖xλ‖)) for problem heat(100,1) with perturbation level δ at 0.01 (solid
line) and 0.001 (dashed line).

5. The flattest slope method. From example 2 in §4, we see that xλ is not equally
sensitive to the changes in the right-hand side vector for all λ values. I shall loosely call the
part of the curve (ln(1/λ), ‖xλ‖) that varies little under small perturbations to the right-hand
side the insensitive part of the curve.

5.1. The Method. The proper choice of λ is critical to the success of the Tikhonov
regularization method. A good λ value should be the one that suppresses as much as possible
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the influence of the errors in the right-hand side, and at the same time, gives a regularized
solution xλ that is as close as possible to the exact solution. The examples discussed in the
previous sections suggest that we can locate a good λ somewhere corresponding to a point on
the insensitive portion, which should look flat, of the curve (ln(1/λ), ‖xλ‖) just before the
rapid growth. The new method, first given by the author in [16], for choosing a good value
for the regularization parameter, is as follows.

1. Detect the insensitive portion, that is adjacent to the sensitive portion, of the curve
(ln(1/λ), ‖xλ‖).

2. Choose a value of λ that corresponds to the point on the insensitive portion of the
curve at which the slope is the flattest.

For convenience, I shall call the above parameter choice method “flattest slope method” or
“f-slope method” hereafter.

5.2. Practical considerations. To find a point with a slope close to the flattest slope
on the insensitive portion of the curve, we may use the method given in §4. The insensitive
portion of the curve may be detected graphically, as the plots in §4 suggest. I shall consider
two cases. If there is only one flat portion on the curve (eventually, ‖xλ‖ will level off as λ
approaches 0, but that flat portion will be ignored), I simply accept it as an insensitive portion.
If there are more than one flat portions on the curve, more information is needed to rule out
the sensitive pieces. To do so, the problem can be altered a little by adding an artificial error
vector eδ to b, with error level ‖eδ‖/‖b‖ slightly greater than the error level that comes with
the problem, and then plot (ln(1/λ), ‖xλ‖) for b and b+eδ against each other for comparison
to determine the insensitive portion. Or, if the right-hand side b can be sampled twice for the
same problem, we can plot (ln(1/λ), ‖xλ‖) for the two measurements against each other.

An implementation of the method can be summarized as follows: Compute all the differ-
ences ‖xλi

‖−‖xλi−1
‖ over a specified mesh grid, identify the insensitive portion of the curve

(ln(1/λ), ‖xλ‖), and choose the λi on the insensitive portion where the minimum difference
(local to the insensitive portion) occurs.

6. Numerical examples. A popular method for choosing a proper regularization pa-
rameter is the L-curve criterion given by Hansen and O’Leary [13]. The method attempts to
balance decreasing values of ‖Axλ − b‖ against increasing values of ‖xλ‖ as λ tends to zero.
For a discrete ill-posed problem it turns out that the plot of ln(‖Axλ − b‖) against ln(‖xλ‖)
has the shape of the letter L, with a distinct corner separating the vertical and horizontal parts
of the curve. The L-curve method chooses the regularization parameter corresponding to
the point on the curve with maximum curvature. For background material and underlying
mathematics associated with the L-curve method, see also [9].

In this section, numerical results are given to compare the flattest slope method with
the L-curve method against the optimal choice of the regularization parameter on several
problems. Some MATLAB M-files for the computations are available for download at web-
site
http://my.fit.edu/beowulf
under the Software link. Hansen generated a comprehensive MATLAB package implement-
ing several regularization methods in [10]. I rely on this work for the numerical tests.

6.1. Test problems from Hansen’s package. Table 2 displays data for the nine prob-
lems from Hansen’s MATLAB package for which the exact solutions are known. In each
case, the size of the coefficient matrix A is taken as 20 × 20. For problems heat and shaw,
the exact solution xexact given by Hansen is used and the right-hand side vector b is gener-
ated by b = Axexact. For problems baart, deriv2, foxgood, ilaplace, phillips, and wing, the

http://my.fit.edu/beowulf
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choice of the exact solution xexact is generally some discretized version of an exact solution
for an integral equation, and in these cases both A and b are taken as discretized versions of
an infinite-dimensional problem. For all the above test problems, a mesh grid of 100 points is
used. Comparisons are made for the regularized solutions chosen by the L-curve method and
the f-slope method with the optimal regularized solution that produces the minimum relative
error over the mesh grid.

TABLE 2
Regularization Data for Nine Problems from Hansen’s MATLAB Package

Problem Method Rerr Res λ

L-curve 2.69e-01 2.20e-15 2.24e-15
Baart(20) f-slope 1.57e-02 2.79e-15 4.39e-13

Optimal 1.10e-02 2.55e-15 5.76e-14

L-curve 6.01e-03 4.61e-13 2.08e-07
deriv2(20,3) f-slope 6.01e-03 4.61e-13 2.08e-07

Optimal 3.83e-03 1.22e-06 3.91e-04

L-curve 2.00e+01 4.16e-14 8.45e-16
foxgood(20) f-slope 6.46e-03 4.83e-08 6.27e-06

Optimal 2.31e-03 6.59e-06 5.45e-04

L-curve 1.08e-14 1.36e-16 1.44e-11
heat(20,1) f-slope 1.04e-14 1.46e-16 3.69e-10

Optimal 5.91e-15 2.49e-14 1.87e-09

L-curve 3.08e-01 2.38e-04 1.39e-04
ilaplace(20,1) f-slope 8.50e-03 3.11e-04 5.36e-03

Optimal 4.80e-03 7.46e-04 1.81e-02

L-curve 1.87e-02 7.39e-12 1.46e-06
phillips(20) f-slope 1.87e-02 7.39e-12 1.46e-06

Optimal 1.84e-02 8.81e-04 2.70e-02

L-curve 6.85e-02 3.36e-15 9.24e-16
shaw(20) f-slope 1.24e-04 3.31e-15 4.07e-13

Optimal 1.03e-04 2.94e-15 3.10e-12

L-curve 1.62e-01 1.49e-14 7.34e-16
spikes(20,5) f-slope 1.58e-01 3.53e-14 2.15e-13

Optimal 1.57e-01 1.49e-14 1.65e-15

L-curve 3.26e-01 7.60e-17 2.07e-16
wing(20,1/3,2/3) f-slope 3.17e-01 8.89e-17 1.80e-14

Optimal 3.16e-01 8.30e-17 3.55e-15

The third column in Table 2 gives the relative error Rerr = ‖xλ − xexact‖/‖xexact‖,
the fourth column gives the residual norm Res = ‖Axλ − b‖, and the last column gives the
λ value for each method and for the optimal choice. For problems baart(20), foxgood(20),
ilaplace(20,1), and shaw(20), the f-slope method performs significantly better. For the other
five problems, the L-curve and f-slope methods produce almost the same relative errors.

6.2. The Hilbert matrix. This example consists of the 20 × 20 Hilbert matrix A with
five different choices of the right-hand side vector b. The exact solution xexact is generated
by some mathematical formula as xexact(i) = f(ti), ti = 0.5i. The right-hand side b is then
produced as b = Axexact. Each test problem is run using the L-curve method and the f-slope
method over a mesh grid of 50 points for comparison. The λ value from the L-curve method
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is generated by runs of the MATLAB codes in [10]. The results listed in Table 3 show that
higher accuracy (smaller relative error) is obtained by the f-slope method for these problems.

TABLE 3
Regularization Data for Five Problems related to the 20 × 20 Hilbert Matrix

xex(i) Method Rerr Res λ

L-curve 5.56e-02 4.09e-15 1.80e-16
t
1/2
i f-slope 9.43e-06 3.95e-15 3.38e-12

Optimal 6.11e-06 4.68e-15 7.67e-12

L-curve 2.68e-02 5.62e-14 1.80e-16
t2i f-slope 8.69e-05 5.74e-14 1.27e-13

Optimal 8.26e-05 7.04e-14 3.38e-12

L-curve 3.49e-02 2.58e-16 1.80e-16
1/(t3i + t2i + ti + 1) f-slope 5.12e-07 2.02e-16 1.74e-11

Optimal 4.89e-07 2.44e-16 3.95e-11

L-curve 6.65e-02 5.38e-16 7.93e-17
sin(ti) f-slope 2.69e-03 5.18e-16 2.11e-15

Optimal 2.05e-03 6.40e-16 4.78e-15

L-curve 1.42e-02 5.01e-12 1.80e-16
exp(ti) f-slope 4.65e-03 4.81e-12 9.28e-16

Optimal 4.03e-03 5.01e-12 4.78e-15

It will be observed that in all five problems the relative errors for the f-slope method are
smaller than those for the L-curve method, while the residual norms remain at about the same
level for both methods. The relative errors obtained from the L-curve method remain at about
10−2 for all choices of the right-hand side vector, while those from the f-slope method have
a wider variation from 2.7 × 10−3 in the fourth problem to 5.1 × 10−7 in the third problem.
We also observe that those exact solutions with less variation in xexact(i) (e.g., the first three
in Table 2) allow smaller relative error in the computed regularized solution.

7. Perturbation experiments. In this section, comparisons are made for the perfor-
mance of the f-slope method with the L-curve method for various perturbation levels in the
right-hand side b. For each test problem, the b-vector is modified by adding a normally dis-
tributed random vector eδ to produce bδ = b + eδ. Ten different perturbation vectors are
generated with decreasing perturbation levels in such a way that

(7.1) ‖eδ‖/‖b‖ = 10−2, 10−3, . . . , 10−10, 10−12.

The perturbations eδ are generated by calls to MATLAB routine “randn” with seed = 15. The
systems solved are Ax = bδ.

Example 1. The first example is the problem heat considered in §4. Recall that the size
of A is taken to be 100 × 100 and the matrix A, the right-hand side b and the exact solu-
tion xexact are generated by running Hansen’s MATLAB code heat(100, 1). Complete test
results are given in Table 4. The data for the f-slope method reported in the table corresponds
to the choice of the left flat portion of the curve (ln(1/λ), ln ‖xλ‖) for perturbation levels
10−2, 10−3, . . ., and 10−7. For smaller perturbation levels 10−8, 10−9, 10−10, and 10−12,
only one flat portion is identified from the curve.

As we can see from the table, when δ takes on the first four error levels 10−2, 10−3,
10−4, and 10−5 in decreasing order, the optimal relative error decreases strictly though
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TABLE 4
Perturbation Experiment On Problem heat(100,1)

L-curve f-slope Optimal
δ Rerr Res λ Rerr Res λ Rerr λ

10−2 1.9e-01 3.9e-03 1.8e-03 1.3e-01 7.6e-04 2.7e-03 1.1e-01 4.1e-03
10−3 3.3e-01 2.9e-04 1.6e-04 5.2e-02 7.6e-05 8.1e-04 4.0e-02 1.2e-03
10−4 5.5e-01 1.3e-05 6.2e-06 2.7e-02 7.6e-06 2.4e-04 1.9e-02 5.4e-04
10−5 3.9e-01 7.6e-07 1.6e-07 1.4e-02 7.6e-07 4.7e-05 1.2e-02 1.1e-04
10−6 4.2e-02 7.6e-08 1.9e-09 6.7e-03 7.6e-08 9.3e-06 6.1e-03 2.1e-05
10−7 4.2e-03 7.6e-09 1.1e-10 3.1e-03 7.6e-09 5.4e-07 2.9e-03 8.2e-07
10−8 4.2e-04 7.6e-10 3.2e-11 4.2e-04 7.6e-10 9.5e-12 4.2e-04 1.4e-11
10−9 4.2e-05 7.6e-11 9.5e-12 4.2e-05 7.6e-11 6.3e-12 4.2e-05 9.5e-12
10−10 4.6e-06 7.6e-12 1.9e-12 4.2e-06 7.6e-12 2.8e-12 4.2e-06 6.3e-12
10−12 4.3e-08 7.6e-14 1.6e-13 4.2e-08 7.6e-14 2.8e-12 4.2e-08 2.8e-12

slowly. The relative error corresponding to the f-slope method behave similarly with slightly
larger values. On the other hand, for these four error levels, the relative error obtained from
the L-curve method actually increases before they begin to decrease. Similar results for the
present problem have also been reported by M. Hanke [4, p.299, Table 6.1]. As δ goes further
down from 10−6 to 10−12, the relative errors of the two methods that decrease and remain
very close. We notice that the L-curve method tends to choose a smaller λ value than the
optimal one.

Example 2. The second example is the problem shaw considered in the previous section.
The A matrix is 100 × 100. The coefficient matrix A, the right-hand side b and the exact so-
lution xexact used for the test are generated by running Hansen’s MATLAB code shaw(100).
The mesh grid used for this test contains 100 points. Table 5 gives the numerical results for
this problem. It shows that the overall performance of the f-slope method is better than that
of the L-curve method. The relative error given by the f-slope method decreases strictly as δ
tends to zero. The relative error given by the L-curve criterion, however, bounces up for δ at
10−6 and 10−10.

TABLE 5
Perturbation Experiment On Problem shaw(100)

L-curve f-slope Optimal
δ Rerr Res λ Rerr Res λ Rerr λ

10−2 8.2e-02 2.1e-01 1.5e-02 1.0e-01 2.2e-01 5.2e-02 5.6e-02 2.3e-02
10−3 4.9e-02 2.1e-02 2.0e-03 4.9e-02 2.1e-02 2.0e-03 4.8e-02 6.8e-03
10−4 4.5e-02 2.1e-03 2.6e-04 3.8e-02 2.1e-03 4.0e-04 3.5e-02 8.9e-04
10−5 2.9e-02 2.1e-04 5.2e-05 3.1e-02 2.1e-04 1.2e-04 2.9e-02 5.2e-05
10−6 7.6e-02 2.1e-05 2.0e-06 2.7e-02 2.5e-05 1.2e-04 1.7e-02 1.5e-05
10−7 1.8e-02 2.1e-06 1.8e-07 1.5e-02 2.2e-06 6.9e-06 7.0e-03 2.0e-06
10−8 5.1e-03 2.1e-07 2.3e-08 4.6e-03 2.1e-07 3.5e-08 3.8e-03 2.7e-07
10−9 4.9e-03 2.1e-08 4.6e-09 3.5e-03 2.1e-08 2.3e-08 3.0e-03 6.9e-09
10−10 6.3e-02 2.1e-09 1.2e-10 3.2e-03 2.1e-09 1.6e-08 1.1e-03 3.1e-09
10−12 5.3e-03 2.1e-11 7.0e-12 8.2e-04 2.1e-11 5.3e-11 7.3e-04 2.7e-10
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TABLE 6
Perturbation Experiment for the Problem Associated with Hilbert Matrix

L-curve f-slope Optimal
δ Rerr Res λ Rerr Res λ Rerr λ

10−2 1.4e-01 5.5e-01 1.1e-02 1.5e-01 5.6e-01 1.7e-02 1.4e-01 1.1e-02
10−3 1.1e-01 5.3e-02 9.8e-04 1.1e-01 5.3e-02 9.8e-04 9.8e-02 5.0e-03
10−4 5.2e-02 5.3e-03 1.3e-04 2.5e-02 5.3e-03 4.3e-04 1.5e-02 2.9e-04
10−5 7.0e-02 5.1e-04 1.1e-05 6.7e-03 5.3e-04 8.6e-05 6.7e-03 8.6e-05
10−6 4.5e-02 5.1e-05 9.9e-07 4.4e-03 5.2e-05 1.1e-05 4.4e-03 1.1e-05
10−7 3.6e-02 5.1e-06 8.6e-08 2.1e-03 5.1e-06 2.2e-06 2.1e-03 2.2e-06
10−8 2.0e-02 5.1e-07 1.1e-08 2.7e-03 5.1e-07 1.9e-07 1.6e-03 6.6e-07
10−9 2.3e-02 5.1e-08 1.5e-09 8.8e-04 5.1e-08 5.8e-08 8.4e-04 8.6e-08
10−10 4.9e-02 5.0e-09 1.3e-10 2.9e-04 5.1e-09 1.1e-08 2.8e-04 7.6e-09
10−12 5.7e-02 4.9e-11 1.5e-12 1.3e-04 5.0e-11 6.6e-10 9.2e-05 1.5e-09

Example 3. In this example, the coefficient matrix A is the 100 × 100 Hilbert matrix.
The right-hand side vector b is produced by b = Axexact, where xexact(i) =

√
0.5i, i =

1, 2, . . . , 100. The numerical results are reported in Table 6. We can see that as δ goes down
from 10−2 to 10−12, the relative error given by the f-slope method decreases from 1.5 · 10−1

to 1.3 · 10−4, while the relative error given by the L-curve criterion stagnates at the level of
10−2.

8. An analysis of the f-slope method. The f-slope method works well for the test prob-
lems discussed in the previous sections. This section attempts to explain how the method
works through an analysis of a model problem. The slope of (µ, ‖xµ‖2) will be studied, in-
stead of the slope of (µ, ‖xµ‖), which is used in the numerical experiments. A simple relation
between (‖xµ‖2)′ and ‖xµ‖′ is (‖xµ‖2)′ = 2‖xµ‖‖xµ‖′. If ‖xµ‖ changes little over a range
for µ, then the two quantities should vary in a similar way over the range. In the case that
a problem partially satisfying the DPC, the ‖xµ‖ would stay almost the same over the range
where the optimal µ value is located, as we have seen in the test problems. This relationship
then implies that the flattest point on both curves would occur approximately at the same
µ value. Therefore both curves may serve the purpose of selecting a proper regularization
parameter value in the f-slope method.

8.1. The general DPC assumption. We start with a problem defined by (1.1) that par-
tially satisfies the DPC. Let γi = uT

i b/σi. Then on the average, |γi| decreases until some
point γp, where it starts to increase. Write b as b = bexact + berror, where bexact is the
exact right-hand side vector for the problem and berror is a perturbation vector. Define
γexact

i = uT
i b

exact/σi and γerror
i = uT

i b
error/σi. Then

γi = γexact
i + γerror

i .

Additionally, we assume that, on the average, |γexact
i | decreases toward zero and |γerror

i |
increases from zero. That is, we assume that the exact problemAx = bexact satisfies the DPC
completely and the error problem Ax = berror does not satisfy the DPC at all. With these
assumptions, we see that for the decreasing part of the γi, γexact

i is the dominant component;
and γerror

i is the dominant one for the increasing part.
Now we make the following assumptions for the singular values of A:

σ1 ≥ · · · ≥ σk ≥ · · · ≥ σp ≥ · · · ≥ σl ≥ · · · ≥ σn > 0,
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and

σk−1 � σp � σl+1.

Here, as usual, notation � means “is much larger than”.
The magnitude of the error ‖xexact−xλ‖, where xexact denotes the solution to the exact

problem, depends on λ. This error can be made small if a λ value close to σp is selected, as
shown below. Note that σp corresponds to the “turning point” |γp| of {|γi|}.

Replacing b in (1.2) by bexact and using the expression in (1.6) for xλ, we have

(8.1) xexact − xλ =

n
∑

i=1

(
λ2

σ2
i + λ2

γexact
i − σ2

i

σ2
i + λ2

γerror
i )vi.

Hence,

(8.2) ‖xexact − xλ‖2 =
n
∑

i=1

(
λ2

σ2
i + λ2

γexact
i − σ2

i

σ2
i + λ2

γerror
i )2.

Let

ai(λ) =
λ2

σ2
i + λ2

and bi(λ) =
σ2

i

σ2
i + λ2

.

Now suppose λ ≈ σp. Then,

ai(λ) ≈ 0 and bi(λ) ≈ 1 for 1 ≤ i ≤ k − 1 since σi � λ;

and

ai(λ) ≈ 1 and bi(λ) ≈ 0 for l + 1 ≤ i ≤ n since λ� σi.

Thus,

‖xexact − xλ‖2(8.3)

≈
k−1
∑

i=1

(γerror
i )2 +

l
∑

i=k

(

ai(λ)γ
exact
i − bi(λ)γ

error
i

)2
+

n
∑

i=l+1

(γexact
i )2.

Note for λ > 0, 0 < ai(λ) < 1 and 0 < bi(λ) < 1. By the assumptions on γexact
i and

γerror
i , the three summations on the right-hand side in (8.3) would be small and so would

‖xexact − xλ‖.
The following shows that a λ value close to σp is indeed what the f-slope method looks

for. ¿From the expression for xλ in (1.6) and by noting that λ = e−µ, we see that

(8.4) ‖xµ‖2 =
n
∑

i=1

γ2
i

(

σ2
i

σ2
i + e−2µ

)2

.

Differentiating ‖xµ‖2 with respect to µ gives

(8.5) E(µ) := (‖xµ‖2)′ = 4

n
∑

i=1

γ2
i

σ4
i e

−2µ

(σ2
i + e−2µ)3

.
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Define

(8.6) H(λ) :=
1

4
E(µ(λ)) =

n
∑

i=1

γ2
i

σ4
i λ

2

(σ2
i + λ2)3

=

n
∑

i=1

γ2
i

(σi/λ)
4

((σi/λ)2 + 1)
3 .

The f-slope method finds a µ value that minimizes the E function over some interval [c, d].
If µmin is such a value, then it is easy to see that λmin = e−µmin minimizes the H function
over [e−d, e−c]. We shall analyze function H in stead of functionE.

The function form

(8.7) s(t) =
t4

(t2 + 1)3

is common to all the terms in the right summation in (8.6). If t � 1, then s ≈ t4; if t � 1,
then s ≈ 1/t2. So s rapidly diminishes as t goes away from 1 on either side. We can see that
for a fixed λ value, the contribution of those terms in the summation in (8.6) with σi/λ very
small or large will get suppressed. If for some λ ≈ σj , s effectively filters out the influence
of all γi’s, i 6= j, then H(λ) ≈ γ2

j /8. This dependence of H on γi’s indicates that the rise
and fall of the γi may well be reflected in the change of H as λ moves down from σ1 to σn.
Therefore, the λmin given by the f-slope method may fall close to σp.

Remark. The quasi-optimality criterion is another parameter choice method in Tikhonov
regularization. This criterion is based on an error estimate of ‖xexact−xλ‖ [5]. Minimization
of the error estimate leads to the problem of minimizing the function

(8.8) Q(λ) =

(

n
∑

i=1

(fi(1 − fi)γi)
2

)1/2

=







n
∑

i=1

γ2
i

(σi/λ)
4

(

(σi/λ)
2

+ 1
)4







1/2

,

where fi = σ2
i /(σ

2
i + λ2). We observe that Q(λ)2 resembles H(λ) in (8.6).

8.2. A model for the γi. To better understand how the f-slope method works, we then
consider the following model for the γi:

(8.9) γi =

{

σα
i , i = 1, ..., p,
σα+1

p /σi, i = p+ 1, ..., n,

where α > 0. This model is a variant of the models assumed in [7] and [8] in obtaining
theoretical results and satisfies

γ1 ≥ · · · ≥ γp ≤ γp+1 ≤ · · · ≤ γn.

Further, we assume

(8.10) γexact
i =

{

γi, i = 1, ..., p,
0, i = p+ 1, ..., n,

and γerror
i =

{

0, i = 1, ..., p,
γi, i = p+ 1, ..., n.

We shall first derive some bounds for ‖xexact − xλ‖2 and H(λ) using the model. The
expression in (8.2) together with (8.9) and (8.10) yields

(8.11) ‖xexact − xλ‖2 =

p
∑

i=1

(

λ2

σ2
i + λ2

σα
i

)2

+

n
∑

i=p+1

(

σ2
i

σ2
i + λ2

σα+1
p

σi

)2

.
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LEMMA 8.1. For σ1 ≥ · · · ≥ σk ≥ λ ≥ σk+1 ≥ · · · ≥ σp,

(8.12) ‖xexact − xλ‖2 < σ2α
k θk,1 = σ4

kσ
2(α−2)
1 κk,1

and

(8.13) ‖xexact − xλ‖2 ≥ 1

4
σ2α

k+1τk,1 =
1

4
σ4

k+1σ
2(α−2)
1 χk,1,

where θk,1, τk,1, κk,1, and χk,1 satisfy

1 < θk,1, τk,1 ≤ n for 0 < α ≤ 2 and 1 < κk,1, χk,1 ≤ n for α > 2.

Proof. Let

S1 =

p
∑

i=1

(

λ2

σ2
i + λ2

σα
i

)2

and S2 =
n
∑

i=p+1

(

σ2
i

σ2
i + λ2

σα+1
p

σi

)2

.

Then

‖xexact − xλ‖
2 = S1 + S2.

Write S1 as

k
∑

i=1

(

λ2

σ2
i + λ2

σα
i

)2

+

p
∑

i=k+1

(

λ2

σ2
i + λ2

σα
i

)2

.

We derive the upper bound first.

S1 <
k
∑

i=1

(

λ2

σ2
i

σα
i

)2

+

p
∑

i=k+1

σ2α
i

≤ σ4
k

k
∑

i=1

σ
2(α−2)
i +

p
∑

i=k+1

σ2α
i

= σ2α
k

k
∑

i=1

(

σk

σi

)2(2−α)

+

p
∑

i=k+1

σ2α
i ,

and

S2 <
n
∑

i=p+1

(

σ2
i

λ2

σα+1
p

σi

)2

≤ σ2α
p

(

σp

σk+1

)2 n
∑

i=p+1

(

σi

σk+1

)2

.

Hence,

‖xexact − xλ‖
2

< σ2α
k





k
∑

i=1

(

σk

σi

)2(2−α)

+

p
∑

i=k+1

(

σi

σk

)2α

+

(

σp

σk

)2α ( σp

σk+1

)2 n
∑

i=p+1

(

σi

σk+1

)2




= σ4
kσ

2(α−2)
1 ·





k
∑

i=1

(

σi

σ1

)2(α−2)

+

p
∑

i=k+1

(

σi

σk

)4 ( σi

σ1

)2(α−2)

+

(

σp

σk

)4 ( σp

σk+1

)2 (σp

σ1

)2(α−2) n
∑

i=p+1

(

σi

σk+1

)2


 .

The result follows.
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Next, we derive the lower bound.

S1 ≥
k
∑

i=1

(

λ2

2σ2
i

σα
i

)2

+

p
∑

i=k+1

(

λ2

2λ2
σα

i

)2

=
1

4



λ4
k
∑

i=1

σ
2(α−2)
i +

p
∑

i=k+1

σ2α
i





≥
1

4



σ4
k+1

k
∑

i=1

σ
2(α−2)
i +

p
∑

i=k+1

σ2α
i





=
1

4



σ2α
k+1

k
∑

i=1

(

σk+1

σi

)2(2−α)

+

p
∑

i=k+1

σ2α
i



 ,

and

S2 ≥
n
∑

i=p+1

(

σ2
i

2λ2

σα+1
p

σi

)2

≥
1

4

n
∑

i=p+1

(

σ2
i

σ2
k

σα+1
p

σi

)2

=
1

4
σ2α

p

(

σp

σk

)2 n
∑

i=p+1

(

σi

σk

)2

.

Hence,

‖xexact − xλ‖
2

≥
1

4
σ2α

k+1





k
∑

i=1

(

σk+1

σi

)2(2−α)

+

p
∑

i=k+1

(

σi

σk+1

)2α

+

(

σp

σk+1

)2α (σp

σk

)2 n
∑

i=p+1

(

σi

σk

)2




=
1

4
σ4

k+1σ
2(α−2)
1 ·





k
∑

i=1

(

σi

σ1

)2(α−2)

+

p
∑

i=k+1

(

σi

σk+1

)4 ( σi

σ1

)2(α−2)

+

(

σp

σk+1

)4 (σp

σk

)2 (σp

σ1

)2(α−2) n
∑

i=p+1

(

σi

σk

)2




The result follows.

LEMMA 8.2. For σp ≥ · · · ≥ σl ≥ λ ≥ σl+1 ≥ · · · ≥ σn,

(8.14) ‖xexact − xλ‖2 < σ2α
p

(

σp

σl+1

)2

θl,2 = σ4
pσ

2(α−2)
1

(

σp

σl+1

)2

κl,2

and

(8.15) ‖xexact − xλ‖2 ≥ 1

4
σ2α

p

(

σp

σl

)2

τl,2 =
1

4
σ4

pσ
2(α−2)
1

(

σp

σl

)2

χl,2,

where θl,2, τl,2, κl,2, and χl,2 satisfy

1 < θl,2 ≤ n,

n ≥ τl,2 >

{

1, l ≥ p+ 1,
σp+1/σp, l = p,

for 0 < α ≤ 2; and

(

σl

σp

)4(
σl+1

σp

)2

+

(

σp

σ1

)2(α−2)

< κl,2 ≤ n,

n ≥ χl,2 >











(

σl+1

σp

)4 (
σl

σp

)2

+
(

σp

σ1

)2(α−2)

, l ≥ p+ 1,
(

σp+1

σp

)4

+
(

σp

σ1

)2(α−2) (
σp+1

σp

)2

, l = p,
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for α > 2.
Proof. The proof for this lemma is similar to the one given to Lemma 8.1. Using the idea employed in the

proof of Lemma 8.1, we can show the following:

‖xexact − xλ‖
2

< σ2α
p

(

σp

σl+1

)2




(

σl

σp

)2α (σl+1

σp

)2 p
∑

i=1

(

σl

σi

)2(2−α)

+

(

σl+1

σl

)2 l
∑

i=p+1

(

σl

σi

)2

+
n
∑

i=l+1

(

σi

σl+1

)2




= σ4
pσ

2(α−2)
1

(

σp

σl+1

)2

·





(

σl

σp

)4 (σl+1

σp

)2 p
∑

i=1

(

σi

σ1

)2(α−2)

+

(

σp

σ1

)2(α−2)




(

σl+1

σl

)2 l
∑

i=p+1

(

σl

σi

)2

+
n
∑

i=l+1

(

σi

σl+1

)2








and

‖xexact − xλ‖
2

≥
1

4
σ2α

p

(

σp

σl

)2




(

σl+1

σp

)2α ( σl

σp

)2 p
∑

i=1

(

σl+1

σi

)2(2−α)

+

l
∑

i=p+1

(

σl

σi

)2

+

n
∑

i=l+1

(

σi

σl

)2




=
1

4
σ4

pσ
2(α−2)
1

(

σp

σl

)2

·





(

σl+1

σp

)4 ( σl

σp

)2 p
∑

i=1

(

σi

σ1

)2(α−2)

+

(

σp

σ1

)2(α−2)




l
∑

i=p+1

(

σl

σi

)2

+
n
∑

i=l+1

(

σi

σl

)2


 .





The result follows.

With γi being modeled as in (8.9), the function in (8.6) becomes:

(8.16) H(λ) =

p
∑

i=1

σ4+2α
i λ2

(σ2
i + λ2)3

+ σ2(α+1)
p

n
∑

i=p+1

σ2
i λ

2

(σ2
i + λ2)3

.

LEMMA 8.3. For σ1 ≥ · · · ≥ σk ≥ λ ≥ σk+1 ≥ · · · ≥ σp,

(8.17) H(λ) < σ2α
k θk,3 = σ2

kσ
2(α−1)
1 κk,3

and

(8.18) H(λ) ≥ 1

8
σ2α

k

(

σk+1

σk

)2

τk,3 =
1

8
σ2

k+1σ
2(α−1)
1 χk,3,

where θk,3, τk,3, κk,3, and χk,3 satisfy

1 < θk,3, τk,3 ≤ n for 0 < α ≤ 1 and 1 < κk,3, χk,3 ≤ n for α > 1.

Proof. The proof for this lemma is similar to the one given to Lemma 8.1. Following the steps applied in the
proof of Lemma 8.1, we can show the following:

H(λ)

< σ2α
k





k
∑

i=1

(

σk

σi

)2(1−α)

+

(

σk+1

σk

)2α p
∑

i=k+1

(

σi

σk+1

)4+2α

+

(

σp

σk

)2α ( σp

σk+1

)2 n
∑

i=p+1

(

σi

σk+1

)2




= σ2
kσ

2(α−1)
1 ·





k
∑

i=1

(

σi

σ1

)2(α−1)

+

(

σk+1

σ1

)2(α−1) (σk+1

σk

)2 p
∑

i=k+1

(

σi

σk+1

)4+2α

+

(

σp

σ1

)2(α−1) (σp

σk

)2 ( σp

σk+1

)2 n
∑

i=p+1

(

σi

σk+1

)2
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and

H(λ)

≥
1

8
σ2α

k

(

σk+1

σk

)2

·





k
∑

i=1

(

σk

σi

)2(1−α)

+

(

σk+1

σk

)2(α+1) p
∑

i=k+1

(

σi

σk+1

)4+2α

+

(

σp

σk

)2α ( σp

σk+1

)2 n
∑

i=p+1

(

σi

σk

)2




=
1

8
σ2

k+1σ
2(α−1)
1 ·





k
∑

i=1

(

σi

σ1

)2(α−1)

+

(

σk

σ1

)2(α−1) (σk+1

σk

)2(α+1) p
∑

i=k+1

(

σi

σk+1

)4+2α

+

(

σp

σ1

)2(α−1) (σp

σk

)4 n
∑

i=p+1

(

σi

σk+1

)2


 .

The result follows.

LEMMA 8.4. For σp ≥ · · · ≥ σl ≥ λ ≥ σl+1 ≥ · · · ≥ σn,

(8.19) H(λ) < σ2α
p

(

σp

σl+1

)2

θl,4 = σ2
pσ

2(α−1)
1

(

σp

σl+1

)2

κl,4

and

(8.20) H(λ) ≥ 1

8
σ2α

p

(

σp

σl

)2(
σl+1

σl

)2

τl,4 =
1

8
σ2

pσ
2(α−1)
1

(

σp

σl

)2(
σl+1

σl

)2

χl,4,

where θl,4, τl,4, κl,4, and χl,4 satisfy

1 < θl,4, τl,4 ≤ n for 0 < α ≤ 1

and

(

σl

σp

)2(
σl+1

σp

)2

+

(

σp

σ1

)2(α−1)

< κl,4 ≤ n,

(

σl

σp

)4

+

(

σp

σ1

)2(α−1)

< χl,4 ≤ n,

for α > 1.
Proof. The proof for this lemma is similar to the one given to Lemma 8.1. Following the idea employed in

the proof of Lemma 8.1, we can show the following:

H(λ)

< σ2α
p

(

σp

σl+1

)2




(

σl

σp

)2α (σl+1

σp

)2 p
∑

i=1

(

σl

σi

)2(1−α)

+
l
∑

i=p+1

(

σl

σi

)2 (σl+1

σi

)2

+
n
∑

i=l+1

(

σi

σl+1

)2




= σ2
pσ

2(α−1)
1

(

σp

σl+1

)2

·





(

σl

σp

)2 (σl+1

σp

)2 p
∑

i=1

(

σi

σ1

)2(α−1)

+

(

σp

σ1

)2(α−1)




l
∑

i=p+1

(

σl

σi

)2 (σl+1

σi

)2

+
n
∑

i=l+1

(

σi

σl+1

)2
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and

H(λ)

≥
1

8
σ2α

p

(

σp

σl

)2 (σl+1

σl

)2




(

σl

σp

)2(α+1) p
∑

i=1

(

σl

σi

)2(1−α)

+
l
∑

i=p+1

(

σl

σi

)4

+
n
∑

i=l+1

(

σi

σl+1

)2




=
1

8
σ2

pσ
2(α−1)
1

(

σp

σl

)2 (σl+1

σl

)2

·





(

σl

σp

)4 p
∑

i=1

(

σi

σ1

)2(α−1)

+

(

σp

σ1

)2(α−1)




l
∑

i=p+1

(

σl

σi

)4

+
n
∑

i=l+1

(

σi

σl+1

)2






 .

The result follows.

The following two theorems give bounds to the minimizers of ‖xexact −xλ‖2 andH(λ)
in terms of the singular values of A.

THEOREM 8.5. Let λerror
min be a λ value that minimizes ‖xexact − xλ‖2. Let

φ =

p
∑

i=1

(

σp

σi

)2(2−α)

+

n
∑

i=p+1

(

σi

σp

)2

.

For any 0 < α ≤ 2,

if (σi+1/σp)
α
> 2
√

φ/τi,1, i = 1, ..., k, k ≤ p− 1,

and

if σp/σj > 2
√

φ/τj,2, j = l, ..., n− 1, l ≥ p+ 1,

then

σl < λerror
min < σk+1.

Proof. Using the idea employed in the proof of Lemma 8.1, we can show at λ = σp that

(8.21) ‖xexact − xσ‖
2 < σ2α

p φ.

First,

(σi+1/σp)α > 2
√

φ/τi,1 ⇐⇒ σ2α
p φ < σ2α

i+1τi,1/4.

By (8.21) and Lemma 8.1, we have

‖xexact − xσp‖
2 < σ2α

p φ < σ2α
i+1τi,1/4 ≤ ‖xexact − xλ‖

2,

for σi+1 ≤ λ ≤ σi, i = 1, .., k. This implies λerror
min < σk+1.

Second,

σp/σj > 2
√

φ/τj,2 ⇐⇒ σ2α
p φ < (σp/σj )2 σ2α

p τj,2/4.

By (8.21) and Lemma 8.2, we have

‖xexact − xσp‖
2 < σ2α

p φ < (σp/σj )2 σ2α
p τj,2/4 ≤ ‖xexact − xλ‖

2,

for σj+1 ≤ λ ≤ σj , j = l, .., n− 1, where l ≥ p+ 1. This implies λerror
min > σl.

THEOREM 8.6. Let λH
min be a λ value that minimizes H(λ). Let

ψ =

p
∑

i=1

(

σp

σi

)2(1−α)

+

n
∑

i=p+1

(

σi

σp

)2

.
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For any 0 < α ≤ 1,

if (σi/σp)
α
>

σi

σi+1

√

8ψ/τi,3, i = 1, ..., k, k ≤ p− 1,

and

if σp/σj >
σj

σj+1

√

8ψ/τj,4, j = l, ..., n− 1, l ≥ p+ 1,

then

σl < λH
min < σk+1.

Proof. Using the idea employed in the proof of Lemma 8.1, we can show at λ = σp that

(8.22) H(σp) < σ2α
p ψ.

The rest of the proof is immediate by following the steps given in the proof of Theorem 8.5 with the use of Lemma

8.3 and Lemma 8.4.

We see from Theorem 8.5 that if the σi tends to zero and if α is not too close to 0, then
λerror

min would fall close to σp. We can arrive at the same conclusion for λH
min from Theorem

8.6 if we assume additionally that the ratio σj/σj+1 is not too large for j = p+ 1, ..., n− 1.
Notice that φ, ψ, τi,1, τi,2, τi,3 and τi,4 in Theorem 8.5 and Theorem 8.6 lie between 1 and n.
It should be noted that the ranges for α in Theorem 8.5 and Theorem 8.6 are different. For
the model problem, these two theorems show that the f-slope method is able to find a λ value
that is close to the minimizer of ‖xexact − xλ‖2 under certain conditions. Furthermore, we
can see from Lemma 8.1 and Lemma 8.2 that a small error can be achieved as long as the
minimizer of H(λ) falls close to σp.

9. Conclusions. In Tikhonov regularization of discrete ill-posed problems, choosing an
appropriate regularization parameter is crucial. In this paper, a new method, the flattest slope
method, for choosing a good regularization parameter is proposed. Comparisons are made
with the L-curve method. For all the test problems considered in this paper, the new method
chooses a regularized solution that is as good as and frequently better than the regularized
solution chosen by the L-curve method. Recently, there have been a few papers illustrating
limitations of the L-curve method with some criticisms of the non-convergence it sometimes
exhibits as the relative error level in the right-hand side vector approaches zero, see [1, 4, 15].
The perturbation experiments in §7 show that the f-slope method exhibits convergence as the
perturbation level δ decays to zero, in contrast to the L-curve method which exhibits non-
convergence for some problems. The analysis given in §8 explains how the f-slope method
works for some model problems.

Acknowledgments. I wish to thank Professor Charles Fulton for many helpful discus-
sions and suggestions. I would also like to thank the referee for useful comments on an earlier
version of this paper.

REFERENCES

[1] H. W. ENGL AND W. GREVER, Using the L-Curve for Determining Optimal Regularization Parameters,
Numer. Math., 69 (1994), pp. 25–31.

[2] L. ELDÉN, The numerical solution of a non-characteristic Cauchy problem for a parabolic equation, in
Numerical Treatment of Inverse Problems in Differential and Integral Equations, P. Deuflhart & E. Hairer,
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